AArch64AddressingModes.h revision 288943
1//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the AArch64 addressing mode implementation stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/APInt.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
24
25/// AArch64_AM - AArch64 Addressing Mode Stuff
26namespace AArch64_AM {
27
28//===----------------------------------------------------------------------===//
29// Shifts
30//
31
32enum ShiftExtendType {
33  InvalidShiftExtend = -1,
34  LSL = 0,
35  LSR,
36  ASR,
37  ROR,
38  MSL,
39
40  UXTB,
41  UXTH,
42  UXTW,
43  UXTX,
44
45  SXTB,
46  SXTH,
47  SXTW,
48  SXTX,
49};
50
51/// getShiftName - Get the string encoding for the shift type.
52static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53  switch (ST) {
54  default: llvm_unreachable("unhandled shift type!");
55  case AArch64_AM::LSL: return "lsl";
56  case AArch64_AM::LSR: return "lsr";
57  case AArch64_AM::ASR: return "asr";
58  case AArch64_AM::ROR: return "ror";
59  case AArch64_AM::MSL: return "msl";
60  case AArch64_AM::UXTB: return "uxtb";
61  case AArch64_AM::UXTH: return "uxth";
62  case AArch64_AM::UXTW: return "uxtw";
63  case AArch64_AM::UXTX: return "uxtx";
64  case AArch64_AM::SXTB: return "sxtb";
65  case AArch64_AM::SXTH: return "sxth";
66  case AArch64_AM::SXTW: return "sxtw";
67  case AArch64_AM::SXTX: return "sxtx";
68  }
69  return nullptr;
70}
71
72/// getShiftType - Extract the shift type.
73static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74  switch ((Imm >> 6) & 0x7) {
75  default: return AArch64_AM::InvalidShiftExtend;
76  case 0: return AArch64_AM::LSL;
77  case 1: return AArch64_AM::LSR;
78  case 2: return AArch64_AM::ASR;
79  case 3: return AArch64_AM::ROR;
80  case 4: return AArch64_AM::MSL;
81  }
82}
83
84/// getShiftValue - Extract the shift value.
85static inline unsigned getShiftValue(unsigned Imm) {
86  return Imm & 0x3f;
87}
88
89/// getShifterImm - Encode the shift type and amount:
90///   imm:     6-bit shift amount
91///   shifter: 000 ==> lsl
92///            001 ==> lsr
93///            010 ==> asr
94///            011 ==> ror
95///            100 ==> msl
96///   {8-6}  = shifter
97///   {5-0}  = imm
98static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99                                     unsigned Imm) {
100  assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101  unsigned STEnc = 0;
102  switch (ST) {
103  default:  llvm_unreachable("Invalid shift requested");
104  case AArch64_AM::LSL: STEnc = 0; break;
105  case AArch64_AM::LSR: STEnc = 1; break;
106  case AArch64_AM::ASR: STEnc = 2; break;
107  case AArch64_AM::ROR: STEnc = 3; break;
108  case AArch64_AM::MSL: STEnc = 4; break;
109  }
110  return (STEnc << 6) | (Imm & 0x3f);
111}
112
113//===----------------------------------------------------------------------===//
114// Extends
115//
116
117/// getArithShiftValue - get the arithmetic shift value.
118static inline unsigned getArithShiftValue(unsigned Imm) {
119  return Imm & 0x7;
120}
121
122/// getExtendType - Extract the extend type for operands of arithmetic ops.
123static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124  assert((Imm & 0x7) == Imm && "invalid immediate!");
125  switch (Imm) {
126  default: llvm_unreachable("Compiler bug!");
127  case 0: return AArch64_AM::UXTB;
128  case 1: return AArch64_AM::UXTH;
129  case 2: return AArch64_AM::UXTW;
130  case 3: return AArch64_AM::UXTX;
131  case 4: return AArch64_AM::SXTB;
132  case 5: return AArch64_AM::SXTH;
133  case 6: return AArch64_AM::SXTW;
134  case 7: return AArch64_AM::SXTX;
135  }
136}
137
138static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139  return getExtendType((Imm >> 3) & 0x7);
140}
141
142/// Mapping from extend bits to required operation:
143///   shifter: 000 ==> uxtb
144///            001 ==> uxth
145///            010 ==> uxtw
146///            011 ==> uxtx
147///            100 ==> sxtb
148///            101 ==> sxth
149///            110 ==> sxtw
150///            111 ==> sxtx
151inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152  switch (ET) {
153  default: llvm_unreachable("Invalid extend type requested");
154  case AArch64_AM::UXTB: return 0; break;
155  case AArch64_AM::UXTH: return 1; break;
156  case AArch64_AM::UXTW: return 2; break;
157  case AArch64_AM::UXTX: return 3; break;
158  case AArch64_AM::SXTB: return 4; break;
159  case AArch64_AM::SXTH: return 5; break;
160  case AArch64_AM::SXTW: return 6; break;
161  case AArch64_AM::SXTX: return 7; break;
162  }
163}
164
165/// getArithExtendImm - Encode the extend type and shift amount for an
166///                     arithmetic instruction:
167///   imm:     3-bit extend amount
168///   {5-3}  = shifter
169///   {2-0}  = imm3
170static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171                                         unsigned Imm) {
172  assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173  return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174}
175
176/// getMemDoShift - Extract the "do shift" flag value for load/store
177/// instructions.
178static inline bool getMemDoShift(unsigned Imm) {
179  return (Imm & 0x1) != 0;
180}
181
182/// getExtendType - Extract the extend type for the offset operand of
183/// loads/stores.
184static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185  return getExtendType((Imm >> 1) & 0x7);
186}
187
188/// getExtendImm - Encode the extend type and amount for a load/store inst:
189///   doshift:     should the offset be scaled by the access size
190///   shifter: 000 ==> uxtb
191///            001 ==> uxth
192///            010 ==> uxtw
193///            011 ==> uxtx
194///            100 ==> sxtb
195///            101 ==> sxth
196///            110 ==> sxtw
197///            111 ==> sxtx
198///   {3-1}  = shifter
199///   {0}  = doshift
200static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201                                       bool DoShift) {
202  return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203}
204
205static inline uint64_t ror(uint64_t elt, unsigned size) {
206  return ((elt & 1) << (size-1)) | (elt >> 1);
207}
208
209/// processLogicalImmediate - Determine if an immediate value can be encoded
210/// as the immediate operand of a logical instruction for the given register
211/// size.  If so, return true with "encoding" set to the encoded value in
212/// the form N:immr:imms.
213static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214                                           uint64_t &Encoding) {
215  if (Imm == 0ULL || Imm == ~0ULL ||
216      (RegSize != 64 && (Imm >> RegSize != 0 || Imm == ~0U)))
217    return false;
218
219  // First, determine the element size.
220  unsigned Size = RegSize;
221
222  do {
223    Size /= 2;
224    uint64_t Mask = (1ULL << Size) - 1;
225
226    if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
227      Size *= 2;
228      break;
229    }
230  } while (Size > 2);
231
232  // Second, determine the rotation to make the element be: 0^m 1^n.
233  uint32_t CTO, I;
234  uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
235  Imm &= Mask;
236
237  if (isShiftedMask_64(Imm)) {
238    I = countTrailingZeros(Imm);
239    assert(I < 64 && "undefined behavior");
240    CTO = countTrailingOnes(Imm >> I);
241  } else {
242    Imm |= ~Mask;
243    if (!isShiftedMask_64(~Imm))
244      return false;
245
246    unsigned CLO = countLeadingOnes(Imm);
247    I = 64 - CLO;
248    CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
249  }
250
251  // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
252  // to our target value, where I is the number of RORs to go the opposite
253  // direction.
254  assert(Size > I && "I should be smaller than element size");
255  unsigned Immr = (Size - I) & (Size - 1);
256
257  // If size has a 1 in the n'th bit, create a value that has zeroes in
258  // bits [0, n] and ones above that.
259  uint64_t NImms = ~(Size-1) << 1;
260
261  // Or the CTO value into the low bits, which must be below the Nth bit
262  // bit mentioned above.
263  NImms |= (CTO-1);
264
265  // Extract the seventh bit and toggle it to create the N field.
266  unsigned N = ((NImms >> 6) & 1) ^ 1;
267
268  Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
269  return true;
270}
271
272/// isLogicalImmediate - Return true if the immediate is valid for a logical
273/// immediate instruction of the given register size. Return false otherwise.
274static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
275  uint64_t encoding;
276  return processLogicalImmediate(imm, regSize, encoding);
277}
278
279/// encodeLogicalImmediate - Return the encoded immediate value for a logical
280/// immediate instruction of the given register size.
281static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
282  uint64_t encoding = 0;
283  bool res = processLogicalImmediate(imm, regSize, encoding);
284  assert(res && "invalid logical immediate");
285  (void)res;
286  return encoding;
287}
288
289/// decodeLogicalImmediate - Decode a logical immediate value in the form
290/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
291/// integer value it represents with regSize bits.
292static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
293  // Extract the N, imms, and immr fields.
294  unsigned N = (val >> 12) & 1;
295  unsigned immr = (val >> 6) & 0x3f;
296  unsigned imms = val & 0x3f;
297
298  assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
299  int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
300  assert(len >= 0 && "undefined logical immediate encoding");
301  unsigned size = (1 << len);
302  unsigned R = immr & (size - 1);
303  unsigned S = imms & (size - 1);
304  assert(S != size - 1 && "undefined logical immediate encoding");
305  uint64_t pattern = (1ULL << (S + 1)) - 1;
306  for (unsigned i = 0; i < R; ++i)
307    pattern = ror(pattern, size);
308
309  // Replicate the pattern to fill the regSize.
310  while (size != regSize) {
311    pattern |= (pattern << size);
312    size *= 2;
313  }
314  return pattern;
315}
316
317/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
318/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
319/// is a valid encoding for an integer value with regSize bits.
320static inline bool isValidDecodeLogicalImmediate(uint64_t val,
321                                                 unsigned regSize) {
322  // Extract the N and imms fields needed for checking.
323  unsigned N = (val >> 12) & 1;
324  unsigned imms = val & 0x3f;
325
326  if (regSize == 32 && N != 0) // undefined logical immediate encoding
327    return false;
328  int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
329  if (len < 0) // undefined logical immediate encoding
330    return false;
331  unsigned size = (1 << len);
332  unsigned S = imms & (size - 1);
333  if (S == size - 1) // undefined logical immediate encoding
334    return false;
335
336  return true;
337}
338
339//===----------------------------------------------------------------------===//
340// Floating-point Immediates
341//
342static inline float getFPImmFloat(unsigned Imm) {
343  // We expect an 8-bit binary encoding of a floating-point number here.
344  union {
345    uint32_t I;
346    float F;
347  } FPUnion;
348
349  uint8_t Sign = (Imm >> 7) & 0x1;
350  uint8_t Exp = (Imm >> 4) & 0x7;
351  uint8_t Mantissa = Imm & 0xf;
352
353  //   8-bit FP    iEEEE Float Encoding
354  //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
355  //
356  // where B = NOT(b);
357
358  FPUnion.I = 0;
359  FPUnion.I |= Sign << 31;
360  FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
361  FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
362  FPUnion.I |= (Exp & 0x3) << 23;
363  FPUnion.I |= Mantissa << 19;
364  return FPUnion.F;
365}
366
367/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
368/// floating-point value. If the value cannot be represented as an 8-bit
369/// floating-point value, then return -1.
370static inline int getFP32Imm(const APInt &Imm) {
371  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
372  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
373  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
374
375  // We can handle 4 bits of mantissa.
376  // mantissa = (16+UInt(e:f:g:h))/16.
377  if (Mantissa & 0x7ffff)
378    return -1;
379  Mantissa >>= 19;
380  if ((Mantissa & 0xf) != Mantissa)
381    return -1;
382
383  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
384  if (Exp < -3 || Exp > 4)
385    return -1;
386  Exp = ((Exp+3) & 0x7) ^ 4;
387
388  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
389}
390
391static inline int getFP32Imm(const APFloat &FPImm) {
392  return getFP32Imm(FPImm.bitcastToAPInt());
393}
394
395/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
396/// floating-point value. If the value cannot be represented as an 8-bit
397/// floating-point value, then return -1.
398static inline int getFP64Imm(const APInt &Imm) {
399  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
400  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
401  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
402
403  // We can handle 4 bits of mantissa.
404  // mantissa = (16+UInt(e:f:g:h))/16.
405  if (Mantissa & 0xffffffffffffULL)
406    return -1;
407  Mantissa >>= 48;
408  if ((Mantissa & 0xf) != Mantissa)
409    return -1;
410
411  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
412  if (Exp < -3 || Exp > 4)
413    return -1;
414  Exp = ((Exp+3) & 0x7) ^ 4;
415
416  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
417}
418
419static inline int getFP64Imm(const APFloat &FPImm) {
420  return getFP64Imm(FPImm.bitcastToAPInt());
421}
422
423//===--------------------------------------------------------------------===//
424// AdvSIMD Modified Immediates
425//===--------------------------------------------------------------------===//
426
427// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
428static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
429  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
430         ((Imm & 0xffffff00ffffff00ULL) == 0);
431}
432
433static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
434  return (Imm & 0xffULL);
435}
436
437static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
438  uint64_t EncVal = Imm;
439  return (EncVal << 32) | EncVal;
440}
441
442// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
443static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
444  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
445         ((Imm & 0xffff00ffffff00ffULL) == 0);
446}
447
448static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
449  return (Imm & 0xff00ULL) >> 8;
450}
451
452static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
453  uint64_t EncVal = Imm;
454  return (EncVal << 40) | (EncVal << 8);
455}
456
457// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
458static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
459  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
460         ((Imm & 0xff00ffffff00ffffULL) == 0);
461}
462
463static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
464  return (Imm & 0xff0000ULL) >> 16;
465}
466
467static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
468  uint64_t EncVal = Imm;
469  return (EncVal << 48) | (EncVal << 16);
470}
471
472// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
473static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
474  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
475         ((Imm & 0x00ffffff00ffffffULL) == 0);
476}
477
478static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
479  return (Imm & 0xff000000ULL) >> 24;
480}
481
482static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
483  uint64_t EncVal = Imm;
484  return (EncVal << 56) | (EncVal << 24);
485}
486
487// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
488static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
489  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
490         (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
491         ((Imm & 0xff00ff00ff00ff00ULL) == 0);
492}
493
494static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
495  return (Imm & 0xffULL);
496}
497
498static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
499  uint64_t EncVal = Imm;
500  return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
501}
502
503// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
504static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
505  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
506         (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
507         ((Imm & 0x00ff00ff00ff00ffULL) == 0);
508}
509
510static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
511  return (Imm & 0xff00ULL) >> 8;
512}
513
514static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
515  uint64_t EncVal = Imm;
516  return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
517}
518
519// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
520static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
521  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
522         ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
523}
524
525static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
526  return (Imm & 0xff00ULL) >> 8;
527}
528
529static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
530  uint64_t EncVal = Imm;
531  return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
532}
533
534// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
535static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
536  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
537         ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
538}
539
540static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
541  uint64_t EncVal = Imm;
542  return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
543}
544
545static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
546  return (Imm & 0x00ff0000ULL) >> 16;
547}
548
549// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
550static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
551  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
552         ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
553         ((Imm >> 56) == (Imm & 0x000000ffULL));
554}
555
556static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
557  return (Imm & 0xffULL);
558}
559
560static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
561  uint64_t EncVal = Imm;
562  EncVal |= (EncVal << 8);
563  EncVal |= (EncVal << 16);
564  EncVal |= (EncVal << 32);
565  return EncVal;
566}
567
568// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
569// cmode: 1110, op: 1
570static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
571  uint64_t ByteA = Imm & 0xff00000000000000ULL;
572  uint64_t ByteB = Imm & 0x00ff000000000000ULL;
573  uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
574  uint64_t ByteD = Imm & 0x000000ff00000000ULL;
575  uint64_t ByteE = Imm & 0x00000000ff000000ULL;
576  uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
577  uint64_t ByteG = Imm & 0x000000000000ff00ULL;
578  uint64_t ByteH = Imm & 0x00000000000000ffULL;
579
580  return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
581         (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
582         (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
583         (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
584         (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
585         (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
586         (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
587         (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
588}
589
590static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
591  uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
592  uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
593  uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
594  uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
595  uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
596  uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
597  uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
598  uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
599
600  uint8_t EncVal = BitA;
601  EncVal <<= 1;
602  EncVal |= BitB;
603  EncVal <<= 1;
604  EncVal |= BitC;
605  EncVal <<= 1;
606  EncVal |= BitD;
607  EncVal <<= 1;
608  EncVal |= BitE;
609  EncVal <<= 1;
610  EncVal |= BitF;
611  EncVal <<= 1;
612  EncVal |= BitG;
613  EncVal <<= 1;
614  EncVal |= BitH;
615  return EncVal;
616}
617
618static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
619  uint64_t EncVal = 0;
620  if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
621  if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
622  if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
623  if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
624  if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
625  if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
626  if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
627  if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
628  return EncVal;
629}
630
631// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
632static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
633  uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
634  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
635         (BString == 0x1f || BString == 0x20) &&
636         ((Imm & 0x0007ffff0007ffffULL) == 0);
637}
638
639static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
640  uint8_t BitA = (Imm & 0x80000000ULL) != 0;
641  uint8_t BitB = (Imm & 0x20000000ULL) != 0;
642  uint8_t BitC = (Imm & 0x01000000ULL) != 0;
643  uint8_t BitD = (Imm & 0x00800000ULL) != 0;
644  uint8_t BitE = (Imm & 0x00400000ULL) != 0;
645  uint8_t BitF = (Imm & 0x00200000ULL) != 0;
646  uint8_t BitG = (Imm & 0x00100000ULL) != 0;
647  uint8_t BitH = (Imm & 0x00080000ULL) != 0;
648
649  uint8_t EncVal = BitA;
650  EncVal <<= 1;
651  EncVal |= BitB;
652  EncVal <<= 1;
653  EncVal |= BitC;
654  EncVal <<= 1;
655  EncVal |= BitD;
656  EncVal <<= 1;
657  EncVal |= BitE;
658  EncVal <<= 1;
659  EncVal |= BitF;
660  EncVal <<= 1;
661  EncVal |= BitG;
662  EncVal <<= 1;
663  EncVal |= BitH;
664  return EncVal;
665}
666
667static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
668  uint64_t EncVal = 0;
669  if (Imm & 0x80) EncVal |= 0x80000000ULL;
670  if (Imm & 0x40) EncVal |= 0x3e000000ULL;
671  else            EncVal |= 0x40000000ULL;
672  if (Imm & 0x20) EncVal |= 0x01000000ULL;
673  if (Imm & 0x10) EncVal |= 0x00800000ULL;
674  if (Imm & 0x08) EncVal |= 0x00400000ULL;
675  if (Imm & 0x04) EncVal |= 0x00200000ULL;
676  if (Imm & 0x02) EncVal |= 0x00100000ULL;
677  if (Imm & 0x01) EncVal |= 0x00080000ULL;
678  return (EncVal << 32) | EncVal;
679}
680
681// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
682static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
683  uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
684  return ((BString == 0xff || BString == 0x100) &&
685         ((Imm & 0x0000ffffffffffffULL) == 0));
686}
687
688static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
689  uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
690  uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
691  uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
692  uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
693  uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
694  uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
695  uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
696  uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
697
698  uint8_t EncVal = BitA;
699  EncVal <<= 1;
700  EncVal |= BitB;
701  EncVal <<= 1;
702  EncVal |= BitC;
703  EncVal <<= 1;
704  EncVal |= BitD;
705  EncVal <<= 1;
706  EncVal |= BitE;
707  EncVal <<= 1;
708  EncVal |= BitF;
709  EncVal <<= 1;
710  EncVal |= BitG;
711  EncVal <<= 1;
712  EncVal |= BitH;
713  return EncVal;
714}
715
716static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
717  uint64_t EncVal = 0;
718  if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
719  if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
720  else            EncVal |= 0x4000000000000000ULL;
721  if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
722  if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
723  if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
724  if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
725  if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
726  if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
727  return (EncVal << 32) | EncVal;
728}
729
730} // end namespace AArch64_AM
731
732} // end namespace llvm
733
734#endif
735