RuntimeDyldMachO.cpp revision 224133
1//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "RuntimeDyldImpl.h"
19using namespace llvm;
20using namespace llvm::object;
21
22namespace llvm {
23
24bool RuntimeDyldMachO::
25resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
26                  unsigned Type, unsigned Size) {
27  // This just dispatches to the proper target specific routine.
28  switch (CPUType) {
29  default: assert(0 && "Unsupported CPU type!");
30  case mach::CTM_x86_64:
31    return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
32                                   isPCRel, Type, Size);
33  case mach::CTM_ARM:
34    return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
35                                isPCRel, Type, Size);
36  }
37  llvm_unreachable("");
38}
39
40bool RuntimeDyldMachO::
41resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
42                        bool isPCRel, unsigned Type,
43                        unsigned Size) {
44  // If the relocation is PC-relative, the value to be encoded is the
45  // pointer difference.
46  if (isPCRel)
47    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
48    // address. Is that expected? Only for branches, perhaps?
49    Value -= Address + 4;
50
51  switch(Type) {
52  default:
53    llvm_unreachable("Invalid relocation type!");
54  case macho::RIT_X86_64_Unsigned:
55  case macho::RIT_X86_64_Branch: {
56    // Mask in the target value a byte at a time (we don't have an alignment
57    // guarantee for the target address, so this is safest).
58    uint8_t *p = (uint8_t*)Address;
59    for (unsigned i = 0; i < Size; ++i) {
60      *p++ = (uint8_t)Value;
61      Value >>= 8;
62    }
63    return false;
64  }
65  case macho::RIT_X86_64_Signed:
66  case macho::RIT_X86_64_GOTLoad:
67  case macho::RIT_X86_64_GOT:
68  case macho::RIT_X86_64_Subtractor:
69  case macho::RIT_X86_64_Signed1:
70  case macho::RIT_X86_64_Signed2:
71  case macho::RIT_X86_64_Signed4:
72  case macho::RIT_X86_64_TLV:
73    return Error("Relocation type not implemented yet!");
74  }
75  return false;
76}
77
78bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
79                                         bool isPCRel, unsigned Type,
80                                         unsigned Size) {
81  // If the relocation is PC-relative, the value to be encoded is the
82  // pointer difference.
83  if (isPCRel) {
84    Value -= Address;
85    // ARM PCRel relocations have an effective-PC offset of two instructions
86    // (four bytes in Thumb mode, 8 bytes in ARM mode).
87    // FIXME: For now, assume ARM mode.
88    Value -= 8;
89  }
90
91  switch(Type) {
92  default:
93    llvm_unreachable("Invalid relocation type!");
94  case macho::RIT_Vanilla: {
95    llvm_unreachable("Invalid relocation type!");
96    // Mask in the target value a byte at a time (we don't have an alignment
97    // guarantee for the target address, so this is safest).
98    uint8_t *p = (uint8_t*)Address;
99    for (unsigned i = 0; i < Size; ++i) {
100      *p++ = (uint8_t)Value;
101      Value >>= 8;
102    }
103    break;
104  }
105  case macho::RIT_ARM_Branch24Bit: {
106    // Mask the value into the target address. We know instructions are
107    // 32-bit aligned, so we can do it all at once.
108    uint32_t *p = (uint32_t*)Address;
109    // The low two bits of the value are not encoded.
110    Value >>= 2;
111    // Mask the value to 24 bits.
112    Value &= 0xffffff;
113    // FIXME: If the destination is a Thumb function (and the instruction
114    // is a non-predicated BL instruction), we need to change it to a BLX
115    // instruction instead.
116
117    // Insert the value into the instruction.
118    *p = (*p & ~0xffffff) | Value;
119    break;
120  }
121  case macho::RIT_ARM_ThumbBranch22Bit:
122  case macho::RIT_ARM_ThumbBranch32Bit:
123  case macho::RIT_ARM_Half:
124  case macho::RIT_ARM_HalfDifference:
125  case macho::RIT_Pair:
126  case macho::RIT_Difference:
127  case macho::RIT_ARM_LocalDifference:
128  case macho::RIT_ARM_PreboundLazyPointer:
129    return Error("Relocation type not implemented yet!");
130  }
131  return false;
132}
133
134bool RuntimeDyldMachO::
135loadSegment32(const MachOObject *Obj,
136              const MachOObject::LoadCommandInfo *SegmentLCI,
137              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
138  InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
139  Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
140  if (!SegmentLC)
141    return Error("unable to load segment load command");
142
143  for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
144    InMemoryStruct<macho::Section> Sect;
145    Obj->ReadSection(*SegmentLCI, SectNum, Sect);
146    if (!Sect)
147      return Error("unable to load section: '" + Twine(SectNum) + "'");
148
149    // FIXME: For the time being, we're only loading text segments.
150    if (Sect->Flags != 0x80000400)
151      continue;
152
153    // Address and names of symbols in the section.
154    typedef std::pair<uint64_t, StringRef> SymbolEntry;
155    SmallVector<SymbolEntry, 64> Symbols;
156    // Index of all the names, in this section or not. Used when we're
157    // dealing with relocation entries.
158    SmallVector<StringRef, 64> SymbolNames;
159    for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
160      InMemoryStruct<macho::SymbolTableEntry> STE;
161      Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
162      if (!STE)
163        return Error("unable to read symbol: '" + Twine(i) + "'");
164      if (STE->SectionIndex > SegmentLC->NumSections)
165        return Error("invalid section index for symbol: '" + Twine(i) + "'");
166      // Get the symbol name.
167      StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
168      SymbolNames.push_back(Name);
169
170      // Just skip symbols not defined in this section.
171      if ((unsigned)STE->SectionIndex - 1 != SectNum)
172        continue;
173
174      // FIXME: Check the symbol type and flags.
175      if (STE->Type != 0xF)  // external, defined in this section.
176        continue;
177      // Flags == 0x8 marks a thumb function for ARM, which is fine as it
178      // doesn't require any special handling here.
179      if (STE->Flags != 0x0 && STE->Flags != 0x8)
180        continue;
181
182      // Remember the symbol.
183      Symbols.push_back(SymbolEntry(STE->Value, Name));
184
185      DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
186            (Sect->Address + STE->Value) << "\n");
187    }
188    // Sort the symbols by address, just in case they didn't come in that way.
189    array_pod_sort(Symbols.begin(), Symbols.end());
190
191    // If there weren't any functions (odd, but just in case...)
192    if (!Symbols.size())
193      continue;
194
195    // Extract the function data.
196    uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
197                                           SegmentLC->FileSize).data();
198    for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
199      uint64_t StartOffset = Sect->Address + Symbols[i].first;
200      uint64_t EndOffset = Symbols[i + 1].first - 1;
201      DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
202                   << " from [" << StartOffset << ", " << EndOffset << "]\n");
203      extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
204    }
205    // The last symbol we do after since the end address is calculated
206    // differently because there is no next symbol to reference.
207    uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
208    uint64_t EndOffset = Sect->Size - 1;
209    DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
210                 << " from [" << StartOffset << ", " << EndOffset << "]\n");
211    extractFunction(Symbols[Symbols.size()-1].second,
212                    Base + StartOffset, Base + EndOffset);
213
214    // Now extract the relocation information for each function and process it.
215    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
216      InMemoryStruct<macho::RelocationEntry> RE;
217      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
218      if (RE->Word0 & macho::RF_Scattered)
219        return Error("NOT YET IMPLEMENTED: scattered relocations.");
220      // Word0 of the relocation is the offset into the section where the
221      // relocation should be applied. We need to translate that into an
222      // offset into a function since that's our atom.
223      uint32_t Offset = RE->Word0;
224      // Look for the function containing the address. This is used for JIT
225      // code, so the number of functions in section is almost always going
226      // to be very small (usually just one), so until we have use cases
227      // where that's not true, just use a trivial linear search.
228      unsigned SymbolNum;
229      unsigned NumSymbols = Symbols.size();
230      assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
231             "No symbol containing relocation!");
232      for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
233        if (Symbols[SymbolNum + 1].first > Offset)
234          break;
235      // Adjust the offset to be relative to the symbol.
236      Offset -= Symbols[SymbolNum].first;
237      // Get the name of the symbol containing the relocation.
238      StringRef TargetName = SymbolNames[SymbolNum];
239
240      bool isExtern = (RE->Word1 >> 27) & 1;
241      // Figure out the source symbol of the relocation. If isExtern is true,
242      // this relocation references the symbol table, otherwise it references
243      // a section in the same object, numbered from 1 through NumSections
244      // (SectionBases is [0, NumSections-1]).
245      // FIXME: Some targets (ARM) use internal relocations even for
246      // externally visible symbols, if the definition is in the same
247      // file as the reference. We need to convert those back to by-name
248      // references. We can resolve the address based on the section
249      // offset and see if we have a symbol at that address. If we do,
250      // use that; otherwise, puke.
251      if (!isExtern)
252        return Error("Internal relocations not supported.");
253      uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
254      StringRef SourceName = SymbolNames[SourceNum];
255
256      // FIXME: Get the relocation addend from the target address.
257
258      // Now store the relocation information. Associate it with the source
259      // symbol.
260      Relocations[SourceName].push_back(RelocationEntry(TargetName,
261                                                        Offset,
262                                                        RE->Word1,
263                                                        0 /*Addend*/));
264      DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
265                   << " from '" << SourceName << "(Word1: "
266                   << format("0x%x", RE->Word1) << ")\n");
267    }
268  }
269  return false;
270}
271
272
273bool RuntimeDyldMachO::
274loadSegment64(const MachOObject *Obj,
275              const MachOObject::LoadCommandInfo *SegmentLCI,
276              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
277  InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
278  Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
279  if (!Segment64LC)
280    return Error("unable to load segment load command");
281
282  for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
283    InMemoryStruct<macho::Section64> Sect;
284    Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
285    if (!Sect)
286      return Error("unable to load section: '" + Twine(SectNum) + "'");
287
288    // FIXME: For the time being, we're only loading text segments.
289    if (Sect->Flags != 0x80000400)
290      continue;
291
292    // Address and names of symbols in the section.
293    typedef std::pair<uint64_t, StringRef> SymbolEntry;
294    SmallVector<SymbolEntry, 64> Symbols;
295    // Index of all the names, in this section or not. Used when we're
296    // dealing with relocation entries.
297    SmallVector<StringRef, 64> SymbolNames;
298    for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
299      InMemoryStruct<macho::Symbol64TableEntry> STE;
300      Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
301      if (!STE)
302        return Error("unable to read symbol: '" + Twine(i) + "'");
303      if (STE->SectionIndex > Segment64LC->NumSections)
304        return Error("invalid section index for symbol: '" + Twine(i) + "'");
305      // Get the symbol name.
306      StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
307      SymbolNames.push_back(Name);
308
309      // Just skip symbols not defined in this section.
310      if ((unsigned)STE->SectionIndex - 1 != SectNum)
311        continue;
312
313      // FIXME: Check the symbol type and flags.
314      if (STE->Type != 0xF)  // external, defined in this section.
315        continue;
316      if (STE->Flags != 0x0)
317        continue;
318
319      // Remember the symbol.
320      Symbols.push_back(SymbolEntry(STE->Value, Name));
321
322      DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
323            (Sect->Address + STE->Value) << "\n");
324    }
325    // Sort the symbols by address, just in case they didn't come in that way.
326    array_pod_sort(Symbols.begin(), Symbols.end());
327
328    // If there weren't any functions (odd, but just in case...)
329    if (!Symbols.size())
330      continue;
331
332    // Extract the function data.
333    uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
334                                           Segment64LC->FileSize).data();
335    for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
336      uint64_t StartOffset = Sect->Address + Symbols[i].first;
337      uint64_t EndOffset = Symbols[i + 1].first - 1;
338      DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
339                   << " from [" << StartOffset << ", " << EndOffset << "]\n");
340      extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
341    }
342    // The last symbol we do after since the end address is calculated
343    // differently because there is no next symbol to reference.
344    uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
345    uint64_t EndOffset = Sect->Size - 1;
346    DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
347                 << " from [" << StartOffset << ", " << EndOffset << "]\n");
348    extractFunction(Symbols[Symbols.size()-1].second,
349                    Base + StartOffset, Base + EndOffset);
350
351    // Now extract the relocation information for each function and process it.
352    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
353      InMemoryStruct<macho::RelocationEntry> RE;
354      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
355      if (RE->Word0 & macho::RF_Scattered)
356        return Error("NOT YET IMPLEMENTED: scattered relocations.");
357      // Word0 of the relocation is the offset into the section where the
358      // relocation should be applied. We need to translate that into an
359      // offset into a function since that's our atom.
360      uint32_t Offset = RE->Word0;
361      // Look for the function containing the address. This is used for JIT
362      // code, so the number of functions in section is almost always going
363      // to be very small (usually just one), so until we have use cases
364      // where that's not true, just use a trivial linear search.
365      unsigned SymbolNum;
366      unsigned NumSymbols = Symbols.size();
367      assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
368             "No symbol containing relocation!");
369      for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
370        if (Symbols[SymbolNum + 1].first > Offset)
371          break;
372      // Adjust the offset to be relative to the symbol.
373      Offset -= Symbols[SymbolNum].first;
374      // Get the name of the symbol containing the relocation.
375      StringRef TargetName = SymbolNames[SymbolNum];
376
377      bool isExtern = (RE->Word1 >> 27) & 1;
378      // Figure out the source symbol of the relocation. If isExtern is true,
379      // this relocation references the symbol table, otherwise it references
380      // a section in the same object, numbered from 1 through NumSections
381      // (SectionBases is [0, NumSections-1]).
382      if (!isExtern)
383        return Error("Internal relocations not supported.");
384      uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
385      StringRef SourceName = SymbolNames[SourceNum];
386
387      // FIXME: Get the relocation addend from the target address.
388
389      // Now store the relocation information. Associate it with the source
390      // symbol.
391      Relocations[SourceName].push_back(RelocationEntry(TargetName,
392                                                        Offset,
393                                                        RE->Word1,
394                                                        0 /*Addend*/));
395      DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
396                   << " from '" << SourceName << "(Word1: "
397                   << format("0x%x", RE->Word1) << ")\n");
398    }
399  }
400  return false;
401}
402
403bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
404  // If the linker is in an error state, don't do anything.
405  if (hasError())
406    return true;
407  // Load the Mach-O wrapper object.
408  std::string ErrorStr;
409  OwningPtr<MachOObject> Obj(
410    MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
411  if (!Obj)
412    return Error("unable to load object: '" + ErrorStr + "'");
413
414  // Get the CPU type information from the header.
415  const macho::Header &Header = Obj->getHeader();
416
417  // FIXME: Error checking that the loaded object is compatible with
418  //        the system we're running on.
419  CPUType = Header.CPUType;
420  CPUSubtype = Header.CPUSubtype;
421
422  // Validate that the load commands match what we expect.
423  const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
424    *DysymtabLCI = 0;
425  for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
426    const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
427    switch (LCI.Command.Type) {
428    case macho::LCT_Segment:
429    case macho::LCT_Segment64:
430      if (SegmentLCI)
431        return Error("unexpected input object (multiple segments)");
432      SegmentLCI = &LCI;
433      break;
434    case macho::LCT_Symtab:
435      if (SymtabLCI)
436        return Error("unexpected input object (multiple symbol tables)");
437      SymtabLCI = &LCI;
438      break;
439    case macho::LCT_Dysymtab:
440      if (DysymtabLCI)
441        return Error("unexpected input object (multiple symbol tables)");
442      DysymtabLCI = &LCI;
443      break;
444    default:
445      return Error("unexpected input object (unexpected load command");
446    }
447  }
448
449  if (!SymtabLCI)
450    return Error("no symbol table found in object");
451  if (!SegmentLCI)
452    return Error("no symbol table found in object");
453
454  // Read and register the symbol table data.
455  InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
456  Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
457  if (!SymtabLC)
458    return Error("unable to load symbol table load command");
459  Obj->RegisterStringTable(*SymtabLC);
460
461  // Read the dynamic link-edit information, if present (not present in static
462  // objects).
463  if (DysymtabLCI) {
464    InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
465    Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
466    if (!DysymtabLC)
467      return Error("unable to load dynamic link-exit load command");
468
469    // FIXME: We don't support anything interesting yet.
470//    if (DysymtabLC->LocalSymbolsIndex != 0)
471//      return Error("NOT YET IMPLEMENTED: local symbol entries");
472//    if (DysymtabLC->ExternalSymbolsIndex != 0)
473//      return Error("NOT YET IMPLEMENTED: non-external symbol entries");
474//    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
475//      return Error("NOT YET IMPLEMENTED: undefined symbol entries");
476  }
477
478  // Load the segment load command.
479  if (SegmentLCI->Command.Type == macho::LCT_Segment) {
480    if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
481      return true;
482  } else {
483    if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
484      return true;
485  }
486
487  return false;
488}
489
490// Assign an address to a symbol name and resolve all the relocations
491// associated with it.
492void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
493  // Assign the address in our symbol table.
494  SymbolTable[Name] = Addr;
495
496  RelocationList &Relocs = Relocations[Name];
497  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
498    RelocationEntry &RE = Relocs[i];
499    uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
500    bool isPCRel = (RE.Data >> 24) & 1;
501    unsigned Type = (RE.Data >> 28) & 0xf;
502    unsigned Size = 1 << ((RE.Data >> 25) & 3);
503
504    DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
505          << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
506          << " from '" << Name << " (" << format("%p", Addr) << ")"
507          << "(" << (isPCRel ? "pcrel" : "absolute")
508          << ", type: " << Type << ", Size: " << Size << ").\n");
509
510    resolveRelocation(Target, Addr, isPCRel, Type, Size);
511    RE.isResolved = true;
512  }
513}
514
515bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
516  StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
517  if (Magic == "\xFE\xED\xFA\xCE") return true;
518  if (Magic == "\xCE\xFA\xED\xFE") return true;
519  if (Magic == "\xFE\xED\xFA\xCF") return true;
520  if (Magic == "\xCF\xFA\xED\xFE") return true;
521  return false;
522}
523
524} // end namespace llvm
525