1249259Sdim//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2249259Sdim//
3249259Sdim//                     The LLVM Compiler Infrastructure
4249259Sdim//
5249259Sdim// This file is distributed under the University of Illinois Open Source
6249259Sdim// License. See LICENSE.TXT for details.
7249259Sdim//
8249259Sdim//===----------------------------------------------------------------------===//
9249259Sdim//
10249259Sdim// This file defines the function verifier interface, that can be used for some
11249259Sdim// sanity checking of input to the system.
12249259Sdim//
13249259Sdim// Note that this does not provide full `Java style' security and verifications,
14249259Sdim// instead it just tries to ensure that code is well-formed.
15249259Sdim//
16249259Sdim//  * Both of a binary operator's parameters are of the same type
17249259Sdim//  * Verify that the indices of mem access instructions match other operands
18249259Sdim//  * Verify that arithmetic and other things are only performed on first-class
19249259Sdim//    types.  Verify that shifts & logicals only happen on integrals f.e.
20249259Sdim//  * All of the constants in a switch statement are of the correct type
21249259Sdim//  * The code is in valid SSA form
22249259Sdim//  * It should be illegal to put a label into any other type (like a structure)
23249259Sdim//    or to return one. [except constant arrays!]
24249259Sdim//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25249259Sdim//  * PHI nodes must have an entry for each predecessor, with no extras.
26249259Sdim//  * PHI nodes must be the first thing in a basic block, all grouped together
27249259Sdim//  * PHI nodes must have at least one entry
28249259Sdim//  * All basic blocks should only end with terminator insts, not contain them
29249259Sdim//  * The entry node to a function must not have predecessors
30249259Sdim//  * All Instructions must be embedded into a basic block
31249259Sdim//  * Functions cannot take a void-typed parameter
32249259Sdim//  * Verify that a function's argument list agrees with it's declared type.
33249259Sdim//  * It is illegal to specify a name for a void value.
34249259Sdim//  * It is illegal to have a internal global value with no initializer
35249259Sdim//  * It is illegal to have a ret instruction that returns a value that does not
36249259Sdim//    agree with the function return value type.
37249259Sdim//  * Function call argument types match the function prototype
38249259Sdim//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39249259Sdim//    only by the unwind edge of an invoke instruction.
40249259Sdim//  * A landingpad instruction must be the first non-PHI instruction in the
41249259Sdim//    block.
42296417Sdim//  * Landingpad instructions must be in a function with a personality function.
43249259Sdim//  * All other things that are tested by asserts spread about the code...
44249259Sdim//
45249259Sdim//===----------------------------------------------------------------------===//
46249259Sdim
47276479Sdim#include "llvm/IR/Verifier.h"
48296417Sdim#include "llvm/ADT/MapVector.h"
49249259Sdim#include "llvm/ADT/STLExtras.h"
50249259Sdim#include "llvm/ADT/SetVector.h"
51249259Sdim#include "llvm/ADT/SmallPtrSet.h"
52249259Sdim#include "llvm/ADT/SmallVector.h"
53249259Sdim#include "llvm/ADT/StringExtras.h"
54276479Sdim#include "llvm/IR/CFG.h"
55276479Sdim#include "llvm/IR/CallSite.h"
56249259Sdim#include "llvm/IR/CallingConv.h"
57276479Sdim#include "llvm/IR/ConstantRange.h"
58249259Sdim#include "llvm/IR/Constants.h"
59261991Sdim#include "llvm/IR/DataLayout.h"
60276479Sdim#include "llvm/IR/DebugInfo.h"
61249259Sdim#include "llvm/IR/DerivedTypes.h"
62276479Sdim#include "llvm/IR/Dominators.h"
63249259Sdim#include "llvm/IR/InlineAsm.h"
64276479Sdim#include "llvm/IR/InstIterator.h"
65276479Sdim#include "llvm/IR/InstVisitor.h"
66249259Sdim#include "llvm/IR/IntrinsicInst.h"
67249259Sdim#include "llvm/IR/LLVMContext.h"
68249259Sdim#include "llvm/IR/Metadata.h"
69249259Sdim#include "llvm/IR/Module.h"
70276479Sdim#include "llvm/IR/PassManager.h"
71280031Sdim#include "llvm/IR/Statepoint.h"
72249259Sdim#include "llvm/Pass.h"
73261991Sdim#include "llvm/Support/CommandLine.h"
74249259Sdim#include "llvm/Support/Debug.h"
75249259Sdim#include "llvm/Support/ErrorHandling.h"
76249259Sdim#include "llvm/Support/raw_ostream.h"
77249259Sdim#include <algorithm>
78249259Sdim#include <cstdarg>
79249259Sdimusing namespace llvm;
80249259Sdim
81288943Sdimstatic cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
82261991Sdim
83276479Sdimnamespace {
84276479Sdimstruct VerifierSupport {
85276479Sdim  raw_ostream &OS;
86276479Sdim  const Module *M;
87249259Sdim
88276479Sdim  /// \brief Track the brokenness of the module while recursively visiting.
89276479Sdim  bool Broken;
90249259Sdim
91276479Sdim  explicit VerifierSupport(raw_ostream &OS)
92276479Sdim      : OS(OS), M(nullptr), Broken(false) {}
93249259Sdim
94288943Sdimprivate:
95296417Sdim  template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
96296417Sdim    Write(&*I);
97296417Sdim  }
98296417Sdim
99296417Sdim  void Write(const Module *M) {
100296417Sdim    if (!M)
101296417Sdim      return;
102296417Sdim    OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
103296417Sdim  }
104296417Sdim
105288943Sdim  void Write(const Value *V) {
106276479Sdim    if (!V)
107276479Sdim      return;
108276479Sdim    if (isa<Instruction>(V)) {
109276479Sdim      OS << *V << '\n';
110276479Sdim    } else {
111276479Sdim      V->printAsOperand(OS, true, M);
112276479Sdim      OS << '\n';
113249259Sdim    }
114276479Sdim  }
115288943Sdim  void Write(ImmutableCallSite CS) {
116288943Sdim    Write(CS.getInstruction());
117288943Sdim  }
118249259Sdim
119288943Sdim  void Write(const Metadata *MD) {
120280031Sdim    if (!MD)
121280031Sdim      return;
122288943Sdim    MD->print(OS, M);
123280031Sdim    OS << '\n';
124280031Sdim  }
125280031Sdim
126288943Sdim  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
127288943Sdim    Write(MD.get());
128288943Sdim  }
129288943Sdim
130288943Sdim  void Write(const NamedMDNode *NMD) {
131288943Sdim    if (!NMD)
132288943Sdim      return;
133288943Sdim    NMD->print(OS);
134288943Sdim    OS << '\n';
135288943Sdim  }
136288943Sdim
137288943Sdim  void Write(Type *T) {
138276479Sdim    if (!T)
139276479Sdim      return;
140276479Sdim    OS << ' ' << *T;
141276479Sdim  }
142249259Sdim
143288943Sdim  void Write(const Comdat *C) {
144276479Sdim    if (!C)
145276479Sdim      return;
146276479Sdim    OS << *C;
147276479Sdim  }
148249259Sdim
149296417Sdim  template <typename T> void Write(ArrayRef<T> Vs) {
150296417Sdim    for (const T &V : Vs)
151296417Sdim      Write(V);
152296417Sdim  }
153296417Sdim
154288943Sdim  template <typename T1, typename... Ts>
155288943Sdim  void WriteTs(const T1 &V1, const Ts &... Vs) {
156288943Sdim    Write(V1);
157288943Sdim    WriteTs(Vs...);
158276479Sdim  }
159249259Sdim
160288943Sdim  template <typename... Ts> void WriteTs() {}
161280031Sdim
162288943Sdimpublic:
163288943Sdim  /// \brief A check failed, so printout out the condition and the message.
164288943Sdim  ///
165288943Sdim  /// This provides a nice place to put a breakpoint if you want to see why
166288943Sdim  /// something is not correct.
167288943Sdim  void CheckFailed(const Twine &Message) {
168288943Sdim    OS << Message << '\n';
169280031Sdim    Broken = true;
170280031Sdim  }
171280031Sdim
172288943Sdim  /// \brief A check failed (with values to print).
173288943Sdim  ///
174288943Sdim  /// This calls the Message-only version so that the above is easier to set a
175288943Sdim  /// breakpoint on.
176288943Sdim  template <typename T1, typename... Ts>
177288943Sdim  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
178288943Sdim    CheckFailed(Message);
179288943Sdim    WriteTs(V1, Vs...);
180276479Sdim  }
181288943Sdim};
182249259Sdim
183276479Sdimclass Verifier : public InstVisitor<Verifier>, VerifierSupport {
184276479Sdim  friend class InstVisitor<Verifier>;
185249259Sdim
186276479Sdim  LLVMContext *Context;
187276479Sdim  DominatorTree DT;
188261991Sdim
189276479Sdim  /// \brief When verifying a basic block, keep track of all of the
190276479Sdim  /// instructions we have seen so far.
191276479Sdim  ///
192276479Sdim  /// This allows us to do efficient dominance checks for the case when an
193276479Sdim  /// instruction has an operand that is an instruction in the same block.
194276479Sdim  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
195249259Sdim
196276479Sdim  /// \brief Keep track of the metadata nodes that have been checked already.
197288943Sdim  SmallPtrSet<const Metadata *, 32> MDNodes;
198249259Sdim
199288943Sdim  /// \brief Track unresolved string-based type references.
200288943Sdim  SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
201261991Sdim
202296417Sdim  /// \brief The result type for a landingpad.
203296417Sdim  Type *LandingPadResultTy;
204296417Sdim
205288943Sdim  /// \brief Whether we've seen a call to @llvm.localescape in this function
206280031Sdim  /// already.
207288943Sdim  bool SawFrameEscape;
208280031Sdim
209288943Sdim  /// Stores the count of how many objects were passed to llvm.localescape for a
210288943Sdim  /// given function and the largest index passed to llvm.localrecover.
211288943Sdim  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
212288943Sdim
213296417Sdim  // Maps catchswitches and cleanuppads that unwind to siblings to the
214296417Sdim  // terminators that indicate the unwind, used to detect cycles therein.
215296417Sdim  MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
216296417Sdim
217296417Sdim  /// Cache of constants visited in search of ConstantExprs.
218296417Sdim  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
219296417Sdim
220296417Sdim  void checkAtomicMemAccessSize(const Module *M, Type *Ty,
221296417Sdim                                const Instruction *I);
222276479Sdimpublic:
223288943Sdim  explicit Verifier(raw_ostream &OS)
224296417Sdim      : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
225296417Sdim        SawFrameEscape(false) {}
226249259Sdim
227276479Sdim  bool verify(const Function &F) {
228276479Sdim    M = F.getParent();
229276479Sdim    Context = &M->getContext();
230249259Sdim
231276479Sdim    // First ensure the function is well-enough formed to compute dominance
232276479Sdim    // information.
233276479Sdim    if (F.empty()) {
234276479Sdim      OS << "Function '" << F.getName()
235276479Sdim         << "' does not contain an entry block!\n";
236276479Sdim      return false;
237249259Sdim    }
238276479Sdim    for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
239276479Sdim      if (I->empty() || !I->back().isTerminator()) {
240276479Sdim        OS << "Basic Block in function '" << F.getName()
241276479Sdim           << "' does not have terminator!\n";
242276479Sdim        I->printAsOperand(OS, true);
243276479Sdim        OS << "\n";
244276479Sdim        return false;
245249259Sdim      }
246276479Sdim    }
247249259Sdim
248276479Sdim    // Now directly compute a dominance tree. We don't rely on the pass
249276479Sdim    // manager to provide this as it isolates us from a potentially
250276479Sdim    // out-of-date dominator tree and makes it significantly more complex to
251276479Sdim    // run this code outside of a pass manager.
252276479Sdim    // FIXME: It's really gross that we have to cast away constness here.
253276479Sdim    DT.recalculate(const_cast<Function &>(F));
254249259Sdim
255276479Sdim    Broken = false;
256276479Sdim    // FIXME: We strip const here because the inst visitor strips const.
257276479Sdim    visit(const_cast<Function &>(F));
258296417Sdim    verifySiblingFuncletUnwinds();
259276479Sdim    InstsInThisBlock.clear();
260296417Sdim    LandingPadResultTy = nullptr;
261288943Sdim    SawFrameEscape = false;
262296417Sdim    SiblingFuncletInfo.clear();
263249259Sdim
264276479Sdim    return !Broken;
265276479Sdim  }
266249259Sdim
267276479Sdim  bool verify(const Module &M) {
268276479Sdim    this->M = &M;
269276479Sdim    Context = &M.getContext();
270276479Sdim    Broken = false;
271249259Sdim
272276479Sdim    // Scan through, checking all of the external function's linkage now...
273276479Sdim    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
274276479Sdim      visitGlobalValue(*I);
275261991Sdim
276276479Sdim      // Check to make sure function prototypes are okay.
277276479Sdim      if (I->isDeclaration())
278276479Sdim        visitFunction(*I);
279249259Sdim    }
280249259Sdim
281288943Sdim    // Now that we've visited every function, verify that we never asked to
282288943Sdim    // recover a frame index that wasn't escaped.
283288943Sdim    verifyFrameRecoverIndices();
284288943Sdim
285276479Sdim    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
286276479Sdim         I != E; ++I)
287276479Sdim      visitGlobalVariable(*I);
288249259Sdim
289276479Sdim    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
290276479Sdim         I != E; ++I)
291276479Sdim      visitGlobalAlias(*I);
292249259Sdim
293276479Sdim    for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
294276479Sdim                                               E = M.named_metadata_end();
295276479Sdim         I != E; ++I)
296276479Sdim      visitNamedMDNode(*I);
297249259Sdim
298276479Sdim    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
299276479Sdim      visitComdat(SMEC.getValue());
300249259Sdim
301276479Sdim    visitModuleFlags(M);
302276479Sdim    visitModuleIdents(M);
303249259Sdim
304288943Sdim    // Verify type referneces last.
305288943Sdim    verifyTypeRefs();
306288943Sdim
307276479Sdim    return !Broken;
308276479Sdim  }
309249259Sdim
310276479Sdimprivate:
311276479Sdim  // Verification methods...
312276479Sdim  void visitGlobalValue(const GlobalValue &GV);
313276479Sdim  void visitGlobalVariable(const GlobalVariable &GV);
314276479Sdim  void visitGlobalAlias(const GlobalAlias &GA);
315276479Sdim  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
316280031Sdim  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
317276479Sdim                           const GlobalAlias &A, const Constant &C);
318276479Sdim  void visitNamedMDNode(const NamedMDNode &NMD);
319288943Sdim  void visitMDNode(const MDNode &MD);
320288943Sdim  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
321288943Sdim  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
322276479Sdim  void visitComdat(const Comdat &C);
323276479Sdim  void visitModuleIdents(const Module &M);
324276479Sdim  void visitModuleFlags(const Module &M);
325276479Sdim  void visitModuleFlag(const MDNode *Op,
326276479Sdim                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
327276479Sdim                       SmallVectorImpl<const MDNode *> &Requirements);
328276479Sdim  void visitFunction(const Function &F);
329276479Sdim  void visitBasicBlock(BasicBlock &BB);
330280031Sdim  void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
331296417Sdim  void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
332249259Sdim
333288943Sdim  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
334288943Sdim#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
335288943Sdim#include "llvm/IR/Metadata.def"
336288943Sdim  void visitDIScope(const DIScope &N);
337288943Sdim  void visitDIVariable(const DIVariable &N);
338288943Sdim  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
339288943Sdim  void visitDITemplateParameter(const DITemplateParameter &N);
340280031Sdim
341288943Sdim  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
342288943Sdim
343288943Sdim  /// \brief Check for a valid string-based type reference.
344288943Sdim  ///
345288943Sdim  /// Checks if \c MD is a string-based type reference.  If it is, keeps track
346288943Sdim  /// of it (and its user, \c N) for error messages later.
347288943Sdim  bool isValidUUID(const MDNode &N, const Metadata *MD);
348288943Sdim
349288943Sdim  /// \brief Check for a valid type reference.
350288943Sdim  ///
351288943Sdim  /// Checks for subclasses of \a DIType, or \a isValidUUID().
352288943Sdim  bool isTypeRef(const MDNode &N, const Metadata *MD);
353288943Sdim
354288943Sdim  /// \brief Check for a valid scope reference.
355288943Sdim  ///
356288943Sdim  /// Checks for subclasses of \a DIScope, or \a isValidUUID().
357288943Sdim  bool isScopeRef(const MDNode &N, const Metadata *MD);
358288943Sdim
359288943Sdim  /// \brief Check for a valid debug info reference.
360288943Sdim  ///
361288943Sdim  /// Checks for subclasses of \a DINode, or \a isValidUUID().
362288943Sdim  bool isDIRef(const MDNode &N, const Metadata *MD);
363288943Sdim
364276479Sdim  // InstVisitor overrides...
365276479Sdim  using InstVisitor<Verifier>::visit;
366276479Sdim  void visit(Instruction &I);
367261991Sdim
368276479Sdim  void visitTruncInst(TruncInst &I);
369276479Sdim  void visitZExtInst(ZExtInst &I);
370276479Sdim  void visitSExtInst(SExtInst &I);
371276479Sdim  void visitFPTruncInst(FPTruncInst &I);
372276479Sdim  void visitFPExtInst(FPExtInst &I);
373276479Sdim  void visitFPToUIInst(FPToUIInst &I);
374276479Sdim  void visitFPToSIInst(FPToSIInst &I);
375276479Sdim  void visitUIToFPInst(UIToFPInst &I);
376276479Sdim  void visitSIToFPInst(SIToFPInst &I);
377276479Sdim  void visitIntToPtrInst(IntToPtrInst &I);
378276479Sdim  void visitPtrToIntInst(PtrToIntInst &I);
379276479Sdim  void visitBitCastInst(BitCastInst &I);
380276479Sdim  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
381276479Sdim  void visitPHINode(PHINode &PN);
382276479Sdim  void visitBinaryOperator(BinaryOperator &B);
383276479Sdim  void visitICmpInst(ICmpInst &IC);
384276479Sdim  void visitFCmpInst(FCmpInst &FC);
385276479Sdim  void visitExtractElementInst(ExtractElementInst &EI);
386276479Sdim  void visitInsertElementInst(InsertElementInst &EI);
387276479Sdim  void visitShuffleVectorInst(ShuffleVectorInst &EI);
388276479Sdim  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
389276479Sdim  void visitCallInst(CallInst &CI);
390276479Sdim  void visitInvokeInst(InvokeInst &II);
391276479Sdim  void visitGetElementPtrInst(GetElementPtrInst &GEP);
392276479Sdim  void visitLoadInst(LoadInst &LI);
393276479Sdim  void visitStoreInst(StoreInst &SI);
394276479Sdim  void verifyDominatesUse(Instruction &I, unsigned i);
395276479Sdim  void visitInstruction(Instruction &I);
396276479Sdim  void visitTerminatorInst(TerminatorInst &I);
397276479Sdim  void visitBranchInst(BranchInst &BI);
398276479Sdim  void visitReturnInst(ReturnInst &RI);
399276479Sdim  void visitSwitchInst(SwitchInst &SI);
400276479Sdim  void visitIndirectBrInst(IndirectBrInst &BI);
401276479Sdim  void visitSelectInst(SelectInst &SI);
402276479Sdim  void visitUserOp1(Instruction &I);
403276479Sdim  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
404288943Sdim  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
405288943Sdim  template <class DbgIntrinsicTy>
406288943Sdim  void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
407276479Sdim  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
408276479Sdim  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
409276479Sdim  void visitFenceInst(FenceInst &FI);
410276479Sdim  void visitAllocaInst(AllocaInst &AI);
411276479Sdim  void visitExtractValueInst(ExtractValueInst &EVI);
412276479Sdim  void visitInsertValueInst(InsertValueInst &IVI);
413296417Sdim  void visitEHPadPredecessors(Instruction &I);
414276479Sdim  void visitLandingPadInst(LandingPadInst &LPI);
415296417Sdim  void visitCatchPadInst(CatchPadInst &CPI);
416296417Sdim  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
417296417Sdim  void visitCleanupPadInst(CleanupPadInst &CPI);
418296417Sdim  void visitFuncletPadInst(FuncletPadInst &FPI);
419296417Sdim  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
420296417Sdim  void visitCleanupReturnInst(CleanupReturnInst &CRI);
421261991Sdim
422276479Sdim  void VerifyCallSite(CallSite CS);
423276479Sdim  void verifyMustTailCall(CallInst &CI);
424276479Sdim  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
425276479Sdim                        unsigned ArgNo, std::string &Suffix);
426276479Sdim  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
427276479Sdim                           SmallVectorImpl<Type *> &ArgTys);
428276479Sdim  bool VerifyIntrinsicIsVarArg(bool isVarArg,
429276479Sdim                               ArrayRef<Intrinsic::IITDescriptor> &Infos);
430276479Sdim  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
431276479Sdim  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
432276479Sdim                            const Value *V);
433276479Sdim  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
434276479Sdim                            bool isReturnValue, const Value *V);
435276479Sdim  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
436276479Sdim                           const Value *V);
437288943Sdim  void VerifyFunctionMetadata(
438288943Sdim      const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
439249259Sdim
440296417Sdim  void visitConstantExprsRecursively(const Constant *EntryC);
441296417Sdim  void visitConstantExpr(const ConstantExpr *CE);
442288943Sdim  void VerifyStatepoint(ImmutableCallSite CS);
443288943Sdim  void verifyFrameRecoverIndices();
444296417Sdim  void verifySiblingFuncletUnwinds();
445249259Sdim
446288943Sdim  // Module-level debug info verification...
447288943Sdim  void verifyTypeRefs();
448288943Sdim  template <class MapTy>
449288943Sdim  void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
450288943Sdim                                const MapTy &TypeRefs);
451288943Sdim  void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
452276479Sdim};
453249259Sdim} // End anonymous namespace
454249259Sdim
455249259Sdim// Assert - We know that cond should be true, if not print an error message.
456288943Sdim#define Assert(C, ...) \
457288943Sdim  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
458249259Sdim
459249259Sdimvoid Verifier::visit(Instruction &I) {
460249259Sdim  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
461288943Sdim    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
462249259Sdim  InstVisitor<Verifier>::visit(I);
463249259Sdim}
464249259Sdim
465249259Sdim
466276479Sdimvoid Verifier::visitGlobalValue(const GlobalValue &GV) {
467288943Sdim  Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
468288943Sdim             GV.hasExternalWeakLinkage(),
469288943Sdim         "Global is external, but doesn't have external or weak linkage!", &GV);
470249259Sdim
471288943Sdim  Assert(GV.getAlignment() <= Value::MaximumAlignment,
472288943Sdim         "huge alignment values are unsupported", &GV);
473288943Sdim  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
474288943Sdim         "Only global variables can have appending linkage!", &GV);
475249259Sdim
476249259Sdim  if (GV.hasAppendingLinkage()) {
477276479Sdim    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
478288943Sdim    Assert(GVar && GVar->getValueType()->isArrayTy(),
479288943Sdim           "Only global arrays can have appending linkage!", GVar);
480249259Sdim  }
481288943Sdim
482288943Sdim  if (GV.isDeclarationForLinker())
483288943Sdim    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
484249259Sdim}
485249259Sdim
486276479Sdimvoid Verifier::visitGlobalVariable(const GlobalVariable &GV) {
487249259Sdim  if (GV.hasInitializer()) {
488288943Sdim    Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
489288943Sdim           "Global variable initializer type does not match global "
490288943Sdim           "variable type!",
491288943Sdim           &GV);
492249259Sdim
493249259Sdim    // If the global has common linkage, it must have a zero initializer and
494249259Sdim    // cannot be constant.
495249259Sdim    if (GV.hasCommonLinkage()) {
496288943Sdim      Assert(GV.getInitializer()->isNullValue(),
497288943Sdim             "'common' global must have a zero initializer!", &GV);
498288943Sdim      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
499288943Sdim             &GV);
500288943Sdim      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
501249259Sdim    }
502249259Sdim  } else {
503288943Sdim    Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
504288943Sdim           "invalid linkage type for global declaration", &GV);
505249259Sdim  }
506249259Sdim
507249259Sdim  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
508249259Sdim                       GV.getName() == "llvm.global_dtors")) {
509288943Sdim    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
510288943Sdim           "invalid linkage for intrinsic global variable", &GV);
511249259Sdim    // Don't worry about emitting an error for it not being an array,
512249259Sdim    // visitGlobalValue will complain on appending non-array.
513288943Sdim    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
514249259Sdim      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
515249259Sdim      PointerType *FuncPtrTy =
516249259Sdim          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
517276479Sdim      // FIXME: Reject the 2-field form in LLVM 4.0.
518288943Sdim      Assert(STy &&
519288943Sdim                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
520288943Sdim                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
521288943Sdim                 STy->getTypeAtIndex(1) == FuncPtrTy,
522288943Sdim             "wrong type for intrinsic global variable", &GV);
523276479Sdim      if (STy->getNumElements() == 3) {
524276479Sdim        Type *ETy = STy->getTypeAtIndex(2);
525288943Sdim        Assert(ETy->isPointerTy() &&
526288943Sdim                   cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
527288943Sdim               "wrong type for intrinsic global variable", &GV);
528276479Sdim      }
529249259Sdim    }
530249259Sdim  }
531249259Sdim
532251662Sdim  if (GV.hasName() && (GV.getName() == "llvm.used" ||
533261991Sdim                       GV.getName() == "llvm.compiler.used")) {
534288943Sdim    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
535288943Sdim           "invalid linkage for intrinsic global variable", &GV);
536288943Sdim    Type *GVType = GV.getValueType();
537251662Sdim    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
538251662Sdim      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
539288943Sdim      Assert(PTy, "wrong type for intrinsic global variable", &GV);
540251662Sdim      if (GV.hasInitializer()) {
541276479Sdim        const Constant *Init = GV.getInitializer();
542276479Sdim        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
543288943Sdim        Assert(InitArray, "wrong initalizer for intrinsic global variable",
544288943Sdim               Init);
545251662Sdim        for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
546261991Sdim          Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
547288943Sdim          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
548288943Sdim                     isa<GlobalAlias>(V),
549288943Sdim                 "invalid llvm.used member", V);
550288943Sdim          Assert(V->hasName(), "members of llvm.used must be named", V);
551251662Sdim        }
552251662Sdim      }
553251662Sdim    }
554251662Sdim  }
555251662Sdim
556288943Sdim  Assert(!GV.hasDLLImportStorageClass() ||
557288943Sdim             (GV.isDeclaration() && GV.hasExternalLinkage()) ||
558288943Sdim             GV.hasAvailableExternallyLinkage(),
559288943Sdim         "Global is marked as dllimport, but not external", &GV);
560276479Sdim
561261991Sdim  if (!GV.hasInitializer()) {
562261991Sdim    visitGlobalValue(GV);
563261991Sdim    return;
564261991Sdim  }
565261991Sdim
566261991Sdim  // Walk any aggregate initializers looking for bitcasts between address spaces
567296417Sdim  visitConstantExprsRecursively(GV.getInitializer());
568261991Sdim
569249259Sdim  visitGlobalValue(GV);
570249259Sdim}
571249259Sdim
572276479Sdimvoid Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
573276479Sdim  SmallPtrSet<const GlobalAlias*, 4> Visited;
574276479Sdim  Visited.insert(&GA);
575276479Sdim  visitAliaseeSubExpr(Visited, GA, C);
576276479Sdim}
577249259Sdim
578280031Sdimvoid Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
579276479Sdim                                   const GlobalAlias &GA, const Constant &C) {
580276479Sdim  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
581296417Sdim    Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
582296417Sdim           &GA);
583261991Sdim
584276479Sdim    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
585288943Sdim      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
586261991Sdim
587288943Sdim      Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
588288943Sdim             &GA);
589276479Sdim    } else {
590276479Sdim      // Only continue verifying subexpressions of GlobalAliases.
591276479Sdim      // Do not recurse into global initializers.
592276479Sdim      return;
593261991Sdim    }
594249259Sdim  }
595249259Sdim
596276479Sdim  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
597296417Sdim    visitConstantExprsRecursively(CE);
598249259Sdim
599276479Sdim  for (const Use &U : C.operands()) {
600276479Sdim    Value *V = &*U;
601276479Sdim    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
602276479Sdim      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
603276479Sdim    else if (const auto *C2 = dyn_cast<Constant>(V))
604276479Sdim      visitAliaseeSubExpr(Visited, GA, *C2);
605276479Sdim  }
606276479Sdim}
607276479Sdim
608276479Sdimvoid Verifier::visitGlobalAlias(const GlobalAlias &GA) {
609288943Sdim  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
610288943Sdim         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
611288943Sdim         "weak_odr, or external linkage!",
612288943Sdim         &GA);
613276479Sdim  const Constant *Aliasee = GA.getAliasee();
614288943Sdim  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
615288943Sdim  Assert(GA.getType() == Aliasee->getType(),
616288943Sdim         "Alias and aliasee types should match!", &GA);
617276479Sdim
618288943Sdim  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
619288943Sdim         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
620276479Sdim
621276479Sdim  visitAliaseeSubExpr(GA, *Aliasee);
622276479Sdim
623249259Sdim  visitGlobalValue(GA);
624249259Sdim}
625249259Sdim
626276479Sdimvoid Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
627249259Sdim  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
628249259Sdim    MDNode *MD = NMD.getOperand(i);
629288943Sdim
630288943Sdim    if (NMD.getName() == "llvm.dbg.cu") {
631288943Sdim      Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
632288943Sdim    }
633288943Sdim
634249259Sdim    if (!MD)
635249259Sdim      continue;
636249259Sdim
637280031Sdim    visitMDNode(*MD);
638249259Sdim  }
639249259Sdim}
640249259Sdim
641288943Sdimvoid Verifier::visitMDNode(const MDNode &MD) {
642249259Sdim  // Only visit each node once.  Metadata can be mutually recursive, so this
643249259Sdim  // avoids infinite recursion here, as well as being an optimization.
644280031Sdim  if (!MDNodes.insert(&MD).second)
645249259Sdim    return;
646249259Sdim
647288943Sdim  switch (MD.getMetadataID()) {
648288943Sdim  default:
649288943Sdim    llvm_unreachable("Invalid MDNode subclass");
650288943Sdim  case Metadata::MDTupleKind:
651288943Sdim    break;
652288943Sdim#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
653288943Sdim  case Metadata::CLASS##Kind:                                                  \
654288943Sdim    visit##CLASS(cast<CLASS>(MD));                                             \
655288943Sdim    break;
656288943Sdim#include "llvm/IR/Metadata.def"
657288943Sdim  }
658288943Sdim
659249259Sdim  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
660280031Sdim    Metadata *Op = MD.getOperand(i);
661249259Sdim    if (!Op)
662249259Sdim      continue;
663288943Sdim    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
664288943Sdim           &MD, Op);
665280031Sdim    if (auto *N = dyn_cast<MDNode>(Op)) {
666280031Sdim      visitMDNode(*N);
667249259Sdim      continue;
668280031Sdim    }
669280031Sdim    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
670280031Sdim      visitValueAsMetadata(*V, nullptr);
671249259Sdim      continue;
672249259Sdim    }
673280031Sdim  }
674249259Sdim
675280031Sdim  // Check these last, so we diagnose problems in operands first.
676288943Sdim  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
677288943Sdim  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
678280031Sdim}
679249259Sdim
680288943Sdimvoid Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
681288943Sdim  Assert(MD.getValue(), "Expected valid value", &MD);
682288943Sdim  Assert(!MD.getValue()->getType()->isMetadataTy(),
683288943Sdim         "Unexpected metadata round-trip through values", &MD, MD.getValue());
684280031Sdim
685280031Sdim  auto *L = dyn_cast<LocalAsMetadata>(&MD);
686280031Sdim  if (!L)
687280031Sdim    return;
688280031Sdim
689288943Sdim  Assert(F, "function-local metadata used outside a function", L);
690280031Sdim
691280031Sdim  // If this was an instruction, bb, or argument, verify that it is in the
692280031Sdim  // function that we expect.
693280031Sdim  Function *ActualF = nullptr;
694280031Sdim  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
695288943Sdim    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
696280031Sdim    ActualF = I->getParent()->getParent();
697280031Sdim  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
698280031Sdim    ActualF = BB->getParent();
699280031Sdim  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
700280031Sdim    ActualF = A->getParent();
701280031Sdim  assert(ActualF && "Unimplemented function local metadata case!");
702280031Sdim
703288943Sdim  Assert(ActualF == F, "function-local metadata used in wrong function", L);
704280031Sdim}
705280031Sdim
706288943Sdimvoid Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
707280031Sdim  Metadata *MD = MDV.getMetadata();
708280031Sdim  if (auto *N = dyn_cast<MDNode>(MD)) {
709280031Sdim    visitMDNode(*N);
710280031Sdim    return;
711249259Sdim  }
712280031Sdim
713280031Sdim  // Only visit each node once.  Metadata can be mutually recursive, so this
714280031Sdim  // avoids infinite recursion here, as well as being an optimization.
715280031Sdim  if (!MDNodes.insert(MD).second)
716280031Sdim    return;
717280031Sdim
718280031Sdim  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
719280031Sdim    visitValueAsMetadata(*V, F);
720249259Sdim}
721249259Sdim
722288943Sdimbool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
723288943Sdim  auto *S = dyn_cast<MDString>(MD);
724288943Sdim  if (!S)
725288943Sdim    return false;
726288943Sdim  if (S->getString().empty())
727288943Sdim    return false;
728288943Sdim
729288943Sdim  // Keep track of names of types referenced via UUID so we can check that they
730288943Sdim  // actually exist.
731288943Sdim  UnresolvedTypeRefs.insert(std::make_pair(S, &N));
732288943Sdim  return true;
733288943Sdim}
734288943Sdim
735288943Sdim/// \brief Check if a value can be a reference to a type.
736288943Sdimbool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
737288943Sdim  return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
738288943Sdim}
739288943Sdim
740288943Sdim/// \brief Check if a value can be a ScopeRef.
741288943Sdimbool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
742288943Sdim  return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
743288943Sdim}
744288943Sdim
745288943Sdim/// \brief Check if a value can be a debug info ref.
746288943Sdimbool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
747288943Sdim  return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
748288943Sdim}
749288943Sdim
750288943Sdimtemplate <class Ty>
751288943Sdimbool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
752288943Sdim  for (Metadata *MD : N.operands()) {
753288943Sdim    if (MD) {
754288943Sdim      if (!isa<Ty>(MD))
755288943Sdim        return false;
756288943Sdim    } else {
757288943Sdim      if (!AllowNull)
758288943Sdim        return false;
759288943Sdim    }
760288943Sdim  }
761288943Sdim  return true;
762288943Sdim}
763288943Sdim
764288943Sdimtemplate <class Ty>
765288943Sdimbool isValidMetadataArray(const MDTuple &N) {
766288943Sdim  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
767288943Sdim}
768288943Sdim
769288943Sdimtemplate <class Ty>
770288943Sdimbool isValidMetadataNullArray(const MDTuple &N) {
771288943Sdim  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
772288943Sdim}
773288943Sdim
774288943Sdimvoid Verifier::visitDILocation(const DILocation &N) {
775288943Sdim  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
776288943Sdim         "location requires a valid scope", &N, N.getRawScope());
777288943Sdim  if (auto *IA = N.getRawInlinedAt())
778288943Sdim    Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
779288943Sdim}
780288943Sdim
781288943Sdimvoid Verifier::visitGenericDINode(const GenericDINode &N) {
782288943Sdim  Assert(N.getTag(), "invalid tag", &N);
783288943Sdim}
784288943Sdim
785288943Sdimvoid Verifier::visitDIScope(const DIScope &N) {
786288943Sdim  if (auto *F = N.getRawFile())
787288943Sdim    Assert(isa<DIFile>(F), "invalid file", &N, F);
788288943Sdim}
789288943Sdim
790288943Sdimvoid Verifier::visitDISubrange(const DISubrange &N) {
791288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
792288943Sdim  Assert(N.getCount() >= -1, "invalid subrange count", &N);
793288943Sdim}
794288943Sdim
795288943Sdimvoid Verifier::visitDIEnumerator(const DIEnumerator &N) {
796288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
797288943Sdim}
798288943Sdim
799288943Sdimvoid Verifier::visitDIBasicType(const DIBasicType &N) {
800288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_base_type ||
801288943Sdim             N.getTag() == dwarf::DW_TAG_unspecified_type,
802288943Sdim         "invalid tag", &N);
803288943Sdim}
804288943Sdim
805296417Sdimvoid Verifier::visitDIDerivedType(const DIDerivedType &N) {
806288943Sdim  // Common scope checks.
807288943Sdim  visitDIScope(N);
808288943Sdim
809288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_typedef ||
810288943Sdim             N.getTag() == dwarf::DW_TAG_pointer_type ||
811288943Sdim             N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
812288943Sdim             N.getTag() == dwarf::DW_TAG_reference_type ||
813288943Sdim             N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
814288943Sdim             N.getTag() == dwarf::DW_TAG_const_type ||
815288943Sdim             N.getTag() == dwarf::DW_TAG_volatile_type ||
816288943Sdim             N.getTag() == dwarf::DW_TAG_restrict_type ||
817288943Sdim             N.getTag() == dwarf::DW_TAG_member ||
818288943Sdim             N.getTag() == dwarf::DW_TAG_inheritance ||
819288943Sdim             N.getTag() == dwarf::DW_TAG_friend,
820288943Sdim         "invalid tag", &N);
821288943Sdim  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
822288943Sdim    Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
823288943Sdim           N.getExtraData());
824288943Sdim  }
825296417Sdim
826296417Sdim  Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
827296417Sdim  Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
828296417Sdim         N.getBaseType());
829288943Sdim}
830288943Sdim
831288943Sdimstatic bool hasConflictingReferenceFlags(unsigned Flags) {
832288943Sdim  return (Flags & DINode::FlagLValueReference) &&
833288943Sdim         (Flags & DINode::FlagRValueReference);
834288943Sdim}
835288943Sdim
836288943Sdimvoid Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
837288943Sdim  auto *Params = dyn_cast<MDTuple>(&RawParams);
838288943Sdim  Assert(Params, "invalid template params", &N, &RawParams);
839288943Sdim  for (Metadata *Op : Params->operands()) {
840288943Sdim    Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
841288943Sdim           Params, Op);
842288943Sdim  }
843288943Sdim}
844288943Sdim
845288943Sdimvoid Verifier::visitDICompositeType(const DICompositeType &N) {
846296417Sdim  // Common scope checks.
847296417Sdim  visitDIScope(N);
848288943Sdim
849288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_array_type ||
850288943Sdim             N.getTag() == dwarf::DW_TAG_structure_type ||
851288943Sdim             N.getTag() == dwarf::DW_TAG_union_type ||
852288943Sdim             N.getTag() == dwarf::DW_TAG_enumeration_type ||
853288943Sdim             N.getTag() == dwarf::DW_TAG_class_type,
854288943Sdim         "invalid tag", &N);
855288943Sdim
856296417Sdim  Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
857296417Sdim  Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
858296417Sdim         N.getBaseType());
859296417Sdim
860288943Sdim  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
861288943Sdim         "invalid composite elements", &N, N.getRawElements());
862288943Sdim  Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
863288943Sdim         N.getRawVTableHolder());
864288943Sdim  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
865288943Sdim         &N);
866288943Sdim  if (auto *Params = N.getRawTemplateParams())
867288943Sdim    visitTemplateParams(N, *Params);
868296417Sdim
869296417Sdim  if (N.getTag() == dwarf::DW_TAG_class_type ||
870296417Sdim      N.getTag() == dwarf::DW_TAG_union_type) {
871296417Sdim    Assert(N.getFile() && !N.getFile()->getFilename().empty(),
872296417Sdim           "class/union requires a filename", &N, N.getFile());
873296417Sdim  }
874288943Sdim}
875288943Sdim
876288943Sdimvoid Verifier::visitDISubroutineType(const DISubroutineType &N) {
877288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
878288943Sdim  if (auto *Types = N.getRawTypeArray()) {
879288943Sdim    Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
880288943Sdim    for (Metadata *Ty : N.getTypeArray()->operands()) {
881288943Sdim      Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
882288943Sdim    }
883288943Sdim  }
884288943Sdim  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
885288943Sdim         &N);
886288943Sdim}
887288943Sdim
888288943Sdimvoid Verifier::visitDIFile(const DIFile &N) {
889288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
890288943Sdim}
891288943Sdim
892288943Sdimvoid Verifier::visitDICompileUnit(const DICompileUnit &N) {
893296417Sdim  Assert(N.isDistinct(), "compile units must be distinct", &N);
894288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
895288943Sdim
896288943Sdim  // Don't bother verifying the compilation directory or producer string
897288943Sdim  // as those could be empty.
898288943Sdim  Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
899288943Sdim         N.getRawFile());
900288943Sdim  Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
901288943Sdim         N.getFile());
902288943Sdim
903288943Sdim  if (auto *Array = N.getRawEnumTypes()) {
904288943Sdim    Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
905288943Sdim    for (Metadata *Op : N.getEnumTypes()->operands()) {
906288943Sdim      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
907288943Sdim      Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
908288943Sdim             "invalid enum type", &N, N.getEnumTypes(), Op);
909288943Sdim    }
910288943Sdim  }
911288943Sdim  if (auto *Array = N.getRawRetainedTypes()) {
912288943Sdim    Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
913288943Sdim    for (Metadata *Op : N.getRetainedTypes()->operands()) {
914288943Sdim      Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
915288943Sdim    }
916288943Sdim  }
917288943Sdim  if (auto *Array = N.getRawSubprograms()) {
918288943Sdim    Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
919288943Sdim    for (Metadata *Op : N.getSubprograms()->operands()) {
920288943Sdim      Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
921288943Sdim    }
922288943Sdim  }
923288943Sdim  if (auto *Array = N.getRawGlobalVariables()) {
924288943Sdim    Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
925288943Sdim    for (Metadata *Op : N.getGlobalVariables()->operands()) {
926288943Sdim      Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
927288943Sdim             Op);
928288943Sdim    }
929288943Sdim  }
930288943Sdim  if (auto *Array = N.getRawImportedEntities()) {
931288943Sdim    Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
932288943Sdim    for (Metadata *Op : N.getImportedEntities()->operands()) {
933288943Sdim      Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
934288943Sdim             Op);
935288943Sdim    }
936288943Sdim  }
937296417Sdim  if (auto *Array = N.getRawMacros()) {
938296417Sdim    Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
939296417Sdim    for (Metadata *Op : N.getMacros()->operands()) {
940296417Sdim      Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
941296417Sdim    }
942296417Sdim  }
943288943Sdim}
944288943Sdim
945288943Sdimvoid Verifier::visitDISubprogram(const DISubprogram &N) {
946288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
947288943Sdim  Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
948288943Sdim  if (auto *T = N.getRawType())
949288943Sdim    Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
950288943Sdim  Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
951288943Sdim         N.getRawContainingType());
952288943Sdim  if (auto *Params = N.getRawTemplateParams())
953288943Sdim    visitTemplateParams(N, *Params);
954288943Sdim  if (auto *S = N.getRawDeclaration()) {
955288943Sdim    Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
956288943Sdim           "invalid subprogram declaration", &N, S);
957288943Sdim  }
958288943Sdim  if (auto *RawVars = N.getRawVariables()) {
959288943Sdim    auto *Vars = dyn_cast<MDTuple>(RawVars);
960288943Sdim    Assert(Vars, "invalid variable list", &N, RawVars);
961288943Sdim    for (Metadata *Op : Vars->operands()) {
962288943Sdim      Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
963288943Sdim             Op);
964288943Sdim    }
965288943Sdim  }
966288943Sdim  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
967288943Sdim         &N);
968288943Sdim
969296417Sdim  if (N.isDefinition())
970296417Sdim    Assert(N.isDistinct(), "subprogram definitions must be distinct", &N);
971288943Sdim}
972288943Sdim
973288943Sdimvoid Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
974288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
975288943Sdim  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
976288943Sdim         "invalid local scope", &N, N.getRawScope());
977288943Sdim}
978288943Sdim
979288943Sdimvoid Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
980288943Sdim  visitDILexicalBlockBase(N);
981288943Sdim
982288943Sdim  Assert(N.getLine() || !N.getColumn(),
983288943Sdim         "cannot have column info without line info", &N);
984288943Sdim}
985288943Sdim
986288943Sdimvoid Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
987288943Sdim  visitDILexicalBlockBase(N);
988288943Sdim}
989288943Sdim
990288943Sdimvoid Verifier::visitDINamespace(const DINamespace &N) {
991288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
992288943Sdim  if (auto *S = N.getRawScope())
993288943Sdim    Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
994288943Sdim}
995288943Sdim
996296417Sdimvoid Verifier::visitDIMacro(const DIMacro &N) {
997296417Sdim  Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
998296417Sdim         N.getMacinfoType() == dwarf::DW_MACINFO_undef,
999296417Sdim         "invalid macinfo type", &N);
1000296417Sdim  Assert(!N.getName().empty(), "anonymous macro", &N);
1001296417Sdim  if (!N.getValue().empty()) {
1002296417Sdim    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1003296417Sdim  }
1004296417Sdim}
1005296417Sdim
1006296417Sdimvoid Verifier::visitDIMacroFile(const DIMacroFile &N) {
1007296417Sdim  Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1008296417Sdim         "invalid macinfo type", &N);
1009296417Sdim  if (auto *F = N.getRawFile())
1010296417Sdim    Assert(isa<DIFile>(F), "invalid file", &N, F);
1011296417Sdim
1012296417Sdim  if (auto *Array = N.getRawElements()) {
1013296417Sdim    Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1014296417Sdim    for (Metadata *Op : N.getElements()->operands()) {
1015296417Sdim      Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1016296417Sdim    }
1017296417Sdim  }
1018296417Sdim}
1019296417Sdim
1020288943Sdimvoid Verifier::visitDIModule(const DIModule &N) {
1021288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1022288943Sdim  Assert(!N.getName().empty(), "anonymous module", &N);
1023288943Sdim}
1024288943Sdim
1025288943Sdimvoid Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1026288943Sdim  Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
1027288943Sdim}
1028288943Sdim
1029288943Sdimvoid Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1030288943Sdim  visitDITemplateParameter(N);
1031288943Sdim
1032288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1033288943Sdim         &N);
1034288943Sdim}
1035288943Sdim
1036288943Sdimvoid Verifier::visitDITemplateValueParameter(
1037288943Sdim    const DITemplateValueParameter &N) {
1038288943Sdim  visitDITemplateParameter(N);
1039288943Sdim
1040288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1041288943Sdim             N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1042288943Sdim             N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1043288943Sdim         "invalid tag", &N);
1044288943Sdim}
1045288943Sdim
1046288943Sdimvoid Verifier::visitDIVariable(const DIVariable &N) {
1047288943Sdim  if (auto *S = N.getRawScope())
1048288943Sdim    Assert(isa<DIScope>(S), "invalid scope", &N, S);
1049288943Sdim  Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
1050288943Sdim  if (auto *F = N.getRawFile())
1051288943Sdim    Assert(isa<DIFile>(F), "invalid file", &N, F);
1052288943Sdim}
1053288943Sdim
1054288943Sdimvoid Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1055288943Sdim  // Checks common to all variables.
1056288943Sdim  visitDIVariable(N);
1057288943Sdim
1058288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1059288943Sdim  Assert(!N.getName().empty(), "missing global variable name", &N);
1060288943Sdim  if (auto *V = N.getRawVariable()) {
1061288943Sdim    Assert(isa<ConstantAsMetadata>(V) &&
1062288943Sdim               !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1063288943Sdim           "invalid global varaible ref", &N, V);
1064288943Sdim  }
1065288943Sdim  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1066288943Sdim    Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
1067288943Sdim           &N, Member);
1068288943Sdim  }
1069288943Sdim}
1070288943Sdim
1071288943Sdimvoid Verifier::visitDILocalVariable(const DILocalVariable &N) {
1072288943Sdim  // Checks common to all variables.
1073288943Sdim  visitDIVariable(N);
1074288943Sdim
1075296417Sdim  Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1076288943Sdim  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1077288943Sdim         "local variable requires a valid scope", &N, N.getRawScope());
1078288943Sdim}
1079288943Sdim
1080288943Sdimvoid Verifier::visitDIExpression(const DIExpression &N) {
1081288943Sdim  Assert(N.isValid(), "invalid expression", &N);
1082288943Sdim}
1083288943Sdim
1084288943Sdimvoid Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1085288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1086288943Sdim  if (auto *T = N.getRawType())
1087288943Sdim    Assert(isTypeRef(N, T), "invalid type ref", &N, T);
1088288943Sdim  if (auto *F = N.getRawFile())
1089288943Sdim    Assert(isa<DIFile>(F), "invalid file", &N, F);
1090288943Sdim}
1091288943Sdim
1092288943Sdimvoid Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1093288943Sdim  Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
1094288943Sdim             N.getTag() == dwarf::DW_TAG_imported_declaration,
1095288943Sdim         "invalid tag", &N);
1096288943Sdim  if (auto *S = N.getRawScope())
1097288943Sdim    Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1098288943Sdim  Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
1099288943Sdim         N.getEntity());
1100288943Sdim}
1101288943Sdim
1102276479Sdimvoid Verifier::visitComdat(const Comdat &C) {
1103276479Sdim  // The Module is invalid if the GlobalValue has private linkage.  Entities
1104276479Sdim  // with private linkage don't have entries in the symbol table.
1105288943Sdim  if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1106288943Sdim    Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1107288943Sdim           GV);
1108276479Sdim}
1109276479Sdim
1110276479Sdimvoid Verifier::visitModuleIdents(const Module &M) {
1111261991Sdim  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1112261991Sdim  if (!Idents)
1113261991Sdim    return;
1114261991Sdim
1115261991Sdim  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1116261991Sdim  // Scan each llvm.ident entry and make sure that this requirement is met.
1117261991Sdim  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1118261991Sdim    const MDNode *N = Idents->getOperand(i);
1119288943Sdim    Assert(N->getNumOperands() == 1,
1120288943Sdim           "incorrect number of operands in llvm.ident metadata", N);
1121288943Sdim    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1122288943Sdim           ("invalid value for llvm.ident metadata entry operand"
1123288943Sdim            "(the operand should be a string)"),
1124288943Sdim           N->getOperand(0));
1125261991Sdim  }
1126261991Sdim}
1127261991Sdim
1128276479Sdimvoid Verifier::visitModuleFlags(const Module &M) {
1129249259Sdim  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1130249259Sdim  if (!Flags) return;
1131249259Sdim
1132249259Sdim  // Scan each flag, and track the flags and requirements.
1133276479Sdim  DenseMap<const MDString*, const MDNode*> SeenIDs;
1134276479Sdim  SmallVector<const MDNode*, 16> Requirements;
1135249259Sdim  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1136249259Sdim    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1137249259Sdim  }
1138249259Sdim
1139249259Sdim  // Validate that the requirements in the module are valid.
1140249259Sdim  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1141276479Sdim    const MDNode *Requirement = Requirements[I];
1142276479Sdim    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1143280031Sdim    const Metadata *ReqValue = Requirement->getOperand(1);
1144249259Sdim
1145276479Sdim    const MDNode *Op = SeenIDs.lookup(Flag);
1146249259Sdim    if (!Op) {
1147249259Sdim      CheckFailed("invalid requirement on flag, flag is not present in module",
1148249259Sdim                  Flag);
1149249259Sdim      continue;
1150249259Sdim    }
1151249259Sdim
1152249259Sdim    if (Op->getOperand(2) != ReqValue) {
1153249259Sdim      CheckFailed(("invalid requirement on flag, "
1154249259Sdim                   "flag does not have the required value"),
1155249259Sdim                  Flag);
1156249259Sdim      continue;
1157249259Sdim    }
1158249259Sdim  }
1159249259Sdim}
1160249259Sdim
1161276479Sdimvoid
1162276479SdimVerifier::visitModuleFlag(const MDNode *Op,
1163276479Sdim                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
1164276479Sdim                          SmallVectorImpl<const MDNode *> &Requirements) {
1165249259Sdim  // Each module flag should have three arguments, the merge behavior (a
1166249259Sdim  // constant int), the flag ID (an MDString), and the value.
1167288943Sdim  Assert(Op->getNumOperands() == 3,
1168288943Sdim         "incorrect number of operands in module flag", Op);
1169280031Sdim  Module::ModFlagBehavior MFB;
1170280031Sdim  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1171288943Sdim    Assert(
1172288943Sdim        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1173280031Sdim        "invalid behavior operand in module flag (expected constant integer)",
1174280031Sdim        Op->getOperand(0));
1175288943Sdim    Assert(false,
1176288943Sdim           "invalid behavior operand in module flag (unexpected constant)",
1177288943Sdim           Op->getOperand(0));
1178280031Sdim  }
1179288943Sdim  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1180288943Sdim  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1181288943Sdim         Op->getOperand(1));
1182249259Sdim
1183249259Sdim  // Sanity check the values for behaviors with additional requirements.
1184280031Sdim  switch (MFB) {
1185249259Sdim  case Module::Error:
1186249259Sdim  case Module::Warning:
1187249259Sdim  case Module::Override:
1188249259Sdim    // These behavior types accept any value.
1189249259Sdim    break;
1190249259Sdim
1191249259Sdim  case Module::Require: {
1192249259Sdim    // The value should itself be an MDNode with two operands, a flag ID (an
1193249259Sdim    // MDString), and a value.
1194249259Sdim    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1195288943Sdim    Assert(Value && Value->getNumOperands() == 2,
1196288943Sdim           "invalid value for 'require' module flag (expected metadata pair)",
1197288943Sdim           Op->getOperand(2));
1198288943Sdim    Assert(isa<MDString>(Value->getOperand(0)),
1199288943Sdim           ("invalid value for 'require' module flag "
1200288943Sdim            "(first value operand should be a string)"),
1201288943Sdim           Value->getOperand(0));
1202249259Sdim
1203249259Sdim    // Append it to the list of requirements, to check once all module flags are
1204249259Sdim    // scanned.
1205249259Sdim    Requirements.push_back(Value);
1206249259Sdim    break;
1207249259Sdim  }
1208249259Sdim
1209249259Sdim  case Module::Append:
1210249259Sdim  case Module::AppendUnique: {
1211249259Sdim    // These behavior types require the operand be an MDNode.
1212288943Sdim    Assert(isa<MDNode>(Op->getOperand(2)),
1213288943Sdim           "invalid value for 'append'-type module flag "
1214288943Sdim           "(expected a metadata node)",
1215288943Sdim           Op->getOperand(2));
1216249259Sdim    break;
1217249259Sdim  }
1218249259Sdim  }
1219249259Sdim
1220249259Sdim  // Unless this is a "requires" flag, check the ID is unique.
1221280031Sdim  if (MFB != Module::Require) {
1222249259Sdim    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1223288943Sdim    Assert(Inserted,
1224288943Sdim           "module flag identifiers must be unique (or of 'require' type)", ID);
1225249259Sdim  }
1226249259Sdim}
1227249259Sdim
1228251662Sdimvoid Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1229261991Sdim                                    bool isFunction, const Value *V) {
1230251662Sdim  unsigned Slot = ~0U;
1231251662Sdim  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1232251662Sdim    if (Attrs.getSlotIndex(I) == Idx) {
1233251662Sdim      Slot = I;
1234251662Sdim      break;
1235251662Sdim    }
1236251662Sdim
1237251662Sdim  assert(Slot != ~0U && "Attribute set inconsistency!");
1238251662Sdim
1239251662Sdim  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1240251662Sdim         I != E; ++I) {
1241251662Sdim    if (I->isStringAttribute())
1242251662Sdim      continue;
1243251662Sdim
1244251662Sdim    if (I->getKindAsEnum() == Attribute::NoReturn ||
1245251662Sdim        I->getKindAsEnum() == Attribute::NoUnwind ||
1246251662Sdim        I->getKindAsEnum() == Attribute::NoInline ||
1247251662Sdim        I->getKindAsEnum() == Attribute::AlwaysInline ||
1248251662Sdim        I->getKindAsEnum() == Attribute::OptimizeForSize ||
1249251662Sdim        I->getKindAsEnum() == Attribute::StackProtect ||
1250251662Sdim        I->getKindAsEnum() == Attribute::StackProtectReq ||
1251251662Sdim        I->getKindAsEnum() == Attribute::StackProtectStrong ||
1252288943Sdim        I->getKindAsEnum() == Attribute::SafeStack ||
1253251662Sdim        I->getKindAsEnum() == Attribute::NoRedZone ||
1254251662Sdim        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1255251662Sdim        I->getKindAsEnum() == Attribute::Naked ||
1256251662Sdim        I->getKindAsEnum() == Attribute::InlineHint ||
1257251662Sdim        I->getKindAsEnum() == Attribute::StackAlignment ||
1258251662Sdim        I->getKindAsEnum() == Attribute::UWTable ||
1259251662Sdim        I->getKindAsEnum() == Attribute::NonLazyBind ||
1260251662Sdim        I->getKindAsEnum() == Attribute::ReturnsTwice ||
1261251662Sdim        I->getKindAsEnum() == Attribute::SanitizeAddress ||
1262251662Sdim        I->getKindAsEnum() == Attribute::SanitizeThread ||
1263251662Sdim        I->getKindAsEnum() == Attribute::SanitizeMemory ||
1264251662Sdim        I->getKindAsEnum() == Attribute::MinSize ||
1265251662Sdim        I->getKindAsEnum() == Attribute::NoDuplicate ||
1266261991Sdim        I->getKindAsEnum() == Attribute::Builtin ||
1267261991Sdim        I->getKindAsEnum() == Attribute::NoBuiltin ||
1268261991Sdim        I->getKindAsEnum() == Attribute::Cold ||
1269276479Sdim        I->getKindAsEnum() == Attribute::OptimizeNone ||
1270288943Sdim        I->getKindAsEnum() == Attribute::JumpTable ||
1271288943Sdim        I->getKindAsEnum() == Attribute::Convergent ||
1272296417Sdim        I->getKindAsEnum() == Attribute::ArgMemOnly ||
1273296417Sdim        I->getKindAsEnum() == Attribute::NoRecurse ||
1274296417Sdim        I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1275296417Sdim        I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) {
1276261991Sdim      if (!isFunction) {
1277261991Sdim        CheckFailed("Attribute '" + I->getAsString() +
1278261991Sdim                    "' only applies to functions!", V);
1279261991Sdim        return;
1280261991Sdim      }
1281261991Sdim    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1282261991Sdim               I->getKindAsEnum() == Attribute::ReadNone) {
1283261991Sdim      if (Idx == 0) {
1284261991Sdim        CheckFailed("Attribute '" + I->getAsString() +
1285261991Sdim                    "' does not apply to function returns");
1286261991Sdim        return;
1287261991Sdim      }
1288251662Sdim    } else if (isFunction) {
1289261991Sdim      CheckFailed("Attribute '" + I->getAsString() +
1290261991Sdim                  "' does not apply to functions!", V);
1291261991Sdim      return;
1292251662Sdim    }
1293251662Sdim  }
1294251662Sdim}
1295251662Sdim
1296249259Sdim// VerifyParameterAttrs - Check the given attributes for an argument or return
1297249259Sdim// value of the specified type.  The value V is printed in error messages.
1298251662Sdimvoid Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1299249259Sdim                                    bool isReturnValue, const Value *V) {
1300249259Sdim  if (!Attrs.hasAttributes(Idx))
1301249259Sdim    return;
1302249259Sdim
1303251662Sdim  VerifyAttributeTypes(Attrs, Idx, false, V);
1304249259Sdim
1305249259Sdim  if (isReturnValue)
1306288943Sdim    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1307288943Sdim               !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1308288943Sdim               !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1309288943Sdim               !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1310288943Sdim               !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1311288943Sdim               !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1312288943Sdim           "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
1313288943Sdim           "'returned' do not apply to return values!",
1314288943Sdim           V);
1315249259Sdim
1316276479Sdim  // Check for mutually incompatible attributes.  Only inreg is compatible with
1317276479Sdim  // sret.
1318276479Sdim  unsigned AttrCount = 0;
1319276479Sdim  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1320276479Sdim  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1321276479Sdim  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1322276479Sdim               Attrs.hasAttribute(Idx, Attribute::InReg);
1323276479Sdim  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1324288943Sdim  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1325288943Sdim                         "and 'sret' are incompatible!",
1326288943Sdim         V);
1327249259Sdim
1328288943Sdim  Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1329288943Sdim           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1330288943Sdim         "Attributes "
1331288943Sdim         "'inalloca and readonly' are incompatible!",
1332288943Sdim         V);
1333249259Sdim
1334288943Sdim  Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1335288943Sdim           Attrs.hasAttribute(Idx, Attribute::Returned)),
1336288943Sdim         "Attributes "
1337288943Sdim         "'sret and returned' are incompatible!",
1338288943Sdim         V);
1339251662Sdim
1340288943Sdim  Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1341288943Sdim           Attrs.hasAttribute(Idx, Attribute::SExt)),
1342288943Sdim         "Attributes "
1343288943Sdim         "'zeroext and signext' are incompatible!",
1344288943Sdim         V);
1345249259Sdim
1346288943Sdim  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1347288943Sdim           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1348288943Sdim         "Attributes "
1349288943Sdim         "'readnone and readonly' are incompatible!",
1350288943Sdim         V);
1351249259Sdim
1352288943Sdim  Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1353288943Sdim           Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1354288943Sdim         "Attributes "
1355288943Sdim         "'noinline and alwaysinline' are incompatible!",
1356288943Sdim         V);
1357249259Sdim
1358288943Sdim  Assert(!AttrBuilder(Attrs, Idx)
1359288943Sdim              .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1360288943Sdim         "Wrong types for attribute: " +
1361288943Sdim         AttributeSet::get(*Context, Idx,
1362288943Sdim                        AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1363288943Sdim         V);
1364249259Sdim
1365276479Sdim  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1366296417Sdim    SmallPtrSet<Type*, 4> Visited;
1367288943Sdim    if (!PTy->getElementType()->isSized(&Visited)) {
1368288943Sdim      Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1369288943Sdim                 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1370288943Sdim             "Attributes 'byval' and 'inalloca' do not support unsized types!",
1371288943Sdim             V);
1372276479Sdim    }
1373276479Sdim  } else {
1374288943Sdim    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1375288943Sdim           "Attribute 'byval' only applies to parameters with pointer type!",
1376288943Sdim           V);
1377276479Sdim  }
1378249259Sdim}
1379249259Sdim
1380249259Sdim// VerifyFunctionAttrs - Check parameter attributes against a function type.
1381249259Sdim// The value V is printed in error messages.
1382251662Sdimvoid Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1383249259Sdim                                   const Value *V) {
1384249259Sdim  if (Attrs.isEmpty())
1385249259Sdim    return;
1386249259Sdim
1387249259Sdim  bool SawNest = false;
1388251662Sdim  bool SawReturned = false;
1389276479Sdim  bool SawSRet = false;
1390249259Sdim
1391249259Sdim  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1392251662Sdim    unsigned Idx = Attrs.getSlotIndex(i);
1393249259Sdim
1394249259Sdim    Type *Ty;
1395251662Sdim    if (Idx == 0)
1396249259Sdim      Ty = FT->getReturnType();
1397251662Sdim    else if (Idx-1 < FT->getNumParams())
1398251662Sdim      Ty = FT->getParamType(Idx-1);
1399249259Sdim    else
1400249259Sdim      break;  // VarArgs attributes, verified elsewhere.
1401249259Sdim
1402251662Sdim    VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1403249259Sdim
1404251662Sdim    if (Idx == 0)
1405251662Sdim      continue;
1406251662Sdim
1407251662Sdim    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1408288943Sdim      Assert(!SawNest, "More than one parameter has attribute nest!", V);
1409249259Sdim      SawNest = true;
1410249259Sdim    }
1411249259Sdim
1412251662Sdim    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1413288943Sdim      Assert(!SawReturned, "More than one parameter has attribute returned!",
1414288943Sdim             V);
1415288943Sdim      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1416288943Sdim             "Incompatible "
1417288943Sdim             "argument and return types for 'returned' attribute",
1418288943Sdim             V);
1419251662Sdim      SawReturned = true;
1420251662Sdim    }
1421251662Sdim
1422276479Sdim    if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1423288943Sdim      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1424288943Sdim      Assert(Idx == 1 || Idx == 2,
1425288943Sdim             "Attribute 'sret' is not on first or second parameter!", V);
1426276479Sdim      SawSRet = true;
1427276479Sdim    }
1428276479Sdim
1429276479Sdim    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1430288943Sdim      Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1431288943Sdim             V);
1432276479Sdim    }
1433249259Sdim  }
1434249259Sdim
1435249259Sdim  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1436249259Sdim    return;
1437249259Sdim
1438251662Sdim  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1439249259Sdim
1440288943Sdim  Assert(
1441288943Sdim      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1442288943Sdim        Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1443288943Sdim      "Attributes 'readnone and readonly' are incompatible!", V);
1444249259Sdim
1445288943Sdim  Assert(
1446296417Sdim      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1447296417Sdim        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1448296417Sdim                           Attribute::InaccessibleMemOrArgMemOnly)),
1449296417Sdim      "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1450296417Sdim
1451296417Sdim  Assert(
1452296417Sdim      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1453296417Sdim        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1454296417Sdim                           Attribute::InaccessibleMemOnly)),
1455296417Sdim      "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1456296417Sdim
1457296417Sdim  Assert(
1458288943Sdim      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1459288943Sdim        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1460288943Sdim                           Attribute::AlwaysInline)),
1461288943Sdim      "Attributes 'noinline and alwaysinline' are incompatible!", V);
1462261991Sdim
1463261991Sdim  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1464261991Sdim                         Attribute::OptimizeNone)) {
1465288943Sdim    Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1466288943Sdim           "Attribute 'optnone' requires 'noinline'!", V);
1467261991Sdim
1468288943Sdim    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1469288943Sdim                               Attribute::OptimizeForSize),
1470288943Sdim           "Attributes 'optsize and optnone' are incompatible!", V);
1471261991Sdim
1472288943Sdim    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1473288943Sdim           "Attributes 'minsize and optnone' are incompatible!", V);
1474261991Sdim  }
1475276479Sdim
1476276479Sdim  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1477276479Sdim                         Attribute::JumpTable)) {
1478276479Sdim    const GlobalValue *GV = cast<GlobalValue>(V);
1479288943Sdim    Assert(GV->hasUnnamedAddr(),
1480288943Sdim           "Attribute 'jumptable' requires 'unnamed_addr'", V);
1481288943Sdim  }
1482288943Sdim}
1483276479Sdim
1484288943Sdimvoid Verifier::VerifyFunctionMetadata(
1485288943Sdim    const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1486288943Sdim  if (MDs.empty())
1487288943Sdim    return;
1488288943Sdim
1489288943Sdim  for (unsigned i = 0; i < MDs.size(); i++) {
1490288943Sdim    if (MDs[i].first == LLVMContext::MD_prof) {
1491288943Sdim      MDNode *MD = MDs[i].second;
1492288943Sdim      Assert(MD->getNumOperands() == 2,
1493288943Sdim             "!prof annotations should have exactly 2 operands", MD);
1494288943Sdim
1495288943Sdim      // Check first operand.
1496288943Sdim      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1497288943Sdim             MD);
1498288943Sdim      Assert(isa<MDString>(MD->getOperand(0)),
1499288943Sdim             "expected string with name of the !prof annotation", MD);
1500288943Sdim      MDString *MDS = cast<MDString>(MD->getOperand(0));
1501288943Sdim      StringRef ProfName = MDS->getString();
1502288943Sdim      Assert(ProfName.equals("function_entry_count"),
1503288943Sdim             "first operand should be 'function_entry_count'", MD);
1504288943Sdim
1505288943Sdim      // Check second operand.
1506288943Sdim      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1507288943Sdim             MD);
1508288943Sdim      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1509288943Sdim             "expected integer argument to function_entry_count", MD);
1510288943Sdim    }
1511276479Sdim  }
1512249259Sdim}
1513249259Sdim
1514296417Sdimvoid Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1515296417Sdim  if (!ConstantExprVisited.insert(EntryC).second)
1516296417Sdim    return;
1517296417Sdim
1518296417Sdim  SmallVector<const Constant *, 16> Stack;
1519296417Sdim  Stack.push_back(EntryC);
1520296417Sdim
1521296417Sdim  while (!Stack.empty()) {
1522296417Sdim    const Constant *C = Stack.pop_back_val();
1523296417Sdim
1524296417Sdim    // Check this constant expression.
1525296417Sdim    if (const auto *CE = dyn_cast<ConstantExpr>(C))
1526296417Sdim      visitConstantExpr(CE);
1527296417Sdim
1528296417Sdim    // Visit all sub-expressions.
1529296417Sdim    for (const Use &U : C->operands()) {
1530296417Sdim      const auto *OpC = dyn_cast<Constant>(U);
1531296417Sdim      if (!OpC)
1532296417Sdim        continue;
1533296417Sdim      if (isa<GlobalValue>(OpC))
1534296417Sdim        continue; // Global values get visited separately.
1535296417Sdim      if (!ConstantExprVisited.insert(OpC).second)
1536296417Sdim        continue;
1537296417Sdim      Stack.push_back(OpC);
1538296417Sdim    }
1539296417Sdim  }
1540296417Sdim}
1541296417Sdim
1542296417Sdimvoid Verifier::visitConstantExpr(const ConstantExpr *CE) {
1543280031Sdim  if (CE->getOpcode() != Instruction::BitCast)
1544261991Sdim    return;
1545261991Sdim
1546288943Sdim  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1547288943Sdim                               CE->getType()),
1548288943Sdim         "Invalid bitcast", CE);
1549261991Sdim}
1550261991Sdim
1551251662Sdimbool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1552249259Sdim  if (Attrs.getNumSlots() == 0)
1553249259Sdim    return true;
1554249259Sdim
1555249259Sdim  unsigned LastSlot = Attrs.getNumSlots() - 1;
1556249259Sdim  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1557249259Sdim  if (LastIndex <= Params
1558249259Sdim      || (LastIndex == AttributeSet::FunctionIndex
1559249259Sdim          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1560249259Sdim    return true;
1561261991Sdim
1562249259Sdim  return false;
1563249259Sdim}
1564249259Sdim
1565288943Sdim/// \brief Verify that statepoint intrinsic is well formed.
1566288943Sdimvoid Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1567288943Sdim  assert(CS.getCalledFunction() &&
1568288943Sdim         CS.getCalledFunction()->getIntrinsicID() ==
1569288943Sdim           Intrinsic::experimental_gc_statepoint);
1570288943Sdim
1571288943Sdim  const Instruction &CI = *CS.getInstruction();
1572288943Sdim
1573288943Sdim  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1574288943Sdim         !CS.onlyAccessesArgMemory(),
1575288943Sdim         "gc.statepoint must read and write all memory to preserve "
1576288943Sdim         "reordering restrictions required by safepoint semantics",
1577288943Sdim         &CI);
1578288943Sdim
1579288943Sdim  const Value *IDV = CS.getArgument(0);
1580288943Sdim  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1581288943Sdim         &CI);
1582288943Sdim
1583288943Sdim  const Value *NumPatchBytesV = CS.getArgument(1);
1584288943Sdim  Assert(isa<ConstantInt>(NumPatchBytesV),
1585288943Sdim         "gc.statepoint number of patchable bytes must be a constant integer",
1586288943Sdim         &CI);
1587288943Sdim  const int64_t NumPatchBytes =
1588288943Sdim      cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1589288943Sdim  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1590288943Sdim  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1591288943Sdim                             "positive",
1592288943Sdim         &CI);
1593288943Sdim
1594288943Sdim  const Value *Target = CS.getArgument(2);
1595296417Sdim  auto *PT = dyn_cast<PointerType>(Target->getType());
1596288943Sdim  Assert(PT && PT->getElementType()->isFunctionTy(),
1597288943Sdim         "gc.statepoint callee must be of function pointer type", &CI, Target);
1598288943Sdim  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1599288943Sdim
1600288943Sdim  const Value *NumCallArgsV = CS.getArgument(3);
1601288943Sdim  Assert(isa<ConstantInt>(NumCallArgsV),
1602288943Sdim         "gc.statepoint number of arguments to underlying call "
1603288943Sdim         "must be constant integer",
1604288943Sdim         &CI);
1605288943Sdim  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1606288943Sdim  Assert(NumCallArgs >= 0,
1607288943Sdim         "gc.statepoint number of arguments to underlying call "
1608288943Sdim         "must be positive",
1609288943Sdim         &CI);
1610288943Sdim  const int NumParams = (int)TargetFuncType->getNumParams();
1611288943Sdim  if (TargetFuncType->isVarArg()) {
1612288943Sdim    Assert(NumCallArgs >= NumParams,
1613288943Sdim           "gc.statepoint mismatch in number of vararg call args", &CI);
1614288943Sdim
1615288943Sdim    // TODO: Remove this limitation
1616288943Sdim    Assert(TargetFuncType->getReturnType()->isVoidTy(),
1617288943Sdim           "gc.statepoint doesn't support wrapping non-void "
1618288943Sdim           "vararg functions yet",
1619288943Sdim           &CI);
1620288943Sdim  } else
1621288943Sdim    Assert(NumCallArgs == NumParams,
1622288943Sdim           "gc.statepoint mismatch in number of call args", &CI);
1623288943Sdim
1624288943Sdim  const Value *FlagsV = CS.getArgument(4);
1625288943Sdim  Assert(isa<ConstantInt>(FlagsV),
1626288943Sdim         "gc.statepoint flags must be constant integer", &CI);
1627288943Sdim  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1628288943Sdim  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1629288943Sdim         "unknown flag used in gc.statepoint flags argument", &CI);
1630288943Sdim
1631288943Sdim  // Verify that the types of the call parameter arguments match
1632288943Sdim  // the type of the wrapped callee.
1633288943Sdim  for (int i = 0; i < NumParams; i++) {
1634288943Sdim    Type *ParamType = TargetFuncType->getParamType(i);
1635288943Sdim    Type *ArgType = CS.getArgument(5 + i)->getType();
1636288943Sdim    Assert(ArgType == ParamType,
1637288943Sdim           "gc.statepoint call argument does not match wrapped "
1638288943Sdim           "function type",
1639288943Sdim           &CI);
1640288943Sdim  }
1641288943Sdim
1642288943Sdim  const int EndCallArgsInx = 4 + NumCallArgs;
1643288943Sdim
1644288943Sdim  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1645288943Sdim  Assert(isa<ConstantInt>(NumTransitionArgsV),
1646288943Sdim         "gc.statepoint number of transition arguments "
1647288943Sdim         "must be constant integer",
1648288943Sdim         &CI);
1649288943Sdim  const int NumTransitionArgs =
1650288943Sdim      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1651288943Sdim  Assert(NumTransitionArgs >= 0,
1652288943Sdim         "gc.statepoint number of transition arguments must be positive", &CI);
1653288943Sdim  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1654288943Sdim
1655288943Sdim  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1656288943Sdim  Assert(isa<ConstantInt>(NumDeoptArgsV),
1657288943Sdim         "gc.statepoint number of deoptimization arguments "
1658288943Sdim         "must be constant integer",
1659288943Sdim         &CI);
1660288943Sdim  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1661288943Sdim  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1662288943Sdim                            "must be positive",
1663288943Sdim         &CI);
1664288943Sdim
1665288943Sdim  const int ExpectedNumArgs =
1666288943Sdim      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1667288943Sdim  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1668288943Sdim         "gc.statepoint too few arguments according to length fields", &CI);
1669288943Sdim
1670288943Sdim  // Check that the only uses of this gc.statepoint are gc.result or
1671288943Sdim  // gc.relocate calls which are tied to this statepoint and thus part
1672288943Sdim  // of the same statepoint sequence
1673288943Sdim  for (const User *U : CI.users()) {
1674288943Sdim    const CallInst *Call = dyn_cast<const CallInst>(U);
1675288943Sdim    Assert(Call, "illegal use of statepoint token", &CI, U);
1676288943Sdim    if (!Call) continue;
1677296417Sdim    Assert(isa<GCRelocateInst>(Call) || isGCResult(Call),
1678288943Sdim           "gc.result or gc.relocate are the only value uses"
1679288943Sdim           "of a gc.statepoint",
1680288943Sdim           &CI, U);
1681288943Sdim    if (isGCResult(Call)) {
1682288943Sdim      Assert(Call->getArgOperand(0) == &CI,
1683288943Sdim             "gc.result connected to wrong gc.statepoint", &CI, Call);
1684296417Sdim    } else if (isa<GCRelocateInst>(Call)) {
1685288943Sdim      Assert(Call->getArgOperand(0) == &CI,
1686288943Sdim             "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1687288943Sdim    }
1688288943Sdim  }
1689288943Sdim
1690288943Sdim  // Note: It is legal for a single derived pointer to be listed multiple
1691288943Sdim  // times.  It's non-optimal, but it is legal.  It can also happen after
1692288943Sdim  // insertion if we strip a bitcast away.
1693288943Sdim  // Note: It is really tempting to check that each base is relocated and
1694288943Sdim  // that a derived pointer is never reused as a base pointer.  This turns
1695288943Sdim  // out to be problematic since optimizations run after safepoint insertion
1696288943Sdim  // can recognize equality properties that the insertion logic doesn't know
1697288943Sdim  // about.  See example statepoint.ll in the verifier subdirectory
1698288943Sdim}
1699288943Sdim
1700288943Sdimvoid Verifier::verifyFrameRecoverIndices() {
1701288943Sdim  for (auto &Counts : FrameEscapeInfo) {
1702288943Sdim    Function *F = Counts.first;
1703288943Sdim    unsigned EscapedObjectCount = Counts.second.first;
1704288943Sdim    unsigned MaxRecoveredIndex = Counts.second.second;
1705288943Sdim    Assert(MaxRecoveredIndex <= EscapedObjectCount,
1706288943Sdim           "all indices passed to llvm.localrecover must be less than the "
1707288943Sdim           "number of arguments passed ot llvm.localescape in the parent "
1708288943Sdim           "function",
1709288943Sdim           F);
1710288943Sdim  }
1711288943Sdim}
1712288943Sdim
1713296417Sdimstatic Instruction *getSuccPad(TerminatorInst *Terminator) {
1714296417Sdim  BasicBlock *UnwindDest;
1715296417Sdim  if (auto *II = dyn_cast<InvokeInst>(Terminator))
1716296417Sdim    UnwindDest = II->getUnwindDest();
1717296417Sdim  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1718296417Sdim    UnwindDest = CSI->getUnwindDest();
1719296417Sdim  else
1720296417Sdim    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1721296417Sdim  return UnwindDest->getFirstNonPHI();
1722296417Sdim}
1723296417Sdim
1724296417Sdimvoid Verifier::verifySiblingFuncletUnwinds() {
1725296417Sdim  SmallPtrSet<Instruction *, 8> Visited;
1726296417Sdim  SmallPtrSet<Instruction *, 8> Active;
1727296417Sdim  for (const auto &Pair : SiblingFuncletInfo) {
1728296417Sdim    Instruction *PredPad = Pair.first;
1729296417Sdim    if (Visited.count(PredPad))
1730296417Sdim      continue;
1731296417Sdim    Active.insert(PredPad);
1732296417Sdim    TerminatorInst *Terminator = Pair.second;
1733296417Sdim    do {
1734296417Sdim      Instruction *SuccPad = getSuccPad(Terminator);
1735296417Sdim      if (Active.count(SuccPad)) {
1736296417Sdim        // Found a cycle; report error
1737296417Sdim        Instruction *CyclePad = SuccPad;
1738296417Sdim        SmallVector<Instruction *, 8> CycleNodes;
1739296417Sdim        do {
1740296417Sdim          CycleNodes.push_back(CyclePad);
1741296417Sdim          TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1742296417Sdim          if (CycleTerminator != CyclePad)
1743296417Sdim            CycleNodes.push_back(CycleTerminator);
1744296417Sdim          CyclePad = getSuccPad(CycleTerminator);
1745296417Sdim        } while (CyclePad != SuccPad);
1746296417Sdim        Assert(false, "EH pads can't handle each other's exceptions",
1747296417Sdim               ArrayRef<Instruction *>(CycleNodes));
1748296417Sdim      }
1749296417Sdim      // Don't re-walk a node we've already checked
1750296417Sdim      if (!Visited.insert(SuccPad).second)
1751296417Sdim        break;
1752296417Sdim      // Walk to this successor if it has a map entry.
1753296417Sdim      PredPad = SuccPad;
1754296417Sdim      auto TermI = SiblingFuncletInfo.find(PredPad);
1755296417Sdim      if (TermI == SiblingFuncletInfo.end())
1756296417Sdim        break;
1757296417Sdim      Terminator = TermI->second;
1758296417Sdim      Active.insert(PredPad);
1759296417Sdim    } while (true);
1760296417Sdim    // Each node only has one successor, so we've walked all the active
1761296417Sdim    // nodes' successors.
1762296417Sdim    Active.clear();
1763296417Sdim  }
1764296417Sdim}
1765296417Sdim
1766249259Sdim// visitFunction - Verify that a function is ok.
1767249259Sdim//
1768276479Sdimvoid Verifier::visitFunction(const Function &F) {
1769249259Sdim  // Check function arguments.
1770249259Sdim  FunctionType *FT = F.getFunctionType();
1771249259Sdim  unsigned NumArgs = F.arg_size();
1772249259Sdim
1773288943Sdim  Assert(Context == &F.getContext(),
1774288943Sdim         "Function context does not match Module context!", &F);
1775249259Sdim
1776288943Sdim  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1777288943Sdim  Assert(FT->getNumParams() == NumArgs,
1778288943Sdim         "# formal arguments must match # of arguments for function type!", &F,
1779288943Sdim         FT);
1780288943Sdim  Assert(F.getReturnType()->isFirstClassType() ||
1781288943Sdim             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1782288943Sdim         "Functions cannot return aggregate values!", &F);
1783249259Sdim
1784288943Sdim  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1785288943Sdim         "Invalid struct return type!", &F);
1786249259Sdim
1787251662Sdim  AttributeSet Attrs = F.getAttributes();
1788249259Sdim
1789288943Sdim  Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
1790288943Sdim         "Attribute after last parameter!", &F);
1791249259Sdim
1792249259Sdim  // Check function attributes.
1793249259Sdim  VerifyFunctionAttrs(FT, Attrs, &F);
1794249259Sdim
1795261991Sdim  // On function declarations/definitions, we do not support the builtin
1796261991Sdim  // attribute. We do not check this in VerifyFunctionAttrs since that is
1797261991Sdim  // checking for Attributes that can/can not ever be on functions.
1798288943Sdim  Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1799288943Sdim         "Attribute 'builtin' can only be applied to a callsite.", &F);
1800261991Sdim
1801249259Sdim  // Check that this function meets the restrictions on this calling convention.
1802280031Sdim  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1803280031Sdim  // restrictions can be lifted.
1804249259Sdim  switch (F.getCallingConv()) {
1805249259Sdim  default:
1806249259Sdim  case CallingConv::C:
1807249259Sdim    break;
1808249259Sdim  case CallingConv::Fast:
1809249259Sdim  case CallingConv::Cold:
1810249259Sdim  case CallingConv::Intel_OCL_BI:
1811249259Sdim  case CallingConv::PTX_Kernel:
1812249259Sdim  case CallingConv::PTX_Device:
1813288943Sdim    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1814288943Sdim                          "perfect forwarding!",
1815288943Sdim           &F);
1816249259Sdim    break;
1817249259Sdim  }
1818249259Sdim
1819249259Sdim  bool isLLVMdotName = F.getName().size() >= 5 &&
1820249259Sdim                       F.getName().substr(0, 5) == "llvm.";
1821249259Sdim
1822249259Sdim  // Check that the argument values match the function type for this function...
1823249259Sdim  unsigned i = 0;
1824276479Sdim  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1825276479Sdim       ++I, ++i) {
1826288943Sdim    Assert(I->getType() == FT->getParamType(i),
1827288943Sdim           "Argument value does not match function argument type!", I,
1828288943Sdim           FT->getParamType(i));
1829288943Sdim    Assert(I->getType()->isFirstClassType(),
1830288943Sdim           "Function arguments must have first-class types!", I);
1831296417Sdim    if (!isLLVMdotName) {
1832288943Sdim      Assert(!I->getType()->isMetadataTy(),
1833288943Sdim             "Function takes metadata but isn't an intrinsic", I, &F);
1834296417Sdim      Assert(!I->getType()->isTokenTy(),
1835296417Sdim             "Function takes token but isn't an intrinsic", I, &F);
1836296417Sdim    }
1837249259Sdim  }
1838249259Sdim
1839296417Sdim  if (!isLLVMdotName)
1840296417Sdim    Assert(!F.getReturnType()->isTokenTy(),
1841296417Sdim           "Functions returns a token but isn't an intrinsic", &F);
1842296417Sdim
1843288943Sdim  // Get the function metadata attachments.
1844288943Sdim  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1845288943Sdim  F.getAllMetadata(MDs);
1846288943Sdim  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1847288943Sdim  VerifyFunctionMetadata(MDs);
1848288943Sdim
1849296417Sdim  // Check validity of the personality function
1850296417Sdim  if (F.hasPersonalityFn()) {
1851296417Sdim    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
1852296417Sdim    if (Per)
1853296417Sdim      Assert(Per->getParent() == F.getParent(),
1854296417Sdim             "Referencing personality function in another module!",
1855296417Sdim             &F, F.getParent(), Per, Per->getParent());
1856296417Sdim  }
1857296417Sdim
1858249259Sdim  if (F.isMaterializable()) {
1859249259Sdim    // Function has a body somewhere we can't see.
1860288943Sdim    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1861288943Sdim           MDs.empty() ? nullptr : MDs.front().second);
1862249259Sdim  } else if (F.isDeclaration()) {
1863288943Sdim    Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1864288943Sdim           "invalid linkage type for function declaration", &F);
1865288943Sdim    Assert(MDs.empty(), "function without a body cannot have metadata", &F,
1866288943Sdim           MDs.empty() ? nullptr : MDs.front().second);
1867288943Sdim    Assert(!F.hasPersonalityFn(),
1868288943Sdim           "Function declaration shouldn't have a personality routine", &F);
1869249259Sdim  } else {
1870249259Sdim    // Verify that this function (which has a body) is not named "llvm.*".  It
1871249259Sdim    // is not legal to define intrinsics.
1872288943Sdim    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1873261991Sdim
1874249259Sdim    // Check the entry node
1875276479Sdim    const BasicBlock *Entry = &F.getEntryBlock();
1876288943Sdim    Assert(pred_empty(Entry),
1877288943Sdim           "Entry block to function must not have predecessors!", Entry);
1878261991Sdim
1879249259Sdim    // The address of the entry block cannot be taken, unless it is dead.
1880249259Sdim    if (Entry->hasAddressTaken()) {
1881288943Sdim      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
1882288943Sdim             "blockaddress may not be used with the entry block!", Entry);
1883249259Sdim    }
1884288943Sdim
1885288943Sdim    // Visit metadata attachments.
1886296417Sdim    for (const auto &I : MDs) {
1887296417Sdim      // Verify that the attachment is legal.
1888296417Sdim      switch (I.first) {
1889296417Sdim      default:
1890296417Sdim        break;
1891296417Sdim      case LLVMContext::MD_dbg:
1892296417Sdim        Assert(isa<DISubprogram>(I.second),
1893296417Sdim               "function !dbg attachment must be a subprogram", &F, I.second);
1894296417Sdim        break;
1895296417Sdim      }
1896296417Sdim
1897296417Sdim      // Verify the metadata itself.
1898288943Sdim      visitMDNode(*I.second);
1899296417Sdim    }
1900249259Sdim  }
1901261991Sdim
1902249259Sdim  // If this function is actually an intrinsic, verify that it is only used in
1903249259Sdim  // direct call/invokes, never having its "address taken".
1904296417Sdim  // Only do this if the module is materialized, otherwise we don't have all the
1905296417Sdim  // uses.
1906296417Sdim  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
1907249259Sdim    const User *U;
1908249259Sdim    if (F.hasAddressTaken(&U))
1909288943Sdim      Assert(0, "Invalid user of intrinsic instruction!", U);
1910249259Sdim  }
1911276479Sdim
1912288943Sdim  Assert(!F.hasDLLImportStorageClass() ||
1913288943Sdim             (F.isDeclaration() && F.hasExternalLinkage()) ||
1914288943Sdim             F.hasAvailableExternallyLinkage(),
1915288943Sdim         "Function is marked as dllimport, but not external.", &F);
1916296417Sdim
1917296417Sdim  auto *N = F.getSubprogram();
1918296417Sdim  if (!N)
1919296417Sdim    return;
1920296417Sdim
1921296417Sdim  // Check that all !dbg attachments lead to back to N (or, at least, another
1922296417Sdim  // subprogram that describes the same function).
1923296417Sdim  //
1924296417Sdim  // FIXME: Check this incrementally while visiting !dbg attachments.
1925296417Sdim  // FIXME: Only check when N is the canonical subprogram for F.
1926296417Sdim  SmallPtrSet<const MDNode *, 32> Seen;
1927296417Sdim  for (auto &BB : F)
1928296417Sdim    for (auto &I : BB) {
1929296417Sdim      // Be careful about using DILocation here since we might be dealing with
1930296417Sdim      // broken code (this is the Verifier after all).
1931296417Sdim      DILocation *DL =
1932296417Sdim          dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
1933296417Sdim      if (!DL)
1934296417Sdim        continue;
1935296417Sdim      if (!Seen.insert(DL).second)
1936296417Sdim        continue;
1937296417Sdim
1938296417Sdim      DILocalScope *Scope = DL->getInlinedAtScope();
1939296417Sdim      if (Scope && !Seen.insert(Scope).second)
1940296417Sdim        continue;
1941296417Sdim
1942296417Sdim      DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
1943296417Sdim
1944296417Sdim      // Scope and SP could be the same MDNode and we don't want to skip
1945296417Sdim      // validation in that case
1946296417Sdim      if (SP && ((Scope != SP) && !Seen.insert(SP).second))
1947296417Sdim        continue;
1948296417Sdim
1949296417Sdim      // FIXME: Once N is canonical, check "SP == &N".
1950296417Sdim      Assert(SP->describes(&F),
1951296417Sdim             "!dbg attachment points at wrong subprogram for function", N, &F,
1952296417Sdim             &I, DL, Scope, SP);
1953296417Sdim    }
1954249259Sdim}
1955249259Sdim
1956249259Sdim// verifyBasicBlock - Verify that a basic block is well formed...
1957249259Sdim//
1958249259Sdimvoid Verifier::visitBasicBlock(BasicBlock &BB) {
1959249259Sdim  InstsInThisBlock.clear();
1960249259Sdim
1961249259Sdim  // Ensure that basic blocks have terminators!
1962288943Sdim  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1963249259Sdim
1964249259Sdim  // Check constraints that this basic block imposes on all of the PHI nodes in
1965249259Sdim  // it.
1966249259Sdim  if (isa<PHINode>(BB.front())) {
1967249259Sdim    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1968249259Sdim    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1969249259Sdim    std::sort(Preds.begin(), Preds.end());
1970249259Sdim    PHINode *PN;
1971249259Sdim    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1972249259Sdim      // Ensure that PHI nodes have at least one entry!
1973288943Sdim      Assert(PN->getNumIncomingValues() != 0,
1974288943Sdim             "PHI nodes must have at least one entry.  If the block is dead, "
1975288943Sdim             "the PHI should be removed!",
1976288943Sdim             PN);
1977288943Sdim      Assert(PN->getNumIncomingValues() == Preds.size(),
1978288943Sdim             "PHINode should have one entry for each predecessor of its "
1979288943Sdim             "parent basic block!",
1980288943Sdim             PN);
1981249259Sdim
1982249259Sdim      // Get and sort all incoming values in the PHI node...
1983249259Sdim      Values.clear();
1984249259Sdim      Values.reserve(PN->getNumIncomingValues());
1985249259Sdim      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1986249259Sdim        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1987249259Sdim                                        PN->getIncomingValue(i)));
1988249259Sdim      std::sort(Values.begin(), Values.end());
1989249259Sdim
1990249259Sdim      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1991249259Sdim        // Check to make sure that if there is more than one entry for a
1992249259Sdim        // particular basic block in this PHI node, that the incoming values are
1993249259Sdim        // all identical.
1994249259Sdim        //
1995288943Sdim        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
1996288943Sdim                   Values[i].second == Values[i - 1].second,
1997288943Sdim               "PHI node has multiple entries for the same basic block with "
1998288943Sdim               "different incoming values!",
1999288943Sdim               PN, Values[i].first, Values[i].second, Values[i - 1].second);
2000249259Sdim
2001249259Sdim        // Check to make sure that the predecessors and PHI node entries are
2002249259Sdim        // matched up.
2003288943Sdim        Assert(Values[i].first == Preds[i],
2004288943Sdim               "PHI node entries do not match predecessors!", PN,
2005288943Sdim               Values[i].first, Preds[i]);
2006249259Sdim      }
2007249259Sdim    }
2008249259Sdim  }
2009280031Sdim
2010280031Sdim  // Check that all instructions have their parent pointers set up correctly.
2011280031Sdim  for (auto &I : BB)
2012280031Sdim  {
2013280031Sdim    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2014280031Sdim  }
2015249259Sdim}
2016249259Sdim
2017249259Sdimvoid Verifier::visitTerminatorInst(TerminatorInst &I) {
2018249259Sdim  // Ensure that terminators only exist at the end of the basic block.
2019288943Sdim  Assert(&I == I.getParent()->getTerminator(),
2020288943Sdim         "Terminator found in the middle of a basic block!", I.getParent());
2021249259Sdim  visitInstruction(I);
2022249259Sdim}
2023249259Sdim
2024249259Sdimvoid Verifier::visitBranchInst(BranchInst &BI) {
2025249259Sdim  if (BI.isConditional()) {
2026288943Sdim    Assert(BI.getCondition()->getType()->isIntegerTy(1),
2027288943Sdim           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2028249259Sdim  }
2029249259Sdim  visitTerminatorInst(BI);
2030249259Sdim}
2031249259Sdim
2032249259Sdimvoid Verifier::visitReturnInst(ReturnInst &RI) {
2033249259Sdim  Function *F = RI.getParent()->getParent();
2034249259Sdim  unsigned N = RI.getNumOperands();
2035261991Sdim  if (F->getReturnType()->isVoidTy())
2036288943Sdim    Assert(N == 0,
2037288943Sdim           "Found return instr that returns non-void in Function of void "
2038288943Sdim           "return type!",
2039288943Sdim           &RI, F->getReturnType());
2040249259Sdim  else
2041288943Sdim    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2042288943Sdim           "Function return type does not match operand "
2043288943Sdim           "type of return inst!",
2044288943Sdim           &RI, F->getReturnType());
2045249259Sdim
2046249259Sdim  // Check to make sure that the return value has necessary properties for
2047249259Sdim  // terminators...
2048249259Sdim  visitTerminatorInst(RI);
2049249259Sdim}
2050249259Sdim
2051249259Sdimvoid Verifier::visitSwitchInst(SwitchInst &SI) {
2052249259Sdim  // Check to make sure that all of the constants in the switch instruction
2053249259Sdim  // have the same type as the switched-on value.
2054249259Sdim  Type *SwitchTy = SI.getCondition()->getType();
2055261991Sdim  SmallPtrSet<ConstantInt*, 32> Constants;
2056249259Sdim  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
2057288943Sdim    Assert(i.getCaseValue()->getType() == SwitchTy,
2058288943Sdim           "Switch constants must all be same type as switch value!", &SI);
2059288943Sdim    Assert(Constants.insert(i.getCaseValue()).second,
2060288943Sdim           "Duplicate integer as switch case", &SI, i.getCaseValue());
2061249259Sdim  }
2062261991Sdim
2063249259Sdim  visitTerminatorInst(SI);
2064249259Sdim}
2065249259Sdim
2066249259Sdimvoid Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2067288943Sdim  Assert(BI.getAddress()->getType()->isPointerTy(),
2068288943Sdim         "Indirectbr operand must have pointer type!", &BI);
2069249259Sdim  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2070288943Sdim    Assert(BI.getDestination(i)->getType()->isLabelTy(),
2071288943Sdim           "Indirectbr destinations must all have pointer type!", &BI);
2072249259Sdim
2073249259Sdim  visitTerminatorInst(BI);
2074249259Sdim}
2075249259Sdim
2076249259Sdimvoid Verifier::visitSelectInst(SelectInst &SI) {
2077288943Sdim  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2078288943Sdim                                         SI.getOperand(2)),
2079288943Sdim         "Invalid operands for select instruction!", &SI);
2080249259Sdim
2081288943Sdim  Assert(SI.getTrueValue()->getType() == SI.getType(),
2082288943Sdim         "Select values must have same type as select instruction!", &SI);
2083249259Sdim  visitInstruction(SI);
2084249259Sdim}
2085249259Sdim
2086249259Sdim/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2087249259Sdim/// a pass, if any exist, it's an error.
2088249259Sdim///
2089249259Sdimvoid Verifier::visitUserOp1(Instruction &I) {
2090288943Sdim  Assert(0, "User-defined operators should not live outside of a pass!", &I);
2091249259Sdim}
2092249259Sdim
2093249259Sdimvoid Verifier::visitTruncInst(TruncInst &I) {
2094249259Sdim  // Get the source and destination types
2095249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2096249259Sdim  Type *DestTy = I.getType();
2097249259Sdim
2098249259Sdim  // Get the size of the types in bits, we'll need this later
2099249259Sdim  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2100249259Sdim  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2101249259Sdim
2102288943Sdim  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2103288943Sdim  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2104288943Sdim  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2105288943Sdim         "trunc source and destination must both be a vector or neither", &I);
2106288943Sdim  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2107249259Sdim
2108249259Sdim  visitInstruction(I);
2109249259Sdim}
2110249259Sdim
2111249259Sdimvoid Verifier::visitZExtInst(ZExtInst &I) {
2112249259Sdim  // Get the source and destination types
2113249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2114249259Sdim  Type *DestTy = I.getType();
2115249259Sdim
2116249259Sdim  // Get the size of the types in bits, we'll need this later
2117288943Sdim  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2118288943Sdim  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2119288943Sdim  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2120288943Sdim         "zext source and destination must both be a vector or neither", &I);
2121249259Sdim  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2122249259Sdim  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2123249259Sdim
2124288943Sdim  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2125249259Sdim
2126249259Sdim  visitInstruction(I);
2127249259Sdim}
2128249259Sdim
2129249259Sdimvoid Verifier::visitSExtInst(SExtInst &I) {
2130249259Sdim  // Get the source and destination types
2131249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2132249259Sdim  Type *DestTy = I.getType();
2133249259Sdim
2134249259Sdim  // Get the size of the types in bits, we'll need this later
2135249259Sdim  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2136249259Sdim  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2137249259Sdim
2138288943Sdim  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2139288943Sdim  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2140288943Sdim  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2141288943Sdim         "sext source and destination must both be a vector or neither", &I);
2142288943Sdim  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2143249259Sdim
2144249259Sdim  visitInstruction(I);
2145249259Sdim}
2146249259Sdim
2147249259Sdimvoid Verifier::visitFPTruncInst(FPTruncInst &I) {
2148249259Sdim  // Get the source and destination types
2149249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2150249259Sdim  Type *DestTy = I.getType();
2151249259Sdim  // Get the size of the types in bits, we'll need this later
2152249259Sdim  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2153249259Sdim  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2154249259Sdim
2155288943Sdim  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2156288943Sdim  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2157288943Sdim  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2158288943Sdim         "fptrunc source and destination must both be a vector or neither", &I);
2159288943Sdim  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2160249259Sdim
2161249259Sdim  visitInstruction(I);
2162249259Sdim}
2163249259Sdim
2164249259Sdimvoid Verifier::visitFPExtInst(FPExtInst &I) {
2165249259Sdim  // Get the source and destination types
2166249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2167249259Sdim  Type *DestTy = I.getType();
2168249259Sdim
2169249259Sdim  // Get the size of the types in bits, we'll need this later
2170249259Sdim  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2171249259Sdim  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2172249259Sdim
2173288943Sdim  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2174288943Sdim  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2175288943Sdim  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2176288943Sdim         "fpext source and destination must both be a vector or neither", &I);
2177288943Sdim  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2178249259Sdim
2179249259Sdim  visitInstruction(I);
2180249259Sdim}
2181249259Sdim
2182249259Sdimvoid Verifier::visitUIToFPInst(UIToFPInst &I) {
2183249259Sdim  // Get the source and destination types
2184249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2185249259Sdim  Type *DestTy = I.getType();
2186249259Sdim
2187249259Sdim  bool SrcVec = SrcTy->isVectorTy();
2188249259Sdim  bool DstVec = DestTy->isVectorTy();
2189249259Sdim
2190288943Sdim  Assert(SrcVec == DstVec,
2191288943Sdim         "UIToFP source and dest must both be vector or scalar", &I);
2192288943Sdim  Assert(SrcTy->isIntOrIntVectorTy(),
2193288943Sdim         "UIToFP source must be integer or integer vector", &I);
2194288943Sdim  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2195288943Sdim         &I);
2196249259Sdim
2197249259Sdim  if (SrcVec && DstVec)
2198288943Sdim    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2199288943Sdim               cast<VectorType>(DestTy)->getNumElements(),
2200288943Sdim           "UIToFP source and dest vector length mismatch", &I);
2201249259Sdim
2202249259Sdim  visitInstruction(I);
2203249259Sdim}
2204249259Sdim
2205249259Sdimvoid Verifier::visitSIToFPInst(SIToFPInst &I) {
2206249259Sdim  // Get the source and destination types
2207249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2208249259Sdim  Type *DestTy = I.getType();
2209249259Sdim
2210249259Sdim  bool SrcVec = SrcTy->isVectorTy();
2211249259Sdim  bool DstVec = DestTy->isVectorTy();
2212249259Sdim
2213288943Sdim  Assert(SrcVec == DstVec,
2214288943Sdim         "SIToFP source and dest must both be vector or scalar", &I);
2215288943Sdim  Assert(SrcTy->isIntOrIntVectorTy(),
2216288943Sdim         "SIToFP source must be integer or integer vector", &I);
2217288943Sdim  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2218288943Sdim         &I);
2219249259Sdim
2220249259Sdim  if (SrcVec && DstVec)
2221288943Sdim    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2222288943Sdim               cast<VectorType>(DestTy)->getNumElements(),
2223288943Sdim           "SIToFP source and dest vector length mismatch", &I);
2224249259Sdim
2225249259Sdim  visitInstruction(I);
2226249259Sdim}
2227249259Sdim
2228249259Sdimvoid Verifier::visitFPToUIInst(FPToUIInst &I) {
2229249259Sdim  // Get the source and destination types
2230249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2231249259Sdim  Type *DestTy = I.getType();
2232249259Sdim
2233249259Sdim  bool SrcVec = SrcTy->isVectorTy();
2234249259Sdim  bool DstVec = DestTy->isVectorTy();
2235249259Sdim
2236288943Sdim  Assert(SrcVec == DstVec,
2237288943Sdim         "FPToUI source and dest must both be vector or scalar", &I);
2238288943Sdim  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2239288943Sdim         &I);
2240288943Sdim  Assert(DestTy->isIntOrIntVectorTy(),
2241288943Sdim         "FPToUI result must be integer or integer vector", &I);
2242249259Sdim
2243249259Sdim  if (SrcVec && DstVec)
2244288943Sdim    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2245288943Sdim               cast<VectorType>(DestTy)->getNumElements(),
2246288943Sdim           "FPToUI source and dest vector length mismatch", &I);
2247249259Sdim
2248249259Sdim  visitInstruction(I);
2249249259Sdim}
2250249259Sdim
2251249259Sdimvoid Verifier::visitFPToSIInst(FPToSIInst &I) {
2252249259Sdim  // Get the source and destination types
2253249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2254249259Sdim  Type *DestTy = I.getType();
2255249259Sdim
2256249259Sdim  bool SrcVec = SrcTy->isVectorTy();
2257249259Sdim  bool DstVec = DestTy->isVectorTy();
2258249259Sdim
2259288943Sdim  Assert(SrcVec == DstVec,
2260288943Sdim         "FPToSI source and dest must both be vector or scalar", &I);
2261288943Sdim  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2262288943Sdim         &I);
2263288943Sdim  Assert(DestTy->isIntOrIntVectorTy(),
2264288943Sdim         "FPToSI result must be integer or integer vector", &I);
2265249259Sdim
2266249259Sdim  if (SrcVec && DstVec)
2267288943Sdim    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2268288943Sdim               cast<VectorType>(DestTy)->getNumElements(),
2269288943Sdim           "FPToSI source and dest vector length mismatch", &I);
2270249259Sdim
2271249259Sdim  visitInstruction(I);
2272249259Sdim}
2273249259Sdim
2274249259Sdimvoid Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2275249259Sdim  // Get the source and destination types
2276249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2277249259Sdim  Type *DestTy = I.getType();
2278249259Sdim
2279288943Sdim  Assert(SrcTy->getScalarType()->isPointerTy(),
2280288943Sdim         "PtrToInt source must be pointer", &I);
2281288943Sdim  Assert(DestTy->getScalarType()->isIntegerTy(),
2282288943Sdim         "PtrToInt result must be integral", &I);
2283288943Sdim  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2284288943Sdim         &I);
2285249259Sdim
2286249259Sdim  if (SrcTy->isVectorTy()) {
2287249259Sdim    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2288249259Sdim    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2289288943Sdim    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2290288943Sdim           "PtrToInt Vector width mismatch", &I);
2291249259Sdim  }
2292249259Sdim
2293249259Sdim  visitInstruction(I);
2294249259Sdim}
2295249259Sdim
2296249259Sdimvoid Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2297249259Sdim  // Get the source and destination types
2298249259Sdim  Type *SrcTy = I.getOperand(0)->getType();
2299249259Sdim  Type *DestTy = I.getType();
2300249259Sdim
2301288943Sdim  Assert(SrcTy->getScalarType()->isIntegerTy(),
2302288943Sdim         "IntToPtr source must be an integral", &I);
2303288943Sdim  Assert(DestTy->getScalarType()->isPointerTy(),
2304288943Sdim         "IntToPtr result must be a pointer", &I);
2305288943Sdim  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2306288943Sdim         &I);
2307249259Sdim  if (SrcTy->isVectorTy()) {
2308249259Sdim    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2309249259Sdim    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2310288943Sdim    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2311288943Sdim           "IntToPtr Vector width mismatch", &I);
2312249259Sdim  }
2313249259Sdim  visitInstruction(I);
2314249259Sdim}
2315249259Sdim
2316249259Sdimvoid Verifier::visitBitCastInst(BitCastInst &I) {
2317288943Sdim  Assert(
2318280031Sdim      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2319280031Sdim      "Invalid bitcast", &I);
2320261991Sdim  visitInstruction(I);
2321261991Sdim}
2322249259Sdim
2323261991Sdimvoid Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2324261991Sdim  Type *SrcTy = I.getOperand(0)->getType();
2325261991Sdim  Type *DestTy = I.getType();
2326249259Sdim
2327288943Sdim  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2328288943Sdim         &I);
2329288943Sdim  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2330288943Sdim         &I);
2331288943Sdim  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2332288943Sdim         "AddrSpaceCast must be between different address spaces", &I);
2333261991Sdim  if (SrcTy->isVectorTy())
2334288943Sdim    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2335288943Sdim           "AddrSpaceCast vector pointer number of elements mismatch", &I);
2336249259Sdim  visitInstruction(I);
2337249259Sdim}
2338249259Sdim
2339249259Sdim/// visitPHINode - Ensure that a PHI node is well formed.
2340249259Sdim///
2341249259Sdimvoid Verifier::visitPHINode(PHINode &PN) {
2342249259Sdim  // Ensure that the PHI nodes are all grouped together at the top of the block.
2343249259Sdim  // This can be tested by checking whether the instruction before this is
2344249259Sdim  // either nonexistent (because this is begin()) or is a PHI node.  If not,
2345249259Sdim  // then there is some other instruction before a PHI.
2346288943Sdim  Assert(&PN == &PN.getParent()->front() ||
2347288943Sdim             isa<PHINode>(--BasicBlock::iterator(&PN)),
2348288943Sdim         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2349249259Sdim
2350296417Sdim  // Check that a PHI doesn't yield a Token.
2351296417Sdim  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2352296417Sdim
2353249259Sdim  // Check that all of the values of the PHI node have the same type as the
2354249259Sdim  // result, and that the incoming blocks are really basic blocks.
2355288943Sdim  for (Value *IncValue : PN.incoming_values()) {
2356288943Sdim    Assert(PN.getType() == IncValue->getType(),
2357288943Sdim           "PHI node operands are not the same type as the result!", &PN);
2358249259Sdim  }
2359249259Sdim
2360249259Sdim  // All other PHI node constraints are checked in the visitBasicBlock method.
2361249259Sdim
2362249259Sdim  visitInstruction(PN);
2363249259Sdim}
2364249259Sdim
2365249259Sdimvoid Verifier::VerifyCallSite(CallSite CS) {
2366249259Sdim  Instruction *I = CS.getInstruction();
2367249259Sdim
2368288943Sdim  Assert(CS.getCalledValue()->getType()->isPointerTy(),
2369288943Sdim         "Called function must be a pointer!", I);
2370249259Sdim  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2371249259Sdim
2372288943Sdim  Assert(FPTy->getElementType()->isFunctionTy(),
2373288943Sdim         "Called function is not pointer to function type!", I);
2374249259Sdim
2375288943Sdim  Assert(FPTy->getElementType() == CS.getFunctionType(),
2376288943Sdim         "Called function is not the same type as the call!", I);
2377288943Sdim
2378288943Sdim  FunctionType *FTy = CS.getFunctionType();
2379288943Sdim
2380249259Sdim  // Verify that the correct number of arguments are being passed
2381249259Sdim  if (FTy->isVarArg())
2382288943Sdim    Assert(CS.arg_size() >= FTy->getNumParams(),
2383288943Sdim           "Called function requires more parameters than were provided!", I);
2384249259Sdim  else
2385288943Sdim    Assert(CS.arg_size() == FTy->getNumParams(),
2386288943Sdim           "Incorrect number of arguments passed to called function!", I);
2387249259Sdim
2388249259Sdim  // Verify that all arguments to the call match the function type.
2389249259Sdim  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2390288943Sdim    Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2391288943Sdim           "Call parameter type does not match function signature!",
2392288943Sdim           CS.getArgument(i), FTy->getParamType(i), I);
2393249259Sdim
2394251662Sdim  AttributeSet Attrs = CS.getAttributes();
2395249259Sdim
2396288943Sdim  Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
2397288943Sdim         "Attribute after last parameter!", I);
2398249259Sdim
2399249259Sdim  // Verify call attributes.
2400249259Sdim  VerifyFunctionAttrs(FTy, Attrs, I);
2401249259Sdim
2402276479Sdim  // Conservatively check the inalloca argument.
2403276479Sdim  // We have a bug if we can find that there is an underlying alloca without
2404276479Sdim  // inalloca.
2405276479Sdim  if (CS.hasInAllocaArgument()) {
2406276479Sdim    Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2407276479Sdim    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2408288943Sdim      Assert(AI->isUsedWithInAlloca(),
2409288943Sdim             "inalloca argument for call has mismatched alloca", AI, I);
2410276479Sdim  }
2411276479Sdim
2412251662Sdim  if (FTy->isVarArg()) {
2413251662Sdim    // FIXME? is 'nest' even legal here?
2414251662Sdim    bool SawNest = false;
2415251662Sdim    bool SawReturned = false;
2416251662Sdim
2417251662Sdim    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2418251662Sdim      if (Attrs.hasAttribute(Idx, Attribute::Nest))
2419251662Sdim        SawNest = true;
2420251662Sdim      if (Attrs.hasAttribute(Idx, Attribute::Returned))
2421251662Sdim        SawReturned = true;
2422251662Sdim    }
2423251662Sdim
2424249259Sdim    // Check attributes on the varargs part.
2425249259Sdim    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2426261991Sdim      Type *Ty = CS.getArgument(Idx-1)->getType();
2427251662Sdim      VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2428261991Sdim
2429251662Sdim      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2430288943Sdim        Assert(!SawNest, "More than one parameter has attribute nest!", I);
2431251662Sdim        SawNest = true;
2432251662Sdim      }
2433249259Sdim
2434251662Sdim      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2435288943Sdim        Assert(!SawReturned, "More than one parameter has attribute returned!",
2436288943Sdim               I);
2437288943Sdim        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2438288943Sdim               "Incompatible argument and return types for 'returned' "
2439288943Sdim               "attribute",
2440288943Sdim               I);
2441251662Sdim        SawReturned = true;
2442251662Sdim      }
2443251662Sdim
2444288943Sdim      Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2445288943Sdim             "Attribute 'sret' cannot be used for vararg call arguments!", I);
2446276479Sdim
2447276479Sdim      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2448288943Sdim        Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2449249259Sdim    }
2450251662Sdim  }
2451249259Sdim
2452249259Sdim  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2453276479Sdim  if (CS.getCalledFunction() == nullptr ||
2454249259Sdim      !CS.getCalledFunction()->getName().startswith("llvm.")) {
2455296417Sdim    for (Type *ParamTy : FTy->params()) {
2456296417Sdim      Assert(!ParamTy->isMetadataTy(),
2457288943Sdim             "Function has metadata parameter but isn't an intrinsic", I);
2458296417Sdim      Assert(!ParamTy->isTokenTy(),
2459296417Sdim             "Function has token parameter but isn't an intrinsic", I);
2460296417Sdim    }
2461249259Sdim  }
2462249259Sdim
2463296417Sdim  // Verify that indirect calls don't return tokens.
2464296417Sdim  if (CS.getCalledFunction() == nullptr)
2465296417Sdim    Assert(!FTy->getReturnType()->isTokenTy(),
2466296417Sdim           "Return type cannot be token for indirect call!");
2467296417Sdim
2468288943Sdim  if (Function *F = CS.getCalledFunction())
2469288943Sdim    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2470288943Sdim      visitIntrinsicCallSite(ID, CS);
2471288943Sdim
2472296417Sdim  // Verify that a callsite has at most one "deopt" and one "funclet" operand
2473296417Sdim  // bundle.
2474296417Sdim  bool FoundDeoptBundle = false, FoundFuncletBundle = false;
2475296417Sdim  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2476296417Sdim    OperandBundleUse BU = CS.getOperandBundleAt(i);
2477296417Sdim    uint32_t Tag = BU.getTagID();
2478296417Sdim    if (Tag == LLVMContext::OB_deopt) {
2479296417Sdim      Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2480296417Sdim      FoundDeoptBundle = true;
2481296417Sdim    }
2482296417Sdim    if (Tag == LLVMContext::OB_funclet) {
2483296417Sdim      Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2484296417Sdim      FoundFuncletBundle = true;
2485296417Sdim      Assert(BU.Inputs.size() == 1,
2486296417Sdim             "Expected exactly one funclet bundle operand", I);
2487296417Sdim      Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2488296417Sdim             "Funclet bundle operands should correspond to a FuncletPadInst",
2489296417Sdim             I);
2490296417Sdim    }
2491296417Sdim  }
2492296417Sdim
2493249259Sdim  visitInstruction(*I);
2494249259Sdim}
2495249259Sdim
2496276479Sdim/// Two types are "congruent" if they are identical, or if they are both pointer
2497276479Sdim/// types with different pointee types and the same address space.
2498276479Sdimstatic bool isTypeCongruent(Type *L, Type *R) {
2499276479Sdim  if (L == R)
2500276479Sdim    return true;
2501276479Sdim  PointerType *PL = dyn_cast<PointerType>(L);
2502276479Sdim  PointerType *PR = dyn_cast<PointerType>(R);
2503276479Sdim  if (!PL || !PR)
2504276479Sdim    return false;
2505276479Sdim  return PL->getAddressSpace() == PR->getAddressSpace();
2506276479Sdim}
2507276479Sdim
2508276479Sdimstatic AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2509276479Sdim  static const Attribute::AttrKind ABIAttrs[] = {
2510276479Sdim      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2511276479Sdim      Attribute::InReg, Attribute::Returned};
2512276479Sdim  AttrBuilder Copy;
2513276479Sdim  for (auto AK : ABIAttrs) {
2514276479Sdim    if (Attrs.hasAttribute(I + 1, AK))
2515276479Sdim      Copy.addAttribute(AK);
2516276479Sdim  }
2517276479Sdim  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2518276479Sdim    Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2519276479Sdim  return Copy;
2520276479Sdim}
2521276479Sdim
2522276479Sdimvoid Verifier::verifyMustTailCall(CallInst &CI) {
2523288943Sdim  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2524276479Sdim
2525276479Sdim  // - The caller and callee prototypes must match.  Pointer types of
2526276479Sdim  //   parameters or return types may differ in pointee type, but not
2527276479Sdim  //   address space.
2528276479Sdim  Function *F = CI.getParent()->getParent();
2529288943Sdim  FunctionType *CallerTy = F->getFunctionType();
2530288943Sdim  FunctionType *CalleeTy = CI.getFunctionType();
2531288943Sdim  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2532288943Sdim         "cannot guarantee tail call due to mismatched parameter counts", &CI);
2533288943Sdim  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2534288943Sdim         "cannot guarantee tail call due to mismatched varargs", &CI);
2535288943Sdim  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2536288943Sdim         "cannot guarantee tail call due to mismatched return types", &CI);
2537276479Sdim  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2538288943Sdim    Assert(
2539276479Sdim        isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2540276479Sdim        "cannot guarantee tail call due to mismatched parameter types", &CI);
2541276479Sdim  }
2542276479Sdim
2543276479Sdim  // - The calling conventions of the caller and callee must match.
2544288943Sdim  Assert(F->getCallingConv() == CI.getCallingConv(),
2545288943Sdim         "cannot guarantee tail call due to mismatched calling conv", &CI);
2546276479Sdim
2547276479Sdim  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2548276479Sdim  //   returned, and inalloca, must match.
2549276479Sdim  AttributeSet CallerAttrs = F->getAttributes();
2550276479Sdim  AttributeSet CalleeAttrs = CI.getAttributes();
2551276479Sdim  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2552276479Sdim    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2553276479Sdim    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2554288943Sdim    Assert(CallerABIAttrs == CalleeABIAttrs,
2555288943Sdim           "cannot guarantee tail call due to mismatched ABI impacting "
2556288943Sdim           "function attributes",
2557288943Sdim           &CI, CI.getOperand(I));
2558276479Sdim  }
2559276479Sdim
2560276479Sdim  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2561276479Sdim  //   or a pointer bitcast followed by a ret instruction.
2562276479Sdim  // - The ret instruction must return the (possibly bitcasted) value
2563276479Sdim  //   produced by the call or void.
2564276479Sdim  Value *RetVal = &CI;
2565276479Sdim  Instruction *Next = CI.getNextNode();
2566276479Sdim
2567276479Sdim  // Handle the optional bitcast.
2568276479Sdim  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2569288943Sdim    Assert(BI->getOperand(0) == RetVal,
2570288943Sdim           "bitcast following musttail call must use the call", BI);
2571276479Sdim    RetVal = BI;
2572276479Sdim    Next = BI->getNextNode();
2573276479Sdim  }
2574276479Sdim
2575276479Sdim  // Check the return.
2576276479Sdim  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2577288943Sdim  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2578288943Sdim         &CI);
2579288943Sdim  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2580288943Sdim         "musttail call result must be returned", Ret);
2581276479Sdim}
2582276479Sdim
2583249259Sdimvoid Verifier::visitCallInst(CallInst &CI) {
2584249259Sdim  VerifyCallSite(&CI);
2585249259Sdim
2586276479Sdim  if (CI.isMustTailCall())
2587276479Sdim    verifyMustTailCall(CI);
2588249259Sdim}
2589249259Sdim
2590249259Sdimvoid Verifier::visitInvokeInst(InvokeInst &II) {
2591249259Sdim  VerifyCallSite(&II);
2592249259Sdim
2593296417Sdim  // Verify that the first non-PHI instruction of the unwind destination is an
2594296417Sdim  // exception handling instruction.
2595296417Sdim  Assert(
2596296417Sdim      II.getUnwindDest()->isEHPad(),
2597296417Sdim      "The unwind destination does not have an exception handling instruction!",
2598296417Sdim      &II);
2599249259Sdim
2600249259Sdim  visitTerminatorInst(II);
2601249259Sdim}
2602249259Sdim
2603249259Sdim/// visitBinaryOperator - Check that both arguments to the binary operator are
2604249259Sdim/// of the same type!
2605249259Sdim///
2606249259Sdimvoid Verifier::visitBinaryOperator(BinaryOperator &B) {
2607288943Sdim  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2608288943Sdim         "Both operands to a binary operator are not of the same type!", &B);
2609249259Sdim
2610249259Sdim  switch (B.getOpcode()) {
2611249259Sdim  // Check that integer arithmetic operators are only used with
2612249259Sdim  // integral operands.
2613249259Sdim  case Instruction::Add:
2614249259Sdim  case Instruction::Sub:
2615249259Sdim  case Instruction::Mul:
2616249259Sdim  case Instruction::SDiv:
2617249259Sdim  case Instruction::UDiv:
2618249259Sdim  case Instruction::SRem:
2619249259Sdim  case Instruction::URem:
2620288943Sdim    Assert(B.getType()->isIntOrIntVectorTy(),
2621288943Sdim           "Integer arithmetic operators only work with integral types!", &B);
2622288943Sdim    Assert(B.getType() == B.getOperand(0)->getType(),
2623288943Sdim           "Integer arithmetic operators must have same type "
2624288943Sdim           "for operands and result!",
2625288943Sdim           &B);
2626249259Sdim    break;
2627249259Sdim  // Check that floating-point arithmetic operators are only used with
2628249259Sdim  // floating-point operands.
2629249259Sdim  case Instruction::FAdd:
2630249259Sdim  case Instruction::FSub:
2631249259Sdim  case Instruction::FMul:
2632249259Sdim  case Instruction::FDiv:
2633249259Sdim  case Instruction::FRem:
2634288943Sdim    Assert(B.getType()->isFPOrFPVectorTy(),
2635288943Sdim           "Floating-point arithmetic operators only work with "
2636288943Sdim           "floating-point types!",
2637288943Sdim           &B);
2638288943Sdim    Assert(B.getType() == B.getOperand(0)->getType(),
2639288943Sdim           "Floating-point arithmetic operators must have same type "
2640288943Sdim           "for operands and result!",
2641288943Sdim           &B);
2642249259Sdim    break;
2643249259Sdim  // Check that logical operators are only used with integral operands.
2644249259Sdim  case Instruction::And:
2645249259Sdim  case Instruction::Or:
2646249259Sdim  case Instruction::Xor:
2647288943Sdim    Assert(B.getType()->isIntOrIntVectorTy(),
2648288943Sdim           "Logical operators only work with integral types!", &B);
2649288943Sdim    Assert(B.getType() == B.getOperand(0)->getType(),
2650288943Sdim           "Logical operators must have same type for operands and result!",
2651288943Sdim           &B);
2652249259Sdim    break;
2653249259Sdim  case Instruction::Shl:
2654249259Sdim  case Instruction::LShr:
2655249259Sdim  case Instruction::AShr:
2656288943Sdim    Assert(B.getType()->isIntOrIntVectorTy(),
2657288943Sdim           "Shifts only work with integral types!", &B);
2658288943Sdim    Assert(B.getType() == B.getOperand(0)->getType(),
2659288943Sdim           "Shift return type must be same as operands!", &B);
2660249259Sdim    break;
2661249259Sdim  default:
2662249259Sdim    llvm_unreachable("Unknown BinaryOperator opcode!");
2663249259Sdim  }
2664249259Sdim
2665249259Sdim  visitInstruction(B);
2666249259Sdim}
2667249259Sdim
2668249259Sdimvoid Verifier::visitICmpInst(ICmpInst &IC) {
2669249259Sdim  // Check that the operands are the same type
2670249259Sdim  Type *Op0Ty = IC.getOperand(0)->getType();
2671249259Sdim  Type *Op1Ty = IC.getOperand(1)->getType();
2672288943Sdim  Assert(Op0Ty == Op1Ty,
2673288943Sdim         "Both operands to ICmp instruction are not of the same type!", &IC);
2674249259Sdim  // Check that the operands are the right type
2675288943Sdim  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2676288943Sdim         "Invalid operand types for ICmp instruction", &IC);
2677249259Sdim  // Check that the predicate is valid.
2678288943Sdim  Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2679288943Sdim             IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2680288943Sdim         "Invalid predicate in ICmp instruction!", &IC);
2681249259Sdim
2682249259Sdim  visitInstruction(IC);
2683249259Sdim}
2684249259Sdim
2685249259Sdimvoid Verifier::visitFCmpInst(FCmpInst &FC) {
2686249259Sdim  // Check that the operands are the same type
2687249259Sdim  Type *Op0Ty = FC.getOperand(0)->getType();
2688249259Sdim  Type *Op1Ty = FC.getOperand(1)->getType();
2689288943Sdim  Assert(Op0Ty == Op1Ty,
2690288943Sdim         "Both operands to FCmp instruction are not of the same type!", &FC);
2691249259Sdim  // Check that the operands are the right type
2692288943Sdim  Assert(Op0Ty->isFPOrFPVectorTy(),
2693288943Sdim         "Invalid operand types for FCmp instruction", &FC);
2694249259Sdim  // Check that the predicate is valid.
2695288943Sdim  Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2696288943Sdim             FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2697288943Sdim         "Invalid predicate in FCmp instruction!", &FC);
2698249259Sdim
2699249259Sdim  visitInstruction(FC);
2700249259Sdim}
2701249259Sdim
2702249259Sdimvoid Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2703288943Sdim  Assert(
2704288943Sdim      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2705288943Sdim      "Invalid extractelement operands!", &EI);
2706249259Sdim  visitInstruction(EI);
2707249259Sdim}
2708249259Sdim
2709249259Sdimvoid Verifier::visitInsertElementInst(InsertElementInst &IE) {
2710288943Sdim  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2711288943Sdim                                            IE.getOperand(2)),
2712288943Sdim         "Invalid insertelement operands!", &IE);
2713249259Sdim  visitInstruction(IE);
2714249259Sdim}
2715249259Sdim
2716249259Sdimvoid Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2717288943Sdim  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2718288943Sdim                                            SV.getOperand(2)),
2719288943Sdim         "Invalid shufflevector operands!", &SV);
2720249259Sdim  visitInstruction(SV);
2721249259Sdim}
2722249259Sdim
2723249259Sdimvoid Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2724249259Sdim  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2725249259Sdim
2726288943Sdim  Assert(isa<PointerType>(TargetTy),
2727288943Sdim         "GEP base pointer is not a vector or a vector of pointers", &GEP);
2728288943Sdim  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2729249259Sdim  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2730249259Sdim  Type *ElTy =
2731288943Sdim      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2732288943Sdim  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2733249259Sdim
2734288943Sdim  Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2735288943Sdim             GEP.getResultElementType() == ElTy,
2736288943Sdim         "GEP is not of right type for indices!", &GEP, ElTy);
2737249259Sdim
2738288943Sdim  if (GEP.getType()->isVectorTy()) {
2739249259Sdim    // Additional checks for vector GEPs.
2740288943Sdim    unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2741288943Sdim    if (GEP.getPointerOperandType()->isVectorTy())
2742288943Sdim      Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2743288943Sdim             "Vector GEP result width doesn't match operand's", &GEP);
2744249259Sdim    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2745249259Sdim      Type *IndexTy = Idxs[i]->getType();
2746288943Sdim      if (IndexTy->isVectorTy()) {
2747288943Sdim        unsigned IndexWidth = IndexTy->getVectorNumElements();
2748288943Sdim        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2749288943Sdim      }
2750288943Sdim      Assert(IndexTy->getScalarType()->isIntegerTy(),
2751288943Sdim             "All GEP indices should be of integer type");
2752249259Sdim    }
2753249259Sdim  }
2754249259Sdim  visitInstruction(GEP);
2755249259Sdim}
2756249259Sdim
2757249259Sdimstatic bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2758249259Sdim  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2759249259Sdim}
2760249259Sdim
2761280031Sdimvoid Verifier::visitRangeMetadata(Instruction& I,
2762280031Sdim                                  MDNode* Range, Type* Ty) {
2763280031Sdim  assert(Range &&
2764280031Sdim         Range == I.getMetadata(LLVMContext::MD_range) &&
2765280031Sdim         "precondition violation");
2766280031Sdim
2767280031Sdim  unsigned NumOperands = Range->getNumOperands();
2768288943Sdim  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2769280031Sdim  unsigned NumRanges = NumOperands / 2;
2770288943Sdim  Assert(NumRanges >= 1, "It should have at least one range!", Range);
2771288943Sdim
2772280031Sdim  ConstantRange LastRange(1); // Dummy initial value
2773280031Sdim  for (unsigned i = 0; i < NumRanges; ++i) {
2774280031Sdim    ConstantInt *Low =
2775280031Sdim        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2776288943Sdim    Assert(Low, "The lower limit must be an integer!", Low);
2777280031Sdim    ConstantInt *High =
2778280031Sdim        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2779288943Sdim    Assert(High, "The upper limit must be an integer!", High);
2780288943Sdim    Assert(High->getType() == Low->getType() && High->getType() == Ty,
2781288943Sdim           "Range types must match instruction type!", &I);
2782288943Sdim
2783280031Sdim    APInt HighV = High->getValue();
2784280031Sdim    APInt LowV = Low->getValue();
2785280031Sdim    ConstantRange CurRange(LowV, HighV);
2786288943Sdim    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2787288943Sdim           "Range must not be empty!", Range);
2788280031Sdim    if (i != 0) {
2789288943Sdim      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2790288943Sdim             "Intervals are overlapping", Range);
2791288943Sdim      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2792288943Sdim             Range);
2793288943Sdim      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2794288943Sdim             Range);
2795280031Sdim    }
2796280031Sdim    LastRange = ConstantRange(LowV, HighV);
2797280031Sdim  }
2798280031Sdim  if (NumRanges > 2) {
2799280031Sdim    APInt FirstLow =
2800280031Sdim        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2801280031Sdim    APInt FirstHigh =
2802280031Sdim        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2803280031Sdim    ConstantRange FirstRange(FirstLow, FirstHigh);
2804288943Sdim    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2805288943Sdim           "Intervals are overlapping", Range);
2806288943Sdim    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2807288943Sdim           Range);
2808280031Sdim  }
2809280031Sdim}
2810280031Sdim
2811296417Sdimvoid Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
2812296417Sdim                                        const Instruction *I) {
2813296417Sdim  unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
2814296417Sdim  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
2815296417Sdim  Assert(!(Size & (Size - 1)),
2816296417Sdim         "atomic memory access' operand must have a power-of-two size", Ty, I);
2817296417Sdim}
2818296417Sdim
2819249259Sdimvoid Verifier::visitLoadInst(LoadInst &LI) {
2820249259Sdim  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2821288943Sdim  Assert(PTy, "Load operand must be a pointer.", &LI);
2822288943Sdim  Type *ElTy = LI.getType();
2823288943Sdim  Assert(LI.getAlignment() <= Value::MaximumAlignment,
2824288943Sdim         "huge alignment values are unsupported", &LI);
2825249259Sdim  if (LI.isAtomic()) {
2826288943Sdim    Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
2827288943Sdim           "Load cannot have Release ordering", &LI);
2828288943Sdim    Assert(LI.getAlignment() != 0,
2829288943Sdim           "Atomic load must specify explicit alignment", &LI);
2830296417Sdim    Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2831296417Sdim               ElTy->isFloatingPointTy(),
2832296417Sdim           "atomic load operand must have integer, pointer, or floating point "
2833296417Sdim           "type!",
2834296417Sdim           ElTy, &LI);
2835296417Sdim    checkAtomicMemAccessSize(M, ElTy, &LI);
2836249259Sdim  } else {
2837288943Sdim    Assert(LI.getSynchScope() == CrossThread,
2838288943Sdim           "Non-atomic load cannot have SynchronizationScope specified", &LI);
2839249259Sdim  }
2840249259Sdim
2841249259Sdim  visitInstruction(LI);
2842249259Sdim}
2843249259Sdim
2844249259Sdimvoid Verifier::visitStoreInst(StoreInst &SI) {
2845249259Sdim  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2846288943Sdim  Assert(PTy, "Store operand must be a pointer.", &SI);
2847249259Sdim  Type *ElTy = PTy->getElementType();
2848288943Sdim  Assert(ElTy == SI.getOperand(0)->getType(),
2849288943Sdim         "Stored value type does not match pointer operand type!", &SI, ElTy);
2850288943Sdim  Assert(SI.getAlignment() <= Value::MaximumAlignment,
2851288943Sdim         "huge alignment values are unsupported", &SI);
2852249259Sdim  if (SI.isAtomic()) {
2853288943Sdim    Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
2854288943Sdim           "Store cannot have Acquire ordering", &SI);
2855288943Sdim    Assert(SI.getAlignment() != 0,
2856288943Sdim           "Atomic store must specify explicit alignment", &SI);
2857296417Sdim    Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2858296417Sdim               ElTy->isFloatingPointTy(),
2859296417Sdim           "atomic store operand must have integer, pointer, or floating point "
2860296417Sdim           "type!",
2861296417Sdim           ElTy, &SI);
2862296417Sdim    checkAtomicMemAccessSize(M, ElTy, &SI);
2863249259Sdim  } else {
2864288943Sdim    Assert(SI.getSynchScope() == CrossThread,
2865288943Sdim           "Non-atomic store cannot have SynchronizationScope specified", &SI);
2866249259Sdim  }
2867249259Sdim  visitInstruction(SI);
2868249259Sdim}
2869249259Sdim
2870249259Sdimvoid Verifier::visitAllocaInst(AllocaInst &AI) {
2871296417Sdim  SmallPtrSet<Type*, 4> Visited;
2872249259Sdim  PointerType *PTy = AI.getType();
2873288943Sdim  Assert(PTy->getAddressSpace() == 0,
2874288943Sdim         "Allocation instruction pointer not in the generic address space!",
2875288943Sdim         &AI);
2876288943Sdim  Assert(AI.getAllocatedType()->isSized(&Visited),
2877288943Sdim         "Cannot allocate unsized type", &AI);
2878288943Sdim  Assert(AI.getArraySize()->getType()->isIntegerTy(),
2879288943Sdim         "Alloca array size must have integer type", &AI);
2880288943Sdim  Assert(AI.getAlignment() <= Value::MaximumAlignment,
2881288943Sdim         "huge alignment values are unsupported", &AI);
2882276479Sdim
2883249259Sdim  visitInstruction(AI);
2884249259Sdim}
2885249259Sdim
2886249259Sdimvoid Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2887276479Sdim
2888276479Sdim  // FIXME: more conditions???
2889288943Sdim  Assert(CXI.getSuccessOrdering() != NotAtomic,
2890288943Sdim         "cmpxchg instructions must be atomic.", &CXI);
2891288943Sdim  Assert(CXI.getFailureOrdering() != NotAtomic,
2892288943Sdim         "cmpxchg instructions must be atomic.", &CXI);
2893288943Sdim  Assert(CXI.getSuccessOrdering() != Unordered,
2894288943Sdim         "cmpxchg instructions cannot be unordered.", &CXI);
2895288943Sdim  Assert(CXI.getFailureOrdering() != Unordered,
2896288943Sdim         "cmpxchg instructions cannot be unordered.", &CXI);
2897288943Sdim  Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2898288943Sdim         "cmpxchg instructions be at least as constrained on success as fail",
2899288943Sdim         &CXI);
2900288943Sdim  Assert(CXI.getFailureOrdering() != Release &&
2901288943Sdim             CXI.getFailureOrdering() != AcquireRelease,
2902288943Sdim         "cmpxchg failure ordering cannot include release semantics", &CXI);
2903276479Sdim
2904249259Sdim  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2905288943Sdim  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2906249259Sdim  Type *ElTy = PTy->getElementType();
2907288943Sdim  Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
2908288943Sdim         ElTy);
2909296417Sdim  checkAtomicMemAccessSize(M, ElTy, &CXI);
2910288943Sdim  Assert(ElTy == CXI.getOperand(1)->getType(),
2911288943Sdim         "Expected value type does not match pointer operand type!", &CXI,
2912288943Sdim         ElTy);
2913288943Sdim  Assert(ElTy == CXI.getOperand(2)->getType(),
2914288943Sdim         "Stored value type does not match pointer operand type!", &CXI, ElTy);
2915249259Sdim  visitInstruction(CXI);
2916249259Sdim}
2917249259Sdim
2918249259Sdimvoid Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2919288943Sdim  Assert(RMWI.getOrdering() != NotAtomic,
2920288943Sdim         "atomicrmw instructions must be atomic.", &RMWI);
2921288943Sdim  Assert(RMWI.getOrdering() != Unordered,
2922288943Sdim         "atomicrmw instructions cannot be unordered.", &RMWI);
2923249259Sdim  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2924288943Sdim  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2925249259Sdim  Type *ElTy = PTy->getElementType();
2926288943Sdim  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
2927288943Sdim         &RMWI, ElTy);
2928296417Sdim  checkAtomicMemAccessSize(M, ElTy, &RMWI);
2929288943Sdim  Assert(ElTy == RMWI.getOperand(1)->getType(),
2930288943Sdim         "Argument value type does not match pointer operand type!", &RMWI,
2931288943Sdim         ElTy);
2932288943Sdim  Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2933288943Sdim             RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2934288943Sdim         "Invalid binary operation!", &RMWI);
2935249259Sdim  visitInstruction(RMWI);
2936249259Sdim}
2937249259Sdim
2938249259Sdimvoid Verifier::visitFenceInst(FenceInst &FI) {
2939249259Sdim  const AtomicOrdering Ordering = FI.getOrdering();
2940288943Sdim  Assert(Ordering == Acquire || Ordering == Release ||
2941288943Sdim             Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2942288943Sdim         "fence instructions may only have "
2943288943Sdim         "acquire, release, acq_rel, or seq_cst ordering.",
2944288943Sdim         &FI);
2945249259Sdim  visitInstruction(FI);
2946249259Sdim}
2947249259Sdim
2948249259Sdimvoid Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2949288943Sdim  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2950288943Sdim                                          EVI.getIndices()) == EVI.getType(),
2951288943Sdim         "Invalid ExtractValueInst operands!", &EVI);
2952261991Sdim
2953249259Sdim  visitInstruction(EVI);
2954249259Sdim}
2955249259Sdim
2956249259Sdimvoid Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2957288943Sdim  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2958288943Sdim                                          IVI.getIndices()) ==
2959288943Sdim             IVI.getOperand(1)->getType(),
2960288943Sdim         "Invalid InsertValueInst operands!", &IVI);
2961261991Sdim
2962249259Sdim  visitInstruction(IVI);
2963249259Sdim}
2964249259Sdim
2965296417Sdimstatic Value *getParentPad(Value *EHPad) {
2966296417Sdim  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
2967296417Sdim    return FPI->getParentPad();
2968296417Sdim
2969296417Sdim  return cast<CatchSwitchInst>(EHPad)->getParentPad();
2970296417Sdim}
2971296417Sdim
2972296417Sdimvoid Verifier::visitEHPadPredecessors(Instruction &I) {
2973296417Sdim  assert(I.isEHPad());
2974296417Sdim
2975296417Sdim  BasicBlock *BB = I.getParent();
2976296417Sdim  Function *F = BB->getParent();
2977296417Sdim
2978296417Sdim  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
2979296417Sdim
2980296417Sdim  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
2981296417Sdim    // The landingpad instruction defines its parent as a landing pad block. The
2982296417Sdim    // landing pad block may be branched to only by the unwind edge of an
2983296417Sdim    // invoke.
2984296417Sdim    for (BasicBlock *PredBB : predecessors(BB)) {
2985296417Sdim      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
2986296417Sdim      Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2987296417Sdim             "Block containing LandingPadInst must be jumped to "
2988296417Sdim             "only by the unwind edge of an invoke.",
2989296417Sdim             LPI);
2990296417Sdim    }
2991296417Sdim    return;
2992296417Sdim  }
2993296417Sdim  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
2994296417Sdim    if (!pred_empty(BB))
2995296417Sdim      Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
2996296417Sdim             "Block containg CatchPadInst must be jumped to "
2997296417Sdim             "only by its catchswitch.",
2998296417Sdim             CPI);
2999296417Sdim    Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3000296417Sdim           "Catchswitch cannot unwind to one of its catchpads",
3001296417Sdim           CPI->getCatchSwitch(), CPI);
3002296417Sdim    return;
3003296417Sdim  }
3004296417Sdim
3005296417Sdim  // Verify that each pred has a legal terminator with a legal to/from EH
3006296417Sdim  // pad relationship.
3007296417Sdim  Instruction *ToPad = &I;
3008296417Sdim  Value *ToPadParent = getParentPad(ToPad);
3009296417Sdim  for (BasicBlock *PredBB : predecessors(BB)) {
3010296417Sdim    TerminatorInst *TI = PredBB->getTerminator();
3011296417Sdim    Value *FromPad;
3012296417Sdim    if (auto *II = dyn_cast<InvokeInst>(TI)) {
3013296417Sdim      Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3014296417Sdim             "EH pad must be jumped to via an unwind edge", ToPad, II);
3015296417Sdim      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3016296417Sdim        FromPad = Bundle->Inputs[0];
3017296417Sdim      else
3018296417Sdim        FromPad = ConstantTokenNone::get(II->getContext());
3019296417Sdim    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3020296417Sdim      FromPad = CRI->getCleanupPad();
3021296417Sdim      Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3022296417Sdim    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3023296417Sdim      FromPad = CSI;
3024296417Sdim    } else {
3025296417Sdim      Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3026296417Sdim    }
3027296417Sdim
3028296417Sdim    // The edge may exit from zero or more nested pads.
3029296417Sdim    for (;; FromPad = getParentPad(FromPad)) {
3030296417Sdim      Assert(FromPad != ToPad,
3031296417Sdim             "EH pad cannot handle exceptions raised within it", FromPad, TI);
3032296417Sdim      if (FromPad == ToPadParent) {
3033296417Sdim        // This is a legal unwind edge.
3034296417Sdim        break;
3035296417Sdim      }
3036296417Sdim      Assert(!isa<ConstantTokenNone>(FromPad),
3037296417Sdim             "A single unwind edge may only enter one EH pad", TI);
3038296417Sdim    }
3039296417Sdim  }
3040296417Sdim}
3041296417Sdim
3042249259Sdimvoid Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3043249259Sdim  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3044249259Sdim  // isn't a cleanup.
3045288943Sdim  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3046288943Sdim         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3047249259Sdim
3048296417Sdim  visitEHPadPredecessors(LPI);
3049296417Sdim
3050296417Sdim  if (!LandingPadResultTy)
3051296417Sdim    LandingPadResultTy = LPI.getType();
3052296417Sdim  else
3053296417Sdim    Assert(LandingPadResultTy == LPI.getType(),
3054296417Sdim           "The landingpad instruction should have a consistent result type "
3055296417Sdim           "inside a function.",
3056288943Sdim           &LPI);
3057249259Sdim
3058288943Sdim  Function *F = LPI.getParent()->getParent();
3059288943Sdim  Assert(F->hasPersonalityFn(),
3060288943Sdim         "LandingPadInst needs to be in a function with a personality.", &LPI);
3061288943Sdim
3062249259Sdim  // The landingpad instruction must be the first non-PHI instruction in the
3063249259Sdim  // block.
3064288943Sdim  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3065288943Sdim         "LandingPadInst not the first non-PHI instruction in the block.",
3066288943Sdim         &LPI);
3067249259Sdim
3068249259Sdim  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3069276479Sdim    Constant *Clause = LPI.getClause(i);
3070249259Sdim    if (LPI.isCatch(i)) {
3071288943Sdim      Assert(isa<PointerType>(Clause->getType()),
3072288943Sdim             "Catch operand does not have pointer type!", &LPI);
3073249259Sdim    } else {
3074288943Sdim      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3075288943Sdim      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3076288943Sdim             "Filter operand is not an array of constants!", &LPI);
3077249259Sdim    }
3078249259Sdim  }
3079249259Sdim
3080249259Sdim  visitInstruction(LPI);
3081249259Sdim}
3082249259Sdim
3083296417Sdimvoid Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3084296417Sdim  visitEHPadPredecessors(CPI);
3085296417Sdim
3086296417Sdim  BasicBlock *BB = CPI.getParent();
3087296417Sdim
3088296417Sdim  Function *F = BB->getParent();
3089296417Sdim  Assert(F->hasPersonalityFn(),
3090296417Sdim         "CatchPadInst needs to be in a function with a personality.", &CPI);
3091296417Sdim
3092296417Sdim  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3093296417Sdim         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3094296417Sdim         CPI.getParentPad());
3095296417Sdim
3096296417Sdim  // The catchpad instruction must be the first non-PHI instruction in the
3097296417Sdim  // block.
3098296417Sdim  Assert(BB->getFirstNonPHI() == &CPI,
3099296417Sdim         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3100296417Sdim
3101296417Sdim  visitFuncletPadInst(CPI);
3102296417Sdim}
3103296417Sdim
3104296417Sdimvoid Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3105296417Sdim  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3106296417Sdim         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3107296417Sdim         CatchReturn.getOperand(0));
3108296417Sdim
3109296417Sdim  visitTerminatorInst(CatchReturn);
3110296417Sdim}
3111296417Sdim
3112296417Sdimvoid Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3113296417Sdim  visitEHPadPredecessors(CPI);
3114296417Sdim
3115296417Sdim  BasicBlock *BB = CPI.getParent();
3116296417Sdim
3117296417Sdim  Function *F = BB->getParent();
3118296417Sdim  Assert(F->hasPersonalityFn(),
3119296417Sdim         "CleanupPadInst needs to be in a function with a personality.", &CPI);
3120296417Sdim
3121296417Sdim  // The cleanuppad instruction must be the first non-PHI instruction in the
3122296417Sdim  // block.
3123296417Sdim  Assert(BB->getFirstNonPHI() == &CPI,
3124296417Sdim         "CleanupPadInst not the first non-PHI instruction in the block.",
3125296417Sdim         &CPI);
3126296417Sdim
3127296417Sdim  auto *ParentPad = CPI.getParentPad();
3128296417Sdim  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3129296417Sdim         "CleanupPadInst has an invalid parent.", &CPI);
3130296417Sdim
3131296417Sdim  visitFuncletPadInst(CPI);
3132296417Sdim}
3133296417Sdim
3134296417Sdimvoid Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3135296417Sdim  User *FirstUser = nullptr;
3136296417Sdim  Value *FirstUnwindPad = nullptr;
3137296417Sdim  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3138296417Sdim  while (!Worklist.empty()) {
3139296417Sdim    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3140296417Sdim    Value *UnresolvedAncestorPad = nullptr;
3141296417Sdim    for (User *U : CurrentPad->users()) {
3142296417Sdim      BasicBlock *UnwindDest;
3143296417Sdim      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3144296417Sdim        UnwindDest = CRI->getUnwindDest();
3145296417Sdim      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3146296417Sdim        // We allow catchswitch unwind to caller to nest
3147296417Sdim        // within an outer pad that unwinds somewhere else,
3148296417Sdim        // because catchswitch doesn't have a nounwind variant.
3149296417Sdim        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3150296417Sdim        if (CSI->unwindsToCaller())
3151296417Sdim          continue;
3152296417Sdim        UnwindDest = CSI->getUnwindDest();
3153296417Sdim      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3154296417Sdim        UnwindDest = II->getUnwindDest();
3155296417Sdim      } else if (isa<CallInst>(U)) {
3156296417Sdim        // Calls which don't unwind may be found inside funclet
3157296417Sdim        // pads that unwind somewhere else.  We don't *require*
3158296417Sdim        // such calls to be annotated nounwind.
3159296417Sdim        continue;
3160296417Sdim      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3161296417Sdim        // The unwind dest for a cleanup can only be found by
3162296417Sdim        // recursive search.  Add it to the worklist, and we'll
3163296417Sdim        // search for its first use that determines where it unwinds.
3164296417Sdim        Worklist.push_back(CPI);
3165296417Sdim        continue;
3166296417Sdim      } else {
3167296417Sdim        Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3168296417Sdim        continue;
3169296417Sdim      }
3170296417Sdim
3171296417Sdim      Value *UnwindPad;
3172296417Sdim      bool ExitsFPI;
3173296417Sdim      if (UnwindDest) {
3174296417Sdim        UnwindPad = UnwindDest->getFirstNonPHI();
3175296417Sdim        Value *UnwindParent = getParentPad(UnwindPad);
3176296417Sdim        // Ignore unwind edges that don't exit CurrentPad.
3177296417Sdim        if (UnwindParent == CurrentPad)
3178296417Sdim          continue;
3179296417Sdim        // Determine whether the original funclet pad is exited,
3180296417Sdim        // and if we are scanning nested pads determine how many
3181296417Sdim        // of them are exited so we can stop searching their
3182296417Sdim        // children.
3183296417Sdim        Value *ExitedPad = CurrentPad;
3184296417Sdim        ExitsFPI = false;
3185296417Sdim        do {
3186296417Sdim          if (ExitedPad == &FPI) {
3187296417Sdim            ExitsFPI = true;
3188296417Sdim            // Now we can resolve any ancestors of CurrentPad up to
3189296417Sdim            // FPI, but not including FPI since we need to make sure
3190296417Sdim            // to check all direct users of FPI for consistency.
3191296417Sdim            UnresolvedAncestorPad = &FPI;
3192296417Sdim            break;
3193296417Sdim          }
3194296417Sdim          Value *ExitedParent = getParentPad(ExitedPad);
3195296417Sdim          if (ExitedParent == UnwindParent) {
3196296417Sdim            // ExitedPad is the ancestor-most pad which this unwind
3197296417Sdim            // edge exits, so we can resolve up to it, meaning that
3198296417Sdim            // ExitedParent is the first ancestor still unresolved.
3199296417Sdim            UnresolvedAncestorPad = ExitedParent;
3200296417Sdim            break;
3201296417Sdim          }
3202296417Sdim          ExitedPad = ExitedParent;
3203296417Sdim        } while (!isa<ConstantTokenNone>(ExitedPad));
3204296417Sdim      } else {
3205296417Sdim        // Unwinding to caller exits all pads.
3206296417Sdim        UnwindPad = ConstantTokenNone::get(FPI.getContext());
3207296417Sdim        ExitsFPI = true;
3208296417Sdim        UnresolvedAncestorPad = &FPI;
3209296417Sdim      }
3210296417Sdim
3211296417Sdim      if (ExitsFPI) {
3212296417Sdim        // This unwind edge exits FPI.  Make sure it agrees with other
3213296417Sdim        // such edges.
3214296417Sdim        if (FirstUser) {
3215296417Sdim          Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3216296417Sdim                                              "pad must have the same unwind "
3217296417Sdim                                              "dest",
3218296417Sdim                 &FPI, U, FirstUser);
3219296417Sdim        } else {
3220296417Sdim          FirstUser = U;
3221296417Sdim          FirstUnwindPad = UnwindPad;
3222296417Sdim          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3223296417Sdim          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3224296417Sdim              getParentPad(UnwindPad) == getParentPad(&FPI))
3225296417Sdim            SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3226296417Sdim        }
3227296417Sdim      }
3228296417Sdim      // Make sure we visit all uses of FPI, but for nested pads stop as
3229296417Sdim      // soon as we know where they unwind to.
3230296417Sdim      if (CurrentPad != &FPI)
3231296417Sdim        break;
3232296417Sdim    }
3233296417Sdim    if (UnresolvedAncestorPad) {
3234296417Sdim      if (CurrentPad == UnresolvedAncestorPad) {
3235296417Sdim        // When CurrentPad is FPI itself, we don't mark it as resolved even if
3236296417Sdim        // we've found an unwind edge that exits it, because we need to verify
3237296417Sdim        // all direct uses of FPI.
3238296417Sdim        assert(CurrentPad == &FPI);
3239296417Sdim        continue;
3240296417Sdim      }
3241296417Sdim      // Pop off the worklist any nested pads that we've found an unwind
3242296417Sdim      // destination for.  The pads on the worklist are the uncles,
3243296417Sdim      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3244296417Sdim      // for all ancestors of CurrentPad up to but not including
3245296417Sdim      // UnresolvedAncestorPad.
3246296417Sdim      Value *ResolvedPad = CurrentPad;
3247296417Sdim      while (!Worklist.empty()) {
3248296417Sdim        Value *UnclePad = Worklist.back();
3249296417Sdim        Value *AncestorPad = getParentPad(UnclePad);
3250296417Sdim        // Walk ResolvedPad up the ancestor list until we either find the
3251296417Sdim        // uncle's parent or the last resolved ancestor.
3252296417Sdim        while (ResolvedPad != AncestorPad) {
3253296417Sdim          Value *ResolvedParent = getParentPad(ResolvedPad);
3254296417Sdim          if (ResolvedParent == UnresolvedAncestorPad) {
3255296417Sdim            break;
3256296417Sdim          }
3257296417Sdim          ResolvedPad = ResolvedParent;
3258296417Sdim        }
3259296417Sdim        // If the resolved ancestor search didn't find the uncle's parent,
3260296417Sdim        // then the uncle is not yet resolved.
3261296417Sdim        if (ResolvedPad != AncestorPad)
3262296417Sdim          break;
3263296417Sdim        // This uncle is resolved, so pop it from the worklist.
3264296417Sdim        Worklist.pop_back();
3265296417Sdim      }
3266296417Sdim    }
3267296417Sdim  }
3268296417Sdim
3269296417Sdim  if (FirstUnwindPad) {
3270296417Sdim    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3271296417Sdim      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3272296417Sdim      Value *SwitchUnwindPad;
3273296417Sdim      if (SwitchUnwindDest)
3274296417Sdim        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3275296417Sdim      else
3276296417Sdim        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3277296417Sdim      Assert(SwitchUnwindPad == FirstUnwindPad,
3278296417Sdim             "Unwind edges out of a catch must have the same unwind dest as "
3279296417Sdim             "the parent catchswitch",
3280296417Sdim             &FPI, FirstUser, CatchSwitch);
3281296417Sdim    }
3282296417Sdim  }
3283296417Sdim
3284296417Sdim  visitInstruction(FPI);
3285296417Sdim}
3286296417Sdim
3287296417Sdimvoid Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3288296417Sdim  visitEHPadPredecessors(CatchSwitch);
3289296417Sdim
3290296417Sdim  BasicBlock *BB = CatchSwitch.getParent();
3291296417Sdim
3292296417Sdim  Function *F = BB->getParent();
3293296417Sdim  Assert(F->hasPersonalityFn(),
3294296417Sdim         "CatchSwitchInst needs to be in a function with a personality.",
3295296417Sdim         &CatchSwitch);
3296296417Sdim
3297296417Sdim  // The catchswitch instruction must be the first non-PHI instruction in the
3298296417Sdim  // block.
3299296417Sdim  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3300296417Sdim         "CatchSwitchInst not the first non-PHI instruction in the block.",
3301296417Sdim         &CatchSwitch);
3302296417Sdim
3303296417Sdim  auto *ParentPad = CatchSwitch.getParentPad();
3304296417Sdim  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3305296417Sdim         "CatchSwitchInst has an invalid parent.", ParentPad);
3306296417Sdim
3307296417Sdim  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3308296417Sdim    Instruction *I = UnwindDest->getFirstNonPHI();
3309296417Sdim    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3310296417Sdim           "CatchSwitchInst must unwind to an EH block which is not a "
3311296417Sdim           "landingpad.",
3312296417Sdim           &CatchSwitch);
3313296417Sdim
3314296417Sdim    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3315296417Sdim    if (getParentPad(I) == ParentPad)
3316296417Sdim      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3317296417Sdim  }
3318296417Sdim
3319296417Sdim  Assert(CatchSwitch.getNumHandlers() != 0,
3320296417Sdim         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3321296417Sdim
3322296417Sdim  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3323296417Sdim    Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3324296417Sdim           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3325296417Sdim  }
3326296417Sdim
3327296417Sdim  visitTerminatorInst(CatchSwitch);
3328296417Sdim}
3329296417Sdim
3330296417Sdimvoid Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3331296417Sdim  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3332296417Sdim         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3333296417Sdim         CRI.getOperand(0));
3334296417Sdim
3335296417Sdim  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3336296417Sdim    Instruction *I = UnwindDest->getFirstNonPHI();
3337296417Sdim    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3338296417Sdim           "CleanupReturnInst must unwind to an EH block which is not a "
3339296417Sdim           "landingpad.",
3340296417Sdim           &CRI);
3341296417Sdim  }
3342296417Sdim
3343296417Sdim  visitTerminatorInst(CRI);
3344296417Sdim}
3345296417Sdim
3346249259Sdimvoid Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3347249259Sdim  Instruction *Op = cast<Instruction>(I.getOperand(i));
3348249259Sdim  // If the we have an invalid invoke, don't try to compute the dominance.
3349249259Sdim  // We already reject it in the invoke specific checks and the dominance
3350249259Sdim  // computation doesn't handle multiple edges.
3351249259Sdim  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3352249259Sdim    if (II->getNormalDest() == II->getUnwindDest())
3353249259Sdim      return;
3354249259Sdim  }
3355249259Sdim
3356249259Sdim  const Use &U = I.getOperandUse(i);
3357288943Sdim  Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
3358288943Sdim         "Instruction does not dominate all uses!", Op, &I);
3359249259Sdim}
3360249259Sdim
3361296417Sdimvoid Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3362296417Sdim  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3363296417Sdim         "apply only to pointer types", &I);
3364296417Sdim  Assert(isa<LoadInst>(I),
3365296417Sdim         "dereferenceable, dereferenceable_or_null apply only to load"
3366296417Sdim         " instructions, use attributes for calls or invokes", &I);
3367296417Sdim  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3368296417Sdim         "take one operand!", &I);
3369296417Sdim  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3370296417Sdim  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3371296417Sdim         "dereferenceable_or_null metadata value must be an i64!", &I);
3372296417Sdim}
3373296417Sdim
3374249259Sdim/// verifyInstruction - Verify that an instruction is well formed.
3375249259Sdim///
3376249259Sdimvoid Verifier::visitInstruction(Instruction &I) {
3377249259Sdim  BasicBlock *BB = I.getParent();
3378288943Sdim  Assert(BB, "Instruction not embedded in basic block!", &I);
3379249259Sdim
3380249259Sdim  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3381276479Sdim    for (User *U : I.users()) {
3382288943Sdim      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3383288943Sdim             "Only PHI nodes may reference their own value!", &I);
3384276479Sdim    }
3385249259Sdim  }
3386249259Sdim
3387249259Sdim  // Check that void typed values don't have names
3388288943Sdim  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3389288943Sdim         "Instruction has a name, but provides a void value!", &I);
3390249259Sdim
3391249259Sdim  // Check that the return value of the instruction is either void or a legal
3392249259Sdim  // value type.
3393288943Sdim  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3394288943Sdim         "Instruction returns a non-scalar type!", &I);
3395249259Sdim
3396249259Sdim  // Check that the instruction doesn't produce metadata. Calls are already
3397249259Sdim  // checked against the callee type.
3398288943Sdim  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3399288943Sdim         "Invalid use of metadata!", &I);
3400249259Sdim
3401249259Sdim  // Check that all uses of the instruction, if they are instructions
3402249259Sdim  // themselves, actually have parent basic blocks.  If the use is not an
3403249259Sdim  // instruction, it is an error!
3404276479Sdim  for (Use &U : I.uses()) {
3405276479Sdim    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3406288943Sdim      Assert(Used->getParent() != nullptr,
3407288943Sdim             "Instruction referencing"
3408288943Sdim             " instruction not embedded in a basic block!",
3409288943Sdim             &I, Used);
3410249259Sdim    else {
3411276479Sdim      CheckFailed("Use of instruction is not an instruction!", U);
3412249259Sdim      return;
3413249259Sdim    }
3414249259Sdim  }
3415249259Sdim
3416249259Sdim  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3417288943Sdim    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3418249259Sdim
3419249259Sdim    // Check to make sure that only first-class-values are operands to
3420249259Sdim    // instructions.
3421249259Sdim    if (!I.getOperand(i)->getType()->isFirstClassType()) {
3422288943Sdim      Assert(0, "Instruction operands must be first-class values!", &I);
3423249259Sdim    }
3424249259Sdim
3425249259Sdim    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3426249259Sdim      // Check to make sure that the "address of" an intrinsic function is never
3427249259Sdim      // taken.
3428288943Sdim      Assert(
3429288943Sdim          !F->isIntrinsic() ||
3430288943Sdim              i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3431288943Sdim          "Cannot take the address of an intrinsic!", &I);
3432288943Sdim      Assert(
3433288943Sdim          !F->isIntrinsic() || isa<CallInst>(I) ||
3434280031Sdim              F->getIntrinsicID() == Intrinsic::donothing ||
3435280031Sdim              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3436288943Sdim              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3437288943Sdim              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3438288943Sdim          "Cannot invoke an intrinsinc other than"
3439288943Sdim          " donothing or patchpoint",
3440288943Sdim          &I);
3441288943Sdim      Assert(F->getParent() == M, "Referencing function in another module!",
3442296417Sdim             &I, M, F, F->getParent());
3443249259Sdim    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3444288943Sdim      Assert(OpBB->getParent() == BB->getParent(),
3445288943Sdim             "Referring to a basic block in another function!", &I);
3446249259Sdim    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3447288943Sdim      Assert(OpArg->getParent() == BB->getParent(),
3448288943Sdim             "Referring to an argument in another function!", &I);
3449249259Sdim    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3450296417Sdim      Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
3451249259Sdim    } else if (isa<Instruction>(I.getOperand(i))) {
3452249259Sdim      verifyDominatesUse(I, i);
3453249259Sdim    } else if (isa<InlineAsm>(I.getOperand(i))) {
3454288943Sdim      Assert((i + 1 == e && isa<CallInst>(I)) ||
3455288943Sdim                 (i + 3 == e && isa<InvokeInst>(I)),
3456288943Sdim             "Cannot take the address of an inline asm!", &I);
3457261991Sdim    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3458261991Sdim      if (CE->getType()->isPtrOrPtrVectorTy()) {
3459261991Sdim        // If we have a ConstantExpr pointer, we need to see if it came from an
3460261991Sdim        // illegal bitcast (inttoptr <constant int> )
3461296417Sdim        visitConstantExprsRecursively(CE);
3462261991Sdim      }
3463249259Sdim    }
3464249259Sdim  }
3465249259Sdim
3466249259Sdim  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3467288943Sdim    Assert(I.getType()->isFPOrFPVectorTy(),
3468288943Sdim           "fpmath requires a floating point result!", &I);
3469288943Sdim    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3470280031Sdim    if (ConstantFP *CFP0 =
3471280031Sdim            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3472249259Sdim      APFloat Accuracy = CFP0->getValueAPF();
3473288943Sdim      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3474288943Sdim             "fpmath accuracy not a positive number!", &I);
3475249259Sdim    } else {
3476288943Sdim      Assert(false, "invalid fpmath accuracy!", &I);
3477249259Sdim    }
3478249259Sdim  }
3479249259Sdim
3480280031Sdim  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3481288943Sdim    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3482288943Sdim           "Ranges are only for loads, calls and invokes!", &I);
3483280031Sdim    visitRangeMetadata(I, Range, I.getType());
3484280031Sdim  }
3485249259Sdim
3486280031Sdim  if (I.getMetadata(LLVMContext::MD_nonnull)) {
3487288943Sdim    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3488288943Sdim           &I);
3489288943Sdim    Assert(isa<LoadInst>(I),
3490288943Sdim           "nonnull applies only to load instructions, use attributes"
3491288943Sdim           " for calls or invokes",
3492288943Sdim           &I);
3493280031Sdim  }
3494280031Sdim
3495296417Sdim  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3496296417Sdim    visitDereferenceableMetadata(I, MD);
3497296417Sdim
3498296417Sdim  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3499296417Sdim    visitDereferenceableMetadata(I, MD);
3500296417Sdim
3501296417Sdim  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3502296417Sdim    Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3503296417Sdim           &I);
3504296417Sdim    Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3505296417Sdim           "use attributes for calls or invokes", &I);
3506296417Sdim    Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3507296417Sdim    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3508296417Sdim    Assert(CI && CI->getType()->isIntegerTy(64),
3509296417Sdim           "align metadata value must be an i64!", &I);
3510296417Sdim    uint64_t Align = CI->getZExtValue();
3511296417Sdim    Assert(isPowerOf2_64(Align),
3512296417Sdim           "align metadata value must be a power of 2!", &I);
3513296417Sdim    Assert(Align <= Value::MaximumAlignment,
3514296417Sdim           "alignment is larger that implementation defined limit", &I);
3515296417Sdim  }
3516296417Sdim
3517288943Sdim  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3518288943Sdim    Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3519288943Sdim    visitMDNode(*N);
3520288943Sdim  }
3521288943Sdim
3522249259Sdim  InstsInThisBlock.insert(&I);
3523249259Sdim}
3524249259Sdim
3525249259Sdim/// VerifyIntrinsicType - Verify that the specified type (which comes from an
3526249259Sdim/// intrinsic argument or return value) matches the type constraints specified
3527249259Sdim/// by the .td file (e.g. an "any integer" argument really is an integer).
3528249259Sdim///
3529249259Sdim/// This return true on error but does not print a message.
3530249259Sdimbool Verifier::VerifyIntrinsicType(Type *Ty,
3531249259Sdim                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
3532249259Sdim                                   SmallVectorImpl<Type*> &ArgTys) {
3533249259Sdim  using namespace Intrinsic;
3534249259Sdim
3535249259Sdim  // If we ran out of descriptors, there are too many arguments.
3536261991Sdim  if (Infos.empty()) return true;
3537249259Sdim  IITDescriptor D = Infos.front();
3538249259Sdim  Infos = Infos.slice(1);
3539261991Sdim
3540249259Sdim  switch (D.Kind) {
3541249259Sdim  case IITDescriptor::Void: return !Ty->isVoidTy();
3542261991Sdim  case IITDescriptor::VarArg: return true;
3543249259Sdim  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
3544296417Sdim  case IITDescriptor::Token: return !Ty->isTokenTy();
3545249259Sdim  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3546249259Sdim  case IITDescriptor::Half: return !Ty->isHalfTy();
3547249259Sdim  case IITDescriptor::Float: return !Ty->isFloatTy();
3548249259Sdim  case IITDescriptor::Double: return !Ty->isDoubleTy();
3549249259Sdim  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3550249259Sdim  case IITDescriptor::Vector: {
3551249259Sdim    VectorType *VT = dyn_cast<VectorType>(Ty);
3552276479Sdim    return !VT || VT->getNumElements() != D.Vector_Width ||
3553249259Sdim           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3554249259Sdim  }
3555249259Sdim  case IITDescriptor::Pointer: {
3556249259Sdim    PointerType *PT = dyn_cast<PointerType>(Ty);
3557276479Sdim    return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3558249259Sdim           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3559249259Sdim  }
3560261991Sdim
3561249259Sdim  case IITDescriptor::Struct: {
3562249259Sdim    StructType *ST = dyn_cast<StructType>(Ty);
3563276479Sdim    if (!ST || ST->getNumElements() != D.Struct_NumElements)
3564249259Sdim      return true;
3565261991Sdim
3566249259Sdim    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3567249259Sdim      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3568249259Sdim        return true;
3569249259Sdim    return false;
3570249259Sdim  }
3571261991Sdim
3572249259Sdim  case IITDescriptor::Argument:
3573249259Sdim    // Two cases here - If this is the second occurrence of an argument, verify
3574261991Sdim    // that the later instance matches the previous instance.
3575249259Sdim    if (D.getArgumentNumber() < ArgTys.size())
3576261991Sdim      return Ty != ArgTys[D.getArgumentNumber()];
3577261991Sdim
3578249259Sdim    // Otherwise, if this is the first instance of an argument, record it and
3579249259Sdim    // verify the "Any" kind.
3580249259Sdim    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
3581249259Sdim    ArgTys.push_back(Ty);
3582261991Sdim
3583249259Sdim    switch (D.getArgumentKind()) {
3584288943Sdim    case IITDescriptor::AK_Any:        return false; // Success
3585249259Sdim    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
3586249259Sdim    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
3587249259Sdim    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
3588249259Sdim    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3589249259Sdim    }
3590249259Sdim    llvm_unreachable("all argument kinds not covered");
3591261991Sdim
3592276479Sdim  case IITDescriptor::ExtendArgument: {
3593249259Sdim    // This may only be used when referring to a previous vector argument.
3594276479Sdim    if (D.getArgumentNumber() >= ArgTys.size())
3595276479Sdim      return true;
3596249259Sdim
3597276479Sdim    Type *NewTy = ArgTys[D.getArgumentNumber()];
3598276479Sdim    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3599276479Sdim      NewTy = VectorType::getExtendedElementVectorType(VTy);
3600276479Sdim    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3601276479Sdim      NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
3602276479Sdim    else
3603276479Sdim      return true;
3604276479Sdim
3605276479Sdim    return Ty != NewTy;
3606276479Sdim  }
3607276479Sdim  case IITDescriptor::TruncArgument: {
3608249259Sdim    // This may only be used when referring to a previous vector argument.
3609276479Sdim    if (D.getArgumentNumber() >= ArgTys.size())
3610276479Sdim      return true;
3611276479Sdim
3612276479Sdim    Type *NewTy = ArgTys[D.getArgumentNumber()];
3613276479Sdim    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3614276479Sdim      NewTy = VectorType::getTruncatedElementVectorType(VTy);
3615276479Sdim    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3616276479Sdim      NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
3617276479Sdim    else
3618276479Sdim      return true;
3619276479Sdim
3620276479Sdim    return Ty != NewTy;
3621276479Sdim  }
3622276479Sdim  case IITDescriptor::HalfVecArgument:
3623276479Sdim    // This may only be used when referring to a previous vector argument.
3624249259Sdim    return D.getArgumentNumber() >= ArgTys.size() ||
3625249259Sdim           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3626276479Sdim           VectorType::getHalfElementsVectorType(
3627249259Sdim                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3628280031Sdim  case IITDescriptor::SameVecWidthArgument: {
3629280031Sdim    if (D.getArgumentNumber() >= ArgTys.size())
3630280031Sdim      return true;
3631280031Sdim    VectorType * ReferenceType =
3632280031Sdim      dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3633280031Sdim    VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3634280031Sdim    if (!ThisArgType || !ReferenceType ||
3635280031Sdim        (ReferenceType->getVectorNumElements() !=
3636280031Sdim         ThisArgType->getVectorNumElements()))
3637280031Sdim      return true;
3638280031Sdim    return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
3639280031Sdim                               Infos, ArgTys);
3640249259Sdim  }
3641280031Sdim  case IITDescriptor::PtrToArgument: {
3642280031Sdim    if (D.getArgumentNumber() >= ArgTys.size())
3643280031Sdim      return true;
3644280031Sdim    Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3645280031Sdim    PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3646280031Sdim    return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3647280031Sdim  }
3648288943Sdim  case IITDescriptor::VecOfPtrsToElt: {
3649288943Sdim    if (D.getArgumentNumber() >= ArgTys.size())
3650288943Sdim      return true;
3651288943Sdim    VectorType * ReferenceType =
3652288943Sdim      dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3653288943Sdim    VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3654288943Sdim    if (!ThisArgVecTy || !ReferenceType ||
3655288943Sdim        (ReferenceType->getVectorNumElements() !=
3656288943Sdim         ThisArgVecTy->getVectorNumElements()))
3657288943Sdim      return true;
3658288943Sdim    PointerType *ThisArgEltTy =
3659288943Sdim      dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3660288943Sdim    if (!ThisArgEltTy)
3661288943Sdim      return true;
3662288943Sdim    return ThisArgEltTy->getElementType() !=
3663288943Sdim           ReferenceType->getVectorElementType();
3664280031Sdim  }
3665288943Sdim  }
3666249259Sdim  llvm_unreachable("unhandled");
3667249259Sdim}
3668249259Sdim
3669261991Sdim/// \brief Verify if the intrinsic has variable arguments.
3670261991Sdim/// This method is intended to be called after all the fixed arguments have been
3671261991Sdim/// verified first.
3672261991Sdim///
3673261991Sdim/// This method returns true on error and does not print an error message.
3674261991Sdimbool
3675261991SdimVerifier::VerifyIntrinsicIsVarArg(bool isVarArg,
3676261991Sdim                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
3677261991Sdim  using namespace Intrinsic;
3678261991Sdim
3679261991Sdim  // If there are no descriptors left, then it can't be a vararg.
3680261991Sdim  if (Infos.empty())
3681288943Sdim    return isVarArg;
3682261991Sdim
3683261991Sdim  // There should be only one descriptor remaining at this point.
3684261991Sdim  if (Infos.size() != 1)
3685261991Sdim    return true;
3686261991Sdim
3687261991Sdim  // Check and verify the descriptor.
3688261991Sdim  IITDescriptor D = Infos.front();
3689261991Sdim  Infos = Infos.slice(1);
3690261991Sdim  if (D.Kind == IITDescriptor::VarArg)
3691288943Sdim    return !isVarArg;
3692261991Sdim
3693261991Sdim  return true;
3694261991Sdim}
3695261991Sdim
3696288943Sdim/// Allow intrinsics to be verified in different ways.
3697288943Sdimvoid Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3698288943Sdim  Function *IF = CS.getCalledFunction();
3699288943Sdim  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3700288943Sdim         IF);
3701249259Sdim
3702249259Sdim  // Verify that the intrinsic prototype lines up with what the .td files
3703249259Sdim  // describe.
3704249259Sdim  FunctionType *IFTy = IF->getFunctionType();
3705261991Sdim  bool IsVarArg = IFTy->isVarArg();
3706261991Sdim
3707249259Sdim  SmallVector<Intrinsic::IITDescriptor, 8> Table;
3708249259Sdim  getIntrinsicInfoTableEntries(ID, Table);
3709249259Sdim  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3710249259Sdim
3711249259Sdim  SmallVector<Type *, 4> ArgTys;
3712288943Sdim  Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
3713288943Sdim         "Intrinsic has incorrect return type!", IF);
3714249259Sdim  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3715288943Sdim    Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
3716288943Sdim           "Intrinsic has incorrect argument type!", IF);
3717261991Sdim
3718261991Sdim  // Verify if the intrinsic call matches the vararg property.
3719261991Sdim  if (IsVarArg)
3720288943Sdim    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3721288943Sdim           "Intrinsic was not defined with variable arguments!", IF);
3722261991Sdim  else
3723288943Sdim    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3724288943Sdim           "Callsite was not defined with variable arguments!", IF);
3725261991Sdim
3726261991Sdim  // All descriptors should be absorbed by now.
3727288943Sdim  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3728249259Sdim
3729249259Sdim  // Now that we have the intrinsic ID and the actual argument types (and we
3730249259Sdim  // know they are legal for the intrinsic!) get the intrinsic name through the
3731249259Sdim  // usual means.  This allows us to verify the mangling of argument types into
3732249259Sdim  // the name.
3733276479Sdim  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3734288943Sdim  Assert(ExpectedName == IF->getName(),
3735288943Sdim         "Intrinsic name not mangled correctly for type arguments! "
3736288943Sdim         "Should be: " +
3737288943Sdim             ExpectedName,
3738288943Sdim         IF);
3739261991Sdim
3740249259Sdim  // If the intrinsic takes MDNode arguments, verify that they are either global
3741249259Sdim  // or are local to *this* function.
3742288943Sdim  for (Value *V : CS.args())
3743288943Sdim    if (auto *MD = dyn_cast<MetadataAsValue>(V))
3744288943Sdim      visitMetadataAsValue(*MD, CS.getCaller());
3745249259Sdim
3746249259Sdim  switch (ID) {
3747249259Sdim  default:
3748249259Sdim    break;
3749249259Sdim  case Intrinsic::ctlz:  // llvm.ctlz
3750249259Sdim  case Intrinsic::cttz:  // llvm.cttz
3751288943Sdim    Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3752288943Sdim           "is_zero_undef argument of bit counting intrinsics must be a "
3753288943Sdim           "constant int",
3754288943Sdim           CS);
3755249259Sdim    break;
3756288943Sdim  case Intrinsic::dbg_declare: // llvm.dbg.declare
3757288943Sdim    Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3758288943Sdim           "invalid llvm.dbg.declare intrinsic call 1", CS);
3759288943Sdim    visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3760288943Sdim    break;
3761288943Sdim  case Intrinsic::dbg_value: // llvm.dbg.value
3762288943Sdim    visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3763288943Sdim    break;
3764249259Sdim  case Intrinsic::memcpy:
3765249259Sdim  case Intrinsic::memmove:
3766288943Sdim  case Intrinsic::memset: {
3767288943Sdim    ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3768288943Sdim    Assert(AlignCI,
3769288943Sdim           "alignment argument of memory intrinsics must be a constant int",
3770288943Sdim           CS);
3771288943Sdim    const APInt &AlignVal = AlignCI->getValue();
3772288943Sdim    Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3773288943Sdim           "alignment argument of memory intrinsics must be a power of 2", CS);
3774288943Sdim    Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3775288943Sdim           "isvolatile argument of memory intrinsics must be a constant int",
3776288943Sdim           CS);
3777249259Sdim    break;
3778288943Sdim  }
3779249259Sdim  case Intrinsic::gcroot:
3780249259Sdim  case Intrinsic::gcwrite:
3781249259Sdim  case Intrinsic::gcread:
3782249259Sdim    if (ID == Intrinsic::gcroot) {
3783249259Sdim      AllocaInst *AI =
3784288943Sdim        dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3785288943Sdim      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3786288943Sdim      Assert(isa<Constant>(CS.getArgOperand(1)),
3787288943Sdim             "llvm.gcroot parameter #2 must be a constant.", CS);
3788288943Sdim      if (!AI->getAllocatedType()->isPointerTy()) {
3789288943Sdim        Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3790288943Sdim               "llvm.gcroot parameter #1 must either be a pointer alloca, "
3791288943Sdim               "or argument #2 must be a non-null constant.",
3792288943Sdim               CS);
3793249259Sdim      }
3794249259Sdim    }
3795249259Sdim
3796288943Sdim    Assert(CS.getParent()->getParent()->hasGC(),
3797288943Sdim           "Enclosing function does not use GC.", CS);
3798249259Sdim    break;
3799249259Sdim  case Intrinsic::init_trampoline:
3800288943Sdim    Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3801288943Sdim           "llvm.init_trampoline parameter #2 must resolve to a function.",
3802288943Sdim           CS);
3803249259Sdim    break;
3804249259Sdim  case Intrinsic::prefetch:
3805288943Sdim    Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3806288943Sdim               isa<ConstantInt>(CS.getArgOperand(2)) &&
3807288943Sdim               cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3808288943Sdim               cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3809288943Sdim           "invalid arguments to llvm.prefetch", CS);
3810249259Sdim    break;
3811249259Sdim  case Intrinsic::stackprotector:
3812288943Sdim    Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3813288943Sdim           "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3814249259Sdim    break;
3815249259Sdim  case Intrinsic::lifetime_start:
3816249259Sdim  case Intrinsic::lifetime_end:
3817249259Sdim  case Intrinsic::invariant_start:
3818288943Sdim    Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3819288943Sdim           "size argument of memory use markers must be a constant integer",
3820288943Sdim           CS);
3821249259Sdim    break;
3822249259Sdim  case Intrinsic::invariant_end:
3823288943Sdim    Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3824288943Sdim           "llvm.invariant.end parameter #2 must be a constant integer", CS);
3825249259Sdim    break;
3826280031Sdim
3827288943Sdim  case Intrinsic::localescape: {
3828288943Sdim    BasicBlock *BB = CS.getParent();
3829288943Sdim    Assert(BB == &BB->getParent()->front(),
3830288943Sdim           "llvm.localescape used outside of entry block", CS);
3831288943Sdim    Assert(!SawFrameEscape,
3832288943Sdim           "multiple calls to llvm.localescape in one function", CS);
3833288943Sdim    for (Value *Arg : CS.args()) {
3834288943Sdim      if (isa<ConstantPointerNull>(Arg))
3835288943Sdim        continue; // Null values are allowed as placeholders.
3836288943Sdim      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3837288943Sdim      Assert(AI && AI->isStaticAlloca(),
3838288943Sdim             "llvm.localescape only accepts static allocas", CS);
3839288943Sdim    }
3840288943Sdim    FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3841288943Sdim    SawFrameEscape = true;
3842280031Sdim    break;
3843249259Sdim  }
3844288943Sdim  case Intrinsic::localrecover: {
3845288943Sdim    Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3846280031Sdim    Function *Fn = dyn_cast<Function>(FnArg);
3847288943Sdim    Assert(Fn && !Fn->isDeclaration(),
3848288943Sdim           "llvm.localrecover first "
3849288943Sdim           "argument must be function defined in this module",
3850288943Sdim           CS);
3851288943Sdim    auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3852288943Sdim    Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3853288943Sdim           CS);
3854288943Sdim    auto &Entry = FrameEscapeInfo[Fn];
3855288943Sdim    Entry.second = unsigned(
3856288943Sdim        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3857280031Sdim    break;
3858280031Sdim  }
3859280031Sdim
3860288943Sdim  case Intrinsic::experimental_gc_statepoint:
3861288943Sdim    Assert(!CS.isInlineAsm(),
3862288943Sdim           "gc.statepoint support for inline assembly unimplemented", CS);
3863288943Sdim    Assert(CS.getParent()->getParent()->hasGC(),
3864288943Sdim           "Enclosing function does not use GC.", CS);
3865280031Sdim
3866288943Sdim    VerifyStatepoint(CS);
3867280031Sdim    break;
3868288943Sdim  case Intrinsic::experimental_gc_result: {
3869288943Sdim    Assert(CS.getParent()->getParent()->hasGC(),
3870288943Sdim           "Enclosing function does not use GC.", CS);
3871280031Sdim    // Are we tied to a statepoint properly?
3872288943Sdim    CallSite StatepointCS(CS.getArgOperand(0));
3873280031Sdim    const Function *StatepointFn =
3874280031Sdim      StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3875288943Sdim    Assert(StatepointFn && StatepointFn->isDeclaration() &&
3876288943Sdim               StatepointFn->getIntrinsicID() ==
3877288943Sdim                   Intrinsic::experimental_gc_statepoint,
3878288943Sdim           "gc.result operand #1 must be from a statepoint", CS,
3879288943Sdim           CS.getArgOperand(0));
3880280031Sdim
3881280031Sdim    // Assert that result type matches wrapped callee.
3882288943Sdim    const Value *Target = StatepointCS.getArgument(2);
3883296417Sdim    auto *PT = cast<PointerType>(Target->getType());
3884296417Sdim    auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
3885288943Sdim    Assert(CS.getType() == TargetFuncType->getReturnType(),
3886288943Sdim           "gc.result result type does not match wrapped callee", CS);
3887280031Sdim    break;
3888280031Sdim  }
3889280031Sdim  case Intrinsic::experimental_gc_relocate: {
3890288943Sdim    Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
3891280031Sdim
3892296417Sdim    Assert(isa<PointerType>(CS.getType()->getScalarType()),
3893296417Sdim           "gc.relocate must return a pointer or a vector of pointers", CS);
3894296417Sdim
3895288943Sdim    // Check that this relocate is correctly tied to the statepoint
3896288943Sdim
3897288943Sdim    // This is case for relocate on the unwinding path of an invoke statepoint
3898296417Sdim    if (LandingPadInst *LandingPad =
3899296417Sdim          dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
3900288943Sdim
3901288943Sdim      const BasicBlock *InvokeBB =
3902296417Sdim          LandingPad->getParent()->getUniquePredecessor();
3903288943Sdim
3904288943Sdim      // Landingpad relocates should have only one predecessor with invoke
3905288943Sdim      // statepoint terminator
3906288943Sdim      Assert(InvokeBB, "safepoints should have unique landingpads",
3907296417Sdim             LandingPad->getParent());
3908288943Sdim      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
3909288943Sdim             InvokeBB);
3910288943Sdim      Assert(isStatepoint(InvokeBB->getTerminator()),
3911288943Sdim             "gc relocate should be linked to a statepoint", InvokeBB);
3912288943Sdim    }
3913288943Sdim    else {
3914288943Sdim      // In all other cases relocate should be tied to the statepoint directly.
3915288943Sdim      // This covers relocates on a normal return path of invoke statepoint and
3916288943Sdim      // relocates of a call statepoint
3917288943Sdim      auto Token = CS.getArgOperand(0);
3918288943Sdim      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3919288943Sdim             "gc relocate is incorrectly tied to the statepoint", CS, Token);
3920288943Sdim    }
3921288943Sdim
3922288943Sdim    // Verify rest of the relocate arguments
3923288943Sdim
3924296417Sdim    ImmutableCallSite StatepointCS(
3925296417Sdim        cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
3926288943Sdim
3927280031Sdim    // Both the base and derived must be piped through the safepoint
3928288943Sdim    Value* Base = CS.getArgOperand(1);
3929288943Sdim    Assert(isa<ConstantInt>(Base),
3930288943Sdim           "gc.relocate operand #2 must be integer offset", CS);
3931280031Sdim
3932288943Sdim    Value* Derived = CS.getArgOperand(2);
3933288943Sdim    Assert(isa<ConstantInt>(Derived),
3934288943Sdim           "gc.relocate operand #3 must be integer offset", CS);
3935288943Sdim
3936280031Sdim    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3937280031Sdim    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3938280031Sdim    // Check the bounds
3939288943Sdim    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3940288943Sdim           "gc.relocate: statepoint base index out of bounds", CS);
3941288943Sdim    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3942288943Sdim           "gc.relocate: statepoint derived index out of bounds", CS);
3943280031Sdim
3944280031Sdim    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
3945280031Sdim    // section of the statepoint's argument
3946288943Sdim    Assert(StatepointCS.arg_size() > 0,
3947288943Sdim           "gc.statepoint: insufficient arguments");
3948288943Sdim    Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
3949288943Sdim           "gc.statement: number of call arguments must be constant integer");
3950288943Sdim    const unsigned NumCallArgs =
3951288943Sdim        cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
3952288943Sdim    Assert(StatepointCS.arg_size() > NumCallArgs + 5,
3953288943Sdim           "gc.statepoint: mismatch in number of call arguments");
3954288943Sdim    Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
3955288943Sdim           "gc.statepoint: number of transition arguments must be "
3956288943Sdim           "a constant integer");
3957288943Sdim    const int NumTransitionArgs =
3958288943Sdim        cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
3959288943Sdim            ->getZExtValue();
3960288943Sdim    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
3961288943Sdim    Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
3962288943Sdim           "gc.statepoint: number of deoptimization arguments must be "
3963288943Sdim           "a constant integer");
3964280031Sdim    const int NumDeoptArgs =
3965288943Sdim      cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
3966288943Sdim    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
3967280031Sdim    const int GCParamArgsEnd = StatepointCS.arg_size();
3968288943Sdim    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
3969288943Sdim           "gc.relocate: statepoint base index doesn't fall within the "
3970288943Sdim           "'gc parameters' section of the statepoint call",
3971288943Sdim           CS);
3972288943Sdim    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
3973288943Sdim           "gc.relocate: statepoint derived index doesn't fall within the "
3974288943Sdim           "'gc parameters' section of the statepoint call",
3975288943Sdim           CS);
3976280031Sdim
3977296417Sdim    // Relocated value must be either a pointer type or vector-of-pointer type,
3978296417Sdim    // but gc_relocate does not need to return the same pointer type as the
3979296417Sdim    // relocated pointer. It can be casted to the correct type later if it's
3980296417Sdim    // desired. However, they must have the same address space and 'vectorness'
3981296417Sdim    GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
3982296417Sdim    Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),
3983288943Sdim           "gc.relocate: relocated value must be a gc pointer", CS);
3984280031Sdim
3985296417Sdim    auto ResultType = CS.getType();
3986296417Sdim    auto DerivedType = Relocate.getDerivedPtr()->getType();
3987296417Sdim    Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
3988296417Sdim           "gc.relocate: vector relocates to vector and pointer to pointer", CS);
3989296417Sdim    Assert(ResultType->getPointerAddressSpace() ==
3990296417Sdim           DerivedType->getPointerAddressSpace(),
3991288943Sdim           "gc.relocate: relocating a pointer shouldn't change its address space", CS);
3992280031Sdim    break;
3993280031Sdim  }
3994296417Sdim  case Intrinsic::eh_exceptioncode:
3995296417Sdim  case Intrinsic::eh_exceptionpointer: {
3996296417Sdim    Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
3997296417Sdim           "eh.exceptionpointer argument must be a catchpad", CS);
3998296417Sdim    break;
3999296417Sdim  }
4000280031Sdim  };
4001249259Sdim}
4002249259Sdim
4003288943Sdim/// \brief Carefully grab the subprogram from a local scope.
4004288943Sdim///
4005288943Sdim/// This carefully grabs the subprogram from a local scope, avoiding the
4006288943Sdim/// built-in assertions that would typically fire.
4007288943Sdimstatic DISubprogram *getSubprogram(Metadata *LocalScope) {
4008288943Sdim  if (!LocalScope)
4009288943Sdim    return nullptr;
4010276479Sdim
4011288943Sdim  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4012288943Sdim    return SP;
4013276479Sdim
4014288943Sdim  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4015288943Sdim    return getSubprogram(LB->getRawScope());
4016288943Sdim
4017288943Sdim  // Just return null; broken scope chains are checked elsewhere.
4018288943Sdim  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4019288943Sdim  return nullptr;
4020288943Sdim}
4021288943Sdim
4022288943Sdimtemplate <class DbgIntrinsicTy>
4023288943Sdimvoid Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4024288943Sdim  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4025288943Sdim  Assert(isa<ValueAsMetadata>(MD) ||
4026288943Sdim             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4027288943Sdim         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4028288943Sdim  Assert(isa<DILocalVariable>(DII.getRawVariable()),
4029288943Sdim         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4030288943Sdim         DII.getRawVariable());
4031288943Sdim  Assert(isa<DIExpression>(DII.getRawExpression()),
4032288943Sdim         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4033288943Sdim         DII.getRawExpression());
4034288943Sdim
4035288943Sdim  // Ignore broken !dbg attachments; they're checked elsewhere.
4036288943Sdim  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4037288943Sdim    if (!isa<DILocation>(N))
4038288943Sdim      return;
4039288943Sdim
4040288943Sdim  BasicBlock *BB = DII.getParent();
4041288943Sdim  Function *F = BB ? BB->getParent() : nullptr;
4042288943Sdim
4043288943Sdim  // The scopes for variables and !dbg attachments must agree.
4044288943Sdim  DILocalVariable *Var = DII.getVariable();
4045288943Sdim  DILocation *Loc = DII.getDebugLoc();
4046288943Sdim  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4047288943Sdim         &DII, BB, F);
4048288943Sdim
4049288943Sdim  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4050288943Sdim  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4051288943Sdim  if (!VarSP || !LocSP)
4052288943Sdim    return; // Broken scope chains are checked elsewhere.
4053288943Sdim
4054288943Sdim  Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4055288943Sdim                             " variable and !dbg attachment",
4056288943Sdim         &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4057288943Sdim         Loc->getScope()->getSubprogram());
4058288943Sdim}
4059288943Sdim
4060288943Sdimtemplate <class MapTy>
4061288943Sdimstatic uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
4062288943Sdim  // Be careful of broken types (checked elsewhere).
4063288943Sdim  const Metadata *RawType = V.getRawType();
4064288943Sdim  while (RawType) {
4065288943Sdim    // Try to get the size directly.
4066288943Sdim    if (auto *T = dyn_cast<DIType>(RawType))
4067288943Sdim      if (uint64_t Size = T->getSizeInBits())
4068288943Sdim        return Size;
4069288943Sdim
4070288943Sdim    if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4071288943Sdim      // Look at the base type.
4072288943Sdim      RawType = DT->getRawBaseType();
4073288943Sdim      continue;
4074288943Sdim    }
4075288943Sdim
4076288943Sdim    if (auto *S = dyn_cast<MDString>(RawType)) {
4077288943Sdim      // Don't error on missing types (checked elsewhere).
4078288943Sdim      RawType = Map.lookup(S);
4079288943Sdim      continue;
4080288943Sdim    }
4081288943Sdim
4082288943Sdim    // Missing type or size.
4083288943Sdim    break;
4084261991Sdim  }
4085288943Sdim
4086288943Sdim  // Fail gracefully.
4087288943Sdim  return 0;
4088288943Sdim}
4089288943Sdim
4090288943Sdimtemplate <class MapTy>
4091288943Sdimvoid Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
4092288943Sdim                                        const MapTy &TypeRefs) {
4093288943Sdim  DILocalVariable *V;
4094288943Sdim  DIExpression *E;
4095288943Sdim  if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4096288943Sdim    V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4097288943Sdim    E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4098288943Sdim  } else {
4099288943Sdim    auto *DDI = cast<DbgDeclareInst>(&I);
4100288943Sdim    V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4101288943Sdim    E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4102276479Sdim  }
4103288943Sdim
4104288943Sdim  // We don't know whether this intrinsic verified correctly.
4105288943Sdim  if (!V || !E || !E->isValid())
4106288943Sdim    return;
4107288943Sdim
4108288943Sdim  // Nothing to do if this isn't a bit piece expression.
4109288943Sdim  if (!E->isBitPiece())
4110288943Sdim    return;
4111288943Sdim
4112288943Sdim  // The frontend helps out GDB by emitting the members of local anonymous
4113288943Sdim  // unions as artificial local variables with shared storage. When SROA splits
4114288943Sdim  // the storage for artificial local variables that are smaller than the entire
4115288943Sdim  // union, the overhang piece will be outside of the allotted space for the
4116288943Sdim  // variable and this check fails.
4117288943Sdim  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4118288943Sdim  if (V->isArtificial())
4119288943Sdim    return;
4120288943Sdim
4121288943Sdim  // If there's no size, the type is broken, but that should be checked
4122288943Sdim  // elsewhere.
4123288943Sdim  uint64_t VarSize = getVariableSize(*V, TypeRefs);
4124288943Sdim  if (!VarSize)
4125288943Sdim    return;
4126288943Sdim
4127288943Sdim  unsigned PieceSize = E->getBitPieceSize();
4128288943Sdim  unsigned PieceOffset = E->getBitPieceOffset();
4129288943Sdim  Assert(PieceSize + PieceOffset <= VarSize,
4130288943Sdim         "piece is larger than or outside of variable", &I, V, E);
4131288943Sdim  Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
4132261991Sdim}
4133261991Sdim
4134288943Sdimvoid Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
4135288943Sdim  // This is in its own function so we get an error for each bad type ref (not
4136288943Sdim  // just the first).
4137288943Sdim  Assert(false, "unresolved type ref", S, N);
4138276479Sdim}
4139276479Sdim
4140288943Sdimvoid Verifier::verifyTypeRefs() {
4141288943Sdim  auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
4142288943Sdim  if (!CUs)
4143288943Sdim    return;
4144288943Sdim
4145288943Sdim  // Visit all the compile units again to map the type references.
4146288943Sdim  SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
4147288943Sdim  for (auto *CU : CUs->operands())
4148288943Sdim    if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
4149288943Sdim      for (DIType *Op : Ts)
4150296417Sdim        if (auto *T = dyn_cast_or_null<DICompositeType>(Op))
4151288943Sdim          if (auto *S = T->getRawIdentifier()) {
4152288943Sdim            UnresolvedTypeRefs.erase(S);
4153288943Sdim            TypeRefs.insert(std::make_pair(S, T));
4154288943Sdim          }
4155288943Sdim
4156288943Sdim  // Verify debug info intrinsic bit piece expressions.  This needs a second
4157288943Sdim  // pass through the intructions, since we haven't built TypeRefs yet when
4158288943Sdim  // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
4159288943Sdim  // later/now would queue up some that could be later deleted.
4160288943Sdim  for (const Function &F : *M)
4161288943Sdim    for (const BasicBlock &BB : F)
4162288943Sdim      for (const Instruction &I : BB)
4163288943Sdim        if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
4164288943Sdim          verifyBitPieceExpression(*DII, TypeRefs);
4165288943Sdim
4166288943Sdim  // Return early if all typerefs were resolved.
4167288943Sdim  if (UnresolvedTypeRefs.empty())
4168288943Sdim    return;
4169288943Sdim
4170288943Sdim  // Sort the unresolved references by name so the output is deterministic.
4171288943Sdim  typedef std::pair<const MDString *, const MDNode *> TypeRef;
4172288943Sdim  SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
4173288943Sdim                                      UnresolvedTypeRefs.end());
4174288943Sdim  std::sort(Unresolved.begin(), Unresolved.end(),
4175288943Sdim            [](const TypeRef &LHS, const TypeRef &RHS) {
4176288943Sdim    return LHS.first->getString() < RHS.first->getString();
4177288943Sdim  });
4178288943Sdim
4179288943Sdim  // Visit the unresolved refs (printing out the errors).
4180288943Sdim  for (const TypeRef &TR : Unresolved)
4181288943Sdim    visitUnresolvedTypeRef(TR.first, TR.second);
4182276479Sdim}
4183276479Sdim
4184249259Sdim//===----------------------------------------------------------------------===//
4185249259Sdim//  Implement the public interfaces to this file...
4186249259Sdim//===----------------------------------------------------------------------===//
4187249259Sdim
4188276479Sdimbool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4189276479Sdim  Function &F = const_cast<Function &>(f);
4190276479Sdim  assert(!F.isDeclaration() && "Cannot verify external functions");
4191276479Sdim
4192276479Sdim  raw_null_ostream NullStr;
4193276479Sdim  Verifier V(OS ? *OS : NullStr);
4194276479Sdim
4195276479Sdim  // Note that this function's return value is inverted from what you would
4196276479Sdim  // expect of a function called "verify".
4197276479Sdim  return !V.verify(F);
4198249259Sdim}
4199249259Sdim
4200276479Sdimbool llvm::verifyModule(const Module &M, raw_ostream *OS) {
4201276479Sdim  raw_null_ostream NullStr;
4202276479Sdim  Verifier V(OS ? *OS : NullStr);
4203249259Sdim
4204276479Sdim  bool Broken = false;
4205276479Sdim  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
4206280031Sdim    if (!I->isDeclaration() && !I->isMaterializable())
4207276479Sdim      Broken |= !V.verify(*I);
4208249259Sdim
4209276479Sdim  // Note that this function's return value is inverted from what you would
4210276479Sdim  // expect of a function called "verify".
4211288943Sdim  return !V.verify(M) || Broken;
4212249259Sdim}
4213249259Sdim
4214276479Sdimnamespace {
4215276479Sdimstruct VerifierLegacyPass : public FunctionPass {
4216276479Sdim  static char ID;
4217249259Sdim
4218276479Sdim  Verifier V;
4219276479Sdim  bool FatalErrors;
4220276479Sdim
4221288943Sdim  VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
4222276479Sdim    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4223276479Sdim  }
4224276479Sdim  explicit VerifierLegacyPass(bool FatalErrors)
4225276479Sdim      : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
4226276479Sdim    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4227276479Sdim  }
4228276479Sdim
4229276479Sdim  bool runOnFunction(Function &F) override {
4230276479Sdim    if (!V.verify(F) && FatalErrors)
4231276479Sdim      report_fatal_error("Broken function found, compilation aborted!");
4232276479Sdim
4233276479Sdim    return false;
4234276479Sdim  }
4235276479Sdim
4236276479Sdim  bool doFinalization(Module &M) override {
4237276479Sdim    if (!V.verify(M) && FatalErrors)
4238276479Sdim      report_fatal_error("Broken module found, compilation aborted!");
4239276479Sdim
4240276479Sdim    return false;
4241276479Sdim  }
4242276479Sdim
4243276479Sdim  void getAnalysisUsage(AnalysisUsage &AU) const override {
4244276479Sdim    AU.setPreservesAll();
4245276479Sdim  }
4246276479Sdim};
4247249259Sdim}
4248276479Sdim
4249276479Sdimchar VerifierLegacyPass::ID = 0;
4250276479SdimINITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4251276479Sdim
4252276479SdimFunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4253276479Sdim  return new VerifierLegacyPass(FatalErrors);
4254276479Sdim}
4255276479Sdim
4256280031SdimPreservedAnalyses VerifierPass::run(Module &M) {
4257280031Sdim  if (verifyModule(M, &dbgs()) && FatalErrors)
4258276479Sdim    report_fatal_error("Broken module found, compilation aborted!");
4259276479Sdim
4260276479Sdim  return PreservedAnalyses::all();
4261276479Sdim}
4262276479Sdim
4263280031SdimPreservedAnalyses VerifierPass::run(Function &F) {
4264280031Sdim  if (verifyFunction(F, &dbgs()) && FatalErrors)
4265276479Sdim    report_fatal_error("Broken function found, compilation aborted!");
4266276479Sdim
4267276479Sdim  return PreservedAnalyses::all();
4268276479Sdim}
4269