AMDGPUISelLowering.cpp revision 296417
1//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief This is the parent TargetLowering class for hardware code gen
12/// targets.
13//
14//===----------------------------------------------------------------------===//
15
16#include "AMDGPUISelLowering.h"
17#include "AMDGPU.h"
18#include "AMDGPUDiagnosticInfoUnsupported.h"
19#include "AMDGPUFrameLowering.h"
20#include "AMDGPUIntrinsicInfo.h"
21#include "AMDGPURegisterInfo.h"
22#include "AMDGPUSubtarget.h"
23#include "R600MachineFunctionInfo.h"
24#include "SIMachineFunctionInfo.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30#include "llvm/IR/DataLayout.h"
31
32using namespace llvm;
33
34static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
35                      CCValAssign::LocInfo LocInfo,
36                      ISD::ArgFlagsTy ArgFlags, CCState &State) {
37  unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
38                                        ArgFlags.getOrigAlign());
39  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
40
41  return true;
42}
43
44#include "AMDGPUGenCallingConv.inc"
45
46// Find a larger type to do a load / store of a vector with.
47EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
48  unsigned StoreSize = VT.getStoreSizeInBits();
49  if (StoreSize <= 32)
50    return EVT::getIntegerVT(Ctx, StoreSize);
51
52  assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
53  return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
54}
55
56// Type for a vector that will be loaded to.
57EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
58  unsigned StoreSize = VT.getStoreSizeInBits();
59  if (StoreSize <= 32)
60    return EVT::getIntegerVT(Ctx, 32);
61
62  return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
63}
64
65AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM,
66                                           const AMDGPUSubtarget &STI)
67    : TargetLowering(TM), Subtarget(&STI) {
68  setOperationAction(ISD::Constant, MVT::i32, Legal);
69  setOperationAction(ISD::Constant, MVT::i64, Legal);
70  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
71  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
72
73  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
74  setOperationAction(ISD::BRIND, MVT::Other, Expand);
75
76  // This is totally unsupported, just custom lower to produce an error.
77  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
78
79  // We need to custom lower some of the intrinsics
80  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
81
82  // Library functions.  These default to Expand, but we have instructions
83  // for them.
84  setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
85  setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
86  setOperationAction(ISD::FPOW,   MVT::f32, Legal);
87  setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
88  setOperationAction(ISD::FABS,   MVT::f32, Legal);
89  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
90  setOperationAction(ISD::FRINT,  MVT::f32, Legal);
91  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
92  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
93  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
94
95  setOperationAction(ISD::FROUND, MVT::f32, Custom);
96  setOperationAction(ISD::FROUND, MVT::f64, Custom);
97
98  setOperationAction(ISD::FREM, MVT::f32, Custom);
99  setOperationAction(ISD::FREM, MVT::f64, Custom);
100
101  // v_mad_f32 does not support denormals according to some sources.
102  if (!Subtarget->hasFP32Denormals())
103    setOperationAction(ISD::FMAD, MVT::f32, Legal);
104
105  // Expand to fneg + fadd.
106  setOperationAction(ISD::FSUB, MVT::f64, Expand);
107
108  // Lower floating point store/load to integer store/load to reduce the number
109  // of patterns in tablegen.
110  setOperationAction(ISD::STORE, MVT::f32, Promote);
111  AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
112
113  setOperationAction(ISD::STORE, MVT::v2f32, Promote);
114  AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
115
116  setOperationAction(ISD::STORE, MVT::v4f32, Promote);
117  AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
118
119  setOperationAction(ISD::STORE, MVT::v8f32, Promote);
120  AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
121
122  setOperationAction(ISD::STORE, MVT::v16f32, Promote);
123  AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
124
125  setOperationAction(ISD::STORE, MVT::f64, Promote);
126  AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
127
128  setOperationAction(ISD::STORE, MVT::v2f64, Promote);
129  AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
130
131  // Custom lowering of vector stores is required for local address space
132  // stores.
133  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
134
135  setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
136  setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
137  setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
138
139  // XXX: This can be change to Custom, once ExpandVectorStores can
140  // handle 64-bit stores.
141  setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
142
143  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
144  setTruncStoreAction(MVT::i64, MVT::i8, Expand);
145  setTruncStoreAction(MVT::i64, MVT::i1, Expand);
146  setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
147  setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
148
149
150  setOperationAction(ISD::LOAD, MVT::f32, Promote);
151  AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
152
153  setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
154  AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
155
156  setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
157  AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
158
159  setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
160  AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
161
162  setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
163  AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
164
165  setOperationAction(ISD::LOAD, MVT::f64, Promote);
166  AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
167
168  setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
169  AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
170
171  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
172  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
173  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
174  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
175  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
176  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
177  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
178  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
179  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
180  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
181
182  // There are no 64-bit extloads. These should be done as a 32-bit extload and
183  // an extension to 64-bit.
184  for (MVT VT : MVT::integer_valuetypes()) {
185    setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
186    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
187    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
188  }
189
190  for (MVT VT : MVT::integer_vector_valuetypes()) {
191    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
192    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
193    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
194    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
195    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
196    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
197    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
198    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
199    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
200    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
201    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
202    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
203  }
204
205  setOperationAction(ISD::BR_CC, MVT::i1, Expand);
206
207  if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
208    setOperationAction(ISD::FCEIL, MVT::f64, Custom);
209    setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
210    setOperationAction(ISD::FRINT, MVT::f64, Custom);
211    setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
212  }
213
214  if (!Subtarget->hasBFI()) {
215    // fcopysign can be done in a single instruction with BFI.
216    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
217    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
218  }
219
220  setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
221
222  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
223  setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
224  setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
225  setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
226
227  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
228  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
229  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
230  setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
231
232  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
233  setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
234  setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
235  setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
236
237  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
238  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
239
240  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
241  for (MVT VT : ScalarIntVTs) {
242    setOperationAction(ISD::SREM, VT, Expand);
243    setOperationAction(ISD::SDIV, VT, Expand);
244
245    // GPU does not have divrem function for signed or unsigned.
246    setOperationAction(ISD::SDIVREM, VT, Custom);
247    setOperationAction(ISD::UDIVREM, VT, Custom);
248
249    // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
250    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
251    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
252
253    setOperationAction(ISD::BSWAP, VT, Expand);
254    setOperationAction(ISD::CTTZ, VT, Expand);
255    setOperationAction(ISD::CTLZ, VT, Expand);
256  }
257
258  if (!Subtarget->hasBCNT(32))
259    setOperationAction(ISD::CTPOP, MVT::i32, Expand);
260
261  if (!Subtarget->hasBCNT(64))
262    setOperationAction(ISD::CTPOP, MVT::i64, Expand);
263
264  // The hardware supports 32-bit ROTR, but not ROTL.
265  setOperationAction(ISD::ROTL, MVT::i32, Expand);
266  setOperationAction(ISD::ROTL, MVT::i64, Expand);
267  setOperationAction(ISD::ROTR, MVT::i64, Expand);
268
269  setOperationAction(ISD::MUL, MVT::i64, Expand);
270  setOperationAction(ISD::MULHU, MVT::i64, Expand);
271  setOperationAction(ISD::MULHS, MVT::i64, Expand);
272  setOperationAction(ISD::UDIV, MVT::i32, Expand);
273  setOperationAction(ISD::UREM, MVT::i32, Expand);
274  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
275  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
276  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
277  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
278  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
279
280  setOperationAction(ISD::SMIN, MVT::i32, Legal);
281  setOperationAction(ISD::UMIN, MVT::i32, Legal);
282  setOperationAction(ISD::SMAX, MVT::i32, Legal);
283  setOperationAction(ISD::UMAX, MVT::i32, Legal);
284
285  if (Subtarget->hasFFBH())
286    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
287  else
288    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
289
290  if (!Subtarget->hasFFBL())
291    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
292
293  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
294
295  setOperationAction(ISD::CTLZ, MVT::i64, Custom);
296  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
297
298  static const MVT::SimpleValueType VectorIntTypes[] = {
299    MVT::v2i32, MVT::v4i32
300  };
301
302  for (MVT VT : VectorIntTypes) {
303    // Expand the following operations for the current type by default.
304    setOperationAction(ISD::ADD,  VT, Expand);
305    setOperationAction(ISD::AND,  VT, Expand);
306    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
307    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
308    setOperationAction(ISD::MUL,  VT, Expand);
309    setOperationAction(ISD::OR,   VT, Expand);
310    setOperationAction(ISD::SHL,  VT, Expand);
311    setOperationAction(ISD::SRA,  VT, Expand);
312    setOperationAction(ISD::SRL,  VT, Expand);
313    setOperationAction(ISD::ROTL, VT, Expand);
314    setOperationAction(ISD::ROTR, VT, Expand);
315    setOperationAction(ISD::SUB,  VT, Expand);
316    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
317    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
318    setOperationAction(ISD::SDIV, VT, Expand);
319    setOperationAction(ISD::UDIV, VT, Expand);
320    setOperationAction(ISD::SREM, VT, Expand);
321    setOperationAction(ISD::UREM, VT, Expand);
322    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
323    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
324    setOperationAction(ISD::SDIVREM, VT, Custom);
325    setOperationAction(ISD::UDIVREM, VT, Expand);
326    setOperationAction(ISD::ADDC, VT, Expand);
327    setOperationAction(ISD::SUBC, VT, Expand);
328    setOperationAction(ISD::ADDE, VT, Expand);
329    setOperationAction(ISD::SUBE, VT, Expand);
330    setOperationAction(ISD::SELECT, VT, Expand);
331    setOperationAction(ISD::VSELECT, VT, Expand);
332    setOperationAction(ISD::SELECT_CC, VT, Expand);
333    setOperationAction(ISD::XOR,  VT, Expand);
334    setOperationAction(ISD::BSWAP, VT, Expand);
335    setOperationAction(ISD::CTPOP, VT, Expand);
336    setOperationAction(ISD::CTTZ, VT, Expand);
337    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
338    setOperationAction(ISD::CTLZ, VT, Expand);
339    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
340    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
341  }
342
343  static const MVT::SimpleValueType FloatVectorTypes[] = {
344    MVT::v2f32, MVT::v4f32
345  };
346
347  for (MVT VT : FloatVectorTypes) {
348    setOperationAction(ISD::FABS, VT, Expand);
349    setOperationAction(ISD::FMINNUM, VT, Expand);
350    setOperationAction(ISD::FMAXNUM, VT, Expand);
351    setOperationAction(ISD::FADD, VT, Expand);
352    setOperationAction(ISD::FCEIL, VT, Expand);
353    setOperationAction(ISD::FCOS, VT, Expand);
354    setOperationAction(ISD::FDIV, VT, Expand);
355    setOperationAction(ISD::FEXP2, VT, Expand);
356    setOperationAction(ISD::FLOG2, VT, Expand);
357    setOperationAction(ISD::FREM, VT, Expand);
358    setOperationAction(ISD::FPOW, VT, Expand);
359    setOperationAction(ISD::FFLOOR, VT, Expand);
360    setOperationAction(ISD::FTRUNC, VT, Expand);
361    setOperationAction(ISD::FMUL, VT, Expand);
362    setOperationAction(ISD::FMA, VT, Expand);
363    setOperationAction(ISD::FRINT, VT, Expand);
364    setOperationAction(ISD::FNEARBYINT, VT, Expand);
365    setOperationAction(ISD::FSQRT, VT, Expand);
366    setOperationAction(ISD::FSIN, VT, Expand);
367    setOperationAction(ISD::FSUB, VT, Expand);
368    setOperationAction(ISD::FNEG, VT, Expand);
369    setOperationAction(ISD::SELECT, VT, Expand);
370    setOperationAction(ISD::VSELECT, VT, Expand);
371    setOperationAction(ISD::SELECT_CC, VT, Expand);
372    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
373    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
374  }
375
376  setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
377  setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
378
379  setTargetDAGCombine(ISD::SHL);
380  setTargetDAGCombine(ISD::MUL);
381  setTargetDAGCombine(ISD::SELECT);
382  setTargetDAGCombine(ISD::SELECT_CC);
383  setTargetDAGCombine(ISD::STORE);
384
385  setTargetDAGCombine(ISD::FADD);
386  setTargetDAGCombine(ISD::FSUB);
387
388  setBooleanContents(ZeroOrNegativeOneBooleanContent);
389  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
390
391  setSchedulingPreference(Sched::RegPressure);
392  setJumpIsExpensive(true);
393
394  // SI at least has hardware support for floating point exceptions, but no way
395  // of using or handling them is implemented. They are also optional in OpenCL
396  // (Section 7.3)
397  setHasFloatingPointExceptions(false);
398
399  setSelectIsExpensive(false);
400  PredictableSelectIsExpensive = false;
401
402  setFsqrtIsCheap(true);
403
404  // We want to find all load dependencies for long chains of stores to enable
405  // merging into very wide vectors. The problem is with vectors with > 4
406  // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
407  // vectors are a legal type, even though we have to split the loads
408  // usually. When we can more precisely specify load legality per address
409  // space, we should be able to make FindBetterChain/MergeConsecutiveStores
410  // smarter so that they can figure out what to do in 2 iterations without all
411  // N > 4 stores on the same chain.
412  GatherAllAliasesMaxDepth = 16;
413
414  // FIXME: Need to really handle these.
415  MaxStoresPerMemcpy  = 4096;
416  MaxStoresPerMemmove = 4096;
417  MaxStoresPerMemset  = 4096;
418}
419
420//===----------------------------------------------------------------------===//
421// Target Information
422//===----------------------------------------------------------------------===//
423
424MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
425  return MVT::i32;
426}
427
428bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
429  return true;
430}
431
432// The backend supports 32 and 64 bit floating point immediates.
433// FIXME: Why are we reporting vectors of FP immediates as legal?
434bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
435  EVT ScalarVT = VT.getScalarType();
436  return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
437}
438
439// We don't want to shrink f64 / f32 constants.
440bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
441  EVT ScalarVT = VT.getScalarType();
442  return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
443}
444
445bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
446                                                 ISD::LoadExtType,
447                                                 EVT NewVT) const {
448
449  unsigned NewSize = NewVT.getStoreSizeInBits();
450
451  // If we are reducing to a 32-bit load, this is always better.
452  if (NewSize == 32)
453    return true;
454
455  EVT OldVT = N->getValueType(0);
456  unsigned OldSize = OldVT.getStoreSizeInBits();
457
458  // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
459  // extloads, so doing one requires using a buffer_load. In cases where we
460  // still couldn't use a scalar load, using the wider load shouldn't really
461  // hurt anything.
462
463  // If the old size already had to be an extload, there's no harm in continuing
464  // to reduce the width.
465  return (OldSize < 32);
466}
467
468bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
469                                                   EVT CastTy) const {
470  if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
471    return true;
472
473  unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
474  unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
475
476  return ((LScalarSize <= CastScalarSize) ||
477          (CastScalarSize >= 32) ||
478          (LScalarSize < 32));
479}
480
481// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
482// profitable with the expansion for 64-bit since it's generally good to
483// speculate things.
484// FIXME: These should really have the size as a parameter.
485bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
486  return true;
487}
488
489bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
490  return true;
491}
492
493//===---------------------------------------------------------------------===//
494// Target Properties
495//===---------------------------------------------------------------------===//
496
497bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
498  assert(VT.isFloatingPoint());
499  return VT == MVT::f32 || VT == MVT::f64;
500}
501
502bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
503  assert(VT.isFloatingPoint());
504  return VT == MVT::f32 || VT == MVT::f64;
505}
506
507bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
508                                                         unsigned NumElem,
509                                                         unsigned AS) const {
510  return true;
511}
512
513bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
514  // There are few operations which truly have vector input operands. Any vector
515  // operation is going to involve operations on each component, and a
516  // build_vector will be a copy per element, so it always makes sense to use a
517  // build_vector input in place of the extracted element to avoid a copy into a
518  // super register.
519  //
520  // We should probably only do this if all users are extracts only, but this
521  // should be the common case.
522  return true;
523}
524
525bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
526  // Truncate is just accessing a subregister.
527  return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
528}
529
530bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
531  // Truncate is just accessing a subregister.
532  return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
533         (Dest->getPrimitiveSizeInBits() % 32 == 0);
534}
535
536bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
537  unsigned SrcSize = Src->getScalarSizeInBits();
538  unsigned DestSize = Dest->getScalarSizeInBits();
539
540  return SrcSize == 32 && DestSize == 64;
541}
542
543bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
544  // Any register load of a 64-bit value really requires 2 32-bit moves. For all
545  // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
546  // this will enable reducing 64-bit operations the 32-bit, which is always
547  // good.
548  return Src == MVT::i32 && Dest == MVT::i64;
549}
550
551bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
552  return isZExtFree(Val.getValueType(), VT2);
553}
554
555bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
556  // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
557  // limited number of native 64-bit operations. Shrinking an operation to fit
558  // in a single 32-bit register should always be helpful. As currently used,
559  // this is much less general than the name suggests, and is only used in
560  // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
561  // not profitable, and may actually be harmful.
562  return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
563}
564
565//===---------------------------------------------------------------------===//
566// TargetLowering Callbacks
567//===---------------------------------------------------------------------===//
568
569void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
570                             const SmallVectorImpl<ISD::InputArg> &Ins) const {
571
572  State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
573}
574
575void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
576                           const SmallVectorImpl<ISD::OutputArg> &Outs) const {
577
578  State.AnalyzeReturn(Outs, RetCC_SI);
579}
580
581SDValue AMDGPUTargetLowering::LowerReturn(
582                                     SDValue Chain,
583                                     CallingConv::ID CallConv,
584                                     bool isVarArg,
585                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
586                                     const SmallVectorImpl<SDValue> &OutVals,
587                                     SDLoc DL, SelectionDAG &DAG) const {
588  return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
589}
590
591//===---------------------------------------------------------------------===//
592// Target specific lowering
593//===---------------------------------------------------------------------===//
594
595SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
596                                        SmallVectorImpl<SDValue> &InVals) const {
597  SDValue Callee = CLI.Callee;
598  SelectionDAG &DAG = CLI.DAG;
599
600  const Function &Fn = *DAG.getMachineFunction().getFunction();
601
602  StringRef FuncName("<unknown>");
603
604  if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
605    FuncName = G->getSymbol();
606  else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
607    FuncName = G->getGlobal()->getName();
608
609  DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
610  DAG.getContext()->diagnose(NoCalls);
611  return SDValue();
612}
613
614SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
615                                                      SelectionDAG &DAG) const {
616  const Function &Fn = *DAG.getMachineFunction().getFunction();
617
618  DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca");
619  DAG.getContext()->diagnose(NoDynamicAlloca);
620  return SDValue();
621}
622
623SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
624                                             SelectionDAG &DAG) const {
625  switch (Op.getOpcode()) {
626  default:
627    Op.getNode()->dump();
628    llvm_unreachable("Custom lowering code for this"
629                     "instruction is not implemented yet!");
630    break;
631  case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
632  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
633  case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
634  case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
635  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
636  case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
637  case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
638  case ISD::FREM: return LowerFREM(Op, DAG);
639  case ISD::FCEIL: return LowerFCEIL(Op, DAG);
640  case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
641  case ISD::FRINT: return LowerFRINT(Op, DAG);
642  case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
643  case ISD::FROUND: return LowerFROUND(Op, DAG);
644  case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
645  case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
646  case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
647  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
648  case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
649  case ISD::CTLZ:
650  case ISD::CTLZ_ZERO_UNDEF:
651    return LowerCTLZ(Op, DAG);
652  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
653  }
654  return Op;
655}
656
657void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
658                                              SmallVectorImpl<SDValue> &Results,
659                                              SelectionDAG &DAG) const {
660  switch (N->getOpcode()) {
661  case ISD::SIGN_EXTEND_INREG:
662    // Different parts of legalization seem to interpret which type of
663    // sign_extend_inreg is the one to check for custom lowering. The extended
664    // from type is what really matters, but some places check for custom
665    // lowering of the result type. This results in trying to use
666    // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
667    // nothing here and let the illegal result integer be handled normally.
668    return;
669  case ISD::LOAD: {
670    SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
671    if (!Node)
672      return;
673
674    Results.push_back(SDValue(Node, 0));
675    Results.push_back(SDValue(Node, 1));
676    // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
677    // function
678    DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
679    return;
680  }
681  case ISD::STORE: {
682    SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
683    if (Lowered.getNode())
684      Results.push_back(Lowered);
685    return;
686  }
687  default:
688    return;
689  }
690}
691
692// FIXME: This implements accesses to initialized globals in the constant
693// address space by copying them to private and accessing that. It does not
694// properly handle illegal types or vectors. The private vector loads are not
695// scalarized, and the illegal scalars hit an assertion. This technique will not
696// work well with large initializers, and this should eventually be
697// removed. Initialized globals should be placed into a data section that the
698// runtime will load into a buffer before the kernel is executed. Uses of the
699// global need to be replaced with a pointer loaded from an implicit kernel
700// argument into this buffer holding the copy of the data, which will remove the
701// need for any of this.
702SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
703                                                       const GlobalValue *GV,
704                                                       const SDValue &InitPtr,
705                                                       SDValue Chain,
706                                                       SelectionDAG &DAG) const {
707  const DataLayout &TD = DAG.getDataLayout();
708  SDLoc DL(InitPtr);
709  Type *InitTy = Init->getType();
710
711  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
712    EVT VT = EVT::getEVT(InitTy);
713    PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
714    return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr,
715                        MachinePointerInfo(UndefValue::get(PtrTy)), false,
716                        false, TD.getPrefTypeAlignment(InitTy));
717  }
718
719  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
720    EVT VT = EVT::getEVT(CFP->getType());
721    PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
722    return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr,
723                        MachinePointerInfo(UndefValue::get(PtrTy)), false,
724                        false, TD.getPrefTypeAlignment(CFP->getType()));
725  }
726
727  if (StructType *ST = dyn_cast<StructType>(InitTy)) {
728    const StructLayout *SL = TD.getStructLayout(ST);
729
730    EVT PtrVT = InitPtr.getValueType();
731    SmallVector<SDValue, 8> Chains;
732
733    for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
734      SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT);
735      SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
736
737      Constant *Elt = Init->getAggregateElement(I);
738      Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
739    }
740
741    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
742  }
743
744  if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
745    EVT PtrVT = InitPtr.getValueType();
746
747    unsigned NumElements;
748    if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
749      NumElements = AT->getNumElements();
750    else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
751      NumElements = VT->getNumElements();
752    else
753      llvm_unreachable("Unexpected type");
754
755    unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType());
756    SmallVector<SDValue, 8> Chains;
757    for (unsigned i = 0; i < NumElements; ++i) {
758      SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT);
759      SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
760
761      Constant *Elt = Init->getAggregateElement(i);
762      Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
763    }
764
765    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
766  }
767
768  if (isa<UndefValue>(Init)) {
769    EVT VT = EVT::getEVT(InitTy);
770    PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
771    return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
772                        MachinePointerInfo(UndefValue::get(PtrTy)), false,
773                        false, TD.getPrefTypeAlignment(InitTy));
774  }
775
776  Init->dump();
777  llvm_unreachable("Unhandled constant initializer");
778}
779
780static bool hasDefinedInitializer(const GlobalValue *GV) {
781  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
782  if (!GVar || !GVar->hasInitializer())
783    return false;
784
785  if (isa<UndefValue>(GVar->getInitializer()))
786    return false;
787
788  return true;
789}
790
791SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
792                                                 SDValue Op,
793                                                 SelectionDAG &DAG) const {
794
795  const DataLayout &DL = DAG.getDataLayout();
796  GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
797  const GlobalValue *GV = G->getGlobal();
798
799  switch (G->getAddressSpace()) {
800  case AMDGPUAS::LOCAL_ADDRESS: {
801    // XXX: What does the value of G->getOffset() mean?
802    assert(G->getOffset() == 0 &&
803         "Do not know what to do with an non-zero offset");
804
805    // TODO: We could emit code to handle the initialization somewhere.
806    if (hasDefinedInitializer(GV))
807      break;
808
809    unsigned Offset;
810    if (MFI->LocalMemoryObjects.count(GV) == 0) {
811      uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
812      Offset = MFI->LDSSize;
813      MFI->LocalMemoryObjects[GV] = Offset;
814      // XXX: Account for alignment?
815      MFI->LDSSize += Size;
816    } else {
817      Offset = MFI->LocalMemoryObjects[GV];
818    }
819
820    return DAG.getConstant(Offset, SDLoc(Op),
821                           getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS));
822  }
823  case AMDGPUAS::CONSTANT_ADDRESS: {
824    MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
825    Type *EltType = GV->getType()->getElementType();
826    unsigned Size = DL.getTypeAllocSize(EltType);
827    unsigned Alignment = DL.getPrefTypeAlignment(EltType);
828
829    MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS);
830    MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
831
832    int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
833    SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
834
835    const GlobalVariable *Var = cast<GlobalVariable>(GV);
836    if (!Var->hasInitializer()) {
837      // This has no use, but bugpoint will hit it.
838      return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
839    }
840
841    const Constant *Init = Var->getInitializer();
842    SmallVector<SDNode*, 8> WorkList;
843
844    for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
845                              E = DAG.getEntryNode()->use_end(); I != E; ++I) {
846      if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
847        continue;
848      WorkList.push_back(*I);
849    }
850    SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
851    for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
852                                           E = WorkList.end(); I != E; ++I) {
853      SmallVector<SDValue, 8> Ops;
854      Ops.push_back(Chain);
855      for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
856        Ops.push_back((*I)->getOperand(i));
857      }
858      DAG.UpdateNodeOperands(*I, Ops);
859    }
860    return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
861  }
862  }
863
864  const Function &Fn = *DAG.getMachineFunction().getFunction();
865  DiagnosticInfoUnsupported BadInit(Fn,
866                                    "initializer for address space");
867  DAG.getContext()->diagnose(BadInit);
868  return SDValue();
869}
870
871SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
872                                                  SelectionDAG &DAG) const {
873  SmallVector<SDValue, 8> Args;
874
875  for (const SDUse &U : Op->ops())
876    DAG.ExtractVectorElements(U.get(), Args);
877
878  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
879}
880
881SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
882                                                     SelectionDAG &DAG) const {
883
884  SmallVector<SDValue, 8> Args;
885  unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
886  EVT VT = Op.getValueType();
887  DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
888                            VT.getVectorNumElements());
889
890  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
891}
892
893SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
894                                              SelectionDAG &DAG) const {
895
896  MachineFunction &MF = DAG.getMachineFunction();
897  const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering();
898
899  FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
900
901  unsigned FrameIndex = FIN->getIndex();
902  unsigned IgnoredFrameReg;
903  unsigned Offset =
904      TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
905  return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
906                         Op.getValueType());
907}
908
909SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
910    SelectionDAG &DAG) const {
911  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
912  SDLoc DL(Op);
913  EVT VT = Op.getValueType();
914
915  switch (IntrinsicID) {
916    default: return Op;
917    case AMDGPUIntrinsic::AMDGPU_abs:
918    case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
919      return LowerIntrinsicIABS(Op, DAG);
920    case AMDGPUIntrinsic::AMDGPU_lrp:
921      return LowerIntrinsicLRP(Op, DAG);
922
923    case AMDGPUIntrinsic::AMDGPU_clamp:
924    case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
925      return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
926                         Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
927
928    case Intrinsic::AMDGPU_div_scale: {
929      // 3rd parameter required to be a constant.
930      const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
931      if (!Param)
932        return DAG.getUNDEF(VT);
933
934      // Translate to the operands expected by the machine instruction. The
935      // first parameter must be the same as the first instruction.
936      SDValue Numerator = Op.getOperand(1);
937      SDValue Denominator = Op.getOperand(2);
938
939      // Note this order is opposite of the machine instruction's operations,
940      // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
941      // intrinsic has the numerator as the first operand to match a normal
942      // division operation.
943
944      SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
945
946      return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
947                         Denominator, Numerator);
948    }
949
950    case Intrinsic::AMDGPU_div_fmas:
951      return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
952                         Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
953                         Op.getOperand(4));
954
955    case Intrinsic::AMDGPU_div_fixup:
956      return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
957                         Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
958
959    case Intrinsic::AMDGPU_trig_preop:
960      return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
961                         Op.getOperand(1), Op.getOperand(2));
962
963    case Intrinsic::AMDGPU_rcp:
964      return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
965
966    case Intrinsic::AMDGPU_rsq:
967      return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
968
969    case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
970      return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
971
972    case Intrinsic::AMDGPU_rsq_clamped:
973      if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
974        Type *Type = VT.getTypeForEVT(*DAG.getContext());
975        APFloat Max = APFloat::getLargest(Type->getFltSemantics());
976        APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
977
978        SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
979        SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
980                                  DAG.getConstantFP(Max, DL, VT));
981        return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
982                           DAG.getConstantFP(Min, DL, VT));
983      } else {
984        return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
985      }
986
987    case Intrinsic::AMDGPU_ldexp:
988      return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
989                                                   Op.getOperand(2));
990
991    case AMDGPUIntrinsic::AMDGPU_imax:
992      return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1),
993                                            Op.getOperand(2));
994    case AMDGPUIntrinsic::AMDGPU_umax:
995      return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1),
996                                            Op.getOperand(2));
997    case AMDGPUIntrinsic::AMDGPU_imin:
998      return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1),
999                                            Op.getOperand(2));
1000    case AMDGPUIntrinsic::AMDGPU_umin:
1001      return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1),
1002                                            Op.getOperand(2));
1003
1004    case AMDGPUIntrinsic::AMDGPU_umul24:
1005      return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
1006                         Op.getOperand(1), Op.getOperand(2));
1007
1008    case AMDGPUIntrinsic::AMDGPU_imul24:
1009      return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
1010                         Op.getOperand(1), Op.getOperand(2));
1011
1012    case AMDGPUIntrinsic::AMDGPU_umad24:
1013      return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
1014                         Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
1015
1016    case AMDGPUIntrinsic::AMDGPU_imad24:
1017      return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
1018                         Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
1019
1020    case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
1021      return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
1022
1023    case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
1024      return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
1025
1026    case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
1027      return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
1028
1029    case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
1030      return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
1031
1032    case AMDGPUIntrinsic::AMDGPU_bfe_i32:
1033      return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
1034                         Op.getOperand(1),
1035                         Op.getOperand(2),
1036                         Op.getOperand(3));
1037
1038    case AMDGPUIntrinsic::AMDGPU_bfe_u32:
1039      return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
1040                         Op.getOperand(1),
1041                         Op.getOperand(2),
1042                         Op.getOperand(3));
1043
1044    case AMDGPUIntrinsic::AMDGPU_bfi:
1045      return DAG.getNode(AMDGPUISD::BFI, DL, VT,
1046                         Op.getOperand(1),
1047                         Op.getOperand(2),
1048                         Op.getOperand(3));
1049
1050    case AMDGPUIntrinsic::AMDGPU_bfm:
1051      return DAG.getNode(AMDGPUISD::BFM, DL, VT,
1052                         Op.getOperand(1),
1053                         Op.getOperand(2));
1054
1055  case Intrinsic::AMDGPU_class:
1056    return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
1057                       Op.getOperand(1), Op.getOperand(2));
1058
1059    case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
1060      return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
1061
1062    case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
1063      return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
1064    case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
1065      return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
1066    case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name
1067      return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1));
1068  }
1069}
1070
1071///IABS(a) = SMAX(sub(0, a), a)
1072SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
1073                                                 SelectionDAG &DAG) const {
1074  SDLoc DL(Op);
1075  EVT VT = Op.getValueType();
1076  SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1077                            Op.getOperand(1));
1078
1079  return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1));
1080}
1081
1082/// Linear Interpolation
1083/// LRP(a, b, c) = muladd(a,  b, (1 - a) * c)
1084SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
1085                                                SelectionDAG &DAG) const {
1086  SDLoc DL(Op);
1087  EVT VT = Op.getValueType();
1088  // TODO: Should this propagate fast-math-flags?
1089  SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
1090                                DAG.getConstantFP(1.0f, DL, MVT::f32),
1091                                Op.getOperand(1));
1092  SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
1093                                                    Op.getOperand(3));
1094  return DAG.getNode(ISD::FADD, DL, VT,
1095      DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
1096      OneSubAC);
1097}
1098
1099/// \brief Generate Min/Max node
1100SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
1101                                                   EVT VT,
1102                                                   SDValue LHS,
1103                                                   SDValue RHS,
1104                                                   SDValue True,
1105                                                   SDValue False,
1106                                                   SDValue CC,
1107                                                   DAGCombinerInfo &DCI) const {
1108  if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1109    return SDValue();
1110
1111  if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1112    return SDValue();
1113
1114  SelectionDAG &DAG = DCI.DAG;
1115  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1116  switch (CCOpcode) {
1117  case ISD::SETOEQ:
1118  case ISD::SETONE:
1119  case ISD::SETUNE:
1120  case ISD::SETNE:
1121  case ISD::SETUEQ:
1122  case ISD::SETEQ:
1123  case ISD::SETFALSE:
1124  case ISD::SETFALSE2:
1125  case ISD::SETTRUE:
1126  case ISD::SETTRUE2:
1127  case ISD::SETUO:
1128  case ISD::SETO:
1129    break;
1130  case ISD::SETULE:
1131  case ISD::SETULT: {
1132    if (LHS == True)
1133      return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1134    return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1135  }
1136  case ISD::SETOLE:
1137  case ISD::SETOLT:
1138  case ISD::SETLE:
1139  case ISD::SETLT: {
1140    // Ordered. Assume ordered for undefined.
1141
1142    // Only do this after legalization to avoid interfering with other combines
1143    // which might occur.
1144    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1145        !DCI.isCalledByLegalizer())
1146      return SDValue();
1147
1148    // We need to permute the operands to get the correct NaN behavior. The
1149    // selected operand is the second one based on the failing compare with NaN,
1150    // so permute it based on the compare type the hardware uses.
1151    if (LHS == True)
1152      return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1153    return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1154  }
1155  case ISD::SETUGE:
1156  case ISD::SETUGT: {
1157    if (LHS == True)
1158      return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1159    return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1160  }
1161  case ISD::SETGT:
1162  case ISD::SETGE:
1163  case ISD::SETOGE:
1164  case ISD::SETOGT: {
1165    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1166        !DCI.isCalledByLegalizer())
1167      return SDValue();
1168
1169    if (LHS == True)
1170      return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1171    return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1172  }
1173  case ISD::SETCC_INVALID:
1174    llvm_unreachable("Invalid setcc condcode!");
1175  }
1176  return SDValue();
1177}
1178
1179SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
1180                                                  SelectionDAG &DAG) const {
1181  LoadSDNode *Load = cast<LoadSDNode>(Op);
1182  EVT MemVT = Load->getMemoryVT();
1183  EVT MemEltVT = MemVT.getVectorElementType();
1184
1185  EVT LoadVT = Op.getValueType();
1186  EVT EltVT = LoadVT.getVectorElementType();
1187  EVT PtrVT = Load->getBasePtr().getValueType();
1188
1189  unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
1190  SmallVector<SDValue, 8> Loads;
1191  SmallVector<SDValue, 8> Chains;
1192
1193  SDLoc SL(Op);
1194  unsigned MemEltSize = MemEltVT.getStoreSize();
1195  MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1196
1197  for (unsigned i = 0; i < NumElts; ++i) {
1198    SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
1199                              DAG.getConstant(i * MemEltSize, SL, PtrVT));
1200
1201    SDValue NewLoad
1202      = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
1203                       Load->getChain(), Ptr,
1204                       SrcValue.getWithOffset(i * MemEltSize),
1205                       MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
1206                       Load->isInvariant(), Load->getAlignment());
1207    Loads.push_back(NewLoad.getValue(0));
1208    Chains.push_back(NewLoad.getValue(1));
1209  }
1210
1211  SDValue Ops[] = {
1212    DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
1213    DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
1214  };
1215
1216  return DAG.getMergeValues(Ops, SL);
1217}
1218
1219SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1220                                              SelectionDAG &DAG) const {
1221  EVT VT = Op.getValueType();
1222
1223  // If this is a 2 element vector, we really want to scalarize and not create
1224  // weird 1 element vectors.
1225  if (VT.getVectorNumElements() == 2)
1226    return ScalarizeVectorLoad(Op, DAG);
1227
1228  LoadSDNode *Load = cast<LoadSDNode>(Op);
1229  SDValue BasePtr = Load->getBasePtr();
1230  EVT PtrVT = BasePtr.getValueType();
1231  EVT MemVT = Load->getMemoryVT();
1232  SDLoc SL(Op);
1233
1234  const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1235
1236  EVT LoVT, HiVT;
1237  EVT LoMemVT, HiMemVT;
1238  SDValue Lo, Hi;
1239
1240  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1241  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1242  std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1243
1244  unsigned Size = LoMemVT.getStoreSize();
1245  unsigned BaseAlign = Load->getAlignment();
1246  unsigned HiAlign = MinAlign(BaseAlign, Size);
1247
1248  SDValue LoLoad
1249    = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1250                     Load->getChain(), BasePtr,
1251                     SrcValue,
1252                     LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
1253                     Load->isInvariant(), BaseAlign);
1254
1255  SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1256                              DAG.getConstant(Size, SL, PtrVT));
1257
1258  SDValue HiLoad
1259    = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
1260                     Load->getChain(), HiPtr,
1261                     SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1262                     HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
1263                     Load->isInvariant(), HiAlign);
1264
1265  SDValue Ops[] = {
1266    DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1267    DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1268                LoLoad.getValue(1), HiLoad.getValue(1))
1269  };
1270
1271  return DAG.getMergeValues(Ops, SL);
1272}
1273
1274SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1275                                               SelectionDAG &DAG) const {
1276  StoreSDNode *Store = cast<StoreSDNode>(Op);
1277  EVT MemVT = Store->getMemoryVT();
1278  unsigned MemBits = MemVT.getSizeInBits();
1279
1280  // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1281  // truncating store into an i32 store.
1282  // XXX: We could also handle optimize other vector bitwidths.
1283  if (!MemVT.isVector() || MemBits > 32) {
1284    return SDValue();
1285  }
1286
1287  SDLoc DL(Op);
1288  SDValue Value = Store->getValue();
1289  EVT VT = Value.getValueType();
1290  EVT ElemVT = VT.getVectorElementType();
1291  SDValue Ptr = Store->getBasePtr();
1292  EVT MemEltVT = MemVT.getVectorElementType();
1293  unsigned MemEltBits = MemEltVT.getSizeInBits();
1294  unsigned MemNumElements = MemVT.getVectorNumElements();
1295  unsigned PackedSize = MemVT.getStoreSizeInBits();
1296  SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32);
1297
1298  assert(Value.getValueType().getScalarSizeInBits() >= 32);
1299
1300  SDValue PackedValue;
1301  for (unsigned i = 0; i < MemNumElements; ++i) {
1302    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1303                              DAG.getConstant(i, DL, MVT::i32));
1304    Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1305    Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1306
1307    SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32);
1308    Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1309
1310    if (i == 0) {
1311      PackedValue = Elt;
1312    } else {
1313      PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1314    }
1315  }
1316
1317  if (PackedSize < 32) {
1318    EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1319    return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1320                             Store->getMemOperand()->getPointerInfo(),
1321                             PackedVT,
1322                             Store->isNonTemporal(), Store->isVolatile(),
1323                             Store->getAlignment());
1324  }
1325
1326  return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1327                      Store->getMemOperand()->getPointerInfo(),
1328                      Store->isVolatile(),  Store->isNonTemporal(),
1329                      Store->getAlignment());
1330}
1331
1332SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
1333                                                   SelectionDAG &DAG) const {
1334  StoreSDNode *Store = cast<StoreSDNode>(Op);
1335  EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
1336  EVT EltVT = Store->getValue().getValueType().getVectorElementType();
1337  EVT PtrVT = Store->getBasePtr().getValueType();
1338  unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
1339  SDLoc SL(Op);
1340
1341  SmallVector<SDValue, 8> Chains;
1342
1343  unsigned EltSize = MemEltVT.getStoreSize();
1344  MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1345
1346  for (unsigned i = 0, e = NumElts; i != e; ++i) {
1347    SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
1348                              Store->getValue(),
1349                              DAG.getConstant(i, SL, MVT::i32));
1350
1351    SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT);
1352    SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
1353    SDValue NewStore =
1354      DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
1355                        SrcValue.getWithOffset(i * EltSize),
1356                        MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
1357                        Store->getAlignment());
1358    Chains.push_back(NewStore);
1359  }
1360
1361  return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
1362}
1363
1364SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1365                                               SelectionDAG &DAG) const {
1366  StoreSDNode *Store = cast<StoreSDNode>(Op);
1367  SDValue Val = Store->getValue();
1368  EVT VT = Val.getValueType();
1369
1370  // If this is a 2 element vector, we really want to scalarize and not create
1371  // weird 1 element vectors.
1372  if (VT.getVectorNumElements() == 2)
1373    return ScalarizeVectorStore(Op, DAG);
1374
1375  EVT MemVT = Store->getMemoryVT();
1376  SDValue Chain = Store->getChain();
1377  SDValue BasePtr = Store->getBasePtr();
1378  SDLoc SL(Op);
1379
1380  EVT LoVT, HiVT;
1381  EVT LoMemVT, HiMemVT;
1382  SDValue Lo, Hi;
1383
1384  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1385  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1386  std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1387
1388  EVT PtrVT = BasePtr.getValueType();
1389  SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1390                              DAG.getConstant(LoMemVT.getStoreSize(), SL,
1391                                              PtrVT));
1392
1393  const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1394  unsigned BaseAlign = Store->getAlignment();
1395  unsigned Size = LoMemVT.getStoreSize();
1396  unsigned HiAlign = MinAlign(BaseAlign, Size);
1397
1398  SDValue LoStore
1399    = DAG.getTruncStore(Chain, SL, Lo,
1400                        BasePtr,
1401                        SrcValue,
1402                        LoMemVT,
1403                        Store->isNonTemporal(),
1404                        Store->isVolatile(),
1405                        BaseAlign);
1406  SDValue HiStore
1407    = DAG.getTruncStore(Chain, SL, Hi,
1408                        HiPtr,
1409                        SrcValue.getWithOffset(Size),
1410                        HiMemVT,
1411                        Store->isNonTemporal(),
1412                        Store->isVolatile(),
1413                        HiAlign);
1414
1415  return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1416}
1417
1418
1419SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1420  SDLoc DL(Op);
1421  LoadSDNode *Load = cast<LoadSDNode>(Op);
1422  ISD::LoadExtType ExtType = Load->getExtensionType();
1423  EVT VT = Op.getValueType();
1424  EVT MemVT = Load->getMemoryVT();
1425
1426  if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
1427    assert(VT == MVT::i1 && "Only i1 non-extloads expected");
1428    // FIXME: Copied from PPC
1429    // First, load into 32 bits, then truncate to 1 bit.
1430
1431    SDValue Chain = Load->getChain();
1432    SDValue BasePtr = Load->getBasePtr();
1433    MachineMemOperand *MMO = Load->getMemOperand();
1434
1435    SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
1436                                   BasePtr, MVT::i8, MMO);
1437
1438    SDValue Ops[] = {
1439      DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
1440      NewLD.getValue(1)
1441    };
1442
1443    return DAG.getMergeValues(Ops, DL);
1444  }
1445
1446  if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
1447      Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
1448      ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
1449    return SDValue();
1450
1451  // <SI && AS=PRIVATE && EXTLOAD && size < 32bit,
1452  // register (2-)byte extract.
1453
1454  // Get Register holding the target.
1455  SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
1456                            DAG.getConstant(2, DL, MVT::i32));
1457  // Load the Register.
1458  SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1459                            Load->getChain(), Ptr,
1460                            DAG.getTargetConstant(0, DL, MVT::i32),
1461                            Op.getOperand(2));
1462
1463  // Get offset within the register.
1464  SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1465                                Load->getBasePtr(),
1466                                DAG.getConstant(0x3, DL, MVT::i32));
1467
1468  // Bit offset of target byte (byteIdx * 8).
1469  SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1470                                 DAG.getConstant(3, DL, MVT::i32));
1471
1472  // Shift to the right.
1473  Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
1474
1475  // Eliminate the upper bits by setting them to ...
1476  EVT MemEltVT = MemVT.getScalarType();
1477
1478  // ... ones.
1479  if (ExtType == ISD::SEXTLOAD) {
1480    SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1481
1482    SDValue Ops[] = {
1483      DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
1484      Load->getChain()
1485    };
1486
1487    return DAG.getMergeValues(Ops, DL);
1488  }
1489
1490  // ... or zeros.
1491  SDValue Ops[] = {
1492    DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
1493    Load->getChain()
1494  };
1495
1496  return DAG.getMergeValues(Ops, DL);
1497}
1498
1499SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1500  SDLoc DL(Op);
1501  SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
1502  if (Result.getNode()) {
1503    return Result;
1504  }
1505
1506  StoreSDNode *Store = cast<StoreSDNode>(Op);
1507  SDValue Chain = Store->getChain();
1508  if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1509       Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1510      Store->getValue().getValueType().isVector()) {
1511    return SplitVectorStore(Op, DAG);
1512  }
1513
1514  EVT MemVT = Store->getMemoryVT();
1515  if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
1516      MemVT.bitsLT(MVT::i32)) {
1517    unsigned Mask = 0;
1518    if (Store->getMemoryVT() == MVT::i8) {
1519      Mask = 0xff;
1520    } else if (Store->getMemoryVT() == MVT::i16) {
1521      Mask = 0xffff;
1522    }
1523    SDValue BasePtr = Store->getBasePtr();
1524    SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
1525                              DAG.getConstant(2, DL, MVT::i32));
1526    SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
1527                              Chain, Ptr,
1528                              DAG.getTargetConstant(0, DL, MVT::i32));
1529
1530    SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
1531                                  DAG.getConstant(0x3, DL, MVT::i32));
1532
1533    SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1534                                   DAG.getConstant(3, DL, MVT::i32));
1535
1536    SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1537                                    Store->getValue());
1538
1539    SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1540
1541    SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1542                                       MaskedValue, ShiftAmt);
1543
1544    SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32,
1545                                  DAG.getConstant(Mask, DL, MVT::i32),
1546                                  ShiftAmt);
1547    DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
1548                          DAG.getConstant(0xffffffff, DL, MVT::i32));
1549    Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1550
1551    SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1552    return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1553                       Chain, Value, Ptr,
1554                       DAG.getTargetConstant(0, DL, MVT::i32));
1555  }
1556  return SDValue();
1557}
1558
1559// This is a shortcut for integer division because we have fast i32<->f32
1560// conversions, and fast f32 reciprocal instructions. The fractional part of a
1561// float is enough to accurately represent up to a 24-bit integer.
1562SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
1563  SDLoc DL(Op);
1564  EVT VT = Op.getValueType();
1565  SDValue LHS = Op.getOperand(0);
1566  SDValue RHS = Op.getOperand(1);
1567  MVT IntVT = MVT::i32;
1568  MVT FltVT = MVT::f32;
1569
1570  ISD::NodeType ToFp  = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1571  ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1572
1573  if (VT.isVector()) {
1574    unsigned NElts = VT.getVectorNumElements();
1575    IntVT = MVT::getVectorVT(MVT::i32, NElts);
1576    FltVT = MVT::getVectorVT(MVT::f32, NElts);
1577  }
1578
1579  unsigned BitSize = VT.getScalarType().getSizeInBits();
1580
1581  SDValue jq = DAG.getConstant(1, DL, IntVT);
1582
1583  if (sign) {
1584    // char|short jq = ia ^ ib;
1585    jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1586
1587    // jq = jq >> (bitsize - 2)
1588    jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1589                     DAG.getConstant(BitSize - 2, DL, VT));
1590
1591    // jq = jq | 0x1
1592    jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1593
1594    // jq = (int)jq
1595    jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
1596  }
1597
1598  // int ia = (int)LHS;
1599  SDValue ia = sign ?
1600    DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
1601
1602  // int ib, (int)RHS;
1603  SDValue ib = sign ?
1604    DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
1605
1606  // float fa = (float)ia;
1607  SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1608
1609  // float fb = (float)ib;
1610  SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1611
1612  // TODO: Should this propagate fast-math-flags?
1613  // float fq = native_divide(fa, fb);
1614  SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1615                           fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1616
1617  // fq = trunc(fq);
1618  fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1619
1620  // float fqneg = -fq;
1621  SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1622
1623  // float fr = mad(fqneg, fb, fa);
1624  SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
1625                           DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
1626
1627  // int iq = (int)fq;
1628  SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1629
1630  // fr = fabs(fr);
1631  fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1632
1633  // fb = fabs(fb);
1634  fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1635
1636  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1637
1638  // int cv = fr >= fb;
1639  SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1640
1641  // jq = (cv ? jq : 0);
1642  jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1643
1644  // dst = trunc/extend to legal type
1645  iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
1646
1647  // dst = iq + jq;
1648  SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1649
1650  // Rem needs compensation, it's easier to recompute it
1651  SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1652  Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1653
1654  SDValue Res[2] = {
1655    Div,
1656    Rem
1657  };
1658  return DAG.getMergeValues(Res, DL);
1659}
1660
1661void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1662                                      SelectionDAG &DAG,
1663                                      SmallVectorImpl<SDValue> &Results) const {
1664  assert(Op.getValueType() == MVT::i64);
1665
1666  SDLoc DL(Op);
1667  EVT VT = Op.getValueType();
1668  EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1669
1670  SDValue one = DAG.getConstant(1, DL, HalfVT);
1671  SDValue zero = DAG.getConstant(0, DL, HalfVT);
1672
1673  //HiLo split
1674  SDValue LHS = Op.getOperand(0);
1675  SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1676  SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1677
1678  SDValue RHS = Op.getOperand(1);
1679  SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1680  SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1681
1682  if (VT == MVT::i64 &&
1683    DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1684    DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1685
1686    SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1687                              LHS_Lo, RHS_Lo);
1688
1689    SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero);
1690    SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero);
1691    Results.push_back(DIV);
1692    Results.push_back(REM);
1693    return;
1694  }
1695
1696  // Get Speculative values
1697  SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1698  SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1699
1700  SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1701  SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero);
1702
1703  SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1704  SDValue DIV_Lo = zero;
1705
1706  const unsigned halfBitWidth = HalfVT.getSizeInBits();
1707
1708  for (unsigned i = 0; i < halfBitWidth; ++i) {
1709    const unsigned bitPos = halfBitWidth - i - 1;
1710    SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1711    // Get value of high bit
1712    SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1713    HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1714    HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1715
1716    // Shift
1717    REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1718    // Add LHS high bit
1719    REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1720
1721    SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT);
1722    SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1723
1724    DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1725
1726    // Update REM
1727    SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1728    REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1729  }
1730
1731  SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
1732  Results.push_back(DIV);
1733  Results.push_back(REM);
1734}
1735
1736SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1737                                           SelectionDAG &DAG) const {
1738  SDLoc DL(Op);
1739  EVT VT = Op.getValueType();
1740
1741  if (VT == MVT::i64) {
1742    SmallVector<SDValue, 2> Results;
1743    LowerUDIVREM64(Op, DAG, Results);
1744    return DAG.getMergeValues(Results, DL);
1745  }
1746
1747  SDValue Num = Op.getOperand(0);
1748  SDValue Den = Op.getOperand(1);
1749
1750  if (VT == MVT::i32) {
1751    if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) &&
1752        DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) {
1753      // TODO: We technically could do this for i64, but shouldn't that just be
1754      // handled by something generally reducing 64-bit division on 32-bit
1755      // values to 32-bit?
1756      return LowerDIVREM24(Op, DAG, false);
1757    }
1758  }
1759
1760  // RCP =  URECIP(Den) = 2^32 / Den + e
1761  // e is rounding error.
1762  SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1763
1764  // RCP_LO = mul(RCP, Den) */
1765  SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1766
1767  // RCP_HI = mulhu (RCP, Den) */
1768  SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1769
1770  // NEG_RCP_LO = -RCP_LO
1771  SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1772                                                     RCP_LO);
1773
1774  // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1775  SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1776                                           NEG_RCP_LO, RCP_LO,
1777                                           ISD::SETEQ);
1778  // Calculate the rounding error from the URECIP instruction
1779  // E = mulhu(ABS_RCP_LO, RCP)
1780  SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1781
1782  // RCP_A_E = RCP + E
1783  SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1784
1785  // RCP_S_E = RCP - E
1786  SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1787
1788  // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1789  SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1790                                     RCP_A_E, RCP_S_E,
1791                                     ISD::SETEQ);
1792  // Quotient = mulhu(Tmp0, Num)
1793  SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1794
1795  // Num_S_Remainder = Quotient * Den
1796  SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1797
1798  // Remainder = Num - Num_S_Remainder
1799  SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1800
1801  // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1802  SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1803                                                 DAG.getConstant(-1, DL, VT),
1804                                                 DAG.getConstant(0, DL, VT),
1805                                                 ISD::SETUGE);
1806  // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1807  SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1808                                                  Num_S_Remainder,
1809                                                  DAG.getConstant(-1, DL, VT),
1810                                                  DAG.getConstant(0, DL, VT),
1811                                                  ISD::SETUGE);
1812  // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1813  SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1814                                               Remainder_GE_Zero);
1815
1816  // Calculate Division result:
1817
1818  // Quotient_A_One = Quotient + 1
1819  SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1820                                       DAG.getConstant(1, DL, VT));
1821
1822  // Quotient_S_One = Quotient - 1
1823  SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1824                                       DAG.getConstant(1, DL, VT));
1825
1826  // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1827  SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1828                                     Quotient, Quotient_A_One, ISD::SETEQ);
1829
1830  // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1831  Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1832                            Quotient_S_One, Div, ISD::SETEQ);
1833
1834  // Calculate Rem result:
1835
1836  // Remainder_S_Den = Remainder - Den
1837  SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1838
1839  // Remainder_A_Den = Remainder + Den
1840  SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1841
1842  // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1843  SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1844                                    Remainder, Remainder_S_Den, ISD::SETEQ);
1845
1846  // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1847  Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1848                            Remainder_A_Den, Rem, ISD::SETEQ);
1849  SDValue Ops[2] = {
1850    Div,
1851    Rem
1852  };
1853  return DAG.getMergeValues(Ops, DL);
1854}
1855
1856SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1857                                           SelectionDAG &DAG) const {
1858  SDLoc DL(Op);
1859  EVT VT = Op.getValueType();
1860
1861  SDValue LHS = Op.getOperand(0);
1862  SDValue RHS = Op.getOperand(1);
1863
1864  SDValue Zero = DAG.getConstant(0, DL, VT);
1865  SDValue NegOne = DAG.getConstant(-1, DL, VT);
1866
1867  if (VT == MVT::i32 &&
1868      DAG.ComputeNumSignBits(LHS) > 8 &&
1869      DAG.ComputeNumSignBits(RHS) > 8) {
1870    return LowerDIVREM24(Op, DAG, true);
1871  }
1872  if (VT == MVT::i64 &&
1873      DAG.ComputeNumSignBits(LHS) > 32 &&
1874      DAG.ComputeNumSignBits(RHS) > 32) {
1875    EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1876
1877    //HiLo split
1878    SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1879    SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1880    SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1881                                 LHS_Lo, RHS_Lo);
1882    SDValue Res[2] = {
1883      DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1884      DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1885    };
1886    return DAG.getMergeValues(Res, DL);
1887  }
1888
1889  SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1890  SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1891  SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1892  SDValue RSign = LHSign; // Remainder sign is the same as LHS
1893
1894  LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1895  RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1896
1897  LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1898  RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1899
1900  SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1901  SDValue Rem = Div.getValue(1);
1902
1903  Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1904  Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1905
1906  Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1907  Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1908
1909  SDValue Res[2] = {
1910    Div,
1911    Rem
1912  };
1913  return DAG.getMergeValues(Res, DL);
1914}
1915
1916// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1917SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1918  SDLoc SL(Op);
1919  EVT VT = Op.getValueType();
1920  SDValue X = Op.getOperand(0);
1921  SDValue Y = Op.getOperand(1);
1922
1923  // TODO: Should this propagate fast-math-flags?
1924
1925  SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1926  SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1927  SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1928
1929  return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1930}
1931
1932SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1933  SDLoc SL(Op);
1934  SDValue Src = Op.getOperand(0);
1935
1936  // result = trunc(src)
1937  // if (src > 0.0 && src != result)
1938  //   result += 1.0
1939
1940  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1941
1942  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1943  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1944
1945  EVT SetCCVT =
1946      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1947
1948  SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1949  SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1950  SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1951
1952  SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1953  // TODO: Should this propagate fast-math-flags?
1954  return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1955}
1956
1957static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) {
1958  const unsigned FractBits = 52;
1959  const unsigned ExpBits = 11;
1960
1961  SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1962                                Hi,
1963                                DAG.getConstant(FractBits - 32, SL, MVT::i32),
1964                                DAG.getConstant(ExpBits, SL, MVT::i32));
1965  SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1966                            DAG.getConstant(1023, SL, MVT::i32));
1967
1968  return Exp;
1969}
1970
1971SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1972  SDLoc SL(Op);
1973  SDValue Src = Op.getOperand(0);
1974
1975  assert(Op.getValueType() == MVT::f64);
1976
1977  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1978  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1979
1980  SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1981
1982  // Extract the upper half, since this is where we will find the sign and
1983  // exponent.
1984  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1985
1986  SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1987
1988  const unsigned FractBits = 52;
1989
1990  // Extract the sign bit.
1991  const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1992  SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1993
1994  // Extend back to to 64-bits.
1995  SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
1996                                  Zero, SignBit);
1997  SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1998
1999  SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2000  const SDValue FractMask
2001    = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2002
2003  SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2004  SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2005  SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2006
2007  EVT SetCCVT =
2008      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2009
2010  const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2011
2012  SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2013  SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2014
2015  SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2016  SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2017
2018  return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2019}
2020
2021SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2022  SDLoc SL(Op);
2023  SDValue Src = Op.getOperand(0);
2024
2025  assert(Op.getValueType() == MVT::f64);
2026
2027  APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
2028  SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2029  SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2030
2031  // TODO: Should this propagate fast-math-flags?
2032
2033  SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2034  SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2035
2036  SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2037
2038  APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
2039  SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2040
2041  EVT SetCCVT =
2042      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2043  SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2044
2045  return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2046}
2047
2048SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2049  // FNEARBYINT and FRINT are the same, except in their handling of FP
2050  // exceptions. Those aren't really meaningful for us, and OpenCL only has
2051  // rint, so just treat them as equivalent.
2052  return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2053}
2054
2055// XXX - May require not supporting f32 denormals?
2056SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
2057  SDLoc SL(Op);
2058  SDValue X = Op.getOperand(0);
2059
2060  SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
2061
2062  // TODO: Should this propagate fast-math-flags?
2063
2064  SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
2065
2066  SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
2067
2068  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
2069  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
2070  const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
2071
2072  SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
2073
2074  EVT SetCCVT =
2075      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
2076
2077  SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2078
2079  SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
2080
2081  return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
2082}
2083
2084SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2085  SDLoc SL(Op);
2086  SDValue X = Op.getOperand(0);
2087
2088  SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2089
2090  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2091  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2092  const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2093  const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2094  EVT SetCCVT =
2095      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2096
2097  SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2098
2099  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2100
2101  SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2102
2103  const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2104                                       MVT::i64);
2105
2106  SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2107  SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2108                          DAG.getConstant(INT64_C(0x0008000000000000), SL,
2109                                          MVT::i64),
2110                          Exp);
2111
2112  SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2113  SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2114                              DAG.getConstant(0, SL, MVT::i64), Tmp0,
2115                              ISD::SETNE);
2116
2117  SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2118                             D, DAG.getConstant(0, SL, MVT::i64));
2119  SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2120
2121  K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2122  K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2123
2124  SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2125  SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2126  SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2127
2128  SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2129                            ExpEqNegOne,
2130                            DAG.getConstantFP(1.0, SL, MVT::f64),
2131                            DAG.getConstantFP(0.0, SL, MVT::f64));
2132
2133  SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2134
2135  K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2136  K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2137
2138  return K;
2139}
2140
2141SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2142  EVT VT = Op.getValueType();
2143
2144  if (VT == MVT::f32)
2145    return LowerFROUND32(Op, DAG);
2146
2147  if (VT == MVT::f64)
2148    return LowerFROUND64(Op, DAG);
2149
2150  llvm_unreachable("unhandled type");
2151}
2152
2153SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2154  SDLoc SL(Op);
2155  SDValue Src = Op.getOperand(0);
2156
2157  // result = trunc(src);
2158  // if (src < 0.0 && src != result)
2159  //   result += -1.0.
2160
2161  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2162
2163  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2164  const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2165
2166  EVT SetCCVT =
2167      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2168
2169  SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2170  SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2171  SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2172
2173  SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2174  // TODO: Should this propagate fast-math-flags?
2175  return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2176}
2177
2178SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
2179  SDLoc SL(Op);
2180  SDValue Src = Op.getOperand(0);
2181  bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2182
2183  if (ZeroUndef && Src.getValueType() == MVT::i32)
2184    return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
2185
2186  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2187
2188  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2189  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2190
2191  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2192  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2193
2194  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2195                                   *DAG.getContext(), MVT::i32);
2196
2197  SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
2198
2199  SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
2200  SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
2201
2202  const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2203  SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
2204
2205  // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2206  SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
2207
2208  if (!ZeroUndef) {
2209    // Test if the full 64-bit input is zero.
2210
2211    // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2212    // which we probably don't want.
2213    SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
2214    SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
2215
2216    // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2217    // with the same cycles, otherwise it is slower.
2218    // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2219    // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2220
2221    const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2222
2223    // The instruction returns -1 for 0 input, but the defined intrinsic
2224    // behavior is to return the number of bits.
2225    NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2226                          SrcIsZero, Bits32, NewCtlz);
2227  }
2228
2229  return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
2230}
2231
2232SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2233                                               bool Signed) const {
2234  // Unsigned
2235  // cul2f(ulong u)
2236  //{
2237  //  uint lz = clz(u);
2238  //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2239  //  u = (u << lz) & 0x7fffffffffffffffUL;
2240  //  ulong t = u & 0xffffffffffUL;
2241  //  uint v = (e << 23) | (uint)(u >> 40);
2242  //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2243  //  return as_float(v + r);
2244  //}
2245  // Signed
2246  // cl2f(long l)
2247  //{
2248  //  long s = l >> 63;
2249  //  float r = cul2f((l + s) ^ s);
2250  //  return s ? -r : r;
2251  //}
2252
2253  SDLoc SL(Op);
2254  SDValue Src = Op.getOperand(0);
2255  SDValue L = Src;
2256
2257  SDValue S;
2258  if (Signed) {
2259    const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2260    S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2261
2262    SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2263    L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2264  }
2265
2266  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2267                                   *DAG.getContext(), MVT::f32);
2268
2269
2270  SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2271  SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2272  SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2273  LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2274
2275  SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2276  SDValue E = DAG.getSelect(SL, MVT::i32,
2277    DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2278    DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2279    ZeroI32);
2280
2281  SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2282    DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2283    DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2284
2285  SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2286                          DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2287
2288  SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2289                             U, DAG.getConstant(40, SL, MVT::i64));
2290
2291  SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2292    DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2293    DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2294
2295  SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2296  SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2297  SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2298
2299  SDValue One = DAG.getConstant(1, SL, MVT::i32);
2300
2301  SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2302
2303  SDValue R = DAG.getSelect(SL, MVT::i32,
2304    RCmp,
2305    One,
2306    DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2307  R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2308  R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2309
2310  if (!Signed)
2311    return R;
2312
2313  SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2314  return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2315}
2316
2317SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2318                                               bool Signed) const {
2319  SDLoc SL(Op);
2320  SDValue Src = Op.getOperand(0);
2321
2322  SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2323
2324  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2325                           DAG.getConstant(0, SL, MVT::i32));
2326  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2327                           DAG.getConstant(1, SL, MVT::i32));
2328
2329  SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2330                              SL, MVT::f64, Hi);
2331
2332  SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2333
2334  SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2335                              DAG.getConstant(32, SL, MVT::i32));
2336  // TODO: Should this propagate fast-math-flags?
2337  return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2338}
2339
2340SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2341                                               SelectionDAG &DAG) const {
2342  assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2343         "operation should be legal");
2344
2345  EVT DestVT = Op.getValueType();
2346  if (DestVT == MVT::f64)
2347    return LowerINT_TO_FP64(Op, DAG, false);
2348
2349  if (DestVT == MVT::f32)
2350    return LowerINT_TO_FP32(Op, DAG, false);
2351
2352  return SDValue();
2353}
2354
2355SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2356                                              SelectionDAG &DAG) const {
2357  assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2358         "operation should be legal");
2359
2360  EVT DestVT = Op.getValueType();
2361  if (DestVT == MVT::f32)
2362    return LowerINT_TO_FP32(Op, DAG, true);
2363
2364  if (DestVT == MVT::f64)
2365    return LowerINT_TO_FP64(Op, DAG, true);
2366
2367  return SDValue();
2368}
2369
2370SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2371                                               bool Signed) const {
2372  SDLoc SL(Op);
2373
2374  SDValue Src = Op.getOperand(0);
2375
2376  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2377
2378  SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2379                                 MVT::f64);
2380  SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2381                                 MVT::f64);
2382  // TODO: Should this propagate fast-math-flags?
2383  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2384
2385  SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2386
2387
2388  SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2389
2390  SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2391                           MVT::i32, FloorMul);
2392  SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2393
2394  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
2395
2396  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2397}
2398
2399SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2400                                              SelectionDAG &DAG) const {
2401  SDValue Src = Op.getOperand(0);
2402
2403  if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2404    return LowerFP64_TO_INT(Op, DAG, true);
2405
2406  return SDValue();
2407}
2408
2409SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2410                                              SelectionDAG &DAG) const {
2411  SDValue Src = Op.getOperand(0);
2412
2413  if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2414    return LowerFP64_TO_INT(Op, DAG, false);
2415
2416  return SDValue();
2417}
2418
2419SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2420                                                     SelectionDAG &DAG) const {
2421  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2422  MVT VT = Op.getSimpleValueType();
2423  MVT ScalarVT = VT.getScalarType();
2424
2425  if (!VT.isVector())
2426    return SDValue();
2427
2428  SDValue Src = Op.getOperand(0);
2429  SDLoc DL(Op);
2430
2431  // TODO: Don't scalarize on Evergreen?
2432  unsigned NElts = VT.getVectorNumElements();
2433  SmallVector<SDValue, 8> Args;
2434  DAG.ExtractVectorElements(Src, Args, 0, NElts);
2435
2436  SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2437  for (unsigned I = 0; I < NElts; ++I)
2438    Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2439
2440  return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
2441}
2442
2443//===----------------------------------------------------------------------===//
2444// Custom DAG optimizations
2445//===----------------------------------------------------------------------===//
2446
2447static bool isU24(SDValue Op, SelectionDAG &DAG) {
2448  APInt KnownZero, KnownOne;
2449  EVT VT = Op.getValueType();
2450  DAG.computeKnownBits(Op, KnownZero, KnownOne);
2451
2452  return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2453}
2454
2455static bool isI24(SDValue Op, SelectionDAG &DAG) {
2456  EVT VT = Op.getValueType();
2457
2458  // In order for this to be a signed 24-bit value, bit 23, must
2459  // be a sign bit.
2460  return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2461                                     // as unsigned 24-bit values.
2462         (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2463}
2464
2465static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2466
2467  SelectionDAG &DAG = DCI.DAG;
2468  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2469  EVT VT = Op.getValueType();
2470
2471  APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2472  APInt KnownZero, KnownOne;
2473  TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2474  if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2475    DCI.CommitTargetLoweringOpt(TLO);
2476}
2477
2478template <typename IntTy>
2479static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
2480                               uint32_t Offset, uint32_t Width, SDLoc DL) {
2481  if (Width + Offset < 32) {
2482    uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2483    IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2484    return DAG.getConstant(Result, DL, MVT::i32);
2485  }
2486
2487  return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2488}
2489
2490static bool usesAllNormalStores(SDNode *LoadVal) {
2491  for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
2492    if (!ISD::isNormalStore(*I))
2493      return false;
2494  }
2495
2496  return true;
2497}
2498
2499// If we have a copy of an illegal type, replace it with a load / store of an
2500// equivalently sized legal type. This avoids intermediate bit pack / unpack
2501// instructions emitted when handling extloads and truncstores. Ideally we could
2502// recognize the pack / unpack pattern to eliminate it.
2503SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2504                                                  DAGCombinerInfo &DCI) const {
2505  if (!DCI.isBeforeLegalize())
2506    return SDValue();
2507
2508  StoreSDNode *SN = cast<StoreSDNode>(N);
2509  SDValue Value = SN->getValue();
2510  EVT VT = Value.getValueType();
2511
2512  if (isTypeLegal(VT) || SN->isVolatile() ||
2513      !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
2514    return SDValue();
2515
2516  LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
2517  if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
2518    return SDValue();
2519
2520  EVT MemVT = LoadVal->getMemoryVT();
2521
2522  SDLoc SL(N);
2523  SelectionDAG &DAG = DCI.DAG;
2524  EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
2525
2526  SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
2527                                LoadVT, SL,
2528                                LoadVal->getChain(),
2529                                LoadVal->getBasePtr(),
2530                                LoadVal->getOffset(),
2531                                LoadVT,
2532                                LoadVal->getMemOperand());
2533
2534  SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
2535  DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
2536
2537  return DAG.getStore(SN->getChain(), SL, NewLoad,
2538                      SN->getBasePtr(), SN->getMemOperand());
2539}
2540
2541SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2542                                                DAGCombinerInfo &DCI) const {
2543  if (N->getValueType(0) != MVT::i64)
2544    return SDValue();
2545
2546  // i64 (shl x, 32) -> (build_pair 0, x)
2547
2548  // Doing this with moves theoretically helps MI optimizations that understand
2549  // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as
2550  // v_lshl_b64. In the SALU case, I think this is slightly worse since it
2551  // doubles the code size and I'm unsure about cycle count.
2552  const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2553  if (!RHS || RHS->getZExtValue() != 32)
2554    return SDValue();
2555
2556  SDValue LHS = N->getOperand(0);
2557
2558  SDLoc SL(N);
2559  SelectionDAG &DAG = DCI.DAG;
2560
2561  // Extract low 32-bits.
2562  SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2563
2564  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2565  return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo);
2566}
2567
2568SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2569                                                DAGCombinerInfo &DCI) const {
2570  EVT VT = N->getValueType(0);
2571
2572  if (VT.isVector() || VT.getSizeInBits() > 32)
2573    return SDValue();
2574
2575  SelectionDAG &DAG = DCI.DAG;
2576  SDLoc DL(N);
2577
2578  SDValue N0 = N->getOperand(0);
2579  SDValue N1 = N->getOperand(1);
2580  SDValue Mul;
2581
2582  if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2583    N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2584    N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2585    Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2586  } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2587    N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2588    N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2589    Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2590  } else {
2591    return SDValue();
2592  }
2593
2594  // We need to use sext even for MUL_U24, because MUL_U24 is used
2595  // for signed multiply of 8 and 16-bit types.
2596  return DAG.getSExtOrTrunc(Mul, DL, VT);
2597}
2598
2599static bool isNegativeOne(SDValue Val) {
2600  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2601    return C->isAllOnesValue();
2602  return false;
2603}
2604
2605static bool isCtlzOpc(unsigned Opc) {
2606  return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2607}
2608
2609// Get FFBH node if the incoming op may have been type legalized from a smaller
2610// type VT.
2611// Need to match pre-legalized type because the generic legalization inserts the
2612// add/sub between the select and compare.
2613static SDValue getFFBH_U32(const TargetLowering &TLI,
2614                           SelectionDAG &DAG, SDLoc SL, SDValue Op) {
2615  EVT VT = Op.getValueType();
2616  EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2617  if (LegalVT != MVT::i32)
2618    return SDValue();
2619
2620  if (VT != MVT::i32)
2621    Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op);
2622
2623  SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op);
2624  if (VT != MVT::i32)
2625    FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH);
2626
2627  return FFBH;
2628}
2629
2630// The native instructions return -1 on 0 input. Optimize out a select that
2631// produces -1 on 0.
2632//
2633// TODO: If zero is not undef, we could also do this if the output is compared
2634// against the bitwidth.
2635//
2636// TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
2637SDValue AMDGPUTargetLowering::performCtlzCombine(SDLoc SL,
2638                                                 SDValue Cond,
2639                                                 SDValue LHS,
2640                                                 SDValue RHS,
2641                                                 DAGCombinerInfo &DCI) const {
2642  ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2643  if (!CmpRhs || !CmpRhs->isNullValue())
2644    return SDValue();
2645
2646  SelectionDAG &DAG = DCI.DAG;
2647  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2648  SDValue CmpLHS = Cond.getOperand(0);
2649
2650  // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2651  if (CCOpcode == ISD::SETEQ &&
2652      isCtlzOpc(RHS.getOpcode()) &&
2653      RHS.getOperand(0) == CmpLHS &&
2654      isNegativeOne(LHS)) {
2655    return getFFBH_U32(*this, DAG, SL, CmpLHS);
2656  }
2657
2658  // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2659  if (CCOpcode == ISD::SETNE &&
2660      isCtlzOpc(LHS.getOpcode()) &&
2661      LHS.getOperand(0) == CmpLHS &&
2662      isNegativeOne(RHS)) {
2663    return getFFBH_U32(*this, DAG, SL, CmpLHS);
2664  }
2665
2666  return SDValue();
2667}
2668
2669SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2670                                                   DAGCombinerInfo &DCI) const {
2671  SDValue Cond = N->getOperand(0);
2672  if (Cond.getOpcode() != ISD::SETCC)
2673    return SDValue();
2674
2675  EVT VT = N->getValueType(0);
2676  SDValue LHS = Cond.getOperand(0);
2677  SDValue RHS = Cond.getOperand(1);
2678  SDValue CC = Cond.getOperand(2);
2679
2680  SDValue True = N->getOperand(1);
2681  SDValue False = N->getOperand(2);
2682
2683  if (VT == MVT::f32 && Cond.hasOneUse())
2684    return CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2685
2686  // There's no reason to not do this if the condition has other uses.
2687  return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2688}
2689
2690SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2691                                                DAGCombinerInfo &DCI) const {
2692  SelectionDAG &DAG = DCI.DAG;
2693  SDLoc DL(N);
2694
2695  switch(N->getOpcode()) {
2696  default:
2697    break;
2698  case ISD::SHL: {
2699    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2700      break;
2701
2702    return performShlCombine(N, DCI);
2703  }
2704  case ISD::MUL:
2705    return performMulCombine(N, DCI);
2706  case AMDGPUISD::MUL_I24:
2707  case AMDGPUISD::MUL_U24: {
2708    SDValue N0 = N->getOperand(0);
2709    SDValue N1 = N->getOperand(1);
2710    simplifyI24(N0, DCI);
2711    simplifyI24(N1, DCI);
2712    return SDValue();
2713  }
2714  case ISD::SELECT:
2715    return performSelectCombine(N, DCI);
2716  case AMDGPUISD::BFE_I32:
2717  case AMDGPUISD::BFE_U32: {
2718    assert(!N->getValueType(0).isVector() &&
2719           "Vector handling of BFE not implemented");
2720    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2721    if (!Width)
2722      break;
2723
2724    uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2725    if (WidthVal == 0)
2726      return DAG.getConstant(0, DL, MVT::i32);
2727
2728    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2729    if (!Offset)
2730      break;
2731
2732    SDValue BitsFrom = N->getOperand(0);
2733    uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2734
2735    bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2736
2737    if (OffsetVal == 0) {
2738      // This is already sign / zero extended, so try to fold away extra BFEs.
2739      unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2740
2741      unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2742      if (OpSignBits >= SignBits)
2743        return BitsFrom;
2744
2745      EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2746      if (Signed) {
2747        // This is a sign_extend_inreg. Replace it to take advantage of existing
2748        // DAG Combines. If not eliminated, we will match back to BFE during
2749        // selection.
2750
2751        // TODO: The sext_inreg of extended types ends, although we can could
2752        // handle them in a single BFE.
2753        return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2754                           DAG.getValueType(SmallVT));
2755      }
2756
2757      return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2758    }
2759
2760    if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2761      if (Signed) {
2762        return constantFoldBFE<int32_t>(DAG,
2763                                        CVal->getSExtValue(),
2764                                        OffsetVal,
2765                                        WidthVal,
2766                                        DL);
2767      }
2768
2769      return constantFoldBFE<uint32_t>(DAG,
2770                                       CVal->getZExtValue(),
2771                                       OffsetVal,
2772                                       WidthVal,
2773                                       DL);
2774    }
2775
2776    if ((OffsetVal + WidthVal) >= 32) {
2777      SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2778      return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2779                         BitsFrom, ShiftVal);
2780    }
2781
2782    if (BitsFrom.hasOneUse()) {
2783      APInt Demanded = APInt::getBitsSet(32,
2784                                         OffsetVal,
2785                                         OffsetVal + WidthVal);
2786
2787      APInt KnownZero, KnownOne;
2788      TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2789                                            !DCI.isBeforeLegalizeOps());
2790      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2791      if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2792          TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2793                                   KnownZero, KnownOne, TLO)) {
2794        DCI.CommitTargetLoweringOpt(TLO);
2795      }
2796    }
2797
2798    break;
2799  }
2800
2801  case ISD::STORE:
2802    return performStoreCombine(N, DCI);
2803  }
2804  return SDValue();
2805}
2806
2807//===----------------------------------------------------------------------===//
2808// Helper functions
2809//===----------------------------------------------------------------------===//
2810
2811void AMDGPUTargetLowering::getOriginalFunctionArgs(
2812                               SelectionDAG &DAG,
2813                               const Function *F,
2814                               const SmallVectorImpl<ISD::InputArg> &Ins,
2815                               SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2816
2817  for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2818    if (Ins[i].ArgVT == Ins[i].VT) {
2819      OrigIns.push_back(Ins[i]);
2820      continue;
2821    }
2822
2823    EVT VT;
2824    if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2825      // Vector has been split into scalars.
2826      VT = Ins[i].ArgVT.getVectorElementType();
2827    } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2828               Ins[i].ArgVT.getVectorElementType() !=
2829               Ins[i].VT.getVectorElementType()) {
2830      // Vector elements have been promoted
2831      VT = Ins[i].ArgVT;
2832    } else {
2833      // Vector has been spilt into smaller vectors.
2834      VT = Ins[i].VT;
2835    }
2836
2837    ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2838                      Ins[i].OrigArgIndex, Ins[i].PartOffset);
2839    OrigIns.push_back(Arg);
2840  }
2841}
2842
2843bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
2844  if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2845    return CFP->isExactlyValue(1.0);
2846  }
2847  return isAllOnesConstant(Op);
2848}
2849
2850bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
2851  if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2852    return CFP->getValueAPF().isZero();
2853  }
2854  return isNullConstant(Op);
2855}
2856
2857SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2858                                                  const TargetRegisterClass *RC,
2859                                                   unsigned Reg, EVT VT) const {
2860  MachineFunction &MF = DAG.getMachineFunction();
2861  MachineRegisterInfo &MRI = MF.getRegInfo();
2862  unsigned VirtualRegister;
2863  if (!MRI.isLiveIn(Reg)) {
2864    VirtualRegister = MRI.createVirtualRegister(RC);
2865    MRI.addLiveIn(Reg, VirtualRegister);
2866  } else {
2867    VirtualRegister = MRI.getLiveInVirtReg(Reg);
2868  }
2869  return DAG.getRegister(VirtualRegister, VT);
2870}
2871
2872uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2873    const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2874  uint64_t ArgOffset = MFI->ABIArgOffset;
2875  switch (Param) {
2876  case GRID_DIM:
2877    return ArgOffset;
2878  case GRID_OFFSET:
2879    return ArgOffset + 4;
2880  }
2881  llvm_unreachable("unexpected implicit parameter type");
2882}
2883
2884#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2885
2886const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2887  switch ((AMDGPUISD::NodeType)Opcode) {
2888  case AMDGPUISD::FIRST_NUMBER: break;
2889  // AMDIL DAG nodes
2890  NODE_NAME_CASE(CALL);
2891  NODE_NAME_CASE(UMUL);
2892  NODE_NAME_CASE(RET_FLAG);
2893  NODE_NAME_CASE(BRANCH_COND);
2894
2895  // AMDGPU DAG nodes
2896  NODE_NAME_CASE(DWORDADDR)
2897  NODE_NAME_CASE(FRACT)
2898  NODE_NAME_CASE(CLAMP)
2899  NODE_NAME_CASE(COS_HW)
2900  NODE_NAME_CASE(SIN_HW)
2901  NODE_NAME_CASE(FMAX_LEGACY)
2902  NODE_NAME_CASE(FMIN_LEGACY)
2903  NODE_NAME_CASE(FMAX3)
2904  NODE_NAME_CASE(SMAX3)
2905  NODE_NAME_CASE(UMAX3)
2906  NODE_NAME_CASE(FMIN3)
2907  NODE_NAME_CASE(SMIN3)
2908  NODE_NAME_CASE(UMIN3)
2909  NODE_NAME_CASE(URECIP)
2910  NODE_NAME_CASE(DIV_SCALE)
2911  NODE_NAME_CASE(DIV_FMAS)
2912  NODE_NAME_CASE(DIV_FIXUP)
2913  NODE_NAME_CASE(TRIG_PREOP)
2914  NODE_NAME_CASE(RCP)
2915  NODE_NAME_CASE(RSQ)
2916  NODE_NAME_CASE(RSQ_LEGACY)
2917  NODE_NAME_CASE(RSQ_CLAMPED)
2918  NODE_NAME_CASE(LDEXP)
2919  NODE_NAME_CASE(FP_CLASS)
2920  NODE_NAME_CASE(DOT4)
2921  NODE_NAME_CASE(CARRY)
2922  NODE_NAME_CASE(BORROW)
2923  NODE_NAME_CASE(BFE_U32)
2924  NODE_NAME_CASE(BFE_I32)
2925  NODE_NAME_CASE(BFI)
2926  NODE_NAME_CASE(BFM)
2927  NODE_NAME_CASE(FFBH_U32)
2928  NODE_NAME_CASE(MUL_U24)
2929  NODE_NAME_CASE(MUL_I24)
2930  NODE_NAME_CASE(MAD_U24)
2931  NODE_NAME_CASE(MAD_I24)
2932  NODE_NAME_CASE(TEXTURE_FETCH)
2933  NODE_NAME_CASE(EXPORT)
2934  NODE_NAME_CASE(CONST_ADDRESS)
2935  NODE_NAME_CASE(REGISTER_LOAD)
2936  NODE_NAME_CASE(REGISTER_STORE)
2937  NODE_NAME_CASE(LOAD_CONSTANT)
2938  NODE_NAME_CASE(LOAD_INPUT)
2939  NODE_NAME_CASE(SAMPLE)
2940  NODE_NAME_CASE(SAMPLEB)
2941  NODE_NAME_CASE(SAMPLED)
2942  NODE_NAME_CASE(SAMPLEL)
2943  NODE_NAME_CASE(CVT_F32_UBYTE0)
2944  NODE_NAME_CASE(CVT_F32_UBYTE1)
2945  NODE_NAME_CASE(CVT_F32_UBYTE2)
2946  NODE_NAME_CASE(CVT_F32_UBYTE3)
2947  NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2948  NODE_NAME_CASE(CONST_DATA_PTR)
2949  case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
2950  NODE_NAME_CASE(SENDMSG)
2951  NODE_NAME_CASE(INTERP_MOV)
2952  NODE_NAME_CASE(INTERP_P1)
2953  NODE_NAME_CASE(INTERP_P2)
2954  NODE_NAME_CASE(STORE_MSKOR)
2955  NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2956  case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
2957  }
2958  return nullptr;
2959}
2960
2961SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2962                                               DAGCombinerInfo &DCI,
2963                                               unsigned &RefinementSteps,
2964                                               bool &UseOneConstNR) const {
2965  SelectionDAG &DAG = DCI.DAG;
2966  EVT VT = Operand.getValueType();
2967
2968  if (VT == MVT::f32) {
2969    RefinementSteps = 0;
2970    return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2971  }
2972
2973  // TODO: There is also f64 rsq instruction, but the documentation is less
2974  // clear on its precision.
2975
2976  return SDValue();
2977}
2978
2979SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2980                                               DAGCombinerInfo &DCI,
2981                                               unsigned &RefinementSteps) const {
2982  SelectionDAG &DAG = DCI.DAG;
2983  EVT VT = Operand.getValueType();
2984
2985  if (VT == MVT::f32) {
2986    // Reciprocal, < 1 ulp error.
2987    //
2988    // This reciprocal approximation converges to < 0.5 ulp error with one
2989    // newton rhapson performed with two fused multiple adds (FMAs).
2990
2991    RefinementSteps = 0;
2992    return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2993  }
2994
2995  // TODO: There is also f64 rcp instruction, but the documentation is less
2996  // clear on its precision.
2997
2998  return SDValue();
2999}
3000
3001static void computeKnownBitsForMinMax(const SDValue Op0,
3002                                      const SDValue Op1,
3003                                      APInt &KnownZero,
3004                                      APInt &KnownOne,
3005                                      const SelectionDAG &DAG,
3006                                      unsigned Depth) {
3007  APInt Op0Zero, Op0One;
3008  APInt Op1Zero, Op1One;
3009  DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
3010  DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
3011
3012  KnownZero = Op0Zero & Op1Zero;
3013  KnownOne = Op0One & Op1One;
3014}
3015
3016void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
3017  const SDValue Op,
3018  APInt &KnownZero,
3019  APInt &KnownOne,
3020  const SelectionDAG &DAG,
3021  unsigned Depth) const {
3022
3023  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
3024
3025  APInt KnownZero2;
3026  APInt KnownOne2;
3027  unsigned Opc = Op.getOpcode();
3028
3029  switch (Opc) {
3030  default:
3031    break;
3032  case ISD::INTRINSIC_WO_CHAIN: {
3033    // FIXME: The intrinsic should just use the node.
3034    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
3035    case AMDGPUIntrinsic::AMDGPU_imax:
3036    case AMDGPUIntrinsic::AMDGPU_umax:
3037    case AMDGPUIntrinsic::AMDGPU_imin:
3038    case AMDGPUIntrinsic::AMDGPU_umin:
3039      computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
3040                                KnownZero, KnownOne, DAG, Depth);
3041      break;
3042    default:
3043      break;
3044    }
3045
3046    break;
3047  }
3048  case AMDGPUISD::CARRY:
3049  case AMDGPUISD::BORROW: {
3050    KnownZero = APInt::getHighBitsSet(32, 31);
3051    break;
3052  }
3053
3054  case AMDGPUISD::BFE_I32:
3055  case AMDGPUISD::BFE_U32: {
3056    ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3057    if (!CWidth)
3058      return;
3059
3060    unsigned BitWidth = 32;
3061    uint32_t Width = CWidth->getZExtValue() & 0x1f;
3062
3063    if (Opc == AMDGPUISD::BFE_U32)
3064      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
3065
3066    break;
3067  }
3068  }
3069}
3070
3071unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
3072  SDValue Op,
3073  const SelectionDAG &DAG,
3074  unsigned Depth) const {
3075  switch (Op.getOpcode()) {
3076  case AMDGPUISD::BFE_I32: {
3077    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3078    if (!Width)
3079      return 1;
3080
3081    unsigned SignBits = 32 - Width->getZExtValue() + 1;
3082    if (!isNullConstant(Op.getOperand(1)))
3083      return SignBits;
3084
3085    // TODO: Could probably figure something out with non-0 offsets.
3086    unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3087    return std::max(SignBits, Op0SignBits);
3088  }
3089
3090  case AMDGPUISD::BFE_U32: {
3091    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3092    return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
3093  }
3094
3095  case AMDGPUISD::CARRY:
3096  case AMDGPUISD::BORROW:
3097    return 31;
3098
3099  default:
3100    return 1;
3101  }
3102}
3103