Verifier.cpp revision 288943
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * All landingpad instructions must use the same personality function with
43//    the same function.
44//  * All other things that are tested by asserts spread about the code...
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/IR/Verifier.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/CallSite.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/ConstantRange.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfo.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/InlineAsm.h"
64#include "llvm/IR/InstIterator.h"
65#include "llvm/IR/InstVisitor.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/Metadata.h"
69#include "llvm/IR/Module.h"
70#include "llvm/IR/PassManager.h"
71#include "llvm/IR/Statepoint.h"
72#include "llvm/Pass.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/ErrorHandling.h"
76#include "llvm/Support/raw_ostream.h"
77#include <algorithm>
78#include <cstdarg>
79using namespace llvm;
80
81static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
82
83namespace {
84struct VerifierSupport {
85  raw_ostream &OS;
86  const Module *M;
87
88  /// \brief Track the brokenness of the module while recursively visiting.
89  bool Broken;
90
91  explicit VerifierSupport(raw_ostream &OS)
92      : OS(OS), M(nullptr), Broken(false) {}
93
94private:
95  void Write(const Value *V) {
96    if (!V)
97      return;
98    if (isa<Instruction>(V)) {
99      OS << *V << '\n';
100    } else {
101      V->printAsOperand(OS, true, M);
102      OS << '\n';
103    }
104  }
105  void Write(ImmutableCallSite CS) {
106    Write(CS.getInstruction());
107  }
108
109  void Write(const Metadata *MD) {
110    if (!MD)
111      return;
112    MD->print(OS, M);
113    OS << '\n';
114  }
115
116  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
117    Write(MD.get());
118  }
119
120  void Write(const NamedMDNode *NMD) {
121    if (!NMD)
122      return;
123    NMD->print(OS);
124    OS << '\n';
125  }
126
127  void Write(Type *T) {
128    if (!T)
129      return;
130    OS << ' ' << *T;
131  }
132
133  void Write(const Comdat *C) {
134    if (!C)
135      return;
136    OS << *C;
137  }
138
139  template <typename T1, typename... Ts>
140  void WriteTs(const T1 &V1, const Ts &... Vs) {
141    Write(V1);
142    WriteTs(Vs...);
143  }
144
145  template <typename... Ts> void WriteTs() {}
146
147public:
148  /// \brief A check failed, so printout out the condition and the message.
149  ///
150  /// This provides a nice place to put a breakpoint if you want to see why
151  /// something is not correct.
152  void CheckFailed(const Twine &Message) {
153    OS << Message << '\n';
154    Broken = true;
155  }
156
157  /// \brief A check failed (with values to print).
158  ///
159  /// This calls the Message-only version so that the above is easier to set a
160  /// breakpoint on.
161  template <typename T1, typename... Ts>
162  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
163    CheckFailed(Message);
164    WriteTs(V1, Vs...);
165  }
166};
167
168class Verifier : public InstVisitor<Verifier>, VerifierSupport {
169  friend class InstVisitor<Verifier>;
170
171  LLVMContext *Context;
172  DominatorTree DT;
173
174  /// \brief When verifying a basic block, keep track of all of the
175  /// instructions we have seen so far.
176  ///
177  /// This allows us to do efficient dominance checks for the case when an
178  /// instruction has an operand that is an instruction in the same block.
179  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
180
181  /// \brief Keep track of the metadata nodes that have been checked already.
182  SmallPtrSet<const Metadata *, 32> MDNodes;
183
184  /// \brief Track unresolved string-based type references.
185  SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
186
187  /// \brief Whether we've seen a call to @llvm.localescape in this function
188  /// already.
189  bool SawFrameEscape;
190
191  /// Stores the count of how many objects were passed to llvm.localescape for a
192  /// given function and the largest index passed to llvm.localrecover.
193  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
194
195public:
196  explicit Verifier(raw_ostream &OS)
197      : VerifierSupport(OS), Context(nullptr), SawFrameEscape(false) {}
198
199  bool verify(const Function &F) {
200    M = F.getParent();
201    Context = &M->getContext();
202
203    // First ensure the function is well-enough formed to compute dominance
204    // information.
205    if (F.empty()) {
206      OS << "Function '" << F.getName()
207         << "' does not contain an entry block!\n";
208      return false;
209    }
210    for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
211      if (I->empty() || !I->back().isTerminator()) {
212        OS << "Basic Block in function '" << F.getName()
213           << "' does not have terminator!\n";
214        I->printAsOperand(OS, true);
215        OS << "\n";
216        return false;
217      }
218    }
219
220    // Now directly compute a dominance tree. We don't rely on the pass
221    // manager to provide this as it isolates us from a potentially
222    // out-of-date dominator tree and makes it significantly more complex to
223    // run this code outside of a pass manager.
224    // FIXME: It's really gross that we have to cast away constness here.
225    DT.recalculate(const_cast<Function &>(F));
226
227    Broken = false;
228    // FIXME: We strip const here because the inst visitor strips const.
229    visit(const_cast<Function &>(F));
230    InstsInThisBlock.clear();
231    SawFrameEscape = false;
232
233    return !Broken;
234  }
235
236  bool verify(const Module &M) {
237    this->M = &M;
238    Context = &M.getContext();
239    Broken = false;
240
241    // Scan through, checking all of the external function's linkage now...
242    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
243      visitGlobalValue(*I);
244
245      // Check to make sure function prototypes are okay.
246      if (I->isDeclaration())
247        visitFunction(*I);
248    }
249
250    // Now that we've visited every function, verify that we never asked to
251    // recover a frame index that wasn't escaped.
252    verifyFrameRecoverIndices();
253
254    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
255         I != E; ++I)
256      visitGlobalVariable(*I);
257
258    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
259         I != E; ++I)
260      visitGlobalAlias(*I);
261
262    for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
263                                               E = M.named_metadata_end();
264         I != E; ++I)
265      visitNamedMDNode(*I);
266
267    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
268      visitComdat(SMEC.getValue());
269
270    visitModuleFlags(M);
271    visitModuleIdents(M);
272
273    // Verify type referneces last.
274    verifyTypeRefs();
275
276    return !Broken;
277  }
278
279private:
280  // Verification methods...
281  void visitGlobalValue(const GlobalValue &GV);
282  void visitGlobalVariable(const GlobalVariable &GV);
283  void visitGlobalAlias(const GlobalAlias &GA);
284  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
285  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
286                           const GlobalAlias &A, const Constant &C);
287  void visitNamedMDNode(const NamedMDNode &NMD);
288  void visitMDNode(const MDNode &MD);
289  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
290  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
291  void visitComdat(const Comdat &C);
292  void visitModuleIdents(const Module &M);
293  void visitModuleFlags(const Module &M);
294  void visitModuleFlag(const MDNode *Op,
295                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
296                       SmallVectorImpl<const MDNode *> &Requirements);
297  void visitFunction(const Function &F);
298  void visitBasicBlock(BasicBlock &BB);
299  void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
300
301  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
302#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
303#include "llvm/IR/Metadata.def"
304  void visitDIScope(const DIScope &N);
305  void visitDIDerivedTypeBase(const DIDerivedTypeBase &N);
306  void visitDIVariable(const DIVariable &N);
307  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
308  void visitDITemplateParameter(const DITemplateParameter &N);
309
310  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
311
312  /// \brief Check for a valid string-based type reference.
313  ///
314  /// Checks if \c MD is a string-based type reference.  If it is, keeps track
315  /// of it (and its user, \c N) for error messages later.
316  bool isValidUUID(const MDNode &N, const Metadata *MD);
317
318  /// \brief Check for a valid type reference.
319  ///
320  /// Checks for subclasses of \a DIType, or \a isValidUUID().
321  bool isTypeRef(const MDNode &N, const Metadata *MD);
322
323  /// \brief Check for a valid scope reference.
324  ///
325  /// Checks for subclasses of \a DIScope, or \a isValidUUID().
326  bool isScopeRef(const MDNode &N, const Metadata *MD);
327
328  /// \brief Check for a valid debug info reference.
329  ///
330  /// Checks for subclasses of \a DINode, or \a isValidUUID().
331  bool isDIRef(const MDNode &N, const Metadata *MD);
332
333  // InstVisitor overrides...
334  using InstVisitor<Verifier>::visit;
335  void visit(Instruction &I);
336
337  void visitTruncInst(TruncInst &I);
338  void visitZExtInst(ZExtInst &I);
339  void visitSExtInst(SExtInst &I);
340  void visitFPTruncInst(FPTruncInst &I);
341  void visitFPExtInst(FPExtInst &I);
342  void visitFPToUIInst(FPToUIInst &I);
343  void visitFPToSIInst(FPToSIInst &I);
344  void visitUIToFPInst(UIToFPInst &I);
345  void visitSIToFPInst(SIToFPInst &I);
346  void visitIntToPtrInst(IntToPtrInst &I);
347  void visitPtrToIntInst(PtrToIntInst &I);
348  void visitBitCastInst(BitCastInst &I);
349  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
350  void visitPHINode(PHINode &PN);
351  void visitBinaryOperator(BinaryOperator &B);
352  void visitICmpInst(ICmpInst &IC);
353  void visitFCmpInst(FCmpInst &FC);
354  void visitExtractElementInst(ExtractElementInst &EI);
355  void visitInsertElementInst(InsertElementInst &EI);
356  void visitShuffleVectorInst(ShuffleVectorInst &EI);
357  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
358  void visitCallInst(CallInst &CI);
359  void visitInvokeInst(InvokeInst &II);
360  void visitGetElementPtrInst(GetElementPtrInst &GEP);
361  void visitLoadInst(LoadInst &LI);
362  void visitStoreInst(StoreInst &SI);
363  void verifyDominatesUse(Instruction &I, unsigned i);
364  void visitInstruction(Instruction &I);
365  void visitTerminatorInst(TerminatorInst &I);
366  void visitBranchInst(BranchInst &BI);
367  void visitReturnInst(ReturnInst &RI);
368  void visitSwitchInst(SwitchInst &SI);
369  void visitIndirectBrInst(IndirectBrInst &BI);
370  void visitSelectInst(SelectInst &SI);
371  void visitUserOp1(Instruction &I);
372  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
373  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
374  template <class DbgIntrinsicTy>
375  void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
376  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
377  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
378  void visitFenceInst(FenceInst &FI);
379  void visitAllocaInst(AllocaInst &AI);
380  void visitExtractValueInst(ExtractValueInst &EVI);
381  void visitInsertValueInst(InsertValueInst &IVI);
382  void visitLandingPadInst(LandingPadInst &LPI);
383
384  void VerifyCallSite(CallSite CS);
385  void verifyMustTailCall(CallInst &CI);
386  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
387                        unsigned ArgNo, std::string &Suffix);
388  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
389                           SmallVectorImpl<Type *> &ArgTys);
390  bool VerifyIntrinsicIsVarArg(bool isVarArg,
391                               ArrayRef<Intrinsic::IITDescriptor> &Infos);
392  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
393  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
394                            const Value *V);
395  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
396                            bool isReturnValue, const Value *V);
397  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
398                           const Value *V);
399  void VerifyFunctionMetadata(
400      const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
401
402  void VerifyConstantExprBitcastType(const ConstantExpr *CE);
403  void VerifyStatepoint(ImmutableCallSite CS);
404  void verifyFrameRecoverIndices();
405
406  // Module-level debug info verification...
407  void verifyTypeRefs();
408  template <class MapTy>
409  void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
410                                const MapTy &TypeRefs);
411  void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
412};
413} // End anonymous namespace
414
415// Assert - We know that cond should be true, if not print an error message.
416#define Assert(C, ...) \
417  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
418
419void Verifier::visit(Instruction &I) {
420  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
421    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
422  InstVisitor<Verifier>::visit(I);
423}
424
425
426void Verifier::visitGlobalValue(const GlobalValue &GV) {
427  Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
428             GV.hasExternalWeakLinkage(),
429         "Global is external, but doesn't have external or weak linkage!", &GV);
430
431  Assert(GV.getAlignment() <= Value::MaximumAlignment,
432         "huge alignment values are unsupported", &GV);
433  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
434         "Only global variables can have appending linkage!", &GV);
435
436  if (GV.hasAppendingLinkage()) {
437    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
438    Assert(GVar && GVar->getValueType()->isArrayTy(),
439           "Only global arrays can have appending linkage!", GVar);
440  }
441
442  if (GV.isDeclarationForLinker())
443    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
444}
445
446void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
447  if (GV.hasInitializer()) {
448    Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
449           "Global variable initializer type does not match global "
450           "variable type!",
451           &GV);
452
453    // If the global has common linkage, it must have a zero initializer and
454    // cannot be constant.
455    if (GV.hasCommonLinkage()) {
456      Assert(GV.getInitializer()->isNullValue(),
457             "'common' global must have a zero initializer!", &GV);
458      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
459             &GV);
460      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
461    }
462  } else {
463    Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
464           "invalid linkage type for global declaration", &GV);
465  }
466
467  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
468                       GV.getName() == "llvm.global_dtors")) {
469    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
470           "invalid linkage for intrinsic global variable", &GV);
471    // Don't worry about emitting an error for it not being an array,
472    // visitGlobalValue will complain on appending non-array.
473    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
474      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
475      PointerType *FuncPtrTy =
476          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
477      // FIXME: Reject the 2-field form in LLVM 4.0.
478      Assert(STy &&
479                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
480                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
481                 STy->getTypeAtIndex(1) == FuncPtrTy,
482             "wrong type for intrinsic global variable", &GV);
483      if (STy->getNumElements() == 3) {
484        Type *ETy = STy->getTypeAtIndex(2);
485        Assert(ETy->isPointerTy() &&
486                   cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
487               "wrong type for intrinsic global variable", &GV);
488      }
489    }
490  }
491
492  if (GV.hasName() && (GV.getName() == "llvm.used" ||
493                       GV.getName() == "llvm.compiler.used")) {
494    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
495           "invalid linkage for intrinsic global variable", &GV);
496    Type *GVType = GV.getValueType();
497    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
498      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
499      Assert(PTy, "wrong type for intrinsic global variable", &GV);
500      if (GV.hasInitializer()) {
501        const Constant *Init = GV.getInitializer();
502        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
503        Assert(InitArray, "wrong initalizer for intrinsic global variable",
504               Init);
505        for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
506          Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
507          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
508                     isa<GlobalAlias>(V),
509                 "invalid llvm.used member", V);
510          Assert(V->hasName(), "members of llvm.used must be named", V);
511        }
512      }
513    }
514  }
515
516  Assert(!GV.hasDLLImportStorageClass() ||
517             (GV.isDeclaration() && GV.hasExternalLinkage()) ||
518             GV.hasAvailableExternallyLinkage(),
519         "Global is marked as dllimport, but not external", &GV);
520
521  if (!GV.hasInitializer()) {
522    visitGlobalValue(GV);
523    return;
524  }
525
526  // Walk any aggregate initializers looking for bitcasts between address spaces
527  SmallPtrSet<const Value *, 4> Visited;
528  SmallVector<const Value *, 4> WorkStack;
529  WorkStack.push_back(cast<Value>(GV.getInitializer()));
530
531  while (!WorkStack.empty()) {
532    const Value *V = WorkStack.pop_back_val();
533    if (!Visited.insert(V).second)
534      continue;
535
536    if (const User *U = dyn_cast<User>(V)) {
537      WorkStack.append(U->op_begin(), U->op_end());
538    }
539
540    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
541      VerifyConstantExprBitcastType(CE);
542      if (Broken)
543        return;
544    }
545  }
546
547  visitGlobalValue(GV);
548}
549
550void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
551  SmallPtrSet<const GlobalAlias*, 4> Visited;
552  Visited.insert(&GA);
553  visitAliaseeSubExpr(Visited, GA, C);
554}
555
556void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
557                                   const GlobalAlias &GA, const Constant &C) {
558  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
559    Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
560
561    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
562      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
563
564      Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
565             &GA);
566    } else {
567      // Only continue verifying subexpressions of GlobalAliases.
568      // Do not recurse into global initializers.
569      return;
570    }
571  }
572
573  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
574    VerifyConstantExprBitcastType(CE);
575
576  for (const Use &U : C.operands()) {
577    Value *V = &*U;
578    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
579      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
580    else if (const auto *C2 = dyn_cast<Constant>(V))
581      visitAliaseeSubExpr(Visited, GA, *C2);
582  }
583}
584
585void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
586  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
587         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
588         "weak_odr, or external linkage!",
589         &GA);
590  const Constant *Aliasee = GA.getAliasee();
591  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
592  Assert(GA.getType() == Aliasee->getType(),
593         "Alias and aliasee types should match!", &GA);
594
595  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
596         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
597
598  visitAliaseeSubExpr(GA, *Aliasee);
599
600  visitGlobalValue(GA);
601}
602
603void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
604  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
605    MDNode *MD = NMD.getOperand(i);
606
607    if (NMD.getName() == "llvm.dbg.cu") {
608      Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
609    }
610
611    if (!MD)
612      continue;
613
614    visitMDNode(*MD);
615  }
616}
617
618void Verifier::visitMDNode(const MDNode &MD) {
619  // Only visit each node once.  Metadata can be mutually recursive, so this
620  // avoids infinite recursion here, as well as being an optimization.
621  if (!MDNodes.insert(&MD).second)
622    return;
623
624  switch (MD.getMetadataID()) {
625  default:
626    llvm_unreachable("Invalid MDNode subclass");
627  case Metadata::MDTupleKind:
628    break;
629#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
630  case Metadata::CLASS##Kind:                                                  \
631    visit##CLASS(cast<CLASS>(MD));                                             \
632    break;
633#include "llvm/IR/Metadata.def"
634  }
635
636  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
637    Metadata *Op = MD.getOperand(i);
638    if (!Op)
639      continue;
640    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
641           &MD, Op);
642    if (auto *N = dyn_cast<MDNode>(Op)) {
643      visitMDNode(*N);
644      continue;
645    }
646    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
647      visitValueAsMetadata(*V, nullptr);
648      continue;
649    }
650  }
651
652  // Check these last, so we diagnose problems in operands first.
653  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
654  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
655}
656
657void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
658  Assert(MD.getValue(), "Expected valid value", &MD);
659  Assert(!MD.getValue()->getType()->isMetadataTy(),
660         "Unexpected metadata round-trip through values", &MD, MD.getValue());
661
662  auto *L = dyn_cast<LocalAsMetadata>(&MD);
663  if (!L)
664    return;
665
666  Assert(F, "function-local metadata used outside a function", L);
667
668  // If this was an instruction, bb, or argument, verify that it is in the
669  // function that we expect.
670  Function *ActualF = nullptr;
671  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
672    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
673    ActualF = I->getParent()->getParent();
674  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
675    ActualF = BB->getParent();
676  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
677    ActualF = A->getParent();
678  assert(ActualF && "Unimplemented function local metadata case!");
679
680  Assert(ActualF == F, "function-local metadata used in wrong function", L);
681}
682
683void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
684  Metadata *MD = MDV.getMetadata();
685  if (auto *N = dyn_cast<MDNode>(MD)) {
686    visitMDNode(*N);
687    return;
688  }
689
690  // Only visit each node once.  Metadata can be mutually recursive, so this
691  // avoids infinite recursion here, as well as being an optimization.
692  if (!MDNodes.insert(MD).second)
693    return;
694
695  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
696    visitValueAsMetadata(*V, F);
697}
698
699bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
700  auto *S = dyn_cast<MDString>(MD);
701  if (!S)
702    return false;
703  if (S->getString().empty())
704    return false;
705
706  // Keep track of names of types referenced via UUID so we can check that they
707  // actually exist.
708  UnresolvedTypeRefs.insert(std::make_pair(S, &N));
709  return true;
710}
711
712/// \brief Check if a value can be a reference to a type.
713bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
714  return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
715}
716
717/// \brief Check if a value can be a ScopeRef.
718bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
719  return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
720}
721
722/// \brief Check if a value can be a debug info ref.
723bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
724  return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
725}
726
727template <class Ty>
728bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
729  for (Metadata *MD : N.operands()) {
730    if (MD) {
731      if (!isa<Ty>(MD))
732        return false;
733    } else {
734      if (!AllowNull)
735        return false;
736    }
737  }
738  return true;
739}
740
741template <class Ty>
742bool isValidMetadataArray(const MDTuple &N) {
743  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
744}
745
746template <class Ty>
747bool isValidMetadataNullArray(const MDTuple &N) {
748  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
749}
750
751void Verifier::visitDILocation(const DILocation &N) {
752  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
753         "location requires a valid scope", &N, N.getRawScope());
754  if (auto *IA = N.getRawInlinedAt())
755    Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
756}
757
758void Verifier::visitGenericDINode(const GenericDINode &N) {
759  Assert(N.getTag(), "invalid tag", &N);
760}
761
762void Verifier::visitDIScope(const DIScope &N) {
763  if (auto *F = N.getRawFile())
764    Assert(isa<DIFile>(F), "invalid file", &N, F);
765}
766
767void Verifier::visitDISubrange(const DISubrange &N) {
768  Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
769  Assert(N.getCount() >= -1, "invalid subrange count", &N);
770}
771
772void Verifier::visitDIEnumerator(const DIEnumerator &N) {
773  Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
774}
775
776void Verifier::visitDIBasicType(const DIBasicType &N) {
777  Assert(N.getTag() == dwarf::DW_TAG_base_type ||
778             N.getTag() == dwarf::DW_TAG_unspecified_type,
779         "invalid tag", &N);
780}
781
782void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) {
783  // Common scope checks.
784  visitDIScope(N);
785
786  Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
787  Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
788         N.getBaseType());
789
790  // FIXME: Sink this into the subclass verifies.
791  if (!N.getFile() || N.getFile()->getFilename().empty()) {
792    // Check whether the filename is allowed to be empty.
793    uint16_t Tag = N.getTag();
794    Assert(
795        Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
796            Tag == dwarf::DW_TAG_pointer_type ||
797            Tag == dwarf::DW_TAG_ptr_to_member_type ||
798            Tag == dwarf::DW_TAG_reference_type ||
799            Tag == dwarf::DW_TAG_rvalue_reference_type ||
800            Tag == dwarf::DW_TAG_restrict_type ||
801            Tag == dwarf::DW_TAG_array_type ||
802            Tag == dwarf::DW_TAG_enumeration_type ||
803            Tag == dwarf::DW_TAG_subroutine_type ||
804            Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
805            Tag == dwarf::DW_TAG_structure_type ||
806            Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
807        "derived/composite type requires a filename", &N, N.getFile());
808  }
809}
810
811void Verifier::visitDIDerivedType(const DIDerivedType &N) {
812  // Common derived type checks.
813  visitDIDerivedTypeBase(N);
814
815  Assert(N.getTag() == dwarf::DW_TAG_typedef ||
816             N.getTag() == dwarf::DW_TAG_pointer_type ||
817             N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
818             N.getTag() == dwarf::DW_TAG_reference_type ||
819             N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
820             N.getTag() == dwarf::DW_TAG_const_type ||
821             N.getTag() == dwarf::DW_TAG_volatile_type ||
822             N.getTag() == dwarf::DW_TAG_restrict_type ||
823             N.getTag() == dwarf::DW_TAG_member ||
824             N.getTag() == dwarf::DW_TAG_inheritance ||
825             N.getTag() == dwarf::DW_TAG_friend,
826         "invalid tag", &N);
827  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
828    Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
829           N.getExtraData());
830  }
831}
832
833static bool hasConflictingReferenceFlags(unsigned Flags) {
834  return (Flags & DINode::FlagLValueReference) &&
835         (Flags & DINode::FlagRValueReference);
836}
837
838void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
839  auto *Params = dyn_cast<MDTuple>(&RawParams);
840  Assert(Params, "invalid template params", &N, &RawParams);
841  for (Metadata *Op : Params->operands()) {
842    Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
843           Params, Op);
844  }
845}
846
847void Verifier::visitDICompositeType(const DICompositeType &N) {
848  // Common derived type checks.
849  visitDIDerivedTypeBase(N);
850
851  Assert(N.getTag() == dwarf::DW_TAG_array_type ||
852             N.getTag() == dwarf::DW_TAG_structure_type ||
853             N.getTag() == dwarf::DW_TAG_union_type ||
854             N.getTag() == dwarf::DW_TAG_enumeration_type ||
855             N.getTag() == dwarf::DW_TAG_subroutine_type ||
856             N.getTag() == dwarf::DW_TAG_class_type,
857         "invalid tag", &N);
858
859  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
860         "invalid composite elements", &N, N.getRawElements());
861  Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
862         N.getRawVTableHolder());
863  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
864         "invalid composite elements", &N, N.getRawElements());
865  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
866         &N);
867  if (auto *Params = N.getRawTemplateParams())
868    visitTemplateParams(N, *Params);
869}
870
871void Verifier::visitDISubroutineType(const DISubroutineType &N) {
872  Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
873  if (auto *Types = N.getRawTypeArray()) {
874    Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
875    for (Metadata *Ty : N.getTypeArray()->operands()) {
876      Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
877    }
878  }
879  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
880         &N);
881}
882
883void Verifier::visitDIFile(const DIFile &N) {
884  Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
885}
886
887void Verifier::visitDICompileUnit(const DICompileUnit &N) {
888  Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
889
890  // Don't bother verifying the compilation directory or producer string
891  // as those could be empty.
892  Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
893         N.getRawFile());
894  Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
895         N.getFile());
896
897  if (auto *Array = N.getRawEnumTypes()) {
898    Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
899    for (Metadata *Op : N.getEnumTypes()->operands()) {
900      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
901      Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
902             "invalid enum type", &N, N.getEnumTypes(), Op);
903    }
904  }
905  if (auto *Array = N.getRawRetainedTypes()) {
906    Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
907    for (Metadata *Op : N.getRetainedTypes()->operands()) {
908      Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
909    }
910  }
911  if (auto *Array = N.getRawSubprograms()) {
912    Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
913    for (Metadata *Op : N.getSubprograms()->operands()) {
914      Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
915    }
916  }
917  if (auto *Array = N.getRawGlobalVariables()) {
918    Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
919    for (Metadata *Op : N.getGlobalVariables()->operands()) {
920      Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
921             Op);
922    }
923  }
924  if (auto *Array = N.getRawImportedEntities()) {
925    Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
926    for (Metadata *Op : N.getImportedEntities()->operands()) {
927      Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
928             Op);
929    }
930  }
931}
932
933void Verifier::visitDISubprogram(const DISubprogram &N) {
934  Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
935  Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
936  if (auto *T = N.getRawType())
937    Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
938  Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
939         N.getRawContainingType());
940  if (auto *RawF = N.getRawFunction()) {
941    auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
942    auto *F = FMD ? FMD->getValue() : nullptr;
943    auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
944    Assert(F && FT && isa<FunctionType>(FT->getElementType()),
945           "invalid function", &N, F, FT);
946  }
947  if (auto *Params = N.getRawTemplateParams())
948    visitTemplateParams(N, *Params);
949  if (auto *S = N.getRawDeclaration()) {
950    Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
951           "invalid subprogram declaration", &N, S);
952  }
953  if (auto *RawVars = N.getRawVariables()) {
954    auto *Vars = dyn_cast<MDTuple>(RawVars);
955    Assert(Vars, "invalid variable list", &N, RawVars);
956    for (Metadata *Op : Vars->operands()) {
957      Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
958             Op);
959    }
960  }
961  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
962         &N);
963
964  auto *F = N.getFunction();
965  if (!F)
966    return;
967
968  // Check that all !dbg attachments lead to back to N (or, at least, another
969  // subprogram that describes the same function).
970  //
971  // FIXME: Check this incrementally while visiting !dbg attachments.
972  // FIXME: Only check when N is the canonical subprogram for F.
973  SmallPtrSet<const MDNode *, 32> Seen;
974  for (auto &BB : *F)
975    for (auto &I : BB) {
976      // Be careful about using DILocation here since we might be dealing with
977      // broken code (this is the Verifier after all).
978      DILocation *DL =
979          dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
980      if (!DL)
981        continue;
982      if (!Seen.insert(DL).second)
983        continue;
984
985      DILocalScope *Scope = DL->getInlinedAtScope();
986      if (Scope && !Seen.insert(Scope).second)
987        continue;
988
989      DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
990      if (SP && !Seen.insert(SP).second)
991        continue;
992
993      // FIXME: Once N is canonical, check "SP == &N".
994      Assert(SP->describes(F),
995             "!dbg attachment points at wrong subprogram for function", &N, F,
996             &I, DL, Scope, SP);
997    }
998}
999
1000void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1001  Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1002  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1003         "invalid local scope", &N, N.getRawScope());
1004}
1005
1006void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1007  visitDILexicalBlockBase(N);
1008
1009  Assert(N.getLine() || !N.getColumn(),
1010         "cannot have column info without line info", &N);
1011}
1012
1013void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1014  visitDILexicalBlockBase(N);
1015}
1016
1017void Verifier::visitDINamespace(const DINamespace &N) {
1018  Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1019  if (auto *S = N.getRawScope())
1020    Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
1021}
1022
1023void Verifier::visitDIModule(const DIModule &N) {
1024  Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1025  Assert(!N.getName().empty(), "anonymous module", &N);
1026}
1027
1028void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1029  Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
1030}
1031
1032void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1033  visitDITemplateParameter(N);
1034
1035  Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1036         &N);
1037}
1038
1039void Verifier::visitDITemplateValueParameter(
1040    const DITemplateValueParameter &N) {
1041  visitDITemplateParameter(N);
1042
1043  Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1044             N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1045             N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1046         "invalid tag", &N);
1047}
1048
1049void Verifier::visitDIVariable(const DIVariable &N) {
1050  if (auto *S = N.getRawScope())
1051    Assert(isa<DIScope>(S), "invalid scope", &N, S);
1052  Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
1053  if (auto *F = N.getRawFile())
1054    Assert(isa<DIFile>(F), "invalid file", &N, F);
1055}
1056
1057void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1058  // Checks common to all variables.
1059  visitDIVariable(N);
1060
1061  Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1062  Assert(!N.getName().empty(), "missing global variable name", &N);
1063  if (auto *V = N.getRawVariable()) {
1064    Assert(isa<ConstantAsMetadata>(V) &&
1065               !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1066           "invalid global varaible ref", &N, V);
1067  }
1068  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1069    Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
1070           &N, Member);
1071  }
1072}
1073
1074void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1075  // Checks common to all variables.
1076  visitDIVariable(N);
1077
1078  Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
1079             N.getTag() == dwarf::DW_TAG_arg_variable,
1080         "invalid tag", &N);
1081  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1082         "local variable requires a valid scope", &N, N.getRawScope());
1083}
1084
1085void Verifier::visitDIExpression(const DIExpression &N) {
1086  Assert(N.isValid(), "invalid expression", &N);
1087}
1088
1089void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1090  Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1091  if (auto *T = N.getRawType())
1092    Assert(isTypeRef(N, T), "invalid type ref", &N, T);
1093  if (auto *F = N.getRawFile())
1094    Assert(isa<DIFile>(F), "invalid file", &N, F);
1095}
1096
1097void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1098  Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
1099             N.getTag() == dwarf::DW_TAG_imported_declaration,
1100         "invalid tag", &N);
1101  if (auto *S = N.getRawScope())
1102    Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1103  Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
1104         N.getEntity());
1105}
1106
1107void Verifier::visitComdat(const Comdat &C) {
1108  // The Module is invalid if the GlobalValue has private linkage.  Entities
1109  // with private linkage don't have entries in the symbol table.
1110  if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1111    Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1112           GV);
1113}
1114
1115void Verifier::visitModuleIdents(const Module &M) {
1116  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1117  if (!Idents)
1118    return;
1119
1120  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1121  // Scan each llvm.ident entry and make sure that this requirement is met.
1122  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1123    const MDNode *N = Idents->getOperand(i);
1124    Assert(N->getNumOperands() == 1,
1125           "incorrect number of operands in llvm.ident metadata", N);
1126    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1127           ("invalid value for llvm.ident metadata entry operand"
1128            "(the operand should be a string)"),
1129           N->getOperand(0));
1130  }
1131}
1132
1133void Verifier::visitModuleFlags(const Module &M) {
1134  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1135  if (!Flags) return;
1136
1137  // Scan each flag, and track the flags and requirements.
1138  DenseMap<const MDString*, const MDNode*> SeenIDs;
1139  SmallVector<const MDNode*, 16> Requirements;
1140  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1141    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1142  }
1143
1144  // Validate that the requirements in the module are valid.
1145  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1146    const MDNode *Requirement = Requirements[I];
1147    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1148    const Metadata *ReqValue = Requirement->getOperand(1);
1149
1150    const MDNode *Op = SeenIDs.lookup(Flag);
1151    if (!Op) {
1152      CheckFailed("invalid requirement on flag, flag is not present in module",
1153                  Flag);
1154      continue;
1155    }
1156
1157    if (Op->getOperand(2) != ReqValue) {
1158      CheckFailed(("invalid requirement on flag, "
1159                   "flag does not have the required value"),
1160                  Flag);
1161      continue;
1162    }
1163  }
1164}
1165
1166void
1167Verifier::visitModuleFlag(const MDNode *Op,
1168                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
1169                          SmallVectorImpl<const MDNode *> &Requirements) {
1170  // Each module flag should have three arguments, the merge behavior (a
1171  // constant int), the flag ID (an MDString), and the value.
1172  Assert(Op->getNumOperands() == 3,
1173         "incorrect number of operands in module flag", Op);
1174  Module::ModFlagBehavior MFB;
1175  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1176    Assert(
1177        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1178        "invalid behavior operand in module flag (expected constant integer)",
1179        Op->getOperand(0));
1180    Assert(false,
1181           "invalid behavior operand in module flag (unexpected constant)",
1182           Op->getOperand(0));
1183  }
1184  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1185  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1186         Op->getOperand(1));
1187
1188  // Sanity check the values for behaviors with additional requirements.
1189  switch (MFB) {
1190  case Module::Error:
1191  case Module::Warning:
1192  case Module::Override:
1193    // These behavior types accept any value.
1194    break;
1195
1196  case Module::Require: {
1197    // The value should itself be an MDNode with two operands, a flag ID (an
1198    // MDString), and a value.
1199    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1200    Assert(Value && Value->getNumOperands() == 2,
1201           "invalid value for 'require' module flag (expected metadata pair)",
1202           Op->getOperand(2));
1203    Assert(isa<MDString>(Value->getOperand(0)),
1204           ("invalid value for 'require' module flag "
1205            "(first value operand should be a string)"),
1206           Value->getOperand(0));
1207
1208    // Append it to the list of requirements, to check once all module flags are
1209    // scanned.
1210    Requirements.push_back(Value);
1211    break;
1212  }
1213
1214  case Module::Append:
1215  case Module::AppendUnique: {
1216    // These behavior types require the operand be an MDNode.
1217    Assert(isa<MDNode>(Op->getOperand(2)),
1218           "invalid value for 'append'-type module flag "
1219           "(expected a metadata node)",
1220           Op->getOperand(2));
1221    break;
1222  }
1223  }
1224
1225  // Unless this is a "requires" flag, check the ID is unique.
1226  if (MFB != Module::Require) {
1227    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1228    Assert(Inserted,
1229           "module flag identifiers must be unique (or of 'require' type)", ID);
1230  }
1231}
1232
1233void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1234                                    bool isFunction, const Value *V) {
1235  unsigned Slot = ~0U;
1236  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1237    if (Attrs.getSlotIndex(I) == Idx) {
1238      Slot = I;
1239      break;
1240    }
1241
1242  assert(Slot != ~0U && "Attribute set inconsistency!");
1243
1244  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1245         I != E; ++I) {
1246    if (I->isStringAttribute())
1247      continue;
1248
1249    if (I->getKindAsEnum() == Attribute::NoReturn ||
1250        I->getKindAsEnum() == Attribute::NoUnwind ||
1251        I->getKindAsEnum() == Attribute::NoInline ||
1252        I->getKindAsEnum() == Attribute::AlwaysInline ||
1253        I->getKindAsEnum() == Attribute::OptimizeForSize ||
1254        I->getKindAsEnum() == Attribute::StackProtect ||
1255        I->getKindAsEnum() == Attribute::StackProtectReq ||
1256        I->getKindAsEnum() == Attribute::StackProtectStrong ||
1257        I->getKindAsEnum() == Attribute::SafeStack ||
1258        I->getKindAsEnum() == Attribute::NoRedZone ||
1259        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1260        I->getKindAsEnum() == Attribute::Naked ||
1261        I->getKindAsEnum() == Attribute::InlineHint ||
1262        I->getKindAsEnum() == Attribute::StackAlignment ||
1263        I->getKindAsEnum() == Attribute::UWTable ||
1264        I->getKindAsEnum() == Attribute::NonLazyBind ||
1265        I->getKindAsEnum() == Attribute::ReturnsTwice ||
1266        I->getKindAsEnum() == Attribute::SanitizeAddress ||
1267        I->getKindAsEnum() == Attribute::SanitizeThread ||
1268        I->getKindAsEnum() == Attribute::SanitizeMemory ||
1269        I->getKindAsEnum() == Attribute::MinSize ||
1270        I->getKindAsEnum() == Attribute::NoDuplicate ||
1271        I->getKindAsEnum() == Attribute::Builtin ||
1272        I->getKindAsEnum() == Attribute::NoBuiltin ||
1273        I->getKindAsEnum() == Attribute::Cold ||
1274        I->getKindAsEnum() == Attribute::OptimizeNone ||
1275        I->getKindAsEnum() == Attribute::JumpTable ||
1276        I->getKindAsEnum() == Attribute::Convergent ||
1277        I->getKindAsEnum() == Attribute::ArgMemOnly) {
1278      if (!isFunction) {
1279        CheckFailed("Attribute '" + I->getAsString() +
1280                    "' only applies to functions!", V);
1281        return;
1282      }
1283    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1284               I->getKindAsEnum() == Attribute::ReadNone) {
1285      if (Idx == 0) {
1286        CheckFailed("Attribute '" + I->getAsString() +
1287                    "' does not apply to function returns");
1288        return;
1289      }
1290    } else if (isFunction) {
1291      CheckFailed("Attribute '" + I->getAsString() +
1292                  "' does not apply to functions!", V);
1293      return;
1294    }
1295  }
1296}
1297
1298// VerifyParameterAttrs - Check the given attributes for an argument or return
1299// value of the specified type.  The value V is printed in error messages.
1300void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1301                                    bool isReturnValue, const Value *V) {
1302  if (!Attrs.hasAttributes(Idx))
1303    return;
1304
1305  VerifyAttributeTypes(Attrs, Idx, false, V);
1306
1307  if (isReturnValue)
1308    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1309               !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1310               !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1311               !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1312               !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1313               !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1314           "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
1315           "'returned' do not apply to return values!",
1316           V);
1317
1318  // Check for mutually incompatible attributes.  Only inreg is compatible with
1319  // sret.
1320  unsigned AttrCount = 0;
1321  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1322  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1323  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1324               Attrs.hasAttribute(Idx, Attribute::InReg);
1325  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1326  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1327                         "and 'sret' are incompatible!",
1328         V);
1329
1330  Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1331           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1332         "Attributes "
1333         "'inalloca and readonly' are incompatible!",
1334         V);
1335
1336  Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1337           Attrs.hasAttribute(Idx, Attribute::Returned)),
1338         "Attributes "
1339         "'sret and returned' are incompatible!",
1340         V);
1341
1342  Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1343           Attrs.hasAttribute(Idx, Attribute::SExt)),
1344         "Attributes "
1345         "'zeroext and signext' are incompatible!",
1346         V);
1347
1348  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1349           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1350         "Attributes "
1351         "'readnone and readonly' are incompatible!",
1352         V);
1353
1354  Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1355           Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1356         "Attributes "
1357         "'noinline and alwaysinline' are incompatible!",
1358         V);
1359
1360  Assert(!AttrBuilder(Attrs, Idx)
1361              .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1362         "Wrong types for attribute: " +
1363         AttributeSet::get(*Context, Idx,
1364                        AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1365         V);
1366
1367  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1368    SmallPtrSet<const Type*, 4> Visited;
1369    if (!PTy->getElementType()->isSized(&Visited)) {
1370      Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1371                 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1372             "Attributes 'byval' and 'inalloca' do not support unsized types!",
1373             V);
1374    }
1375  } else {
1376    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1377           "Attribute 'byval' only applies to parameters with pointer type!",
1378           V);
1379  }
1380}
1381
1382// VerifyFunctionAttrs - Check parameter attributes against a function type.
1383// The value V is printed in error messages.
1384void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1385                                   const Value *V) {
1386  if (Attrs.isEmpty())
1387    return;
1388
1389  bool SawNest = false;
1390  bool SawReturned = false;
1391  bool SawSRet = false;
1392
1393  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1394    unsigned Idx = Attrs.getSlotIndex(i);
1395
1396    Type *Ty;
1397    if (Idx == 0)
1398      Ty = FT->getReturnType();
1399    else if (Idx-1 < FT->getNumParams())
1400      Ty = FT->getParamType(Idx-1);
1401    else
1402      break;  // VarArgs attributes, verified elsewhere.
1403
1404    VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1405
1406    if (Idx == 0)
1407      continue;
1408
1409    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1410      Assert(!SawNest, "More than one parameter has attribute nest!", V);
1411      SawNest = true;
1412    }
1413
1414    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1415      Assert(!SawReturned, "More than one parameter has attribute returned!",
1416             V);
1417      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1418             "Incompatible "
1419             "argument and return types for 'returned' attribute",
1420             V);
1421      SawReturned = true;
1422    }
1423
1424    if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1425      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1426      Assert(Idx == 1 || Idx == 2,
1427             "Attribute 'sret' is not on first or second parameter!", V);
1428      SawSRet = true;
1429    }
1430
1431    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1432      Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1433             V);
1434    }
1435  }
1436
1437  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1438    return;
1439
1440  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1441
1442  Assert(
1443      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1444        Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1445      "Attributes 'readnone and readonly' are incompatible!", V);
1446
1447  Assert(
1448      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1449        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1450                           Attribute::AlwaysInline)),
1451      "Attributes 'noinline and alwaysinline' are incompatible!", V);
1452
1453  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1454                         Attribute::OptimizeNone)) {
1455    Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1456           "Attribute 'optnone' requires 'noinline'!", V);
1457
1458    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1459                               Attribute::OptimizeForSize),
1460           "Attributes 'optsize and optnone' are incompatible!", V);
1461
1462    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1463           "Attributes 'minsize and optnone' are incompatible!", V);
1464  }
1465
1466  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1467                         Attribute::JumpTable)) {
1468    const GlobalValue *GV = cast<GlobalValue>(V);
1469    Assert(GV->hasUnnamedAddr(),
1470           "Attribute 'jumptable' requires 'unnamed_addr'", V);
1471  }
1472}
1473
1474void Verifier::VerifyFunctionMetadata(
1475    const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1476  if (MDs.empty())
1477    return;
1478
1479  for (unsigned i = 0; i < MDs.size(); i++) {
1480    if (MDs[i].first == LLVMContext::MD_prof) {
1481      MDNode *MD = MDs[i].second;
1482      Assert(MD->getNumOperands() == 2,
1483             "!prof annotations should have exactly 2 operands", MD);
1484
1485      // Check first operand.
1486      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1487             MD);
1488      Assert(isa<MDString>(MD->getOperand(0)),
1489             "expected string with name of the !prof annotation", MD);
1490      MDString *MDS = cast<MDString>(MD->getOperand(0));
1491      StringRef ProfName = MDS->getString();
1492      Assert(ProfName.equals("function_entry_count"),
1493             "first operand should be 'function_entry_count'", MD);
1494
1495      // Check second operand.
1496      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1497             MD);
1498      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1499             "expected integer argument to function_entry_count", MD);
1500    }
1501  }
1502}
1503
1504void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
1505  if (CE->getOpcode() != Instruction::BitCast)
1506    return;
1507
1508  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1509                               CE->getType()),
1510         "Invalid bitcast", CE);
1511}
1512
1513bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1514  if (Attrs.getNumSlots() == 0)
1515    return true;
1516
1517  unsigned LastSlot = Attrs.getNumSlots() - 1;
1518  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1519  if (LastIndex <= Params
1520      || (LastIndex == AttributeSet::FunctionIndex
1521          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1522    return true;
1523
1524  return false;
1525}
1526
1527/// \brief Verify that statepoint intrinsic is well formed.
1528void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1529  assert(CS.getCalledFunction() &&
1530         CS.getCalledFunction()->getIntrinsicID() ==
1531           Intrinsic::experimental_gc_statepoint);
1532
1533  const Instruction &CI = *CS.getInstruction();
1534
1535  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1536         !CS.onlyAccessesArgMemory(),
1537         "gc.statepoint must read and write all memory to preserve "
1538         "reordering restrictions required by safepoint semantics",
1539         &CI);
1540
1541  const Value *IDV = CS.getArgument(0);
1542  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1543         &CI);
1544
1545  const Value *NumPatchBytesV = CS.getArgument(1);
1546  Assert(isa<ConstantInt>(NumPatchBytesV),
1547         "gc.statepoint number of patchable bytes must be a constant integer",
1548         &CI);
1549  const int64_t NumPatchBytes =
1550      cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1551  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1552  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1553                             "positive",
1554         &CI);
1555
1556  const Value *Target = CS.getArgument(2);
1557  const PointerType *PT = dyn_cast<PointerType>(Target->getType());
1558  Assert(PT && PT->getElementType()->isFunctionTy(),
1559         "gc.statepoint callee must be of function pointer type", &CI, Target);
1560  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1561
1562  if (NumPatchBytes)
1563    Assert(isa<ConstantPointerNull>(Target->stripPointerCasts()),
1564           "gc.statepoint must have null as call target if number of patchable "
1565           "bytes is non zero",
1566           &CI);
1567
1568  const Value *NumCallArgsV = CS.getArgument(3);
1569  Assert(isa<ConstantInt>(NumCallArgsV),
1570         "gc.statepoint number of arguments to underlying call "
1571         "must be constant integer",
1572         &CI);
1573  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1574  Assert(NumCallArgs >= 0,
1575         "gc.statepoint number of arguments to underlying call "
1576         "must be positive",
1577         &CI);
1578  const int NumParams = (int)TargetFuncType->getNumParams();
1579  if (TargetFuncType->isVarArg()) {
1580    Assert(NumCallArgs >= NumParams,
1581           "gc.statepoint mismatch in number of vararg call args", &CI);
1582
1583    // TODO: Remove this limitation
1584    Assert(TargetFuncType->getReturnType()->isVoidTy(),
1585           "gc.statepoint doesn't support wrapping non-void "
1586           "vararg functions yet",
1587           &CI);
1588  } else
1589    Assert(NumCallArgs == NumParams,
1590           "gc.statepoint mismatch in number of call args", &CI);
1591
1592  const Value *FlagsV = CS.getArgument(4);
1593  Assert(isa<ConstantInt>(FlagsV),
1594         "gc.statepoint flags must be constant integer", &CI);
1595  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1596  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1597         "unknown flag used in gc.statepoint flags argument", &CI);
1598
1599  // Verify that the types of the call parameter arguments match
1600  // the type of the wrapped callee.
1601  for (int i = 0; i < NumParams; i++) {
1602    Type *ParamType = TargetFuncType->getParamType(i);
1603    Type *ArgType = CS.getArgument(5 + i)->getType();
1604    Assert(ArgType == ParamType,
1605           "gc.statepoint call argument does not match wrapped "
1606           "function type",
1607           &CI);
1608  }
1609
1610  const int EndCallArgsInx = 4 + NumCallArgs;
1611
1612  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1613  Assert(isa<ConstantInt>(NumTransitionArgsV),
1614         "gc.statepoint number of transition arguments "
1615         "must be constant integer",
1616         &CI);
1617  const int NumTransitionArgs =
1618      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1619  Assert(NumTransitionArgs >= 0,
1620         "gc.statepoint number of transition arguments must be positive", &CI);
1621  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1622
1623  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1624  Assert(isa<ConstantInt>(NumDeoptArgsV),
1625         "gc.statepoint number of deoptimization arguments "
1626         "must be constant integer",
1627         &CI);
1628  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1629  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1630                            "must be positive",
1631         &CI);
1632
1633  const int ExpectedNumArgs =
1634      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1635  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1636         "gc.statepoint too few arguments according to length fields", &CI);
1637
1638  // Check that the only uses of this gc.statepoint are gc.result or
1639  // gc.relocate calls which are tied to this statepoint and thus part
1640  // of the same statepoint sequence
1641  for (const User *U : CI.users()) {
1642    const CallInst *Call = dyn_cast<const CallInst>(U);
1643    Assert(Call, "illegal use of statepoint token", &CI, U);
1644    if (!Call) continue;
1645    Assert(isGCRelocate(Call) || isGCResult(Call),
1646           "gc.result or gc.relocate are the only value uses"
1647           "of a gc.statepoint",
1648           &CI, U);
1649    if (isGCResult(Call)) {
1650      Assert(Call->getArgOperand(0) == &CI,
1651             "gc.result connected to wrong gc.statepoint", &CI, Call);
1652    } else if (isGCRelocate(Call)) {
1653      Assert(Call->getArgOperand(0) == &CI,
1654             "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1655    }
1656  }
1657
1658  // Note: It is legal for a single derived pointer to be listed multiple
1659  // times.  It's non-optimal, but it is legal.  It can also happen after
1660  // insertion if we strip a bitcast away.
1661  // Note: It is really tempting to check that each base is relocated and
1662  // that a derived pointer is never reused as a base pointer.  This turns
1663  // out to be problematic since optimizations run after safepoint insertion
1664  // can recognize equality properties that the insertion logic doesn't know
1665  // about.  See example statepoint.ll in the verifier subdirectory
1666}
1667
1668void Verifier::verifyFrameRecoverIndices() {
1669  for (auto &Counts : FrameEscapeInfo) {
1670    Function *F = Counts.first;
1671    unsigned EscapedObjectCount = Counts.second.first;
1672    unsigned MaxRecoveredIndex = Counts.second.second;
1673    Assert(MaxRecoveredIndex <= EscapedObjectCount,
1674           "all indices passed to llvm.localrecover must be less than the "
1675           "number of arguments passed ot llvm.localescape in the parent "
1676           "function",
1677           F);
1678  }
1679}
1680
1681// visitFunction - Verify that a function is ok.
1682//
1683void Verifier::visitFunction(const Function &F) {
1684  // Check function arguments.
1685  FunctionType *FT = F.getFunctionType();
1686  unsigned NumArgs = F.arg_size();
1687
1688  Assert(Context == &F.getContext(),
1689         "Function context does not match Module context!", &F);
1690
1691  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1692  Assert(FT->getNumParams() == NumArgs,
1693         "# formal arguments must match # of arguments for function type!", &F,
1694         FT);
1695  Assert(F.getReturnType()->isFirstClassType() ||
1696             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1697         "Functions cannot return aggregate values!", &F);
1698
1699  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1700         "Invalid struct return type!", &F);
1701
1702  AttributeSet Attrs = F.getAttributes();
1703
1704  Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
1705         "Attribute after last parameter!", &F);
1706
1707  // Check function attributes.
1708  VerifyFunctionAttrs(FT, Attrs, &F);
1709
1710  // On function declarations/definitions, we do not support the builtin
1711  // attribute. We do not check this in VerifyFunctionAttrs since that is
1712  // checking for Attributes that can/can not ever be on functions.
1713  Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1714         "Attribute 'builtin' can only be applied to a callsite.", &F);
1715
1716  // Check that this function meets the restrictions on this calling convention.
1717  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1718  // restrictions can be lifted.
1719  switch (F.getCallingConv()) {
1720  default:
1721  case CallingConv::C:
1722    break;
1723  case CallingConv::Fast:
1724  case CallingConv::Cold:
1725  case CallingConv::Intel_OCL_BI:
1726  case CallingConv::PTX_Kernel:
1727  case CallingConv::PTX_Device:
1728    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1729                          "perfect forwarding!",
1730           &F);
1731    break;
1732  }
1733
1734  bool isLLVMdotName = F.getName().size() >= 5 &&
1735                       F.getName().substr(0, 5) == "llvm.";
1736
1737  // Check that the argument values match the function type for this function...
1738  unsigned i = 0;
1739  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1740       ++I, ++i) {
1741    Assert(I->getType() == FT->getParamType(i),
1742           "Argument value does not match function argument type!", I,
1743           FT->getParamType(i));
1744    Assert(I->getType()->isFirstClassType(),
1745           "Function arguments must have first-class types!", I);
1746    if (!isLLVMdotName)
1747      Assert(!I->getType()->isMetadataTy(),
1748             "Function takes metadata but isn't an intrinsic", I, &F);
1749  }
1750
1751  // Get the function metadata attachments.
1752  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1753  F.getAllMetadata(MDs);
1754  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1755  VerifyFunctionMetadata(MDs);
1756
1757  if (F.isMaterializable()) {
1758    // Function has a body somewhere we can't see.
1759    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1760           MDs.empty() ? nullptr : MDs.front().second);
1761  } else if (F.isDeclaration()) {
1762    Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1763           "invalid linkage type for function declaration", &F);
1764    Assert(MDs.empty(), "function without a body cannot have metadata", &F,
1765           MDs.empty() ? nullptr : MDs.front().second);
1766    Assert(!F.hasPersonalityFn(),
1767           "Function declaration shouldn't have a personality routine", &F);
1768  } else {
1769    // Verify that this function (which has a body) is not named "llvm.*".  It
1770    // is not legal to define intrinsics.
1771    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1772
1773    // Check the entry node
1774    const BasicBlock *Entry = &F.getEntryBlock();
1775    Assert(pred_empty(Entry),
1776           "Entry block to function must not have predecessors!", Entry);
1777
1778    // The address of the entry block cannot be taken, unless it is dead.
1779    if (Entry->hasAddressTaken()) {
1780      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
1781             "blockaddress may not be used with the entry block!", Entry);
1782    }
1783
1784    // Visit metadata attachments.
1785    for (const auto &I : MDs)
1786      visitMDNode(*I.second);
1787  }
1788
1789  // If this function is actually an intrinsic, verify that it is only used in
1790  // direct call/invokes, never having its "address taken".
1791  if (F.getIntrinsicID()) {
1792    const User *U;
1793    if (F.hasAddressTaken(&U))
1794      Assert(0, "Invalid user of intrinsic instruction!", U);
1795  }
1796
1797  Assert(!F.hasDLLImportStorageClass() ||
1798             (F.isDeclaration() && F.hasExternalLinkage()) ||
1799             F.hasAvailableExternallyLinkage(),
1800         "Function is marked as dllimport, but not external.", &F);
1801}
1802
1803// verifyBasicBlock - Verify that a basic block is well formed...
1804//
1805void Verifier::visitBasicBlock(BasicBlock &BB) {
1806  InstsInThisBlock.clear();
1807
1808  // Ensure that basic blocks have terminators!
1809  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1810
1811  // Check constraints that this basic block imposes on all of the PHI nodes in
1812  // it.
1813  if (isa<PHINode>(BB.front())) {
1814    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1815    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1816    std::sort(Preds.begin(), Preds.end());
1817    PHINode *PN;
1818    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1819      // Ensure that PHI nodes have at least one entry!
1820      Assert(PN->getNumIncomingValues() != 0,
1821             "PHI nodes must have at least one entry.  If the block is dead, "
1822             "the PHI should be removed!",
1823             PN);
1824      Assert(PN->getNumIncomingValues() == Preds.size(),
1825             "PHINode should have one entry for each predecessor of its "
1826             "parent basic block!",
1827             PN);
1828
1829      // Get and sort all incoming values in the PHI node...
1830      Values.clear();
1831      Values.reserve(PN->getNumIncomingValues());
1832      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1833        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1834                                        PN->getIncomingValue(i)));
1835      std::sort(Values.begin(), Values.end());
1836
1837      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1838        // Check to make sure that if there is more than one entry for a
1839        // particular basic block in this PHI node, that the incoming values are
1840        // all identical.
1841        //
1842        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
1843                   Values[i].second == Values[i - 1].second,
1844               "PHI node has multiple entries for the same basic block with "
1845               "different incoming values!",
1846               PN, Values[i].first, Values[i].second, Values[i - 1].second);
1847
1848        // Check to make sure that the predecessors and PHI node entries are
1849        // matched up.
1850        Assert(Values[i].first == Preds[i],
1851               "PHI node entries do not match predecessors!", PN,
1852               Values[i].first, Preds[i]);
1853      }
1854    }
1855  }
1856
1857  // Check that all instructions have their parent pointers set up correctly.
1858  for (auto &I : BB)
1859  {
1860    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
1861  }
1862}
1863
1864void Verifier::visitTerminatorInst(TerminatorInst &I) {
1865  // Ensure that terminators only exist at the end of the basic block.
1866  Assert(&I == I.getParent()->getTerminator(),
1867         "Terminator found in the middle of a basic block!", I.getParent());
1868  visitInstruction(I);
1869}
1870
1871void Verifier::visitBranchInst(BranchInst &BI) {
1872  if (BI.isConditional()) {
1873    Assert(BI.getCondition()->getType()->isIntegerTy(1),
1874           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1875  }
1876  visitTerminatorInst(BI);
1877}
1878
1879void Verifier::visitReturnInst(ReturnInst &RI) {
1880  Function *F = RI.getParent()->getParent();
1881  unsigned N = RI.getNumOperands();
1882  if (F->getReturnType()->isVoidTy())
1883    Assert(N == 0,
1884           "Found return instr that returns non-void in Function of void "
1885           "return type!",
1886           &RI, F->getReturnType());
1887  else
1888    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1889           "Function return type does not match operand "
1890           "type of return inst!",
1891           &RI, F->getReturnType());
1892
1893  // Check to make sure that the return value has necessary properties for
1894  // terminators...
1895  visitTerminatorInst(RI);
1896}
1897
1898void Verifier::visitSwitchInst(SwitchInst &SI) {
1899  // Check to make sure that all of the constants in the switch instruction
1900  // have the same type as the switched-on value.
1901  Type *SwitchTy = SI.getCondition()->getType();
1902  SmallPtrSet<ConstantInt*, 32> Constants;
1903  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1904    Assert(i.getCaseValue()->getType() == SwitchTy,
1905           "Switch constants must all be same type as switch value!", &SI);
1906    Assert(Constants.insert(i.getCaseValue()).second,
1907           "Duplicate integer as switch case", &SI, i.getCaseValue());
1908  }
1909
1910  visitTerminatorInst(SI);
1911}
1912
1913void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1914  Assert(BI.getAddress()->getType()->isPointerTy(),
1915         "Indirectbr operand must have pointer type!", &BI);
1916  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1917    Assert(BI.getDestination(i)->getType()->isLabelTy(),
1918           "Indirectbr destinations must all have pointer type!", &BI);
1919
1920  visitTerminatorInst(BI);
1921}
1922
1923void Verifier::visitSelectInst(SelectInst &SI) {
1924  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1925                                         SI.getOperand(2)),
1926         "Invalid operands for select instruction!", &SI);
1927
1928  Assert(SI.getTrueValue()->getType() == SI.getType(),
1929         "Select values must have same type as select instruction!", &SI);
1930  visitInstruction(SI);
1931}
1932
1933/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1934/// a pass, if any exist, it's an error.
1935///
1936void Verifier::visitUserOp1(Instruction &I) {
1937  Assert(0, "User-defined operators should not live outside of a pass!", &I);
1938}
1939
1940void Verifier::visitTruncInst(TruncInst &I) {
1941  // Get the source and destination types
1942  Type *SrcTy = I.getOperand(0)->getType();
1943  Type *DestTy = I.getType();
1944
1945  // Get the size of the types in bits, we'll need this later
1946  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1947  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1948
1949  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1950  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1951  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1952         "trunc source and destination must both be a vector or neither", &I);
1953  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
1954
1955  visitInstruction(I);
1956}
1957
1958void Verifier::visitZExtInst(ZExtInst &I) {
1959  // Get the source and destination types
1960  Type *SrcTy = I.getOperand(0)->getType();
1961  Type *DestTy = I.getType();
1962
1963  // Get the size of the types in bits, we'll need this later
1964  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1965  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1966  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1967         "zext source and destination must both be a vector or neither", &I);
1968  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1969  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1970
1971  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
1972
1973  visitInstruction(I);
1974}
1975
1976void Verifier::visitSExtInst(SExtInst &I) {
1977  // Get the source and destination types
1978  Type *SrcTy = I.getOperand(0)->getType();
1979  Type *DestTy = I.getType();
1980
1981  // Get the size of the types in bits, we'll need this later
1982  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1983  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1984
1985  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1986  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1987  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1988         "sext source and destination must both be a vector or neither", &I);
1989  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
1990
1991  visitInstruction(I);
1992}
1993
1994void Verifier::visitFPTruncInst(FPTruncInst &I) {
1995  // Get the source and destination types
1996  Type *SrcTy = I.getOperand(0)->getType();
1997  Type *DestTy = I.getType();
1998  // Get the size of the types in bits, we'll need this later
1999  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2000  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2001
2002  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2003  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2004  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2005         "fptrunc source and destination must both be a vector or neither", &I);
2006  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2007
2008  visitInstruction(I);
2009}
2010
2011void Verifier::visitFPExtInst(FPExtInst &I) {
2012  // Get the source and destination types
2013  Type *SrcTy = I.getOperand(0)->getType();
2014  Type *DestTy = I.getType();
2015
2016  // Get the size of the types in bits, we'll need this later
2017  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2018  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2019
2020  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2021  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2022  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2023         "fpext source and destination must both be a vector or neither", &I);
2024  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2025
2026  visitInstruction(I);
2027}
2028
2029void Verifier::visitUIToFPInst(UIToFPInst &I) {
2030  // Get the source and destination types
2031  Type *SrcTy = I.getOperand(0)->getType();
2032  Type *DestTy = I.getType();
2033
2034  bool SrcVec = SrcTy->isVectorTy();
2035  bool DstVec = DestTy->isVectorTy();
2036
2037  Assert(SrcVec == DstVec,
2038         "UIToFP source and dest must both be vector or scalar", &I);
2039  Assert(SrcTy->isIntOrIntVectorTy(),
2040         "UIToFP source must be integer or integer vector", &I);
2041  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2042         &I);
2043
2044  if (SrcVec && DstVec)
2045    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2046               cast<VectorType>(DestTy)->getNumElements(),
2047           "UIToFP source and dest vector length mismatch", &I);
2048
2049  visitInstruction(I);
2050}
2051
2052void Verifier::visitSIToFPInst(SIToFPInst &I) {
2053  // Get the source and destination types
2054  Type *SrcTy = I.getOperand(0)->getType();
2055  Type *DestTy = I.getType();
2056
2057  bool SrcVec = SrcTy->isVectorTy();
2058  bool DstVec = DestTy->isVectorTy();
2059
2060  Assert(SrcVec == DstVec,
2061         "SIToFP source and dest must both be vector or scalar", &I);
2062  Assert(SrcTy->isIntOrIntVectorTy(),
2063         "SIToFP source must be integer or integer vector", &I);
2064  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2065         &I);
2066
2067  if (SrcVec && DstVec)
2068    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2069               cast<VectorType>(DestTy)->getNumElements(),
2070           "SIToFP source and dest vector length mismatch", &I);
2071
2072  visitInstruction(I);
2073}
2074
2075void Verifier::visitFPToUIInst(FPToUIInst &I) {
2076  // Get the source and destination types
2077  Type *SrcTy = I.getOperand(0)->getType();
2078  Type *DestTy = I.getType();
2079
2080  bool SrcVec = SrcTy->isVectorTy();
2081  bool DstVec = DestTy->isVectorTy();
2082
2083  Assert(SrcVec == DstVec,
2084         "FPToUI source and dest must both be vector or scalar", &I);
2085  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2086         &I);
2087  Assert(DestTy->isIntOrIntVectorTy(),
2088         "FPToUI result must be integer or integer vector", &I);
2089
2090  if (SrcVec && DstVec)
2091    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2092               cast<VectorType>(DestTy)->getNumElements(),
2093           "FPToUI source and dest vector length mismatch", &I);
2094
2095  visitInstruction(I);
2096}
2097
2098void Verifier::visitFPToSIInst(FPToSIInst &I) {
2099  // Get the source and destination types
2100  Type *SrcTy = I.getOperand(0)->getType();
2101  Type *DestTy = I.getType();
2102
2103  bool SrcVec = SrcTy->isVectorTy();
2104  bool DstVec = DestTy->isVectorTy();
2105
2106  Assert(SrcVec == DstVec,
2107         "FPToSI source and dest must both be vector or scalar", &I);
2108  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2109         &I);
2110  Assert(DestTy->isIntOrIntVectorTy(),
2111         "FPToSI result must be integer or integer vector", &I);
2112
2113  if (SrcVec && DstVec)
2114    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2115               cast<VectorType>(DestTy)->getNumElements(),
2116           "FPToSI source and dest vector length mismatch", &I);
2117
2118  visitInstruction(I);
2119}
2120
2121void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2122  // Get the source and destination types
2123  Type *SrcTy = I.getOperand(0)->getType();
2124  Type *DestTy = I.getType();
2125
2126  Assert(SrcTy->getScalarType()->isPointerTy(),
2127         "PtrToInt source must be pointer", &I);
2128  Assert(DestTy->getScalarType()->isIntegerTy(),
2129         "PtrToInt result must be integral", &I);
2130  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2131         &I);
2132
2133  if (SrcTy->isVectorTy()) {
2134    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2135    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2136    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2137           "PtrToInt Vector width mismatch", &I);
2138  }
2139
2140  visitInstruction(I);
2141}
2142
2143void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2144  // Get the source and destination types
2145  Type *SrcTy = I.getOperand(0)->getType();
2146  Type *DestTy = I.getType();
2147
2148  Assert(SrcTy->getScalarType()->isIntegerTy(),
2149         "IntToPtr source must be an integral", &I);
2150  Assert(DestTy->getScalarType()->isPointerTy(),
2151         "IntToPtr result must be a pointer", &I);
2152  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2153         &I);
2154  if (SrcTy->isVectorTy()) {
2155    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2156    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2157    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2158           "IntToPtr Vector width mismatch", &I);
2159  }
2160  visitInstruction(I);
2161}
2162
2163void Verifier::visitBitCastInst(BitCastInst &I) {
2164  Assert(
2165      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2166      "Invalid bitcast", &I);
2167  visitInstruction(I);
2168}
2169
2170void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2171  Type *SrcTy = I.getOperand(0)->getType();
2172  Type *DestTy = I.getType();
2173
2174  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2175         &I);
2176  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2177         &I);
2178  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2179         "AddrSpaceCast must be between different address spaces", &I);
2180  if (SrcTy->isVectorTy())
2181    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2182           "AddrSpaceCast vector pointer number of elements mismatch", &I);
2183  visitInstruction(I);
2184}
2185
2186/// visitPHINode - Ensure that a PHI node is well formed.
2187///
2188void Verifier::visitPHINode(PHINode &PN) {
2189  // Ensure that the PHI nodes are all grouped together at the top of the block.
2190  // This can be tested by checking whether the instruction before this is
2191  // either nonexistent (because this is begin()) or is a PHI node.  If not,
2192  // then there is some other instruction before a PHI.
2193  Assert(&PN == &PN.getParent()->front() ||
2194             isa<PHINode>(--BasicBlock::iterator(&PN)),
2195         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2196
2197  // Check that all of the values of the PHI node have the same type as the
2198  // result, and that the incoming blocks are really basic blocks.
2199  for (Value *IncValue : PN.incoming_values()) {
2200    Assert(PN.getType() == IncValue->getType(),
2201           "PHI node operands are not the same type as the result!", &PN);
2202  }
2203
2204  // All other PHI node constraints are checked in the visitBasicBlock method.
2205
2206  visitInstruction(PN);
2207}
2208
2209void Verifier::VerifyCallSite(CallSite CS) {
2210  Instruction *I = CS.getInstruction();
2211
2212  Assert(CS.getCalledValue()->getType()->isPointerTy(),
2213         "Called function must be a pointer!", I);
2214  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2215
2216  Assert(FPTy->getElementType()->isFunctionTy(),
2217         "Called function is not pointer to function type!", I);
2218
2219  Assert(FPTy->getElementType() == CS.getFunctionType(),
2220         "Called function is not the same type as the call!", I);
2221
2222  FunctionType *FTy = CS.getFunctionType();
2223
2224  // Verify that the correct number of arguments are being passed
2225  if (FTy->isVarArg())
2226    Assert(CS.arg_size() >= FTy->getNumParams(),
2227           "Called function requires more parameters than were provided!", I);
2228  else
2229    Assert(CS.arg_size() == FTy->getNumParams(),
2230           "Incorrect number of arguments passed to called function!", I);
2231
2232  // Verify that all arguments to the call match the function type.
2233  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2234    Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2235           "Call parameter type does not match function signature!",
2236           CS.getArgument(i), FTy->getParamType(i), I);
2237
2238  AttributeSet Attrs = CS.getAttributes();
2239
2240  Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
2241         "Attribute after last parameter!", I);
2242
2243  // Verify call attributes.
2244  VerifyFunctionAttrs(FTy, Attrs, I);
2245
2246  // Conservatively check the inalloca argument.
2247  // We have a bug if we can find that there is an underlying alloca without
2248  // inalloca.
2249  if (CS.hasInAllocaArgument()) {
2250    Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2251    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2252      Assert(AI->isUsedWithInAlloca(),
2253             "inalloca argument for call has mismatched alloca", AI, I);
2254  }
2255
2256  if (FTy->isVarArg()) {
2257    // FIXME? is 'nest' even legal here?
2258    bool SawNest = false;
2259    bool SawReturned = false;
2260
2261    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2262      if (Attrs.hasAttribute(Idx, Attribute::Nest))
2263        SawNest = true;
2264      if (Attrs.hasAttribute(Idx, Attribute::Returned))
2265        SawReturned = true;
2266    }
2267
2268    // Check attributes on the varargs part.
2269    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2270      Type *Ty = CS.getArgument(Idx-1)->getType();
2271      VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2272
2273      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2274        Assert(!SawNest, "More than one parameter has attribute nest!", I);
2275        SawNest = true;
2276      }
2277
2278      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2279        Assert(!SawReturned, "More than one parameter has attribute returned!",
2280               I);
2281        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2282               "Incompatible argument and return types for 'returned' "
2283               "attribute",
2284               I);
2285        SawReturned = true;
2286      }
2287
2288      Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2289             "Attribute 'sret' cannot be used for vararg call arguments!", I);
2290
2291      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2292        Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2293    }
2294  }
2295
2296  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2297  if (CS.getCalledFunction() == nullptr ||
2298      !CS.getCalledFunction()->getName().startswith("llvm.")) {
2299    for (FunctionType::param_iterator PI = FTy->param_begin(),
2300           PE = FTy->param_end(); PI != PE; ++PI)
2301      Assert(!(*PI)->isMetadataTy(),
2302             "Function has metadata parameter but isn't an intrinsic", I);
2303  }
2304
2305  if (Function *F = CS.getCalledFunction())
2306    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2307      visitIntrinsicCallSite(ID, CS);
2308
2309  visitInstruction(*I);
2310}
2311
2312/// Two types are "congruent" if they are identical, or if they are both pointer
2313/// types with different pointee types and the same address space.
2314static bool isTypeCongruent(Type *L, Type *R) {
2315  if (L == R)
2316    return true;
2317  PointerType *PL = dyn_cast<PointerType>(L);
2318  PointerType *PR = dyn_cast<PointerType>(R);
2319  if (!PL || !PR)
2320    return false;
2321  return PL->getAddressSpace() == PR->getAddressSpace();
2322}
2323
2324static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2325  static const Attribute::AttrKind ABIAttrs[] = {
2326      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2327      Attribute::InReg, Attribute::Returned};
2328  AttrBuilder Copy;
2329  for (auto AK : ABIAttrs) {
2330    if (Attrs.hasAttribute(I + 1, AK))
2331      Copy.addAttribute(AK);
2332  }
2333  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2334    Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2335  return Copy;
2336}
2337
2338void Verifier::verifyMustTailCall(CallInst &CI) {
2339  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2340
2341  // - The caller and callee prototypes must match.  Pointer types of
2342  //   parameters or return types may differ in pointee type, but not
2343  //   address space.
2344  Function *F = CI.getParent()->getParent();
2345  FunctionType *CallerTy = F->getFunctionType();
2346  FunctionType *CalleeTy = CI.getFunctionType();
2347  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2348         "cannot guarantee tail call due to mismatched parameter counts", &CI);
2349  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2350         "cannot guarantee tail call due to mismatched varargs", &CI);
2351  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2352         "cannot guarantee tail call due to mismatched return types", &CI);
2353  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2354    Assert(
2355        isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2356        "cannot guarantee tail call due to mismatched parameter types", &CI);
2357  }
2358
2359  // - The calling conventions of the caller and callee must match.
2360  Assert(F->getCallingConv() == CI.getCallingConv(),
2361         "cannot guarantee tail call due to mismatched calling conv", &CI);
2362
2363  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2364  //   returned, and inalloca, must match.
2365  AttributeSet CallerAttrs = F->getAttributes();
2366  AttributeSet CalleeAttrs = CI.getAttributes();
2367  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2368    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2369    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2370    Assert(CallerABIAttrs == CalleeABIAttrs,
2371           "cannot guarantee tail call due to mismatched ABI impacting "
2372           "function attributes",
2373           &CI, CI.getOperand(I));
2374  }
2375
2376  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2377  //   or a pointer bitcast followed by a ret instruction.
2378  // - The ret instruction must return the (possibly bitcasted) value
2379  //   produced by the call or void.
2380  Value *RetVal = &CI;
2381  Instruction *Next = CI.getNextNode();
2382
2383  // Handle the optional bitcast.
2384  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2385    Assert(BI->getOperand(0) == RetVal,
2386           "bitcast following musttail call must use the call", BI);
2387    RetVal = BI;
2388    Next = BI->getNextNode();
2389  }
2390
2391  // Check the return.
2392  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2393  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2394         &CI);
2395  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2396         "musttail call result must be returned", Ret);
2397}
2398
2399void Verifier::visitCallInst(CallInst &CI) {
2400  VerifyCallSite(&CI);
2401
2402  if (CI.isMustTailCall())
2403    verifyMustTailCall(CI);
2404}
2405
2406void Verifier::visitInvokeInst(InvokeInst &II) {
2407  VerifyCallSite(&II);
2408
2409  // Verify that there is a landingpad instruction as the first non-PHI
2410  // instruction of the 'unwind' destination.
2411  Assert(II.getUnwindDest()->isLandingPad(),
2412         "The unwind destination does not have a landingpad instruction!", &II);
2413
2414  visitTerminatorInst(II);
2415}
2416
2417/// visitBinaryOperator - Check that both arguments to the binary operator are
2418/// of the same type!
2419///
2420void Verifier::visitBinaryOperator(BinaryOperator &B) {
2421  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2422         "Both operands to a binary operator are not of the same type!", &B);
2423
2424  switch (B.getOpcode()) {
2425  // Check that integer arithmetic operators are only used with
2426  // integral operands.
2427  case Instruction::Add:
2428  case Instruction::Sub:
2429  case Instruction::Mul:
2430  case Instruction::SDiv:
2431  case Instruction::UDiv:
2432  case Instruction::SRem:
2433  case Instruction::URem:
2434    Assert(B.getType()->isIntOrIntVectorTy(),
2435           "Integer arithmetic operators only work with integral types!", &B);
2436    Assert(B.getType() == B.getOperand(0)->getType(),
2437           "Integer arithmetic operators must have same type "
2438           "for operands and result!",
2439           &B);
2440    break;
2441  // Check that floating-point arithmetic operators are only used with
2442  // floating-point operands.
2443  case Instruction::FAdd:
2444  case Instruction::FSub:
2445  case Instruction::FMul:
2446  case Instruction::FDiv:
2447  case Instruction::FRem:
2448    Assert(B.getType()->isFPOrFPVectorTy(),
2449           "Floating-point arithmetic operators only work with "
2450           "floating-point types!",
2451           &B);
2452    Assert(B.getType() == B.getOperand(0)->getType(),
2453           "Floating-point arithmetic operators must have same type "
2454           "for operands and result!",
2455           &B);
2456    break;
2457  // Check that logical operators are only used with integral operands.
2458  case Instruction::And:
2459  case Instruction::Or:
2460  case Instruction::Xor:
2461    Assert(B.getType()->isIntOrIntVectorTy(),
2462           "Logical operators only work with integral types!", &B);
2463    Assert(B.getType() == B.getOperand(0)->getType(),
2464           "Logical operators must have same type for operands and result!",
2465           &B);
2466    break;
2467  case Instruction::Shl:
2468  case Instruction::LShr:
2469  case Instruction::AShr:
2470    Assert(B.getType()->isIntOrIntVectorTy(),
2471           "Shifts only work with integral types!", &B);
2472    Assert(B.getType() == B.getOperand(0)->getType(),
2473           "Shift return type must be same as operands!", &B);
2474    break;
2475  default:
2476    llvm_unreachable("Unknown BinaryOperator opcode!");
2477  }
2478
2479  visitInstruction(B);
2480}
2481
2482void Verifier::visitICmpInst(ICmpInst &IC) {
2483  // Check that the operands are the same type
2484  Type *Op0Ty = IC.getOperand(0)->getType();
2485  Type *Op1Ty = IC.getOperand(1)->getType();
2486  Assert(Op0Ty == Op1Ty,
2487         "Both operands to ICmp instruction are not of the same type!", &IC);
2488  // Check that the operands are the right type
2489  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2490         "Invalid operand types for ICmp instruction", &IC);
2491  // Check that the predicate is valid.
2492  Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2493             IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2494         "Invalid predicate in ICmp instruction!", &IC);
2495
2496  visitInstruction(IC);
2497}
2498
2499void Verifier::visitFCmpInst(FCmpInst &FC) {
2500  // Check that the operands are the same type
2501  Type *Op0Ty = FC.getOperand(0)->getType();
2502  Type *Op1Ty = FC.getOperand(1)->getType();
2503  Assert(Op0Ty == Op1Ty,
2504         "Both operands to FCmp instruction are not of the same type!", &FC);
2505  // Check that the operands are the right type
2506  Assert(Op0Ty->isFPOrFPVectorTy(),
2507         "Invalid operand types for FCmp instruction", &FC);
2508  // Check that the predicate is valid.
2509  Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2510             FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2511         "Invalid predicate in FCmp instruction!", &FC);
2512
2513  visitInstruction(FC);
2514}
2515
2516void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2517  Assert(
2518      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2519      "Invalid extractelement operands!", &EI);
2520  visitInstruction(EI);
2521}
2522
2523void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2524  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2525                                            IE.getOperand(2)),
2526         "Invalid insertelement operands!", &IE);
2527  visitInstruction(IE);
2528}
2529
2530void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2531  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2532                                            SV.getOperand(2)),
2533         "Invalid shufflevector operands!", &SV);
2534  visitInstruction(SV);
2535}
2536
2537void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2538  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2539
2540  Assert(isa<PointerType>(TargetTy),
2541         "GEP base pointer is not a vector or a vector of pointers", &GEP);
2542  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2543  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2544  Type *ElTy =
2545      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2546  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2547
2548  Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2549             GEP.getResultElementType() == ElTy,
2550         "GEP is not of right type for indices!", &GEP, ElTy);
2551
2552  if (GEP.getType()->isVectorTy()) {
2553    // Additional checks for vector GEPs.
2554    unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2555    if (GEP.getPointerOperandType()->isVectorTy())
2556      Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2557             "Vector GEP result width doesn't match operand's", &GEP);
2558    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2559      Type *IndexTy = Idxs[i]->getType();
2560      if (IndexTy->isVectorTy()) {
2561        unsigned IndexWidth = IndexTy->getVectorNumElements();
2562        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2563      }
2564      Assert(IndexTy->getScalarType()->isIntegerTy(),
2565             "All GEP indices should be of integer type");
2566    }
2567  }
2568  visitInstruction(GEP);
2569}
2570
2571static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2572  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2573}
2574
2575void Verifier::visitRangeMetadata(Instruction& I,
2576                                  MDNode* Range, Type* Ty) {
2577  assert(Range &&
2578         Range == I.getMetadata(LLVMContext::MD_range) &&
2579         "precondition violation");
2580
2581  unsigned NumOperands = Range->getNumOperands();
2582  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2583  unsigned NumRanges = NumOperands / 2;
2584  Assert(NumRanges >= 1, "It should have at least one range!", Range);
2585
2586  ConstantRange LastRange(1); // Dummy initial value
2587  for (unsigned i = 0; i < NumRanges; ++i) {
2588    ConstantInt *Low =
2589        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2590    Assert(Low, "The lower limit must be an integer!", Low);
2591    ConstantInt *High =
2592        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2593    Assert(High, "The upper limit must be an integer!", High);
2594    Assert(High->getType() == Low->getType() && High->getType() == Ty,
2595           "Range types must match instruction type!", &I);
2596
2597    APInt HighV = High->getValue();
2598    APInt LowV = Low->getValue();
2599    ConstantRange CurRange(LowV, HighV);
2600    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2601           "Range must not be empty!", Range);
2602    if (i != 0) {
2603      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2604             "Intervals are overlapping", Range);
2605      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2606             Range);
2607      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2608             Range);
2609    }
2610    LastRange = ConstantRange(LowV, HighV);
2611  }
2612  if (NumRanges > 2) {
2613    APInt FirstLow =
2614        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2615    APInt FirstHigh =
2616        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2617    ConstantRange FirstRange(FirstLow, FirstHigh);
2618    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2619           "Intervals are overlapping", Range);
2620    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2621           Range);
2622  }
2623}
2624
2625void Verifier::visitLoadInst(LoadInst &LI) {
2626  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2627  Assert(PTy, "Load operand must be a pointer.", &LI);
2628  Type *ElTy = LI.getType();
2629  Assert(LI.getAlignment() <= Value::MaximumAlignment,
2630         "huge alignment values are unsupported", &LI);
2631  if (LI.isAtomic()) {
2632    Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
2633           "Load cannot have Release ordering", &LI);
2634    Assert(LI.getAlignment() != 0,
2635           "Atomic load must specify explicit alignment", &LI);
2636    if (!ElTy->isPointerTy()) {
2637      Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
2638             &LI, ElTy);
2639      unsigned Size = ElTy->getPrimitiveSizeInBits();
2640      Assert(Size >= 8 && !(Size & (Size - 1)),
2641             "atomic load operand must be power-of-two byte-sized integer", &LI,
2642             ElTy);
2643    }
2644  } else {
2645    Assert(LI.getSynchScope() == CrossThread,
2646           "Non-atomic load cannot have SynchronizationScope specified", &LI);
2647  }
2648
2649  visitInstruction(LI);
2650}
2651
2652void Verifier::visitStoreInst(StoreInst &SI) {
2653  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2654  Assert(PTy, "Store operand must be a pointer.", &SI);
2655  Type *ElTy = PTy->getElementType();
2656  Assert(ElTy == SI.getOperand(0)->getType(),
2657         "Stored value type does not match pointer operand type!", &SI, ElTy);
2658  Assert(SI.getAlignment() <= Value::MaximumAlignment,
2659         "huge alignment values are unsupported", &SI);
2660  if (SI.isAtomic()) {
2661    Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
2662           "Store cannot have Acquire ordering", &SI);
2663    Assert(SI.getAlignment() != 0,
2664           "Atomic store must specify explicit alignment", &SI);
2665    if (!ElTy->isPointerTy()) {
2666      Assert(ElTy->isIntegerTy(),
2667             "atomic store operand must have integer type!", &SI, ElTy);
2668      unsigned Size = ElTy->getPrimitiveSizeInBits();
2669      Assert(Size >= 8 && !(Size & (Size - 1)),
2670             "atomic store operand must be power-of-two byte-sized integer",
2671             &SI, ElTy);
2672    }
2673  } else {
2674    Assert(SI.getSynchScope() == CrossThread,
2675           "Non-atomic store cannot have SynchronizationScope specified", &SI);
2676  }
2677  visitInstruction(SI);
2678}
2679
2680void Verifier::visitAllocaInst(AllocaInst &AI) {
2681  SmallPtrSet<const Type*, 4> Visited;
2682  PointerType *PTy = AI.getType();
2683  Assert(PTy->getAddressSpace() == 0,
2684         "Allocation instruction pointer not in the generic address space!",
2685         &AI);
2686  Assert(AI.getAllocatedType()->isSized(&Visited),
2687         "Cannot allocate unsized type", &AI);
2688  Assert(AI.getArraySize()->getType()->isIntegerTy(),
2689         "Alloca array size must have integer type", &AI);
2690  Assert(AI.getAlignment() <= Value::MaximumAlignment,
2691         "huge alignment values are unsupported", &AI);
2692
2693  visitInstruction(AI);
2694}
2695
2696void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2697
2698  // FIXME: more conditions???
2699  Assert(CXI.getSuccessOrdering() != NotAtomic,
2700         "cmpxchg instructions must be atomic.", &CXI);
2701  Assert(CXI.getFailureOrdering() != NotAtomic,
2702         "cmpxchg instructions must be atomic.", &CXI);
2703  Assert(CXI.getSuccessOrdering() != Unordered,
2704         "cmpxchg instructions cannot be unordered.", &CXI);
2705  Assert(CXI.getFailureOrdering() != Unordered,
2706         "cmpxchg instructions cannot be unordered.", &CXI);
2707  Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2708         "cmpxchg instructions be at least as constrained on success as fail",
2709         &CXI);
2710  Assert(CXI.getFailureOrdering() != Release &&
2711             CXI.getFailureOrdering() != AcquireRelease,
2712         "cmpxchg failure ordering cannot include release semantics", &CXI);
2713
2714  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2715  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2716  Type *ElTy = PTy->getElementType();
2717  Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
2718         ElTy);
2719  unsigned Size = ElTy->getPrimitiveSizeInBits();
2720  Assert(Size >= 8 && !(Size & (Size - 1)),
2721         "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
2722  Assert(ElTy == CXI.getOperand(1)->getType(),
2723         "Expected value type does not match pointer operand type!", &CXI,
2724         ElTy);
2725  Assert(ElTy == CXI.getOperand(2)->getType(),
2726         "Stored value type does not match pointer operand type!", &CXI, ElTy);
2727  visitInstruction(CXI);
2728}
2729
2730void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2731  Assert(RMWI.getOrdering() != NotAtomic,
2732         "atomicrmw instructions must be atomic.", &RMWI);
2733  Assert(RMWI.getOrdering() != Unordered,
2734         "atomicrmw instructions cannot be unordered.", &RMWI);
2735  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2736  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2737  Type *ElTy = PTy->getElementType();
2738  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
2739         &RMWI, ElTy);
2740  unsigned Size = ElTy->getPrimitiveSizeInBits();
2741  Assert(Size >= 8 && !(Size & (Size - 1)),
2742         "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
2743         ElTy);
2744  Assert(ElTy == RMWI.getOperand(1)->getType(),
2745         "Argument value type does not match pointer operand type!", &RMWI,
2746         ElTy);
2747  Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2748             RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2749         "Invalid binary operation!", &RMWI);
2750  visitInstruction(RMWI);
2751}
2752
2753void Verifier::visitFenceInst(FenceInst &FI) {
2754  const AtomicOrdering Ordering = FI.getOrdering();
2755  Assert(Ordering == Acquire || Ordering == Release ||
2756             Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2757         "fence instructions may only have "
2758         "acquire, release, acq_rel, or seq_cst ordering.",
2759         &FI);
2760  visitInstruction(FI);
2761}
2762
2763void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2764  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2765                                          EVI.getIndices()) == EVI.getType(),
2766         "Invalid ExtractValueInst operands!", &EVI);
2767
2768  visitInstruction(EVI);
2769}
2770
2771void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2772  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2773                                          IVI.getIndices()) ==
2774             IVI.getOperand(1)->getType(),
2775         "Invalid InsertValueInst operands!", &IVI);
2776
2777  visitInstruction(IVI);
2778}
2779
2780void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2781  BasicBlock *BB = LPI.getParent();
2782
2783  // The landingpad instruction is ill-formed if it doesn't have any clauses and
2784  // isn't a cleanup.
2785  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2786         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2787
2788  // The landingpad instruction defines its parent as a landing pad block. The
2789  // landing pad block may be branched to only by the unwind edge of an invoke.
2790  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
2791    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
2792    Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2793           "Block containing LandingPadInst must be jumped to "
2794           "only by the unwind edge of an invoke.",
2795           &LPI);
2796  }
2797
2798  Function *F = LPI.getParent()->getParent();
2799  Assert(F->hasPersonalityFn(),
2800         "LandingPadInst needs to be in a function with a personality.", &LPI);
2801
2802  // The landingpad instruction must be the first non-PHI instruction in the
2803  // block.
2804  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
2805         "LandingPadInst not the first non-PHI instruction in the block.",
2806         &LPI);
2807
2808  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2809    Constant *Clause = LPI.getClause(i);
2810    if (LPI.isCatch(i)) {
2811      Assert(isa<PointerType>(Clause->getType()),
2812             "Catch operand does not have pointer type!", &LPI);
2813    } else {
2814      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2815      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2816             "Filter operand is not an array of constants!", &LPI);
2817    }
2818  }
2819
2820  visitInstruction(LPI);
2821}
2822
2823void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
2824  Instruction *Op = cast<Instruction>(I.getOperand(i));
2825  // If the we have an invalid invoke, don't try to compute the dominance.
2826  // We already reject it in the invoke specific checks and the dominance
2827  // computation doesn't handle multiple edges.
2828  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
2829    if (II->getNormalDest() == II->getUnwindDest())
2830      return;
2831  }
2832
2833  const Use &U = I.getOperandUse(i);
2834  Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
2835         "Instruction does not dominate all uses!", Op, &I);
2836}
2837
2838/// verifyInstruction - Verify that an instruction is well formed.
2839///
2840void Verifier::visitInstruction(Instruction &I) {
2841  BasicBlock *BB = I.getParent();
2842  Assert(BB, "Instruction not embedded in basic block!", &I);
2843
2844  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
2845    for (User *U : I.users()) {
2846      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
2847             "Only PHI nodes may reference their own value!", &I);
2848    }
2849  }
2850
2851  // Check that void typed values don't have names
2852  Assert(!I.getType()->isVoidTy() || !I.hasName(),
2853         "Instruction has a name, but provides a void value!", &I);
2854
2855  // Check that the return value of the instruction is either void or a legal
2856  // value type.
2857  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
2858         "Instruction returns a non-scalar type!", &I);
2859
2860  // Check that the instruction doesn't produce metadata. Calls are already
2861  // checked against the callee type.
2862  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
2863         "Invalid use of metadata!", &I);
2864
2865  // Check that all uses of the instruction, if they are instructions
2866  // themselves, actually have parent basic blocks.  If the use is not an
2867  // instruction, it is an error!
2868  for (Use &U : I.uses()) {
2869    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
2870      Assert(Used->getParent() != nullptr,
2871             "Instruction referencing"
2872             " instruction not embedded in a basic block!",
2873             &I, Used);
2874    else {
2875      CheckFailed("Use of instruction is not an instruction!", U);
2876      return;
2877    }
2878  }
2879
2880  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2881    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
2882
2883    // Check to make sure that only first-class-values are operands to
2884    // instructions.
2885    if (!I.getOperand(i)->getType()->isFirstClassType()) {
2886      Assert(0, "Instruction operands must be first-class values!", &I);
2887    }
2888
2889    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2890      // Check to make sure that the "address of" an intrinsic function is never
2891      // taken.
2892      Assert(
2893          !F->isIntrinsic() ||
2894              i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
2895          "Cannot take the address of an intrinsic!", &I);
2896      Assert(
2897          !F->isIntrinsic() || isa<CallInst>(I) ||
2898              F->getIntrinsicID() == Intrinsic::donothing ||
2899              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
2900              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
2901              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
2902          "Cannot invoke an intrinsinc other than"
2903          " donothing or patchpoint",
2904          &I);
2905      Assert(F->getParent() == M, "Referencing function in another module!",
2906             &I);
2907    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2908      Assert(OpBB->getParent() == BB->getParent(),
2909             "Referring to a basic block in another function!", &I);
2910    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2911      Assert(OpArg->getParent() == BB->getParent(),
2912             "Referring to an argument in another function!", &I);
2913    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2914      Assert(GV->getParent() == M, "Referencing global in another module!", &I);
2915    } else if (isa<Instruction>(I.getOperand(i))) {
2916      verifyDominatesUse(I, i);
2917    } else if (isa<InlineAsm>(I.getOperand(i))) {
2918      Assert((i + 1 == e && isa<CallInst>(I)) ||
2919                 (i + 3 == e && isa<InvokeInst>(I)),
2920             "Cannot take the address of an inline asm!", &I);
2921    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2922      if (CE->getType()->isPtrOrPtrVectorTy()) {
2923        // If we have a ConstantExpr pointer, we need to see if it came from an
2924        // illegal bitcast (inttoptr <constant int> )
2925        SmallVector<const ConstantExpr *, 4> Stack;
2926        SmallPtrSet<const ConstantExpr *, 4> Visited;
2927        Stack.push_back(CE);
2928
2929        while (!Stack.empty()) {
2930          const ConstantExpr *V = Stack.pop_back_val();
2931          if (!Visited.insert(V).second)
2932            continue;
2933
2934          VerifyConstantExprBitcastType(V);
2935
2936          for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2937            if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2938              Stack.push_back(Op);
2939          }
2940        }
2941      }
2942    }
2943  }
2944
2945  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2946    Assert(I.getType()->isFPOrFPVectorTy(),
2947           "fpmath requires a floating point result!", &I);
2948    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2949    if (ConstantFP *CFP0 =
2950            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
2951      APFloat Accuracy = CFP0->getValueAPF();
2952      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2953             "fpmath accuracy not a positive number!", &I);
2954    } else {
2955      Assert(false, "invalid fpmath accuracy!", &I);
2956    }
2957  }
2958
2959  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
2960    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
2961           "Ranges are only for loads, calls and invokes!", &I);
2962    visitRangeMetadata(I, Range, I.getType());
2963  }
2964
2965  if (I.getMetadata(LLVMContext::MD_nonnull)) {
2966    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
2967           &I);
2968    Assert(isa<LoadInst>(I),
2969           "nonnull applies only to load instructions, use attributes"
2970           " for calls or invokes",
2971           &I);
2972  }
2973
2974  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
2975    Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
2976    visitMDNode(*N);
2977  }
2978
2979  InstsInThisBlock.insert(&I);
2980}
2981
2982/// VerifyIntrinsicType - Verify that the specified type (which comes from an
2983/// intrinsic argument or return value) matches the type constraints specified
2984/// by the .td file (e.g. an "any integer" argument really is an integer).
2985///
2986/// This return true on error but does not print a message.
2987bool Verifier::VerifyIntrinsicType(Type *Ty,
2988                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
2989                                   SmallVectorImpl<Type*> &ArgTys) {
2990  using namespace Intrinsic;
2991
2992  // If we ran out of descriptors, there are too many arguments.
2993  if (Infos.empty()) return true;
2994  IITDescriptor D = Infos.front();
2995  Infos = Infos.slice(1);
2996
2997  switch (D.Kind) {
2998  case IITDescriptor::Void: return !Ty->isVoidTy();
2999  case IITDescriptor::VarArg: return true;
3000  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
3001  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3002  case IITDescriptor::Half: return !Ty->isHalfTy();
3003  case IITDescriptor::Float: return !Ty->isFloatTy();
3004  case IITDescriptor::Double: return !Ty->isDoubleTy();
3005  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3006  case IITDescriptor::Vector: {
3007    VectorType *VT = dyn_cast<VectorType>(Ty);
3008    return !VT || VT->getNumElements() != D.Vector_Width ||
3009           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3010  }
3011  case IITDescriptor::Pointer: {
3012    PointerType *PT = dyn_cast<PointerType>(Ty);
3013    return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3014           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3015  }
3016
3017  case IITDescriptor::Struct: {
3018    StructType *ST = dyn_cast<StructType>(Ty);
3019    if (!ST || ST->getNumElements() != D.Struct_NumElements)
3020      return true;
3021
3022    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3023      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3024        return true;
3025    return false;
3026  }
3027
3028  case IITDescriptor::Argument:
3029    // Two cases here - If this is the second occurrence of an argument, verify
3030    // that the later instance matches the previous instance.
3031    if (D.getArgumentNumber() < ArgTys.size())
3032      return Ty != ArgTys[D.getArgumentNumber()];
3033
3034    // Otherwise, if this is the first instance of an argument, record it and
3035    // verify the "Any" kind.
3036    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
3037    ArgTys.push_back(Ty);
3038
3039    switch (D.getArgumentKind()) {
3040    case IITDescriptor::AK_Any:        return false; // Success
3041    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
3042    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
3043    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
3044    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3045    }
3046    llvm_unreachable("all argument kinds not covered");
3047
3048  case IITDescriptor::ExtendArgument: {
3049    // This may only be used when referring to a previous vector argument.
3050    if (D.getArgumentNumber() >= ArgTys.size())
3051      return true;
3052
3053    Type *NewTy = ArgTys[D.getArgumentNumber()];
3054    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3055      NewTy = VectorType::getExtendedElementVectorType(VTy);
3056    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3057      NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
3058    else
3059      return true;
3060
3061    return Ty != NewTy;
3062  }
3063  case IITDescriptor::TruncArgument: {
3064    // This may only be used when referring to a previous vector argument.
3065    if (D.getArgumentNumber() >= ArgTys.size())
3066      return true;
3067
3068    Type *NewTy = ArgTys[D.getArgumentNumber()];
3069    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3070      NewTy = VectorType::getTruncatedElementVectorType(VTy);
3071    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3072      NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
3073    else
3074      return true;
3075
3076    return Ty != NewTy;
3077  }
3078  case IITDescriptor::HalfVecArgument:
3079    // This may only be used when referring to a previous vector argument.
3080    return D.getArgumentNumber() >= ArgTys.size() ||
3081           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3082           VectorType::getHalfElementsVectorType(
3083                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3084  case IITDescriptor::SameVecWidthArgument: {
3085    if (D.getArgumentNumber() >= ArgTys.size())
3086      return true;
3087    VectorType * ReferenceType =
3088      dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3089    VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3090    if (!ThisArgType || !ReferenceType ||
3091        (ReferenceType->getVectorNumElements() !=
3092         ThisArgType->getVectorNumElements()))
3093      return true;
3094    return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
3095                               Infos, ArgTys);
3096  }
3097  case IITDescriptor::PtrToArgument: {
3098    if (D.getArgumentNumber() >= ArgTys.size())
3099      return true;
3100    Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3101    PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3102    return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3103  }
3104  case IITDescriptor::VecOfPtrsToElt: {
3105    if (D.getArgumentNumber() >= ArgTys.size())
3106      return true;
3107    VectorType * ReferenceType =
3108      dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3109    VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3110    if (!ThisArgVecTy || !ReferenceType ||
3111        (ReferenceType->getVectorNumElements() !=
3112         ThisArgVecTy->getVectorNumElements()))
3113      return true;
3114    PointerType *ThisArgEltTy =
3115      dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3116    if (!ThisArgEltTy)
3117      return true;
3118    return ThisArgEltTy->getElementType() !=
3119           ReferenceType->getVectorElementType();
3120  }
3121  }
3122  llvm_unreachable("unhandled");
3123}
3124
3125/// \brief Verify if the intrinsic has variable arguments.
3126/// This method is intended to be called after all the fixed arguments have been
3127/// verified first.
3128///
3129/// This method returns true on error and does not print an error message.
3130bool
3131Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
3132                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
3133  using namespace Intrinsic;
3134
3135  // If there are no descriptors left, then it can't be a vararg.
3136  if (Infos.empty())
3137    return isVarArg;
3138
3139  // There should be only one descriptor remaining at this point.
3140  if (Infos.size() != 1)
3141    return true;
3142
3143  // Check and verify the descriptor.
3144  IITDescriptor D = Infos.front();
3145  Infos = Infos.slice(1);
3146  if (D.Kind == IITDescriptor::VarArg)
3147    return !isVarArg;
3148
3149  return true;
3150}
3151
3152/// Allow intrinsics to be verified in different ways.
3153void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3154  Function *IF = CS.getCalledFunction();
3155  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3156         IF);
3157
3158  // Verify that the intrinsic prototype lines up with what the .td files
3159  // describe.
3160  FunctionType *IFTy = IF->getFunctionType();
3161  bool IsVarArg = IFTy->isVarArg();
3162
3163  SmallVector<Intrinsic::IITDescriptor, 8> Table;
3164  getIntrinsicInfoTableEntries(ID, Table);
3165  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3166
3167  SmallVector<Type *, 4> ArgTys;
3168  Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
3169         "Intrinsic has incorrect return type!", IF);
3170  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3171    Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
3172           "Intrinsic has incorrect argument type!", IF);
3173
3174  // Verify if the intrinsic call matches the vararg property.
3175  if (IsVarArg)
3176    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3177           "Intrinsic was not defined with variable arguments!", IF);
3178  else
3179    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3180           "Callsite was not defined with variable arguments!", IF);
3181
3182  // All descriptors should be absorbed by now.
3183  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3184
3185  // Now that we have the intrinsic ID and the actual argument types (and we
3186  // know they are legal for the intrinsic!) get the intrinsic name through the
3187  // usual means.  This allows us to verify the mangling of argument types into
3188  // the name.
3189  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3190  Assert(ExpectedName == IF->getName(),
3191         "Intrinsic name not mangled correctly for type arguments! "
3192         "Should be: " +
3193             ExpectedName,
3194         IF);
3195
3196  // If the intrinsic takes MDNode arguments, verify that they are either global
3197  // or are local to *this* function.
3198  for (Value *V : CS.args())
3199    if (auto *MD = dyn_cast<MetadataAsValue>(V))
3200      visitMetadataAsValue(*MD, CS.getCaller());
3201
3202  switch (ID) {
3203  default:
3204    break;
3205  case Intrinsic::ctlz:  // llvm.ctlz
3206  case Intrinsic::cttz:  // llvm.cttz
3207    Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3208           "is_zero_undef argument of bit counting intrinsics must be a "
3209           "constant int",
3210           CS);
3211    break;
3212  case Intrinsic::dbg_declare: // llvm.dbg.declare
3213    Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3214           "invalid llvm.dbg.declare intrinsic call 1", CS);
3215    visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3216    break;
3217  case Intrinsic::dbg_value: // llvm.dbg.value
3218    visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3219    break;
3220  case Intrinsic::memcpy:
3221  case Intrinsic::memmove:
3222  case Intrinsic::memset: {
3223    ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3224    Assert(AlignCI,
3225           "alignment argument of memory intrinsics must be a constant int",
3226           CS);
3227    const APInt &AlignVal = AlignCI->getValue();
3228    Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3229           "alignment argument of memory intrinsics must be a power of 2", CS);
3230    Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3231           "isvolatile argument of memory intrinsics must be a constant int",
3232           CS);
3233    break;
3234  }
3235  case Intrinsic::gcroot:
3236  case Intrinsic::gcwrite:
3237  case Intrinsic::gcread:
3238    if (ID == Intrinsic::gcroot) {
3239      AllocaInst *AI =
3240        dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3241      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3242      Assert(isa<Constant>(CS.getArgOperand(1)),
3243             "llvm.gcroot parameter #2 must be a constant.", CS);
3244      if (!AI->getAllocatedType()->isPointerTy()) {
3245        Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3246               "llvm.gcroot parameter #1 must either be a pointer alloca, "
3247               "or argument #2 must be a non-null constant.",
3248               CS);
3249      }
3250    }
3251
3252    Assert(CS.getParent()->getParent()->hasGC(),
3253           "Enclosing function does not use GC.", CS);
3254    break;
3255  case Intrinsic::init_trampoline:
3256    Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3257           "llvm.init_trampoline parameter #2 must resolve to a function.",
3258           CS);
3259    break;
3260  case Intrinsic::prefetch:
3261    Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3262               isa<ConstantInt>(CS.getArgOperand(2)) &&
3263               cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3264               cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3265           "invalid arguments to llvm.prefetch", CS);
3266    break;
3267  case Intrinsic::stackprotector:
3268    Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3269           "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3270    break;
3271  case Intrinsic::lifetime_start:
3272  case Intrinsic::lifetime_end:
3273  case Intrinsic::invariant_start:
3274    Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3275           "size argument of memory use markers must be a constant integer",
3276           CS);
3277    break;
3278  case Intrinsic::invariant_end:
3279    Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3280           "llvm.invariant.end parameter #2 must be a constant integer", CS);
3281    break;
3282
3283  case Intrinsic::localescape: {
3284    BasicBlock *BB = CS.getParent();
3285    Assert(BB == &BB->getParent()->front(),
3286           "llvm.localescape used outside of entry block", CS);
3287    Assert(!SawFrameEscape,
3288           "multiple calls to llvm.localescape in one function", CS);
3289    for (Value *Arg : CS.args()) {
3290      if (isa<ConstantPointerNull>(Arg))
3291        continue; // Null values are allowed as placeholders.
3292      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3293      Assert(AI && AI->isStaticAlloca(),
3294             "llvm.localescape only accepts static allocas", CS);
3295    }
3296    FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3297    SawFrameEscape = true;
3298    break;
3299  }
3300  case Intrinsic::localrecover: {
3301    Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3302    Function *Fn = dyn_cast<Function>(FnArg);
3303    Assert(Fn && !Fn->isDeclaration(),
3304           "llvm.localrecover first "
3305           "argument must be function defined in this module",
3306           CS);
3307    auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3308    Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3309           CS);
3310    auto &Entry = FrameEscapeInfo[Fn];
3311    Entry.second = unsigned(
3312        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3313    break;
3314  }
3315
3316  case Intrinsic::experimental_gc_statepoint:
3317    Assert(!CS.isInlineAsm(),
3318           "gc.statepoint support for inline assembly unimplemented", CS);
3319    Assert(CS.getParent()->getParent()->hasGC(),
3320           "Enclosing function does not use GC.", CS);
3321
3322    VerifyStatepoint(CS);
3323    break;
3324  case Intrinsic::experimental_gc_result_int:
3325  case Intrinsic::experimental_gc_result_float:
3326  case Intrinsic::experimental_gc_result_ptr:
3327  case Intrinsic::experimental_gc_result: {
3328    Assert(CS.getParent()->getParent()->hasGC(),
3329           "Enclosing function does not use GC.", CS);
3330    // Are we tied to a statepoint properly?
3331    CallSite StatepointCS(CS.getArgOperand(0));
3332    const Function *StatepointFn =
3333      StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3334    Assert(StatepointFn && StatepointFn->isDeclaration() &&
3335               StatepointFn->getIntrinsicID() ==
3336                   Intrinsic::experimental_gc_statepoint,
3337           "gc.result operand #1 must be from a statepoint", CS,
3338           CS.getArgOperand(0));
3339
3340    // Assert that result type matches wrapped callee.
3341    const Value *Target = StatepointCS.getArgument(2);
3342    const PointerType *PT = cast<PointerType>(Target->getType());
3343    const FunctionType *TargetFuncType =
3344      cast<FunctionType>(PT->getElementType());
3345    Assert(CS.getType() == TargetFuncType->getReturnType(),
3346           "gc.result result type does not match wrapped callee", CS);
3347    break;
3348  }
3349  case Intrinsic::experimental_gc_relocate: {
3350    Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
3351
3352    // Check that this relocate is correctly tied to the statepoint
3353
3354    // This is case for relocate on the unwinding path of an invoke statepoint
3355    if (ExtractValueInst *ExtractValue =
3356          dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
3357      Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
3358             "gc relocate on unwind path incorrectly linked to the statepoint",
3359             CS);
3360
3361      const BasicBlock *InvokeBB =
3362        ExtractValue->getParent()->getUniquePredecessor();
3363
3364      // Landingpad relocates should have only one predecessor with invoke
3365      // statepoint terminator
3366      Assert(InvokeBB, "safepoints should have unique landingpads",
3367             ExtractValue->getParent());
3368      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
3369             InvokeBB);
3370      Assert(isStatepoint(InvokeBB->getTerminator()),
3371             "gc relocate should be linked to a statepoint", InvokeBB);
3372    }
3373    else {
3374      // In all other cases relocate should be tied to the statepoint directly.
3375      // This covers relocates on a normal return path of invoke statepoint and
3376      // relocates of a call statepoint
3377      auto Token = CS.getArgOperand(0);
3378      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3379             "gc relocate is incorrectly tied to the statepoint", CS, Token);
3380    }
3381
3382    // Verify rest of the relocate arguments
3383
3384    GCRelocateOperands Ops(CS);
3385    ImmutableCallSite StatepointCS(Ops.getStatepoint());
3386
3387    // Both the base and derived must be piped through the safepoint
3388    Value* Base = CS.getArgOperand(1);
3389    Assert(isa<ConstantInt>(Base),
3390           "gc.relocate operand #2 must be integer offset", CS);
3391
3392    Value* Derived = CS.getArgOperand(2);
3393    Assert(isa<ConstantInt>(Derived),
3394           "gc.relocate operand #3 must be integer offset", CS);
3395
3396    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3397    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3398    // Check the bounds
3399    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3400           "gc.relocate: statepoint base index out of bounds", CS);
3401    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3402           "gc.relocate: statepoint derived index out of bounds", CS);
3403
3404    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
3405    // section of the statepoint's argument
3406    Assert(StatepointCS.arg_size() > 0,
3407           "gc.statepoint: insufficient arguments");
3408    Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
3409           "gc.statement: number of call arguments must be constant integer");
3410    const unsigned NumCallArgs =
3411        cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
3412    Assert(StatepointCS.arg_size() > NumCallArgs + 5,
3413           "gc.statepoint: mismatch in number of call arguments");
3414    Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
3415           "gc.statepoint: number of transition arguments must be "
3416           "a constant integer");
3417    const int NumTransitionArgs =
3418        cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
3419            ->getZExtValue();
3420    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
3421    Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
3422           "gc.statepoint: number of deoptimization arguments must be "
3423           "a constant integer");
3424    const int NumDeoptArgs =
3425      cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
3426    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
3427    const int GCParamArgsEnd = StatepointCS.arg_size();
3428    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
3429           "gc.relocate: statepoint base index doesn't fall within the "
3430           "'gc parameters' section of the statepoint call",
3431           CS);
3432    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
3433           "gc.relocate: statepoint derived index doesn't fall within the "
3434           "'gc parameters' section of the statepoint call",
3435           CS);
3436
3437    // Relocated value must be a pointer type, but gc_relocate does not need to return the
3438    // same pointer type as the relocated pointer. It can be casted to the correct type later
3439    // if it's desired. However, they must have the same address space.
3440    GCRelocateOperands Operands(CS);
3441    Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),
3442           "gc.relocate: relocated value must be a gc pointer", CS);
3443
3444    // gc_relocate return type must be a pointer type, and is verified earlier in
3445    // VerifyIntrinsicType().
3446    Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==
3447           cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),
3448           "gc.relocate: relocating a pointer shouldn't change its address space", CS);
3449    break;
3450  }
3451  };
3452}
3453
3454/// \brief Carefully grab the subprogram from a local scope.
3455///
3456/// This carefully grabs the subprogram from a local scope, avoiding the
3457/// built-in assertions that would typically fire.
3458static DISubprogram *getSubprogram(Metadata *LocalScope) {
3459  if (!LocalScope)
3460    return nullptr;
3461
3462  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
3463    return SP;
3464
3465  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
3466    return getSubprogram(LB->getRawScope());
3467
3468  // Just return null; broken scope chains are checked elsewhere.
3469  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
3470  return nullptr;
3471}
3472
3473template <class DbgIntrinsicTy>
3474void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
3475  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
3476  Assert(isa<ValueAsMetadata>(MD) ||
3477             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
3478         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
3479  Assert(isa<DILocalVariable>(DII.getRawVariable()),
3480         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
3481         DII.getRawVariable());
3482  Assert(isa<DIExpression>(DII.getRawExpression()),
3483         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
3484         DII.getRawExpression());
3485
3486  // Ignore broken !dbg attachments; they're checked elsewhere.
3487  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
3488    if (!isa<DILocation>(N))
3489      return;
3490
3491  BasicBlock *BB = DII.getParent();
3492  Function *F = BB ? BB->getParent() : nullptr;
3493
3494  // The scopes for variables and !dbg attachments must agree.
3495  DILocalVariable *Var = DII.getVariable();
3496  DILocation *Loc = DII.getDebugLoc();
3497  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
3498         &DII, BB, F);
3499
3500  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
3501  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
3502  if (!VarSP || !LocSP)
3503    return; // Broken scope chains are checked elsewhere.
3504
3505  Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
3506                             " variable and !dbg attachment",
3507         &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
3508         Loc->getScope()->getSubprogram());
3509}
3510
3511template <class MapTy>
3512static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
3513  // Be careful of broken types (checked elsewhere).
3514  const Metadata *RawType = V.getRawType();
3515  while (RawType) {
3516    // Try to get the size directly.
3517    if (auto *T = dyn_cast<DIType>(RawType))
3518      if (uint64_t Size = T->getSizeInBits())
3519        return Size;
3520
3521    if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
3522      // Look at the base type.
3523      RawType = DT->getRawBaseType();
3524      continue;
3525    }
3526
3527    if (auto *S = dyn_cast<MDString>(RawType)) {
3528      // Don't error on missing types (checked elsewhere).
3529      RawType = Map.lookup(S);
3530      continue;
3531    }
3532
3533    // Missing type or size.
3534    break;
3535  }
3536
3537  // Fail gracefully.
3538  return 0;
3539}
3540
3541template <class MapTy>
3542void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
3543                                        const MapTy &TypeRefs) {
3544  DILocalVariable *V;
3545  DIExpression *E;
3546  if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
3547    V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
3548    E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
3549  } else {
3550    auto *DDI = cast<DbgDeclareInst>(&I);
3551    V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
3552    E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
3553  }
3554
3555  // We don't know whether this intrinsic verified correctly.
3556  if (!V || !E || !E->isValid())
3557    return;
3558
3559  // Nothing to do if this isn't a bit piece expression.
3560  if (!E->isBitPiece())
3561    return;
3562
3563  // The frontend helps out GDB by emitting the members of local anonymous
3564  // unions as artificial local variables with shared storage. When SROA splits
3565  // the storage for artificial local variables that are smaller than the entire
3566  // union, the overhang piece will be outside of the allotted space for the
3567  // variable and this check fails.
3568  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
3569  if (V->isArtificial())
3570    return;
3571
3572  // If there's no size, the type is broken, but that should be checked
3573  // elsewhere.
3574  uint64_t VarSize = getVariableSize(*V, TypeRefs);
3575  if (!VarSize)
3576    return;
3577
3578  unsigned PieceSize = E->getBitPieceSize();
3579  unsigned PieceOffset = E->getBitPieceOffset();
3580  Assert(PieceSize + PieceOffset <= VarSize,
3581         "piece is larger than or outside of variable", &I, V, E);
3582  Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
3583}
3584
3585void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
3586  // This is in its own function so we get an error for each bad type ref (not
3587  // just the first).
3588  Assert(false, "unresolved type ref", S, N);
3589}
3590
3591void Verifier::verifyTypeRefs() {
3592  auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
3593  if (!CUs)
3594    return;
3595
3596  // Visit all the compile units again to map the type references.
3597  SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
3598  for (auto *CU : CUs->operands())
3599    if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
3600      for (DIType *Op : Ts)
3601        if (auto *T = dyn_cast<DICompositeType>(Op))
3602          if (auto *S = T->getRawIdentifier()) {
3603            UnresolvedTypeRefs.erase(S);
3604            TypeRefs.insert(std::make_pair(S, T));
3605          }
3606
3607  // Verify debug info intrinsic bit piece expressions.  This needs a second
3608  // pass through the intructions, since we haven't built TypeRefs yet when
3609  // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
3610  // later/now would queue up some that could be later deleted.
3611  for (const Function &F : *M)
3612    for (const BasicBlock &BB : F)
3613      for (const Instruction &I : BB)
3614        if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3615          verifyBitPieceExpression(*DII, TypeRefs);
3616
3617  // Return early if all typerefs were resolved.
3618  if (UnresolvedTypeRefs.empty())
3619    return;
3620
3621  // Sort the unresolved references by name so the output is deterministic.
3622  typedef std::pair<const MDString *, const MDNode *> TypeRef;
3623  SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
3624                                      UnresolvedTypeRefs.end());
3625  std::sort(Unresolved.begin(), Unresolved.end(),
3626            [](const TypeRef &LHS, const TypeRef &RHS) {
3627    return LHS.first->getString() < RHS.first->getString();
3628  });
3629
3630  // Visit the unresolved refs (printing out the errors).
3631  for (const TypeRef &TR : Unresolved)
3632    visitUnresolvedTypeRef(TR.first, TR.second);
3633}
3634
3635//===----------------------------------------------------------------------===//
3636//  Implement the public interfaces to this file...
3637//===----------------------------------------------------------------------===//
3638
3639bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
3640  Function &F = const_cast<Function &>(f);
3641  assert(!F.isDeclaration() && "Cannot verify external functions");
3642
3643  raw_null_ostream NullStr;
3644  Verifier V(OS ? *OS : NullStr);
3645
3646  // Note that this function's return value is inverted from what you would
3647  // expect of a function called "verify".
3648  return !V.verify(F);
3649}
3650
3651bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
3652  raw_null_ostream NullStr;
3653  Verifier V(OS ? *OS : NullStr);
3654
3655  bool Broken = false;
3656  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
3657    if (!I->isDeclaration() && !I->isMaterializable())
3658      Broken |= !V.verify(*I);
3659
3660  // Note that this function's return value is inverted from what you would
3661  // expect of a function called "verify".
3662  return !V.verify(M) || Broken;
3663}
3664
3665namespace {
3666struct VerifierLegacyPass : public FunctionPass {
3667  static char ID;
3668
3669  Verifier V;
3670  bool FatalErrors;
3671
3672  VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
3673    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3674  }
3675  explicit VerifierLegacyPass(bool FatalErrors)
3676      : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
3677    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3678  }
3679
3680  bool runOnFunction(Function &F) override {
3681    if (!V.verify(F) && FatalErrors)
3682      report_fatal_error("Broken function found, compilation aborted!");
3683
3684    return false;
3685  }
3686
3687  bool doFinalization(Module &M) override {
3688    if (!V.verify(M) && FatalErrors)
3689      report_fatal_error("Broken module found, compilation aborted!");
3690
3691    return false;
3692  }
3693
3694  void getAnalysisUsage(AnalysisUsage &AU) const override {
3695    AU.setPreservesAll();
3696  }
3697};
3698}
3699
3700char VerifierLegacyPass::ID = 0;
3701INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
3702
3703FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
3704  return new VerifierLegacyPass(FatalErrors);
3705}
3706
3707PreservedAnalyses VerifierPass::run(Module &M) {
3708  if (verifyModule(M, &dbgs()) && FatalErrors)
3709    report_fatal_error("Broken module found, compilation aborted!");
3710
3711  return PreservedAnalyses::all();
3712}
3713
3714PreservedAnalyses VerifierPass::run(Function &F) {
3715  if (verifyFunction(F, &dbgs()) && FatalErrors)
3716    report_fatal_error("Broken function found, compilation aborted!");
3717
3718  return PreservedAnalyses::all();
3719}
3720