COFFObjectFile.cpp revision 296417
1//===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the COFFObjectFile class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Object/COFF.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/StringSwitch.h"
18#include "llvm/ADT/Triple.h"
19#include "llvm/ADT/iterator_range.h"
20#include "llvm/Support/COFF.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23#include <cctype>
24#include <limits>
25
26using namespace llvm;
27using namespace object;
28
29using support::ulittle16_t;
30using support::ulittle32_t;
31using support::ulittle64_t;
32using support::little16_t;
33
34// Returns false if size is greater than the buffer size. And sets ec.
35static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
36  if (M.getBufferSize() < Size) {
37    EC = object_error::unexpected_eof;
38    return false;
39  }
40  return true;
41}
42
43static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr,
44                                   const uint64_t Size) {
45  if (Addr + Size < Addr || Addr + Size < Size ||
46      Addr + Size > uintptr_t(M.getBufferEnd()) ||
47      Addr < uintptr_t(M.getBufferStart())) {
48    return object_error::unexpected_eof;
49  }
50  return std::error_code();
51}
52
53// Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
54// Returns unexpected_eof if error.
55template <typename T>
56static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
57                                 const void *Ptr,
58                                 const uint64_t Size = sizeof(T)) {
59  uintptr_t Addr = uintptr_t(Ptr);
60  if (std::error_code EC = checkOffset(M, Addr, Size))
61    return EC;
62  Obj = reinterpret_cast<const T *>(Addr);
63  return std::error_code();
64}
65
66// Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
67// prefixed slashes.
68static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
69  assert(Str.size() <= 6 && "String too long, possible overflow.");
70  if (Str.size() > 6)
71    return true;
72
73  uint64_t Value = 0;
74  while (!Str.empty()) {
75    unsigned CharVal;
76    if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
77      CharVal = Str[0] - 'A';
78    else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
79      CharVal = Str[0] - 'a' + 26;
80    else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
81      CharVal = Str[0] - '0' + 52;
82    else if (Str[0] == '+') // 62
83      CharVal = 62;
84    else if (Str[0] == '/') // 63
85      CharVal = 63;
86    else
87      return true;
88
89    Value = (Value * 64) + CharVal;
90    Str = Str.substr(1);
91  }
92
93  if (Value > std::numeric_limits<uint32_t>::max())
94    return true;
95
96  Result = static_cast<uint32_t>(Value);
97  return false;
98}
99
100template <typename coff_symbol_type>
101const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
102  const coff_symbol_type *Addr =
103      reinterpret_cast<const coff_symbol_type *>(Ref.p);
104
105  assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
106#ifndef NDEBUG
107  // Verify that the symbol points to a valid entry in the symbol table.
108  uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
109
110  assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
111         "Symbol did not point to the beginning of a symbol");
112#endif
113
114  return Addr;
115}
116
117const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
118  const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
119
120# ifndef NDEBUG
121  // Verify that the section points to a valid entry in the section table.
122  if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
123    report_fatal_error("Section was outside of section table.");
124
125  uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
126  assert(Offset % sizeof(coff_section) == 0 &&
127         "Section did not point to the beginning of a section");
128# endif
129
130  return Addr;
131}
132
133void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
134  auto End = reinterpret_cast<uintptr_t>(StringTable);
135  if (SymbolTable16) {
136    const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
137    Symb += 1 + Symb->NumberOfAuxSymbols;
138    Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
139  } else if (SymbolTable32) {
140    const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
141    Symb += 1 + Symb->NumberOfAuxSymbols;
142    Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
143  } else {
144    llvm_unreachable("no symbol table pointer!");
145  }
146}
147
148ErrorOr<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
149  COFFSymbolRef Symb = getCOFFSymbol(Ref);
150  StringRef Result;
151  std::error_code EC = getSymbolName(Symb, Result);
152  if (EC)
153    return EC;
154  return Result;
155}
156
157uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
158  return getCOFFSymbol(Ref).getValue();
159}
160
161ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
162  uint64_t Result = getSymbolValue(Ref);
163  COFFSymbolRef Symb = getCOFFSymbol(Ref);
164  int32_t SectionNumber = Symb.getSectionNumber();
165
166  if (Symb.isAnyUndefined() || Symb.isCommon() ||
167      COFF::isReservedSectionNumber(SectionNumber))
168    return Result;
169
170  const coff_section *Section = nullptr;
171  if (std::error_code EC = getSection(SectionNumber, Section))
172    return EC;
173  Result += Section->VirtualAddress;
174
175  // The section VirtualAddress does not include ImageBase, and we want to
176  // return virtual addresses.
177  Result += getImageBase();
178
179  return Result;
180}
181
182SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
183  COFFSymbolRef Symb = getCOFFSymbol(Ref);
184  int32_t SectionNumber = Symb.getSectionNumber();
185
186  if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
187    return SymbolRef::ST_Function;
188  if (Symb.isAnyUndefined())
189    return SymbolRef::ST_Unknown;
190  if (Symb.isCommon())
191    return SymbolRef::ST_Data;
192  if (Symb.isFileRecord())
193    return SymbolRef::ST_File;
194
195  // TODO: perhaps we need a new symbol type ST_Section.
196  if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
197    return SymbolRef::ST_Debug;
198
199  if (!COFF::isReservedSectionNumber(SectionNumber))
200    return SymbolRef::ST_Data;
201
202  return SymbolRef::ST_Other;
203}
204
205uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
206  COFFSymbolRef Symb = getCOFFSymbol(Ref);
207  uint32_t Result = SymbolRef::SF_None;
208
209  if (Symb.isExternal() || Symb.isWeakExternal())
210    Result |= SymbolRef::SF_Global;
211
212  if (Symb.isWeakExternal())
213    Result |= SymbolRef::SF_Weak;
214
215  if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
216    Result |= SymbolRef::SF_Absolute;
217
218  if (Symb.isFileRecord())
219    Result |= SymbolRef::SF_FormatSpecific;
220
221  if (Symb.isSectionDefinition())
222    Result |= SymbolRef::SF_FormatSpecific;
223
224  if (Symb.isCommon())
225    Result |= SymbolRef::SF_Common;
226
227  if (Symb.isAnyUndefined())
228    Result |= SymbolRef::SF_Undefined;
229
230  return Result;
231}
232
233uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
234  COFFSymbolRef Symb = getCOFFSymbol(Ref);
235  return Symb.getValue();
236}
237
238ErrorOr<section_iterator>
239COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
240  COFFSymbolRef Symb = getCOFFSymbol(Ref);
241  if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
242    return section_end();
243  const coff_section *Sec = nullptr;
244  if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
245    return EC;
246  DataRefImpl Ret;
247  Ret.p = reinterpret_cast<uintptr_t>(Sec);
248  return section_iterator(SectionRef(Ret, this));
249}
250
251unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
252  COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
253  return Symb.getSectionNumber();
254}
255
256void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
257  const coff_section *Sec = toSec(Ref);
258  Sec += 1;
259  Ref.p = reinterpret_cast<uintptr_t>(Sec);
260}
261
262std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
263                                               StringRef &Result) const {
264  const coff_section *Sec = toSec(Ref);
265  return getSectionName(Sec, Result);
266}
267
268uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
269  const coff_section *Sec = toSec(Ref);
270  uint64_t Result = Sec->VirtualAddress;
271
272  // The section VirtualAddress does not include ImageBase, and we want to
273  // return virtual addresses.
274  Result += getImageBase();
275  return Result;
276}
277
278uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
279  return getSectionSize(toSec(Ref));
280}
281
282std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
283                                                   StringRef &Result) const {
284  const coff_section *Sec = toSec(Ref);
285  ArrayRef<uint8_t> Res;
286  std::error_code EC = getSectionContents(Sec, Res);
287  Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
288  return EC;
289}
290
291uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
292  const coff_section *Sec = toSec(Ref);
293  return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1);
294}
295
296bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
297  const coff_section *Sec = toSec(Ref);
298  return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
299}
300
301bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
302  const coff_section *Sec = toSec(Ref);
303  return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
304}
305
306bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
307  const coff_section *Sec = toSec(Ref);
308  const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
309                            COFF::IMAGE_SCN_MEM_READ |
310                            COFF::IMAGE_SCN_MEM_WRITE;
311  return (Sec->Characteristics & BssFlags) == BssFlags;
312}
313
314unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
315  uintptr_t Offset =
316      uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
317  assert((Offset % sizeof(coff_section)) == 0);
318  return (Offset / sizeof(coff_section)) + 1;
319}
320
321bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
322  const coff_section *Sec = toSec(Ref);
323  // In COFF, a virtual section won't have any in-file
324  // content, so the file pointer to the content will be zero.
325  return Sec->PointerToRawData == 0;
326}
327
328static uint32_t getNumberOfRelocations(const coff_section *Sec,
329                                       MemoryBufferRef M, const uint8_t *base) {
330  // The field for the number of relocations in COFF section table is only
331  // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
332  // NumberOfRelocations field, and the actual relocation count is stored in the
333  // VirtualAddress field in the first relocation entry.
334  if (Sec->hasExtendedRelocations()) {
335    const coff_relocation *FirstReloc;
336    if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
337        base + Sec->PointerToRelocations)))
338      return 0;
339    // -1 to exclude this first relocation entry.
340    return FirstReloc->VirtualAddress - 1;
341  }
342  return Sec->NumberOfRelocations;
343}
344
345static const coff_relocation *
346getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
347  uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
348  if (!NumRelocs)
349    return nullptr;
350  auto begin = reinterpret_cast<const coff_relocation *>(
351      Base + Sec->PointerToRelocations);
352  if (Sec->hasExtendedRelocations()) {
353    // Skip the first relocation entry repurposed to store the number of
354    // relocations.
355    begin++;
356  }
357  if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs))
358    return nullptr;
359  return begin;
360}
361
362relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
363  const coff_section *Sec = toSec(Ref);
364  const coff_relocation *begin = getFirstReloc(Sec, Data, base());
365  if (begin && Sec->VirtualAddress != 0)
366    report_fatal_error("Sections with relocations should have an address of 0");
367  DataRefImpl Ret;
368  Ret.p = reinterpret_cast<uintptr_t>(begin);
369  return relocation_iterator(RelocationRef(Ret, this));
370}
371
372relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
373  const coff_section *Sec = toSec(Ref);
374  const coff_relocation *I = getFirstReloc(Sec, Data, base());
375  if (I)
376    I += getNumberOfRelocations(Sec, Data, base());
377  DataRefImpl Ret;
378  Ret.p = reinterpret_cast<uintptr_t>(I);
379  return relocation_iterator(RelocationRef(Ret, this));
380}
381
382// Initialize the pointer to the symbol table.
383std::error_code COFFObjectFile::initSymbolTablePtr() {
384  if (COFFHeader)
385    if (std::error_code EC = getObject(
386            SymbolTable16, Data, base() + getPointerToSymbolTable(),
387            (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
388      return EC;
389
390  if (COFFBigObjHeader)
391    if (std::error_code EC = getObject(
392            SymbolTable32, Data, base() + getPointerToSymbolTable(),
393            (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
394      return EC;
395
396  // Find string table. The first four byte of the string table contains the
397  // total size of the string table, including the size field itself. If the
398  // string table is empty, the value of the first four byte would be 4.
399  uint32_t StringTableOffset = getPointerToSymbolTable() +
400                               getNumberOfSymbols() * getSymbolTableEntrySize();
401  const uint8_t *StringTableAddr = base() + StringTableOffset;
402  const ulittle32_t *StringTableSizePtr;
403  if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
404    return EC;
405  StringTableSize = *StringTableSizePtr;
406  if (std::error_code EC =
407          getObject(StringTable, Data, StringTableAddr, StringTableSize))
408    return EC;
409
410  // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
411  // tools like cvtres write a size of 0 for an empty table instead of 4.
412  if (StringTableSize < 4)
413      StringTableSize = 4;
414
415  // Check that the string table is null terminated if has any in it.
416  if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
417    return  object_error::parse_failed;
418  return std::error_code();
419}
420
421uint64_t COFFObjectFile::getImageBase() const {
422  if (PE32Header)
423    return PE32Header->ImageBase;
424  else if (PE32PlusHeader)
425    return PE32PlusHeader->ImageBase;
426  // This actually comes up in practice.
427  return 0;
428}
429
430// Returns the file offset for the given VA.
431std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
432  uint64_t ImageBase = getImageBase();
433  uint64_t Rva = Addr - ImageBase;
434  assert(Rva <= UINT32_MAX);
435  return getRvaPtr((uint32_t)Rva, Res);
436}
437
438// Returns the file offset for the given RVA.
439std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
440  for (const SectionRef &S : sections()) {
441    const coff_section *Section = getCOFFSection(S);
442    uint32_t SectionStart = Section->VirtualAddress;
443    uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
444    if (SectionStart <= Addr && Addr < SectionEnd) {
445      uint32_t Offset = Addr - SectionStart;
446      Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
447      return std::error_code();
448    }
449  }
450  return object_error::parse_failed;
451}
452
453// Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
454// table entry.
455std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
456                                            StringRef &Name) const {
457  uintptr_t IntPtr = 0;
458  if (std::error_code EC = getRvaPtr(Rva, IntPtr))
459    return EC;
460  const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
461  Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
462  Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
463  return std::error_code();
464}
465
466// Find the import table.
467std::error_code COFFObjectFile::initImportTablePtr() {
468  // First, we get the RVA of the import table. If the file lacks a pointer to
469  // the import table, do nothing.
470  const data_directory *DataEntry;
471  if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
472    return std::error_code();
473
474  // Do nothing if the pointer to import table is NULL.
475  if (DataEntry->RelativeVirtualAddress == 0)
476    return std::error_code();
477
478  uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
479  // -1 because the last entry is the null entry.
480  NumberOfImportDirectory = DataEntry->Size /
481      sizeof(import_directory_table_entry) - 1;
482
483  // Find the section that contains the RVA. This is needed because the RVA is
484  // the import table's memory address which is different from its file offset.
485  uintptr_t IntPtr = 0;
486  if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
487    return EC;
488  ImportDirectory = reinterpret_cast<
489      const import_directory_table_entry *>(IntPtr);
490  return std::error_code();
491}
492
493// Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
494std::error_code COFFObjectFile::initDelayImportTablePtr() {
495  const data_directory *DataEntry;
496  if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
497    return std::error_code();
498  if (DataEntry->RelativeVirtualAddress == 0)
499    return std::error_code();
500
501  uint32_t RVA = DataEntry->RelativeVirtualAddress;
502  NumberOfDelayImportDirectory = DataEntry->Size /
503      sizeof(delay_import_directory_table_entry) - 1;
504
505  uintptr_t IntPtr = 0;
506  if (std::error_code EC = getRvaPtr(RVA, IntPtr))
507    return EC;
508  DelayImportDirectory = reinterpret_cast<
509      const delay_import_directory_table_entry *>(IntPtr);
510  return std::error_code();
511}
512
513// Find the export table.
514std::error_code COFFObjectFile::initExportTablePtr() {
515  // First, we get the RVA of the export table. If the file lacks a pointer to
516  // the export table, do nothing.
517  const data_directory *DataEntry;
518  if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
519    return std::error_code();
520
521  // Do nothing if the pointer to export table is NULL.
522  if (DataEntry->RelativeVirtualAddress == 0)
523    return std::error_code();
524
525  uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
526  uintptr_t IntPtr = 0;
527  if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
528    return EC;
529  ExportDirectory =
530      reinterpret_cast<const export_directory_table_entry *>(IntPtr);
531  return std::error_code();
532}
533
534std::error_code COFFObjectFile::initBaseRelocPtr() {
535  const data_directory *DataEntry;
536  if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
537    return std::error_code();
538  if (DataEntry->RelativeVirtualAddress == 0)
539    return std::error_code();
540
541  uintptr_t IntPtr = 0;
542  if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
543    return EC;
544  BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
545      IntPtr);
546  BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
547      IntPtr + DataEntry->Size);
548  return std::error_code();
549}
550
551COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
552    : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
553      COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
554      DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
555      SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
556      ImportDirectory(nullptr), NumberOfImportDirectory(0),
557      DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
558      ExportDirectory(nullptr), BaseRelocHeader(nullptr),
559      BaseRelocEnd(nullptr) {
560  // Check that we at least have enough room for a header.
561  if (!checkSize(Data, EC, sizeof(coff_file_header)))
562    return;
563
564  // The current location in the file where we are looking at.
565  uint64_t CurPtr = 0;
566
567  // PE header is optional and is present only in executables. If it exists,
568  // it is placed right after COFF header.
569  bool HasPEHeader = false;
570
571  // Check if this is a PE/COFF file.
572  if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
573    // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
574    // PE signature to find 'normal' COFF header.
575    const auto *DH = reinterpret_cast<const dos_header *>(base());
576    if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
577      CurPtr = DH->AddressOfNewExeHeader;
578      // Check the PE magic bytes. ("PE\0\0")
579      if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
580        EC = object_error::parse_failed;
581        return;
582      }
583      CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
584      HasPEHeader = true;
585    }
586  }
587
588  if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
589    return;
590
591  // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
592  // import libraries share a common prefix but bigobj is more restrictive.
593  if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
594      COFFHeader->NumberOfSections == uint16_t(0xffff) &&
595      checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
596    if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
597      return;
598
599    // Verify that we are dealing with bigobj.
600    if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
601        std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
602                    sizeof(COFF::BigObjMagic)) == 0) {
603      COFFHeader = nullptr;
604      CurPtr += sizeof(coff_bigobj_file_header);
605    } else {
606      // It's not a bigobj.
607      COFFBigObjHeader = nullptr;
608    }
609  }
610  if (COFFHeader) {
611    // The prior checkSize call may have failed.  This isn't a hard error
612    // because we were just trying to sniff out bigobj.
613    EC = std::error_code();
614    CurPtr += sizeof(coff_file_header);
615
616    if (COFFHeader->isImportLibrary())
617      return;
618  }
619
620  if (HasPEHeader) {
621    const pe32_header *Header;
622    if ((EC = getObject(Header, Data, base() + CurPtr)))
623      return;
624
625    const uint8_t *DataDirAddr;
626    uint64_t DataDirSize;
627    if (Header->Magic == COFF::PE32Header::PE32) {
628      PE32Header = Header;
629      DataDirAddr = base() + CurPtr + sizeof(pe32_header);
630      DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
631    } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
632      PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
633      DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
634      DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
635    } else {
636      // It's neither PE32 nor PE32+.
637      EC = object_error::parse_failed;
638      return;
639    }
640    if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
641      return;
642    CurPtr += COFFHeader->SizeOfOptionalHeader;
643  }
644
645  if ((EC = getObject(SectionTable, Data, base() + CurPtr,
646                      (uint64_t)getNumberOfSections() * sizeof(coff_section))))
647    return;
648
649  // Initialize the pointer to the symbol table.
650  if (getPointerToSymbolTable() != 0) {
651    if ((EC = initSymbolTablePtr()))
652      return;
653  } else {
654    // We had better not have any symbols if we don't have a symbol table.
655    if (getNumberOfSymbols() != 0) {
656      EC = object_error::parse_failed;
657      return;
658    }
659  }
660
661  // Initialize the pointer to the beginning of the import table.
662  if ((EC = initImportTablePtr()))
663    return;
664  if ((EC = initDelayImportTablePtr()))
665    return;
666
667  // Initialize the pointer to the export table.
668  if ((EC = initExportTablePtr()))
669    return;
670
671  // Initialize the pointer to the base relocation table.
672  if ((EC = initBaseRelocPtr()))
673    return;
674
675  EC = std::error_code();
676}
677
678basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const {
679  DataRefImpl Ret;
680  Ret.p = getSymbolTable();
681  return basic_symbol_iterator(SymbolRef(Ret, this));
682}
683
684basic_symbol_iterator COFFObjectFile::symbol_end_impl() const {
685  // The symbol table ends where the string table begins.
686  DataRefImpl Ret;
687  Ret.p = reinterpret_cast<uintptr_t>(StringTable);
688  return basic_symbol_iterator(SymbolRef(Ret, this));
689}
690
691import_directory_iterator COFFObjectFile::import_directory_begin() const {
692  return import_directory_iterator(
693      ImportDirectoryEntryRef(ImportDirectory, 0, this));
694}
695
696import_directory_iterator COFFObjectFile::import_directory_end() const {
697  return import_directory_iterator(
698      ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this));
699}
700
701delay_import_directory_iterator
702COFFObjectFile::delay_import_directory_begin() const {
703  return delay_import_directory_iterator(
704      DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
705}
706
707delay_import_directory_iterator
708COFFObjectFile::delay_import_directory_end() const {
709  return delay_import_directory_iterator(
710      DelayImportDirectoryEntryRef(
711          DelayImportDirectory, NumberOfDelayImportDirectory, this));
712}
713
714export_directory_iterator COFFObjectFile::export_directory_begin() const {
715  return export_directory_iterator(
716      ExportDirectoryEntryRef(ExportDirectory, 0, this));
717}
718
719export_directory_iterator COFFObjectFile::export_directory_end() const {
720  if (!ExportDirectory)
721    return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
722  ExportDirectoryEntryRef Ref(ExportDirectory,
723                              ExportDirectory->AddressTableEntries, this);
724  return export_directory_iterator(Ref);
725}
726
727section_iterator COFFObjectFile::section_begin() const {
728  DataRefImpl Ret;
729  Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
730  return section_iterator(SectionRef(Ret, this));
731}
732
733section_iterator COFFObjectFile::section_end() const {
734  DataRefImpl Ret;
735  int NumSections =
736      COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
737  Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
738  return section_iterator(SectionRef(Ret, this));
739}
740
741base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
742  return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
743}
744
745base_reloc_iterator COFFObjectFile::base_reloc_end() const {
746  return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
747}
748
749uint8_t COFFObjectFile::getBytesInAddress() const {
750  return getArch() == Triple::x86_64 ? 8 : 4;
751}
752
753StringRef COFFObjectFile::getFileFormatName() const {
754  switch(getMachine()) {
755  case COFF::IMAGE_FILE_MACHINE_I386:
756    return "COFF-i386";
757  case COFF::IMAGE_FILE_MACHINE_AMD64:
758    return "COFF-x86-64";
759  case COFF::IMAGE_FILE_MACHINE_ARMNT:
760    return "COFF-ARM";
761  case COFF::IMAGE_FILE_MACHINE_ARM64:
762    return "COFF-ARM64";
763  default:
764    return "COFF-<unknown arch>";
765  }
766}
767
768unsigned COFFObjectFile::getArch() const {
769  switch (getMachine()) {
770  case COFF::IMAGE_FILE_MACHINE_I386:
771    return Triple::x86;
772  case COFF::IMAGE_FILE_MACHINE_AMD64:
773    return Triple::x86_64;
774  case COFF::IMAGE_FILE_MACHINE_ARMNT:
775    return Triple::thumb;
776  case COFF::IMAGE_FILE_MACHINE_ARM64:
777    return Triple::aarch64;
778  default:
779    return Triple::UnknownArch;
780  }
781}
782
783iterator_range<import_directory_iterator>
784COFFObjectFile::import_directories() const {
785  return make_range(import_directory_begin(), import_directory_end());
786}
787
788iterator_range<delay_import_directory_iterator>
789COFFObjectFile::delay_import_directories() const {
790  return make_range(delay_import_directory_begin(),
791                    delay_import_directory_end());
792}
793
794iterator_range<export_directory_iterator>
795COFFObjectFile::export_directories() const {
796  return make_range(export_directory_begin(), export_directory_end());
797}
798
799iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
800  return make_range(base_reloc_begin(), base_reloc_end());
801}
802
803std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
804  Res = PE32Header;
805  return std::error_code();
806}
807
808std::error_code
809COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
810  Res = PE32PlusHeader;
811  return std::error_code();
812}
813
814std::error_code
815COFFObjectFile::getDataDirectory(uint32_t Index,
816                                 const data_directory *&Res) const {
817  // Error if if there's no data directory or the index is out of range.
818  if (!DataDirectory) {
819    Res = nullptr;
820    return object_error::parse_failed;
821  }
822  assert(PE32Header || PE32PlusHeader);
823  uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
824                               : PE32PlusHeader->NumberOfRvaAndSize;
825  if (Index >= NumEnt) {
826    Res = nullptr;
827    return object_error::parse_failed;
828  }
829  Res = &DataDirectory[Index];
830  return std::error_code();
831}
832
833std::error_code COFFObjectFile::getSection(int32_t Index,
834                                           const coff_section *&Result) const {
835  Result = nullptr;
836  if (COFF::isReservedSectionNumber(Index))
837    return std::error_code();
838  if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
839    // We already verified the section table data, so no need to check again.
840    Result = SectionTable + (Index - 1);
841    return std::error_code();
842  }
843  return object_error::parse_failed;
844}
845
846std::error_code COFFObjectFile::getString(uint32_t Offset,
847                                          StringRef &Result) const {
848  if (StringTableSize <= 4)
849    // Tried to get a string from an empty string table.
850    return object_error::parse_failed;
851  if (Offset >= StringTableSize)
852    return object_error::unexpected_eof;
853  Result = StringRef(StringTable + Offset);
854  return std::error_code();
855}
856
857std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
858                                              StringRef &Res) const {
859  return getSymbolName(Symbol.getGeneric(), Res);
860}
861
862std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
863                                              StringRef &Res) const {
864  // Check for string table entry. First 4 bytes are 0.
865  if (Symbol->Name.Offset.Zeroes == 0) {
866    if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
867      return EC;
868    return std::error_code();
869  }
870
871  if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
872    // Null terminated, let ::strlen figure out the length.
873    Res = StringRef(Symbol->Name.ShortName);
874  else
875    // Not null terminated, use all 8 bytes.
876    Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
877  return std::error_code();
878}
879
880ArrayRef<uint8_t>
881COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
882  const uint8_t *Aux = nullptr;
883
884  size_t SymbolSize = getSymbolTableEntrySize();
885  if (Symbol.getNumberOfAuxSymbols() > 0) {
886    // AUX data comes immediately after the symbol in COFF
887    Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
888# ifndef NDEBUG
889    // Verify that the Aux symbol points to a valid entry in the symbol table.
890    uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
891    if (Offset < getPointerToSymbolTable() ||
892        Offset >=
893            getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
894      report_fatal_error("Aux Symbol data was outside of symbol table.");
895
896    assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
897           "Aux Symbol data did not point to the beginning of a symbol");
898# endif
899  }
900  return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
901}
902
903std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
904                                               StringRef &Res) const {
905  StringRef Name;
906  if (Sec->Name[COFF::NameSize - 1] == 0)
907    // Null terminated, let ::strlen figure out the length.
908    Name = Sec->Name;
909  else
910    // Not null terminated, use all 8 bytes.
911    Name = StringRef(Sec->Name, COFF::NameSize);
912
913  // Check for string table entry. First byte is '/'.
914  if (Name.startswith("/")) {
915    uint32_t Offset;
916    if (Name.startswith("//")) {
917      if (decodeBase64StringEntry(Name.substr(2), Offset))
918        return object_error::parse_failed;
919    } else {
920      if (Name.substr(1).getAsInteger(10, Offset))
921        return object_error::parse_failed;
922    }
923    if (std::error_code EC = getString(Offset, Name))
924      return EC;
925  }
926
927  Res = Name;
928  return std::error_code();
929}
930
931uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
932  // SizeOfRawData and VirtualSize change what they represent depending on
933  // whether or not we have an executable image.
934  //
935  // For object files, SizeOfRawData contains the size of section's data;
936  // VirtualSize should be zero but isn't due to buggy COFF writers.
937  //
938  // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
939  // actual section size is in VirtualSize.  It is possible for VirtualSize to
940  // be greater than SizeOfRawData; the contents past that point should be
941  // considered to be zero.
942  if (getDOSHeader())
943    return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
944  return Sec->SizeOfRawData;
945}
946
947std::error_code
948COFFObjectFile::getSectionContents(const coff_section *Sec,
949                                   ArrayRef<uint8_t> &Res) const {
950  // PointerToRawData and SizeOfRawData won't make sense for BSS sections,
951  // don't do anything interesting for them.
952  assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 &&
953         "BSS sections don't have contents!");
954  // The only thing that we need to verify is that the contents is contained
955  // within the file bounds. We don't need to make sure it doesn't cover other
956  // data, as there's nothing that says that is not allowed.
957  uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
958  uint32_t SectionSize = getSectionSize(Sec);
959  if (checkOffset(Data, ConStart, SectionSize))
960    return object_error::parse_failed;
961  Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
962  return std::error_code();
963}
964
965const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
966  return reinterpret_cast<const coff_relocation*>(Rel.p);
967}
968
969void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
970  Rel.p = reinterpret_cast<uintptr_t>(
971            reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
972}
973
974uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
975  const coff_relocation *R = toRel(Rel);
976  return R->VirtualAddress;
977}
978
979symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
980  const coff_relocation *R = toRel(Rel);
981  DataRefImpl Ref;
982  if (R->SymbolTableIndex >= getNumberOfSymbols())
983    return symbol_end();
984  if (SymbolTable16)
985    Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
986  else if (SymbolTable32)
987    Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
988  else
989    llvm_unreachable("no symbol table pointer!");
990  return symbol_iterator(SymbolRef(Ref, this));
991}
992
993uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
994  const coff_relocation* R = toRel(Rel);
995  return R->Type;
996}
997
998const coff_section *
999COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1000  return toSec(Section.getRawDataRefImpl());
1001}
1002
1003COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1004  if (SymbolTable16)
1005    return toSymb<coff_symbol16>(Ref);
1006  if (SymbolTable32)
1007    return toSymb<coff_symbol32>(Ref);
1008  llvm_unreachable("no symbol table pointer!");
1009}
1010
1011COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1012  return getCOFFSymbol(Symbol.getRawDataRefImpl());
1013}
1014
1015const coff_relocation *
1016COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1017  return toRel(Reloc.getRawDataRefImpl());
1018}
1019
1020iterator_range<const coff_relocation *>
1021COFFObjectFile::getRelocations(const coff_section *Sec) const {
1022  const coff_relocation *I = getFirstReloc(Sec, Data, base());
1023  const coff_relocation *E = I;
1024  if (I)
1025    E += getNumberOfRelocations(Sec, Data, base());
1026  return make_range(I, E);
1027}
1028
1029#define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1030  case COFF::reloc_type:                                                       \
1031    Res = #reloc_type;                                                         \
1032    break;
1033
1034void COFFObjectFile::getRelocationTypeName(
1035    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1036  const coff_relocation *Reloc = toRel(Rel);
1037  StringRef Res;
1038  switch (getMachine()) {
1039  case COFF::IMAGE_FILE_MACHINE_AMD64:
1040    switch (Reloc->Type) {
1041    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1042    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1043    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1044    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1045    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1046    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1047    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1048    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1049    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1050    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1051    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1052    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1053    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1054    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1055    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1056    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1057    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1058    default:
1059      Res = "Unknown";
1060    }
1061    break;
1062  case COFF::IMAGE_FILE_MACHINE_ARMNT:
1063    switch (Reloc->Type) {
1064    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1065    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1066    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1067    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1068    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1069    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1070    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1071    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1072    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1073    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1074    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1075    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1076    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1077    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1078    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1079    default:
1080      Res = "Unknown";
1081    }
1082    break;
1083  case COFF::IMAGE_FILE_MACHINE_I386:
1084    switch (Reloc->Type) {
1085    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1086    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1087    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1088    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1089    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1090    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1091    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1092    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1093    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1094    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1095    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1096    default:
1097      Res = "Unknown";
1098    }
1099    break;
1100  default:
1101    Res = "Unknown";
1102  }
1103  Result.append(Res.begin(), Res.end());
1104}
1105
1106#undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1107
1108bool COFFObjectFile::isRelocatableObject() const {
1109  return !DataDirectory;
1110}
1111
1112bool ImportDirectoryEntryRef::
1113operator==(const ImportDirectoryEntryRef &Other) const {
1114  return ImportTable == Other.ImportTable && Index == Other.Index;
1115}
1116
1117void ImportDirectoryEntryRef::moveNext() {
1118  ++Index;
1119}
1120
1121std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1122    const import_directory_table_entry *&Result) const {
1123  Result = ImportTable + Index;
1124  return std::error_code();
1125}
1126
1127static imported_symbol_iterator
1128makeImportedSymbolIterator(const COFFObjectFile *Object,
1129                           uintptr_t Ptr, int Index) {
1130  if (Object->getBytesInAddress() == 4) {
1131    auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1132    return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1133  }
1134  auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1135  return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1136}
1137
1138static imported_symbol_iterator
1139importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1140  uintptr_t IntPtr = 0;
1141  Object->getRvaPtr(RVA, IntPtr);
1142  return makeImportedSymbolIterator(Object, IntPtr, 0);
1143}
1144
1145static imported_symbol_iterator
1146importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1147  uintptr_t IntPtr = 0;
1148  Object->getRvaPtr(RVA, IntPtr);
1149  // Forward the pointer to the last entry which is null.
1150  int Index = 0;
1151  if (Object->getBytesInAddress() == 4) {
1152    auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1153    while (*Entry++)
1154      ++Index;
1155  } else {
1156    auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1157    while (*Entry++)
1158      ++Index;
1159  }
1160  return makeImportedSymbolIterator(Object, IntPtr, Index);
1161}
1162
1163imported_symbol_iterator
1164ImportDirectoryEntryRef::imported_symbol_begin() const {
1165  return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1166                             OwningObject);
1167}
1168
1169imported_symbol_iterator
1170ImportDirectoryEntryRef::imported_symbol_end() const {
1171  return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1172                           OwningObject);
1173}
1174
1175iterator_range<imported_symbol_iterator>
1176ImportDirectoryEntryRef::imported_symbols() const {
1177  return make_range(imported_symbol_begin(), imported_symbol_end());
1178}
1179
1180std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1181  uintptr_t IntPtr = 0;
1182  if (std::error_code EC =
1183          OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1184    return EC;
1185  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1186  return std::error_code();
1187}
1188
1189std::error_code
1190ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1191  Result = ImportTable[Index].ImportLookupTableRVA;
1192  return std::error_code();
1193}
1194
1195std::error_code
1196ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1197  Result = ImportTable[Index].ImportAddressTableRVA;
1198  return std::error_code();
1199}
1200
1201std::error_code ImportDirectoryEntryRef::getImportLookupEntry(
1202    const import_lookup_table_entry32 *&Result) const {
1203  uintptr_t IntPtr = 0;
1204  uint32_t RVA = ImportTable[Index].ImportLookupTableRVA;
1205  if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1206    return EC;
1207  Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr);
1208  return std::error_code();
1209}
1210
1211bool DelayImportDirectoryEntryRef::
1212operator==(const DelayImportDirectoryEntryRef &Other) const {
1213  return Table == Other.Table && Index == Other.Index;
1214}
1215
1216void DelayImportDirectoryEntryRef::moveNext() {
1217  ++Index;
1218}
1219
1220imported_symbol_iterator
1221DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1222  return importedSymbolBegin(Table[Index].DelayImportNameTable,
1223                             OwningObject);
1224}
1225
1226imported_symbol_iterator
1227DelayImportDirectoryEntryRef::imported_symbol_end() const {
1228  return importedSymbolEnd(Table[Index].DelayImportNameTable,
1229                           OwningObject);
1230}
1231
1232iterator_range<imported_symbol_iterator>
1233DelayImportDirectoryEntryRef::imported_symbols() const {
1234  return make_range(imported_symbol_begin(), imported_symbol_end());
1235}
1236
1237std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1238  uintptr_t IntPtr = 0;
1239  if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1240    return EC;
1241  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1242  return std::error_code();
1243}
1244
1245std::error_code DelayImportDirectoryEntryRef::
1246getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1247  Result = Table;
1248  return std::error_code();
1249}
1250
1251std::error_code DelayImportDirectoryEntryRef::
1252getImportAddress(int AddrIndex, uint64_t &Result) const {
1253  uint32_t RVA = Table[Index].DelayImportAddressTable +
1254      AddrIndex * (OwningObject->is64() ? 8 : 4);
1255  uintptr_t IntPtr = 0;
1256  if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1257    return EC;
1258  if (OwningObject->is64())
1259    Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1260  else
1261    Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1262  return std::error_code();
1263}
1264
1265bool ExportDirectoryEntryRef::
1266operator==(const ExportDirectoryEntryRef &Other) const {
1267  return ExportTable == Other.ExportTable && Index == Other.Index;
1268}
1269
1270void ExportDirectoryEntryRef::moveNext() {
1271  ++Index;
1272}
1273
1274// Returns the name of the current export symbol. If the symbol is exported only
1275// by ordinal, the empty string is set as a result.
1276std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1277  uintptr_t IntPtr = 0;
1278  if (std::error_code EC =
1279          OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1280    return EC;
1281  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1282  return std::error_code();
1283}
1284
1285// Returns the starting ordinal number.
1286std::error_code
1287ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1288  Result = ExportTable->OrdinalBase;
1289  return std::error_code();
1290}
1291
1292// Returns the export ordinal of the current export symbol.
1293std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1294  Result = ExportTable->OrdinalBase + Index;
1295  return std::error_code();
1296}
1297
1298// Returns the address of the current export symbol.
1299std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1300  uintptr_t IntPtr = 0;
1301  if (std::error_code EC =
1302          OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1303    return EC;
1304  const export_address_table_entry *entry =
1305      reinterpret_cast<const export_address_table_entry *>(IntPtr);
1306  Result = entry[Index].ExportRVA;
1307  return std::error_code();
1308}
1309
1310// Returns the name of the current export symbol. If the symbol is exported only
1311// by ordinal, the empty string is set as a result.
1312std::error_code
1313ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1314  uintptr_t IntPtr = 0;
1315  if (std::error_code EC =
1316          OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1317    return EC;
1318  const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1319
1320  uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1321  int Offset = 0;
1322  for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1323       I < E; ++I, ++Offset) {
1324    if (*I != Index)
1325      continue;
1326    if (std::error_code EC =
1327            OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1328      return EC;
1329    const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1330    if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1331      return EC;
1332    Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1333    return std::error_code();
1334  }
1335  Result = "";
1336  return std::error_code();
1337}
1338
1339std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1340  const data_directory *DataEntry;
1341  if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1342    return EC;
1343  uint32_t RVA;
1344  if (auto EC = getExportRVA(RVA))
1345    return EC;
1346  uint32_t Begin = DataEntry->RelativeVirtualAddress;
1347  uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1348  Result = (Begin <= RVA && RVA < End);
1349  return std::error_code();
1350}
1351
1352std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1353  uint32_t RVA;
1354  if (auto EC = getExportRVA(RVA))
1355    return EC;
1356  uintptr_t IntPtr = 0;
1357  if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1358    return EC;
1359  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1360  return std::error_code();
1361}
1362
1363bool ImportedSymbolRef::
1364operator==(const ImportedSymbolRef &Other) const {
1365  return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1366      && Index == Other.Index;
1367}
1368
1369void ImportedSymbolRef::moveNext() {
1370  ++Index;
1371}
1372
1373std::error_code
1374ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1375  uint32_t RVA;
1376  if (Entry32) {
1377    // If a symbol is imported only by ordinal, it has no name.
1378    if (Entry32[Index].isOrdinal())
1379      return std::error_code();
1380    RVA = Entry32[Index].getHintNameRVA();
1381  } else {
1382    if (Entry64[Index].isOrdinal())
1383      return std::error_code();
1384    RVA = Entry64[Index].getHintNameRVA();
1385  }
1386  uintptr_t IntPtr = 0;
1387  if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1388    return EC;
1389  // +2 because the first two bytes is hint.
1390  Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1391  return std::error_code();
1392}
1393
1394std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1395  uint32_t RVA;
1396  if (Entry32) {
1397    if (Entry32[Index].isOrdinal()) {
1398      Result = Entry32[Index].getOrdinal();
1399      return std::error_code();
1400    }
1401    RVA = Entry32[Index].getHintNameRVA();
1402  } else {
1403    if (Entry64[Index].isOrdinal()) {
1404      Result = Entry64[Index].getOrdinal();
1405      return std::error_code();
1406    }
1407    RVA = Entry64[Index].getHintNameRVA();
1408  }
1409  uintptr_t IntPtr = 0;
1410  if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1411    return EC;
1412  Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1413  return std::error_code();
1414}
1415
1416ErrorOr<std::unique_ptr<COFFObjectFile>>
1417ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1418  std::error_code EC;
1419  std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1420  if (EC)
1421    return EC;
1422  return std::move(Ret);
1423}
1424
1425bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1426  return Header == Other.Header && Index == Other.Index;
1427}
1428
1429void BaseRelocRef::moveNext() {
1430  // Header->BlockSize is the size of the current block, including the
1431  // size of the header itself.
1432  uint32_t Size = sizeof(*Header) +
1433      sizeof(coff_base_reloc_block_entry) * (Index + 1);
1434  if (Size == Header->BlockSize) {
1435    // .reloc contains a list of base relocation blocks. Each block
1436    // consists of the header followed by entries. The header contains
1437    // how many entories will follow. When we reach the end of the
1438    // current block, proceed to the next block.
1439    Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1440        reinterpret_cast<const uint8_t *>(Header) + Size);
1441    Index = 0;
1442  } else {
1443    ++Index;
1444  }
1445}
1446
1447std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1448  auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1449  Type = Entry[Index].getType();
1450  return std::error_code();
1451}
1452
1453std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1454  auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1455  Result = Header->PageRVA + Entry[Index].getOffset();
1456  return std::error_code();
1457}
1458