RuntimeDyld.cpp revision 280031
1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ExecutionEngine/RuntimeDyld.h"
15#include "RuntimeDyldCheckerImpl.h"
16#include "RuntimeDyldELF.h"
17#include "RuntimeDyldImpl.h"
18#include "RuntimeDyldMachO.h"
19#include "llvm/Object/ELFObjectFile.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Support/MutexGuard.h"
22
23using namespace llvm;
24using namespace llvm::object;
25
26#define DEBUG_TYPE "dyld"
27
28// Empty out-of-line virtual destructor as the key function.
29RuntimeDyldImpl::~RuntimeDyldImpl() {}
30
31// Pin LoadedObjectInfo's vtables to this file.
32void RuntimeDyld::LoadedObjectInfo::anchor() {}
33
34namespace llvm {
35
36void RuntimeDyldImpl::registerEHFrames() {}
37
38void RuntimeDyldImpl::deregisterEHFrames() {}
39
40#ifndef NDEBUG
41static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
42  dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
43
44  if (S.Address == nullptr) {
45    dbgs() << "\n          <section not emitted>\n";
46    return;
47  }
48
49  const unsigned ColsPerRow = 16;
50
51  uint8_t *DataAddr = S.Address;
52  uint64_t LoadAddr = S.LoadAddress;
53
54  unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
55  unsigned BytesRemaining = S.Size;
56
57  if (StartPadding) {
58    dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr & ~(ColsPerRow - 1)) << ":";
59    while (StartPadding--)
60      dbgs() << "   ";
61  }
62
63  while (BytesRemaining > 0) {
64    if ((LoadAddr & (ColsPerRow - 1)) == 0)
65      dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
66
67    dbgs() << " " << format("%02x", *DataAddr);
68
69    ++DataAddr;
70    ++LoadAddr;
71    --BytesRemaining;
72  }
73
74  dbgs() << "\n";
75}
76#endif
77
78// Resolve the relocations for all symbols we currently know about.
79void RuntimeDyldImpl::resolveRelocations() {
80  MutexGuard locked(lock);
81
82  // First, resolve relocations associated with external symbols.
83  resolveExternalSymbols();
84
85  // Just iterate over the sections we have and resolve all the relocations
86  // in them. Gross overkill, but it gets the job done.
87  for (int i = 0, e = Sections.size(); i != e; ++i) {
88    // The Section here (Sections[i]) refers to the section in which the
89    // symbol for the relocation is located.  The SectionID in the relocation
90    // entry provides the section to which the relocation will be applied.
91    uint64_t Addr = Sections[i].LoadAddress;
92    DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
93                 << format("0x%x", Addr) << "\n");
94    DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
95    resolveRelocationList(Relocations[i], Addr);
96    DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
97    Relocations.erase(i);
98  }
99}
100
101void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
102                                        uint64_t TargetAddress) {
103  MutexGuard locked(lock);
104  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
105    if (Sections[i].Address == LocalAddress) {
106      reassignSectionAddress(i, TargetAddress);
107      return;
108    }
109  }
110  llvm_unreachable("Attempting to remap address of unknown section!");
111}
112
113static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
114  uint64_t Address;
115  if (std::error_code EC = Sym.getAddress(Address))
116    return EC;
117
118  if (Address == UnknownAddressOrSize) {
119    Result = UnknownAddressOrSize;
120    return object_error::success;
121  }
122
123  const ObjectFile *Obj = Sym.getObject();
124  section_iterator SecI(Obj->section_begin());
125  if (std::error_code EC = Sym.getSection(SecI))
126    return EC;
127
128  if (SecI == Obj->section_end()) {
129    Result = UnknownAddressOrSize;
130    return object_error::success;
131  }
132
133  uint64_t SectionAddress = SecI->getAddress();
134  Result = Address - SectionAddress;
135  return object_error::success;
136}
137
138std::pair<unsigned, unsigned>
139RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
140  MutexGuard locked(lock);
141
142  // Grab the first Section ID. We'll use this later to construct the underlying
143  // range for the returned LoadedObjectInfo.
144  unsigned SectionsAddedBeginIdx = Sections.size();
145
146  // Save information about our target
147  Arch = (Triple::ArchType)Obj.getArch();
148  IsTargetLittleEndian = Obj.isLittleEndian();
149
150  // Compute the memory size required to load all sections to be loaded
151  // and pass this information to the memory manager
152  if (MemMgr->needsToReserveAllocationSpace()) {
153    uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
154    computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
155    MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
156  }
157
158  // Used sections from the object file
159  ObjSectionToIDMap LocalSections;
160
161  // Common symbols requiring allocation, with their sizes and alignments
162  CommonSymbolMap CommonSymbols;
163  // Maximum required total memory to allocate all common symbols
164  uint64_t CommonSize = 0;
165
166  // Parse symbols
167  DEBUG(dbgs() << "Parse symbols:\n");
168  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
169       ++I) {
170    object::SymbolRef::Type SymType;
171    StringRef Name;
172    Check(I->getType(SymType));
173    Check(I->getName(Name));
174
175    uint32_t Flags = I->getFlags();
176
177    bool IsCommon = Flags & SymbolRef::SF_Common;
178    if (IsCommon) {
179      // Add the common symbols to a list.  We'll allocate them all below.
180      if (!GlobalSymbolTable.count(Name)) {
181        uint32_t Align;
182        Check(I->getAlignment(Align));
183        uint64_t Size = 0;
184        Check(I->getSize(Size));
185        CommonSize += Size + Align;
186        CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
187      }
188    } else {
189      if (SymType == object::SymbolRef::ST_Function ||
190          SymType == object::SymbolRef::ST_Data ||
191          SymType == object::SymbolRef::ST_Unknown) {
192        uint64_t SectOffset;
193        StringRef SectionData;
194        section_iterator SI = Obj.section_end();
195        Check(getOffset(*I, SectOffset));
196        Check(I->getSection(SI));
197        if (SI == Obj.section_end())
198          continue;
199        Check(SI->getContents(SectionData));
200        bool IsCode = SI->isText();
201        unsigned SectionID =
202            findOrEmitSection(Obj, *SI, IsCode, LocalSections);
203        DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
204                     << " flags: " << Flags << " SID: " << SectionID);
205        GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
206      }
207    }
208    DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
209  }
210
211  // Allocate common symbols
212  if (CommonSize != 0)
213    emitCommonSymbols(Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
214
215  // Parse and process relocations
216  DEBUG(dbgs() << "Parse relocations:\n");
217  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
218       SI != SE; ++SI) {
219    unsigned SectionID = 0;
220    StubMap Stubs;
221    section_iterator RelocatedSection = SI->getRelocatedSection();
222
223    relocation_iterator I = SI->relocation_begin();
224    relocation_iterator E = SI->relocation_end();
225
226    if (I == E && !ProcessAllSections)
227      continue;
228
229    bool IsCode = RelocatedSection->isText();
230    SectionID =
231        findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
232    DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
233
234    for (; I != E;)
235      I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
236
237    // If there is an attached checker, notify it about the stubs for this
238    // section so that they can be verified.
239    if (Checker)
240      Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
241  }
242
243  // Give the subclasses a chance to tie-up any loose ends.
244  finalizeLoad(Obj, LocalSections);
245
246  unsigned SectionsAddedEndIdx = Sections.size();
247
248  return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
249}
250
251// A helper method for computeTotalAllocSize.
252// Computes the memory size required to allocate sections with the given sizes,
253// assuming that all sections are allocated with the given alignment
254static uint64_t
255computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
256                                 uint64_t Alignment) {
257  uint64_t TotalSize = 0;
258  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
259    uint64_t AlignedSize =
260        (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
261    TotalSize += AlignedSize;
262  }
263  return TotalSize;
264}
265
266static bool isRequiredForExecution(const SectionRef &Section) {
267  const ObjectFile *Obj = Section.getObject();
268  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
269    return ELFObj->getSectionFlags(Section) & ELF::SHF_ALLOC;
270  assert(isa<MachOObjectFile>(Obj));
271  return true;
272 }
273
274static bool isReadOnlyData(const SectionRef &Section) {
275  const ObjectFile *Obj = Section.getObject();
276  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
277    return !(ELFObj->getSectionFlags(Section) &
278             (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
279  assert(isa<MachOObjectFile>(Obj));
280  return false;
281}
282
283static bool isZeroInit(const SectionRef &Section) {
284  const ObjectFile *Obj = Section.getObject();
285  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
286    return ELFObj->getSectionType(Section) == ELF::SHT_NOBITS;
287
288  auto *MachO = cast<MachOObjectFile>(Obj);
289  unsigned SectionType = MachO->getSectionType(Section);
290  return SectionType == MachO::S_ZEROFILL ||
291         SectionType == MachO::S_GB_ZEROFILL;
292}
293
294// Compute an upper bound of the memory size that is required to load all
295// sections
296void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
297                                            uint64_t &CodeSize,
298                                            uint64_t &DataSizeRO,
299                                            uint64_t &DataSizeRW) {
300  // Compute the size of all sections required for execution
301  std::vector<uint64_t> CodeSectionSizes;
302  std::vector<uint64_t> ROSectionSizes;
303  std::vector<uint64_t> RWSectionSizes;
304  uint64_t MaxAlignment = sizeof(void *);
305
306  // Collect sizes of all sections to be loaded;
307  // also determine the max alignment of all sections
308  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
309       SI != SE; ++SI) {
310    const SectionRef &Section = *SI;
311
312    bool IsRequired = isRequiredForExecution(Section);
313
314    // Consider only the sections that are required to be loaded for execution
315    if (IsRequired) {
316      StringRef Name;
317      uint64_t DataSize = Section.getSize();
318      uint64_t Alignment64 = Section.getAlignment();
319      bool IsCode = Section.isText();
320      bool IsReadOnly = isReadOnlyData(Section);
321      Check(Section.getName(Name));
322      unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
323
324      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
325      uint64_t SectionSize = DataSize + StubBufSize;
326
327      // The .eh_frame section (at least on Linux) needs an extra four bytes
328      // padded
329      // with zeroes added at the end.  For MachO objects, this section has a
330      // slightly different name, so this won't have any effect for MachO
331      // objects.
332      if (Name == ".eh_frame")
333        SectionSize += 4;
334
335      if (SectionSize > 0) {
336        // save the total size of the section
337        if (IsCode) {
338          CodeSectionSizes.push_back(SectionSize);
339        } else if (IsReadOnly) {
340          ROSectionSizes.push_back(SectionSize);
341        } else {
342          RWSectionSizes.push_back(SectionSize);
343        }
344        // update the max alignment
345        if (Alignment > MaxAlignment) {
346          MaxAlignment = Alignment;
347        }
348      }
349    }
350  }
351
352  // Compute the size of all common symbols
353  uint64_t CommonSize = 0;
354  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
355       ++I) {
356    uint32_t Flags = I->getFlags();
357    if (Flags & SymbolRef::SF_Common) {
358      // Add the common symbols to a list.  We'll allocate them all below.
359      uint64_t Size = 0;
360      Check(I->getSize(Size));
361      CommonSize += Size;
362    }
363  }
364  if (CommonSize != 0) {
365    RWSectionSizes.push_back(CommonSize);
366  }
367
368  // Compute the required allocation space for each different type of sections
369  // (code, read-only data, read-write data) assuming that all sections are
370  // allocated with the max alignment. Note that we cannot compute with the
371  // individual alignments of the sections, because then the required size
372  // depends on the order, in which the sections are allocated.
373  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
374  DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
375  DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
376}
377
378// compute stub buffer size for the given section
379unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
380                                                    const SectionRef &Section) {
381  unsigned StubSize = getMaxStubSize();
382  if (StubSize == 0) {
383    return 0;
384  }
385  // FIXME: this is an inefficient way to handle this. We should computed the
386  // necessary section allocation size in loadObject by walking all the sections
387  // once.
388  unsigned StubBufSize = 0;
389  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
390       SI != SE; ++SI) {
391    section_iterator RelSecI = SI->getRelocatedSection();
392    if (!(RelSecI == Section))
393      continue;
394
395    for (const RelocationRef &Reloc : SI->relocations()) {
396      (void)Reloc;
397      StubBufSize += StubSize;
398    }
399  }
400
401  // Get section data size and alignment
402  uint64_t DataSize = Section.getSize();
403  uint64_t Alignment64 = Section.getAlignment();
404
405  // Add stubbuf size alignment
406  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
407  unsigned StubAlignment = getStubAlignment();
408  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
409  if (StubAlignment > EndAlignment)
410    StubBufSize += StubAlignment - EndAlignment;
411  return StubBufSize;
412}
413
414uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
415                                             unsigned Size) const {
416  uint64_t Result = 0;
417  if (IsTargetLittleEndian) {
418    Src += Size - 1;
419    while (Size--)
420      Result = (Result << 8) | *Src--;
421  } else
422    while (Size--)
423      Result = (Result << 8) | *Src++;
424
425  return Result;
426}
427
428void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
429                                          unsigned Size) const {
430  if (IsTargetLittleEndian) {
431    while (Size--) {
432      *Dst++ = Value & 0xFF;
433      Value >>= 8;
434    }
435  } else {
436    Dst += Size - 1;
437    while (Size--) {
438      *Dst-- = Value & 0xFF;
439      Value >>= 8;
440    }
441  }
442}
443
444void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
445                                        const CommonSymbolMap &CommonSymbols,
446                                        uint64_t TotalSize,
447                                        SymbolTableMap &SymbolTable) {
448  // Allocate memory for the section
449  unsigned SectionID = Sections.size();
450  uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *),
451                                              SectionID, StringRef(), false);
452  if (!Addr)
453    report_fatal_error("Unable to allocate memory for common symbols!");
454  uint64_t Offset = 0;
455  Sections.push_back(SectionEntry("<common symbols>", Addr, TotalSize, 0));
456  memset(Addr, 0, TotalSize);
457
458  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
459               << format("%p", Addr) << " DataSize: " << TotalSize << "\n");
460
461  // Assign the address of each symbol
462  for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
463       itEnd = CommonSymbols.end(); it != itEnd; ++it) {
464    uint64_t Size = it->second.first;
465    uint64_t Align = it->second.second;
466    StringRef Name;
467    it->first.getName(Name);
468    if (Align) {
469      // This symbol has an alignment requirement.
470      uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
471      Addr += AlignOffset;
472      Offset += AlignOffset;
473      DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
474                   << format("%p\n", Addr));
475    }
476    SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
477    Offset += Size;
478    Addr += Size;
479  }
480}
481
482unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
483                                      const SectionRef &Section, bool IsCode) {
484
485  StringRef data;
486  Check(Section.getContents(data));
487  uint64_t Alignment64 = Section.getAlignment();
488
489  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
490  unsigned PaddingSize = 0;
491  unsigned StubBufSize = 0;
492  StringRef Name;
493  bool IsRequired = isRequiredForExecution(Section);
494  bool IsVirtual = Section.isVirtual();
495  bool IsZeroInit = isZeroInit(Section);
496  bool IsReadOnly = isReadOnlyData(Section);
497  uint64_t DataSize = Section.getSize();
498  Check(Section.getName(Name));
499
500  StubBufSize = computeSectionStubBufSize(Obj, Section);
501
502  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
503  // with zeroes added at the end.  For MachO objects, this section has a
504  // slightly different name, so this won't have any effect for MachO objects.
505  if (Name == ".eh_frame")
506    PaddingSize = 4;
507
508  uintptr_t Allocate;
509  unsigned SectionID = Sections.size();
510  uint8_t *Addr;
511  const char *pData = nullptr;
512
513  // Some sections, such as debug info, don't need to be loaded for execution.
514  // Leave those where they are.
515  if (IsRequired) {
516    Allocate = DataSize + PaddingSize + StubBufSize;
517    Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
518                                                Name)
519                  : MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
520                                                Name, IsReadOnly);
521    if (!Addr)
522      report_fatal_error("Unable to allocate section memory!");
523
524    // Virtual sections have no data in the object image, so leave pData = 0
525    if (!IsVirtual)
526      pData = data.data();
527
528    // Zero-initialize or copy the data from the image
529    if (IsZeroInit || IsVirtual)
530      memset(Addr, 0, DataSize);
531    else
532      memcpy(Addr, pData, DataSize);
533
534    // Fill in any extra bytes we allocated for padding
535    if (PaddingSize != 0) {
536      memset(Addr + DataSize, 0, PaddingSize);
537      // Update the DataSize variable so that the stub offset is set correctly.
538      DataSize += PaddingSize;
539    }
540
541    DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
542                 << " obj addr: " << format("%p", pData)
543                 << " new addr: " << format("%p", Addr)
544                 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
545                 << " Allocate: " << Allocate << "\n");
546  } else {
547    // Even if we didn't load the section, we need to record an entry for it
548    // to handle later processing (and by 'handle' I mean don't do anything
549    // with these sections).
550    Allocate = 0;
551    Addr = nullptr;
552    DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
553                 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
554                 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
555                 << " Allocate: " << Allocate << "\n");
556  }
557
558  Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
559
560  if (Checker)
561    Checker->registerSection(Obj.getFileName(), SectionID);
562
563  return SectionID;
564}
565
566unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
567                                            const SectionRef &Section,
568                                            bool IsCode,
569                                            ObjSectionToIDMap &LocalSections) {
570
571  unsigned SectionID = 0;
572  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
573  if (i != LocalSections.end())
574    SectionID = i->second;
575  else {
576    SectionID = emitSection(Obj, Section, IsCode);
577    LocalSections[Section] = SectionID;
578  }
579  return SectionID;
580}
581
582void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
583                                              unsigned SectionID) {
584  Relocations[SectionID].push_back(RE);
585}
586
587void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
588                                             StringRef SymbolName) {
589  // Relocation by symbol.  If the symbol is found in the global symbol table,
590  // create an appropriate section relocation.  Otherwise, add it to
591  // ExternalSymbolRelocations.
592  SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
593  if (Loc == GlobalSymbolTable.end()) {
594    ExternalSymbolRelocations[SymbolName].push_back(RE);
595  } else {
596    // Copy the RE since we want to modify its addend.
597    RelocationEntry RECopy = RE;
598    RECopy.Addend += Loc->second.second;
599    Relocations[Loc->second.first].push_back(RECopy);
600  }
601}
602
603uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
604                                             unsigned AbiVariant) {
605  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
606    // This stub has to be able to access the full address space,
607    // since symbol lookup won't necessarily find a handy, in-range,
608    // PLT stub for functions which could be anywhere.
609    // Stub can use ip0 (== x16) to calculate address
610    writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
611    writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
612    writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
613    writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
614    writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
615
616    return Addr;
617  } else if (Arch == Triple::arm || Arch == Triple::armeb) {
618    // TODO: There is only ARM far stub now. We should add the Thumb stub,
619    // and stubs for branches Thumb - ARM and ARM - Thumb.
620    writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
621    return Addr + 4;
622  } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
623    // 0:   3c190000        lui     t9,%hi(addr).
624    // 4:   27390000        addiu   t9,t9,%lo(addr).
625    // 8:   03200008        jr      t9.
626    // c:   00000000        nop.
627    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
628    const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
629
630    writeBytesUnaligned(LuiT9Instr, Addr, 4);
631    writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
632    writeBytesUnaligned(JrT9Instr, Addr+8, 4);
633    writeBytesUnaligned(NopInstr, Addr+12, 4);
634    return Addr;
635  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
636    // Depending on which version of the ELF ABI is in use, we need to
637    // generate one of two variants of the stub.  They both start with
638    // the same sequence to load the target address into r12.
639    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
640    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
641    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
642    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
643    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
644    if (AbiVariant == 2) {
645      // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
646      // The address is already in r12 as required by the ABI.  Branch to it.
647      writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
648      writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
649      writeInt32BE(Addr+28, 0x4E800420); // bctr
650    } else {
651      // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
652      // Load the function address on r11 and sets it to control register. Also
653      // loads the function TOC in r2 and environment pointer to r11.
654      writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
655      writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
656      writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
657      writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
658      writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
659      writeInt32BE(Addr+40, 0x4E800420); // bctr
660    }
661    return Addr;
662  } else if (Arch == Triple::systemz) {
663    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
664    writeInt16BE(Addr+2,  0x0000);
665    writeInt16BE(Addr+4,  0x0004);
666    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
667    // 8-byte address stored at Addr + 8
668    return Addr;
669  } else if (Arch == Triple::x86_64) {
670    *Addr      = 0xFF; // jmp
671    *(Addr+1)  = 0x25; // rip
672    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
673  } else if (Arch == Triple::x86) {
674    *Addr      = 0xE9; // 32-bit pc-relative jump.
675  }
676  return Addr;
677}
678
679// Assign an address to a symbol name and resolve all the relocations
680// associated with it.
681void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
682                                             uint64_t Addr) {
683  // The address to use for relocation resolution is not
684  // the address of the local section buffer. We must be doing
685  // a remote execution environment of some sort. Relocations can't
686  // be applied until all the sections have been moved.  The client must
687  // trigger this with a call to MCJIT::finalize() or
688  // RuntimeDyld::resolveRelocations().
689  //
690  // Addr is a uint64_t because we can't assume the pointer width
691  // of the target is the same as that of the host. Just use a generic
692  // "big enough" type.
693  DEBUG(dbgs() << "Reassigning address for section "
694               << SectionID << " (" << Sections[SectionID].Name << "): "
695               << format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
696               << format("0x%016" PRIx64, Addr) << "\n");
697  Sections[SectionID].LoadAddress = Addr;
698}
699
700void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
701                                            uint64_t Value) {
702  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
703    const RelocationEntry &RE = Relocs[i];
704    // Ignore relocations for sections that were not loaded
705    if (Sections[RE.SectionID].Address == nullptr)
706      continue;
707    resolveRelocation(RE, Value);
708  }
709}
710
711void RuntimeDyldImpl::resolveExternalSymbols() {
712  while (!ExternalSymbolRelocations.empty()) {
713    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
714
715    StringRef Name = i->first();
716    if (Name.size() == 0) {
717      // This is an absolute symbol, use an address of zero.
718      DEBUG(dbgs() << "Resolving absolute relocations."
719                   << "\n");
720      RelocationList &Relocs = i->second;
721      resolveRelocationList(Relocs, 0);
722    } else {
723      uint64_t Addr = 0;
724      SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
725      if (Loc == GlobalSymbolTable.end()) {
726        // This is an external symbol, try to get its address from
727        // MemoryManager.
728        Addr = MemMgr->getSymbolAddress(Name.data());
729        // The call to getSymbolAddress may have caused additional modules to
730        // be loaded, which may have added new entries to the
731        // ExternalSymbolRelocations map.  Consquently, we need to update our
732        // iterator.  This is also why retrieval of the relocation list
733        // associated with this symbol is deferred until below this point.
734        // New entries may have been added to the relocation list.
735        i = ExternalSymbolRelocations.find(Name);
736      } else {
737        // We found the symbol in our global table.  It was probably in a
738        // Module that we loaded previously.
739        SymbolLoc SymLoc = Loc->second;
740        Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
741      }
742
743      // FIXME: Implement error handling that doesn't kill the host program!
744      if (!Addr)
745        report_fatal_error("Program used external function '" + Name +
746                           "' which could not be resolved!");
747
748      updateGOTEntries(Name, Addr);
749      DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
750                   << format("0x%lx", Addr) << "\n");
751      // This list may have been updated when we called getSymbolAddress, so
752      // don't change this code to get the list earlier.
753      RelocationList &Relocs = i->second;
754      resolveRelocationList(Relocs, Addr);
755    }
756
757    ExternalSymbolRelocations.erase(i);
758  }
759}
760
761//===----------------------------------------------------------------------===//
762// RuntimeDyld class implementation
763
764uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
765                                                  StringRef SectionName) const {
766  for (unsigned I = BeginIdx; I != EndIdx; ++I)
767    if (RTDyld.Sections[I].Name == SectionName)
768      return RTDyld.Sections[I].LoadAddress;
769
770  return 0;
771}
772
773RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
774  // FIXME: There's a potential issue lurking here if a single instance of
775  // RuntimeDyld is used to load multiple objects.  The current implementation
776  // associates a single memory manager with a RuntimeDyld instance.  Even
777  // though the public class spawns a new 'impl' instance for each load,
778  // they share a single memory manager.  This can become a problem when page
779  // permissions are applied.
780  Dyld = nullptr;
781  MM = mm;
782  ProcessAllSections = false;
783  Checker = nullptr;
784}
785
786RuntimeDyld::~RuntimeDyld() {}
787
788static std::unique_ptr<RuntimeDyldELF>
789createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections,
790                     RuntimeDyldCheckerImpl *Checker) {
791  std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
792  Dyld->setProcessAllSections(ProcessAllSections);
793  Dyld->setRuntimeDyldChecker(Checker);
794  return Dyld;
795}
796
797static std::unique_ptr<RuntimeDyldMachO>
798createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM,
799                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
800  std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM));
801  Dyld->setProcessAllSections(ProcessAllSections);
802  Dyld->setRuntimeDyldChecker(Checker);
803  return Dyld;
804}
805
806std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
807RuntimeDyld::loadObject(const ObjectFile &Obj) {
808  if (!Dyld) {
809    if (Obj.isELF())
810      Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker);
811    else if (Obj.isMachO())
812      Dyld = createRuntimeDyldMachO(
813               static_cast<Triple::ArchType>(Obj.getArch()), MM,
814               ProcessAllSections, Checker);
815    else
816      report_fatal_error("Incompatible object format!");
817  }
818
819  if (!Dyld->isCompatibleFile(Obj))
820    report_fatal_error("Incompatible object format!");
821
822  return Dyld->loadObject(Obj);
823}
824
825void *RuntimeDyld::getSymbolAddress(StringRef Name) const {
826  if (!Dyld)
827    return nullptr;
828  return Dyld->getSymbolAddress(Name);
829}
830
831uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) const {
832  if (!Dyld)
833    return 0;
834  return Dyld->getSymbolLoadAddress(Name);
835}
836
837void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
838
839void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
840  Dyld->reassignSectionAddress(SectionID, Addr);
841}
842
843void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
844                                    uint64_t TargetAddress) {
845  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
846}
847
848bool RuntimeDyld::hasError() { return Dyld->hasError(); }
849
850StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
851
852void RuntimeDyld::registerEHFrames() {
853  if (Dyld)
854    Dyld->registerEHFrames();
855}
856
857void RuntimeDyld::deregisterEHFrames() {
858  if (Dyld)
859    Dyld->deregisterEHFrames();
860}
861
862} // end namespace llvm
863