TargetLoweringBase.cpp revision 280031
1//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLoweringBase class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineJumpTableInfo.h"
23#include "llvm/CodeGen/StackMaps.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Mangler.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetRegisterInfo.h"
37#include "llvm/Target/TargetSubtargetInfo.h"
38#include <cctype>
39using namespace llvm;
40
41/// InitLibcallNames - Set default libcall names.
42///
43static void InitLibcallNames(const char **Names, const Triple &TT) {
44  Names[RTLIB::SHL_I16] = "__ashlhi3";
45  Names[RTLIB::SHL_I32] = "__ashlsi3";
46  Names[RTLIB::SHL_I64] = "__ashldi3";
47  Names[RTLIB::SHL_I128] = "__ashlti3";
48  Names[RTLIB::SRL_I16] = "__lshrhi3";
49  Names[RTLIB::SRL_I32] = "__lshrsi3";
50  Names[RTLIB::SRL_I64] = "__lshrdi3";
51  Names[RTLIB::SRL_I128] = "__lshrti3";
52  Names[RTLIB::SRA_I16] = "__ashrhi3";
53  Names[RTLIB::SRA_I32] = "__ashrsi3";
54  Names[RTLIB::SRA_I64] = "__ashrdi3";
55  Names[RTLIB::SRA_I128] = "__ashrti3";
56  Names[RTLIB::MUL_I8] = "__mulqi3";
57  Names[RTLIB::MUL_I16] = "__mulhi3";
58  Names[RTLIB::MUL_I32] = "__mulsi3";
59  Names[RTLIB::MUL_I64] = "__muldi3";
60  Names[RTLIB::MUL_I128] = "__multi3";
61  Names[RTLIB::MULO_I32] = "__mulosi4";
62  Names[RTLIB::MULO_I64] = "__mulodi4";
63  Names[RTLIB::MULO_I128] = "__muloti4";
64  Names[RTLIB::SDIV_I8] = "__divqi3";
65  Names[RTLIB::SDIV_I16] = "__divhi3";
66  Names[RTLIB::SDIV_I32] = "__divsi3";
67  Names[RTLIB::SDIV_I64] = "__divdi3";
68  Names[RTLIB::SDIV_I128] = "__divti3";
69  Names[RTLIB::UDIV_I8] = "__udivqi3";
70  Names[RTLIB::UDIV_I16] = "__udivhi3";
71  Names[RTLIB::UDIV_I32] = "__udivsi3";
72  Names[RTLIB::UDIV_I64] = "__udivdi3";
73  Names[RTLIB::UDIV_I128] = "__udivti3";
74  Names[RTLIB::SREM_I8] = "__modqi3";
75  Names[RTLIB::SREM_I16] = "__modhi3";
76  Names[RTLIB::SREM_I32] = "__modsi3";
77  Names[RTLIB::SREM_I64] = "__moddi3";
78  Names[RTLIB::SREM_I128] = "__modti3";
79  Names[RTLIB::UREM_I8] = "__umodqi3";
80  Names[RTLIB::UREM_I16] = "__umodhi3";
81  Names[RTLIB::UREM_I32] = "__umodsi3";
82  Names[RTLIB::UREM_I64] = "__umoddi3";
83  Names[RTLIB::UREM_I128] = "__umodti3";
84
85  // These are generally not available.
86  Names[RTLIB::SDIVREM_I8] = nullptr;
87  Names[RTLIB::SDIVREM_I16] = nullptr;
88  Names[RTLIB::SDIVREM_I32] = nullptr;
89  Names[RTLIB::SDIVREM_I64] = nullptr;
90  Names[RTLIB::SDIVREM_I128] = nullptr;
91  Names[RTLIB::UDIVREM_I8] = nullptr;
92  Names[RTLIB::UDIVREM_I16] = nullptr;
93  Names[RTLIB::UDIVREM_I32] = nullptr;
94  Names[RTLIB::UDIVREM_I64] = nullptr;
95  Names[RTLIB::UDIVREM_I128] = nullptr;
96
97  Names[RTLIB::NEG_I32] = "__negsi2";
98  Names[RTLIB::NEG_I64] = "__negdi2";
99  Names[RTLIB::ADD_F32] = "__addsf3";
100  Names[RTLIB::ADD_F64] = "__adddf3";
101  Names[RTLIB::ADD_F80] = "__addxf3";
102  Names[RTLIB::ADD_F128] = "__addtf3";
103  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
104  Names[RTLIB::SUB_F32] = "__subsf3";
105  Names[RTLIB::SUB_F64] = "__subdf3";
106  Names[RTLIB::SUB_F80] = "__subxf3";
107  Names[RTLIB::SUB_F128] = "__subtf3";
108  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
109  Names[RTLIB::MUL_F32] = "__mulsf3";
110  Names[RTLIB::MUL_F64] = "__muldf3";
111  Names[RTLIB::MUL_F80] = "__mulxf3";
112  Names[RTLIB::MUL_F128] = "__multf3";
113  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
114  Names[RTLIB::DIV_F32] = "__divsf3";
115  Names[RTLIB::DIV_F64] = "__divdf3";
116  Names[RTLIB::DIV_F80] = "__divxf3";
117  Names[RTLIB::DIV_F128] = "__divtf3";
118  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
119  Names[RTLIB::REM_F32] = "fmodf";
120  Names[RTLIB::REM_F64] = "fmod";
121  Names[RTLIB::REM_F80] = "fmodl";
122  Names[RTLIB::REM_F128] = "fmodl";
123  Names[RTLIB::REM_PPCF128] = "fmodl";
124  Names[RTLIB::FMA_F32] = "fmaf";
125  Names[RTLIB::FMA_F64] = "fma";
126  Names[RTLIB::FMA_F80] = "fmal";
127  Names[RTLIB::FMA_F128] = "fmal";
128  Names[RTLIB::FMA_PPCF128] = "fmal";
129  Names[RTLIB::POWI_F32] = "__powisf2";
130  Names[RTLIB::POWI_F64] = "__powidf2";
131  Names[RTLIB::POWI_F80] = "__powixf2";
132  Names[RTLIB::POWI_F128] = "__powitf2";
133  Names[RTLIB::POWI_PPCF128] = "__powitf2";
134  Names[RTLIB::SQRT_F32] = "sqrtf";
135  Names[RTLIB::SQRT_F64] = "sqrt";
136  Names[RTLIB::SQRT_F80] = "sqrtl";
137  Names[RTLIB::SQRT_F128] = "sqrtl";
138  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
139  Names[RTLIB::LOG_F32] = "logf";
140  Names[RTLIB::LOG_F64] = "log";
141  Names[RTLIB::LOG_F80] = "logl";
142  Names[RTLIB::LOG_F128] = "logl";
143  Names[RTLIB::LOG_PPCF128] = "logl";
144  Names[RTLIB::LOG2_F32] = "log2f";
145  Names[RTLIB::LOG2_F64] = "log2";
146  Names[RTLIB::LOG2_F80] = "log2l";
147  Names[RTLIB::LOG2_F128] = "log2l";
148  Names[RTLIB::LOG2_PPCF128] = "log2l";
149  Names[RTLIB::LOG10_F32] = "log10f";
150  Names[RTLIB::LOG10_F64] = "log10";
151  Names[RTLIB::LOG10_F80] = "log10l";
152  Names[RTLIB::LOG10_F128] = "log10l";
153  Names[RTLIB::LOG10_PPCF128] = "log10l";
154  Names[RTLIB::EXP_F32] = "expf";
155  Names[RTLIB::EXP_F64] = "exp";
156  Names[RTLIB::EXP_F80] = "expl";
157  Names[RTLIB::EXP_F128] = "expl";
158  Names[RTLIB::EXP_PPCF128] = "expl";
159  Names[RTLIB::EXP2_F32] = "exp2f";
160  Names[RTLIB::EXP2_F64] = "exp2";
161  Names[RTLIB::EXP2_F80] = "exp2l";
162  Names[RTLIB::EXP2_F128] = "exp2l";
163  Names[RTLIB::EXP2_PPCF128] = "exp2l";
164  Names[RTLIB::SIN_F32] = "sinf";
165  Names[RTLIB::SIN_F64] = "sin";
166  Names[RTLIB::SIN_F80] = "sinl";
167  Names[RTLIB::SIN_F128] = "sinl";
168  Names[RTLIB::SIN_PPCF128] = "sinl";
169  Names[RTLIB::COS_F32] = "cosf";
170  Names[RTLIB::COS_F64] = "cos";
171  Names[RTLIB::COS_F80] = "cosl";
172  Names[RTLIB::COS_F128] = "cosl";
173  Names[RTLIB::COS_PPCF128] = "cosl";
174  Names[RTLIB::POW_F32] = "powf";
175  Names[RTLIB::POW_F64] = "pow";
176  Names[RTLIB::POW_F80] = "powl";
177  Names[RTLIB::POW_F128] = "powl";
178  Names[RTLIB::POW_PPCF128] = "powl";
179  Names[RTLIB::CEIL_F32] = "ceilf";
180  Names[RTLIB::CEIL_F64] = "ceil";
181  Names[RTLIB::CEIL_F80] = "ceill";
182  Names[RTLIB::CEIL_F128] = "ceill";
183  Names[RTLIB::CEIL_PPCF128] = "ceill";
184  Names[RTLIB::TRUNC_F32] = "truncf";
185  Names[RTLIB::TRUNC_F64] = "trunc";
186  Names[RTLIB::TRUNC_F80] = "truncl";
187  Names[RTLIB::TRUNC_F128] = "truncl";
188  Names[RTLIB::TRUNC_PPCF128] = "truncl";
189  Names[RTLIB::RINT_F32] = "rintf";
190  Names[RTLIB::RINT_F64] = "rint";
191  Names[RTLIB::RINT_F80] = "rintl";
192  Names[RTLIB::RINT_F128] = "rintl";
193  Names[RTLIB::RINT_PPCF128] = "rintl";
194  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
195  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
196  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
197  Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
198  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
199  Names[RTLIB::ROUND_F32] = "roundf";
200  Names[RTLIB::ROUND_F64] = "round";
201  Names[RTLIB::ROUND_F80] = "roundl";
202  Names[RTLIB::ROUND_F128] = "roundl";
203  Names[RTLIB::ROUND_PPCF128] = "roundl";
204  Names[RTLIB::FLOOR_F32] = "floorf";
205  Names[RTLIB::FLOOR_F64] = "floor";
206  Names[RTLIB::FLOOR_F80] = "floorl";
207  Names[RTLIB::FLOOR_F128] = "floorl";
208  Names[RTLIB::FLOOR_PPCF128] = "floorl";
209  Names[RTLIB::FMIN_F32] = "fminf";
210  Names[RTLIB::FMIN_F64] = "fmin";
211  Names[RTLIB::FMIN_F80] = "fminl";
212  Names[RTLIB::FMIN_F128] = "fminl";
213  Names[RTLIB::FMIN_PPCF128] = "fminl";
214  Names[RTLIB::FMAX_F32] = "fmaxf";
215  Names[RTLIB::FMAX_F64] = "fmax";
216  Names[RTLIB::FMAX_F80] = "fmaxl";
217  Names[RTLIB::FMAX_F128] = "fmaxl";
218  Names[RTLIB::FMAX_PPCF128] = "fmaxl";
219  Names[RTLIB::ROUND_F32] = "roundf";
220  Names[RTLIB::ROUND_F64] = "round";
221  Names[RTLIB::ROUND_F80] = "roundl";
222  Names[RTLIB::ROUND_F128] = "roundl";
223  Names[RTLIB::ROUND_PPCF128] = "roundl";
224  Names[RTLIB::COPYSIGN_F32] = "copysignf";
225  Names[RTLIB::COPYSIGN_F64] = "copysign";
226  Names[RTLIB::COPYSIGN_F80] = "copysignl";
227  Names[RTLIB::COPYSIGN_F128] = "copysignl";
228  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
229  Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
230  Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
231  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
232  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
233  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
234  Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
235  Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
236  Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
237  Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
238  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
239  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
240  Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
241  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
242  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
243  Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
244  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
245  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
246  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
247  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
248  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
249  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
250  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
251  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
252  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
253  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
254  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
255  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
256  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
257  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
258  Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
259  Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
260  Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
261  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
262  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
263  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
264  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
265  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
266  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
267  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
268  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
269  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
270  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
271  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
272  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
273  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
274  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
275  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
276  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
277  Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
278  Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
279  Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
280  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
281  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
282  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
283  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
284  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
285  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
286  Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
287  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
288  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
289  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
290  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
291  Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
292  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
293  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
294  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
295  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
296  Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
297  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
298  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
299  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
300  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
301  Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
302  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
303  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
304  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
305  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
306  Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
307  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
308  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
309  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
310  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
311  Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
312  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
313  Names[RTLIB::OEQ_F32] = "__eqsf2";
314  Names[RTLIB::OEQ_F64] = "__eqdf2";
315  Names[RTLIB::OEQ_F128] = "__eqtf2";
316  Names[RTLIB::UNE_F32] = "__nesf2";
317  Names[RTLIB::UNE_F64] = "__nedf2";
318  Names[RTLIB::UNE_F128] = "__netf2";
319  Names[RTLIB::OGE_F32] = "__gesf2";
320  Names[RTLIB::OGE_F64] = "__gedf2";
321  Names[RTLIB::OGE_F128] = "__getf2";
322  Names[RTLIB::OLT_F32] = "__ltsf2";
323  Names[RTLIB::OLT_F64] = "__ltdf2";
324  Names[RTLIB::OLT_F128] = "__lttf2";
325  Names[RTLIB::OLE_F32] = "__lesf2";
326  Names[RTLIB::OLE_F64] = "__ledf2";
327  Names[RTLIB::OLE_F128] = "__letf2";
328  Names[RTLIB::OGT_F32] = "__gtsf2";
329  Names[RTLIB::OGT_F64] = "__gtdf2";
330  Names[RTLIB::OGT_F128] = "__gttf2";
331  Names[RTLIB::UO_F32] = "__unordsf2";
332  Names[RTLIB::UO_F64] = "__unorddf2";
333  Names[RTLIB::UO_F128] = "__unordtf2";
334  Names[RTLIB::O_F32] = "__unordsf2";
335  Names[RTLIB::O_F64] = "__unorddf2";
336  Names[RTLIB::O_F128] = "__unordtf2";
337  Names[RTLIB::MEMCPY] = "memcpy";
338  Names[RTLIB::MEMMOVE] = "memmove";
339  Names[RTLIB::MEMSET] = "memset";
340  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
341  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
342  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
343  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
344  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
345  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
346  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
347  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
348  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
349  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
350  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
351  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
352  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
353  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
354  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
355  Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
356  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
357  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
358  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
359  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
360  Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
361  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
362  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
363  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
364  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
365  Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
366  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
367  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
368  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
369  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
370  Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
371  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
372  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
373  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
374  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
375  Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
376  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
377  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
378  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
379  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
380  Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
381  Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
382  Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
383  Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
384  Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
385  Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
386  Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
387  Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
388  Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
389  Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
390  Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
391  Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
392  Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
393  Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
394  Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
395  Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
396  Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
397  Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
398  Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
399  Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
400  Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
401
402  if (TT.getEnvironment() == Triple::GNU) {
403    Names[RTLIB::SINCOS_F32] = "sincosf";
404    Names[RTLIB::SINCOS_F64] = "sincos";
405    Names[RTLIB::SINCOS_F80] = "sincosl";
406    Names[RTLIB::SINCOS_F128] = "sincosl";
407    Names[RTLIB::SINCOS_PPCF128] = "sincosl";
408  } else {
409    // These are generally not available.
410    Names[RTLIB::SINCOS_F32] = nullptr;
411    Names[RTLIB::SINCOS_F64] = nullptr;
412    Names[RTLIB::SINCOS_F80] = nullptr;
413    Names[RTLIB::SINCOS_F128] = nullptr;
414    Names[RTLIB::SINCOS_PPCF128] = nullptr;
415  }
416
417  if (!TT.isOSOpenBSD()) {
418    Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
419  } else {
420    // These are generally not available.
421    Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
422  }
423}
424
425/// InitLibcallCallingConvs - Set default libcall CallingConvs.
426///
427static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
428  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
429    CCs[i] = CallingConv::C;
430  }
431}
432
433/// getFPEXT - Return the FPEXT_*_* value for the given types, or
434/// UNKNOWN_LIBCALL if there is none.
435RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
436  if (OpVT == MVT::f16) {
437    if (RetVT == MVT::f32)
438      return FPEXT_F16_F32;
439  } else if (OpVT == MVT::f32) {
440    if (RetVT == MVT::f64)
441      return FPEXT_F32_F64;
442    if (RetVT == MVT::f128)
443      return FPEXT_F32_F128;
444  } else if (OpVT == MVT::f64) {
445    if (RetVT == MVT::f128)
446      return FPEXT_F64_F128;
447  }
448
449  return UNKNOWN_LIBCALL;
450}
451
452/// getFPROUND - Return the FPROUND_*_* value for the given types, or
453/// UNKNOWN_LIBCALL if there is none.
454RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
455  if (RetVT == MVT::f16) {
456    if (OpVT == MVT::f32)
457      return FPROUND_F32_F16;
458    if (OpVT == MVT::f64)
459      return FPROUND_F64_F16;
460    if (OpVT == MVT::f80)
461      return FPROUND_F80_F16;
462    if (OpVT == MVT::f128)
463      return FPROUND_F128_F16;
464    if (OpVT == MVT::ppcf128)
465      return FPROUND_PPCF128_F16;
466  } else if (RetVT == MVT::f32) {
467    if (OpVT == MVT::f64)
468      return FPROUND_F64_F32;
469    if (OpVT == MVT::f80)
470      return FPROUND_F80_F32;
471    if (OpVT == MVT::f128)
472      return FPROUND_F128_F32;
473    if (OpVT == MVT::ppcf128)
474      return FPROUND_PPCF128_F32;
475  } else if (RetVT == MVT::f64) {
476    if (OpVT == MVT::f80)
477      return FPROUND_F80_F64;
478    if (OpVT == MVT::f128)
479      return FPROUND_F128_F64;
480    if (OpVT == MVT::ppcf128)
481      return FPROUND_PPCF128_F64;
482  }
483
484  return UNKNOWN_LIBCALL;
485}
486
487/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
488/// UNKNOWN_LIBCALL if there is none.
489RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
490  if (OpVT == MVT::f32) {
491    if (RetVT == MVT::i8)
492      return FPTOSINT_F32_I8;
493    if (RetVT == MVT::i16)
494      return FPTOSINT_F32_I16;
495    if (RetVT == MVT::i32)
496      return FPTOSINT_F32_I32;
497    if (RetVT == MVT::i64)
498      return FPTOSINT_F32_I64;
499    if (RetVT == MVT::i128)
500      return FPTOSINT_F32_I128;
501  } else if (OpVT == MVT::f64) {
502    if (RetVT == MVT::i8)
503      return FPTOSINT_F64_I8;
504    if (RetVT == MVT::i16)
505      return FPTOSINT_F64_I16;
506    if (RetVT == MVT::i32)
507      return FPTOSINT_F64_I32;
508    if (RetVT == MVT::i64)
509      return FPTOSINT_F64_I64;
510    if (RetVT == MVT::i128)
511      return FPTOSINT_F64_I128;
512  } else if (OpVT == MVT::f80) {
513    if (RetVT == MVT::i32)
514      return FPTOSINT_F80_I32;
515    if (RetVT == MVT::i64)
516      return FPTOSINT_F80_I64;
517    if (RetVT == MVT::i128)
518      return FPTOSINT_F80_I128;
519  } else if (OpVT == MVT::f128) {
520    if (RetVT == MVT::i32)
521      return FPTOSINT_F128_I32;
522    if (RetVT == MVT::i64)
523      return FPTOSINT_F128_I64;
524    if (RetVT == MVT::i128)
525      return FPTOSINT_F128_I128;
526  } else if (OpVT == MVT::ppcf128) {
527    if (RetVT == MVT::i32)
528      return FPTOSINT_PPCF128_I32;
529    if (RetVT == MVT::i64)
530      return FPTOSINT_PPCF128_I64;
531    if (RetVT == MVT::i128)
532      return FPTOSINT_PPCF128_I128;
533  }
534  return UNKNOWN_LIBCALL;
535}
536
537/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
538/// UNKNOWN_LIBCALL if there is none.
539RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
540  if (OpVT == MVT::f32) {
541    if (RetVT == MVT::i8)
542      return FPTOUINT_F32_I8;
543    if (RetVT == MVT::i16)
544      return FPTOUINT_F32_I16;
545    if (RetVT == MVT::i32)
546      return FPTOUINT_F32_I32;
547    if (RetVT == MVT::i64)
548      return FPTOUINT_F32_I64;
549    if (RetVT == MVT::i128)
550      return FPTOUINT_F32_I128;
551  } else if (OpVT == MVT::f64) {
552    if (RetVT == MVT::i8)
553      return FPTOUINT_F64_I8;
554    if (RetVT == MVT::i16)
555      return FPTOUINT_F64_I16;
556    if (RetVT == MVT::i32)
557      return FPTOUINT_F64_I32;
558    if (RetVT == MVT::i64)
559      return FPTOUINT_F64_I64;
560    if (RetVT == MVT::i128)
561      return FPTOUINT_F64_I128;
562  } else if (OpVT == MVT::f80) {
563    if (RetVT == MVT::i32)
564      return FPTOUINT_F80_I32;
565    if (RetVT == MVT::i64)
566      return FPTOUINT_F80_I64;
567    if (RetVT == MVT::i128)
568      return FPTOUINT_F80_I128;
569  } else if (OpVT == MVT::f128) {
570    if (RetVT == MVT::i32)
571      return FPTOUINT_F128_I32;
572    if (RetVT == MVT::i64)
573      return FPTOUINT_F128_I64;
574    if (RetVT == MVT::i128)
575      return FPTOUINT_F128_I128;
576  } else if (OpVT == MVT::ppcf128) {
577    if (RetVT == MVT::i32)
578      return FPTOUINT_PPCF128_I32;
579    if (RetVT == MVT::i64)
580      return FPTOUINT_PPCF128_I64;
581    if (RetVT == MVT::i128)
582      return FPTOUINT_PPCF128_I128;
583  }
584  return UNKNOWN_LIBCALL;
585}
586
587/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
588/// UNKNOWN_LIBCALL if there is none.
589RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
590  if (OpVT == MVT::i32) {
591    if (RetVT == MVT::f32)
592      return SINTTOFP_I32_F32;
593    if (RetVT == MVT::f64)
594      return SINTTOFP_I32_F64;
595    if (RetVT == MVT::f80)
596      return SINTTOFP_I32_F80;
597    if (RetVT == MVT::f128)
598      return SINTTOFP_I32_F128;
599    if (RetVT == MVT::ppcf128)
600      return SINTTOFP_I32_PPCF128;
601  } else if (OpVT == MVT::i64) {
602    if (RetVT == MVT::f32)
603      return SINTTOFP_I64_F32;
604    if (RetVT == MVT::f64)
605      return SINTTOFP_I64_F64;
606    if (RetVT == MVT::f80)
607      return SINTTOFP_I64_F80;
608    if (RetVT == MVT::f128)
609      return SINTTOFP_I64_F128;
610    if (RetVT == MVT::ppcf128)
611      return SINTTOFP_I64_PPCF128;
612  } else if (OpVT == MVT::i128) {
613    if (RetVT == MVT::f32)
614      return SINTTOFP_I128_F32;
615    if (RetVT == MVT::f64)
616      return SINTTOFP_I128_F64;
617    if (RetVT == MVT::f80)
618      return SINTTOFP_I128_F80;
619    if (RetVT == MVT::f128)
620      return SINTTOFP_I128_F128;
621    if (RetVT == MVT::ppcf128)
622      return SINTTOFP_I128_PPCF128;
623  }
624  return UNKNOWN_LIBCALL;
625}
626
627/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
628/// UNKNOWN_LIBCALL if there is none.
629RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
630  if (OpVT == MVT::i32) {
631    if (RetVT == MVT::f32)
632      return UINTTOFP_I32_F32;
633    if (RetVT == MVT::f64)
634      return UINTTOFP_I32_F64;
635    if (RetVT == MVT::f80)
636      return UINTTOFP_I32_F80;
637    if (RetVT == MVT::f128)
638      return UINTTOFP_I32_F128;
639    if (RetVT == MVT::ppcf128)
640      return UINTTOFP_I32_PPCF128;
641  } else if (OpVT == MVT::i64) {
642    if (RetVT == MVT::f32)
643      return UINTTOFP_I64_F32;
644    if (RetVT == MVT::f64)
645      return UINTTOFP_I64_F64;
646    if (RetVT == MVT::f80)
647      return UINTTOFP_I64_F80;
648    if (RetVT == MVT::f128)
649      return UINTTOFP_I64_F128;
650    if (RetVT == MVT::ppcf128)
651      return UINTTOFP_I64_PPCF128;
652  } else if (OpVT == MVT::i128) {
653    if (RetVT == MVT::f32)
654      return UINTTOFP_I128_F32;
655    if (RetVT == MVT::f64)
656      return UINTTOFP_I128_F64;
657    if (RetVT == MVT::f80)
658      return UINTTOFP_I128_F80;
659    if (RetVT == MVT::f128)
660      return UINTTOFP_I128_F128;
661    if (RetVT == MVT::ppcf128)
662      return UINTTOFP_I128_PPCF128;
663  }
664  return UNKNOWN_LIBCALL;
665}
666
667/// InitCmpLibcallCCs - Set default comparison libcall CC.
668///
669static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
670  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
671  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
672  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
673  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
674  CCs[RTLIB::UNE_F32] = ISD::SETNE;
675  CCs[RTLIB::UNE_F64] = ISD::SETNE;
676  CCs[RTLIB::UNE_F128] = ISD::SETNE;
677  CCs[RTLIB::OGE_F32] = ISD::SETGE;
678  CCs[RTLIB::OGE_F64] = ISD::SETGE;
679  CCs[RTLIB::OGE_F128] = ISD::SETGE;
680  CCs[RTLIB::OLT_F32] = ISD::SETLT;
681  CCs[RTLIB::OLT_F64] = ISD::SETLT;
682  CCs[RTLIB::OLT_F128] = ISD::SETLT;
683  CCs[RTLIB::OLE_F32] = ISD::SETLE;
684  CCs[RTLIB::OLE_F64] = ISD::SETLE;
685  CCs[RTLIB::OLE_F128] = ISD::SETLE;
686  CCs[RTLIB::OGT_F32] = ISD::SETGT;
687  CCs[RTLIB::OGT_F64] = ISD::SETGT;
688  CCs[RTLIB::OGT_F128] = ISD::SETGT;
689  CCs[RTLIB::UO_F32] = ISD::SETNE;
690  CCs[RTLIB::UO_F64] = ISD::SETNE;
691  CCs[RTLIB::UO_F128] = ISD::SETNE;
692  CCs[RTLIB::O_F32] = ISD::SETEQ;
693  CCs[RTLIB::O_F64] = ISD::SETEQ;
694  CCs[RTLIB::O_F128] = ISD::SETEQ;
695}
696
697/// NOTE: The TargetMachine owns TLOF.
698TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm)
699    : TM(tm), DL(TM.getSubtargetImpl()->getDataLayout()) {
700  initActions();
701
702  // Perform these initializations only once.
703  IsLittleEndian = DL->isLittleEndian();
704  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
705  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
706    = MaxStoresPerMemmoveOptSize = 4;
707  UseUnderscoreSetJmp = false;
708  UseUnderscoreLongJmp = false;
709  SelectIsExpensive = false;
710  HasMultipleConditionRegisters = false;
711  HasExtractBitsInsn = false;
712  IntDivIsCheap = false;
713  FsqrtIsCheap = false;
714  Pow2SDivIsCheap = false;
715  JumpIsExpensive = false;
716  PredictableSelectIsExpensive = false;
717  MaskAndBranchFoldingIsLegal = false;
718  EnableExtLdPromotion = false;
719  HasFloatingPointExceptions = true;
720  StackPointerRegisterToSaveRestore = 0;
721  ExceptionPointerRegister = 0;
722  ExceptionSelectorRegister = 0;
723  BooleanContents = UndefinedBooleanContent;
724  BooleanFloatContents = UndefinedBooleanContent;
725  BooleanVectorContents = UndefinedBooleanContent;
726  SchedPreferenceInfo = Sched::ILP;
727  JumpBufSize = 0;
728  JumpBufAlignment = 0;
729  MinFunctionAlignment = 0;
730  PrefFunctionAlignment = 0;
731  PrefLoopAlignment = 0;
732  MinStackArgumentAlignment = 1;
733  InsertFencesForAtomic = false;
734  MinimumJumpTableEntries = 4;
735
736  InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple()));
737  InitCmpLibcallCCs(CmpLibcallCCs);
738  InitLibcallCallingConvs(LibcallCallingConvs);
739}
740
741void TargetLoweringBase::initActions() {
742  // All operations default to being supported.
743  memset(OpActions, 0, sizeof(OpActions));
744  memset(LoadExtActions, 0, sizeof(LoadExtActions));
745  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
746  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
747  memset(CondCodeActions, 0, sizeof(CondCodeActions));
748  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
749  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
750
751  // Set default actions for various operations.
752  for (MVT VT : MVT::all_valuetypes()) {
753    // Default all indexed load / store to expand.
754    for (unsigned IM = (unsigned)ISD::PRE_INC;
755         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
756      setIndexedLoadAction(IM, VT, Expand);
757      setIndexedStoreAction(IM, VT, Expand);
758    }
759
760    // Most backends expect to see the node which just returns the value loaded.
761    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
762
763    // These operations default to expand.
764    setOperationAction(ISD::FGETSIGN, VT, Expand);
765    setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
766    setOperationAction(ISD::FMINNUM, VT, Expand);
767    setOperationAction(ISD::FMAXNUM, VT, Expand);
768
769    // These library functions default to expand.
770    setOperationAction(ISD::FROUND, VT, Expand);
771
772    // These operations default to expand for vector types.
773    if (VT.isVector()) {
774      setOperationAction(ISD::FCOPYSIGN, VT, Expand);
775      setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
776      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
777      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
778    }
779  }
780
781  // Most targets ignore the @llvm.prefetch intrinsic.
782  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
783
784  // ConstantFP nodes default to expand.  Targets can either change this to
785  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
786  // to optimize expansions for certain constants.
787  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
788  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
789  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
790  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
791  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
792
793  // These library functions default to expand.
794  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
795  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
796  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
797  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
798  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
799  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
800  setOperationAction(ISD::FMINNUM, MVT::f16, Expand);
801  setOperationAction(ISD::FMAXNUM, MVT::f16, Expand);
802  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
803  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
804  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
805  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
806  setOperationAction(ISD::FROUND, MVT::f16, Expand);
807  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
808  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
809  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
810  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
811  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
812  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
813  setOperationAction(ISD::FMINNUM, MVT::f32, Expand);
814  setOperationAction(ISD::FMAXNUM, MVT::f32, Expand);
815  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
816  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
817  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
818  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
819  setOperationAction(ISD::FROUND, MVT::f32, Expand);
820  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
821  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
822  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
823  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
824  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
825  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
826  setOperationAction(ISD::FMINNUM, MVT::f64, Expand);
827  setOperationAction(ISD::FMAXNUM, MVT::f64, Expand);
828  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
829  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
830  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
831  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
832  setOperationAction(ISD::FROUND, MVT::f64, Expand);
833  setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
834  setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
835  setOperationAction(ISD::FLOG10, MVT::f128, Expand);
836  setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
837  setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
838  setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
839  setOperationAction(ISD::FMINNUM, MVT::f128, Expand);
840  setOperationAction(ISD::FMAXNUM, MVT::f128, Expand);
841  setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
842  setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
843  setOperationAction(ISD::FRINT,  MVT::f128, Expand);
844  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
845  setOperationAction(ISD::FROUND, MVT::f128, Expand);
846
847  // Default ISD::TRAP to expand (which turns it into abort).
848  setOperationAction(ISD::TRAP, MVT::Other, Expand);
849
850  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
851  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
852  //
853  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
854}
855
856MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
857  return MVT::getIntegerVT(getPointerSizeInBits(AS));
858}
859
860unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
861  return DL->getPointerSizeInBits(AS);
862}
863
864unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
865  assert(Ty->isPointerTy());
866  return getPointerSizeInBits(Ty->getPointerAddressSpace());
867}
868
869MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
870  return MVT::getIntegerVT(8*DL->getPointerSize(0));
871}
872
873EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
874  assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
875  if (LHSTy.isVector())
876    return LHSTy;
877  return getScalarShiftAmountTy(LHSTy);
878}
879
880/// canOpTrap - Returns true if the operation can trap for the value type.
881/// VT must be a legal type.
882bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
883  assert(isTypeLegal(VT));
884  switch (Op) {
885  default:
886    return false;
887  case ISD::FDIV:
888  case ISD::FREM:
889  case ISD::SDIV:
890  case ISD::UDIV:
891  case ISD::SREM:
892  case ISD::UREM:
893    return true;
894  }
895}
896
897
898static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
899                                          unsigned &NumIntermediates,
900                                          MVT &RegisterVT,
901                                          TargetLoweringBase *TLI) {
902  // Figure out the right, legal destination reg to copy into.
903  unsigned NumElts = VT.getVectorNumElements();
904  MVT EltTy = VT.getVectorElementType();
905
906  unsigned NumVectorRegs = 1;
907
908  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
909  // could break down into LHS/RHS like LegalizeDAG does.
910  if (!isPowerOf2_32(NumElts)) {
911    NumVectorRegs = NumElts;
912    NumElts = 1;
913  }
914
915  // Divide the input until we get to a supported size.  This will always
916  // end with a scalar if the target doesn't support vectors.
917  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
918    NumElts >>= 1;
919    NumVectorRegs <<= 1;
920  }
921
922  NumIntermediates = NumVectorRegs;
923
924  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
925  if (!TLI->isTypeLegal(NewVT))
926    NewVT = EltTy;
927  IntermediateVT = NewVT;
928
929  unsigned NewVTSize = NewVT.getSizeInBits();
930
931  // Convert sizes such as i33 to i64.
932  if (!isPowerOf2_32(NewVTSize))
933    NewVTSize = NextPowerOf2(NewVTSize);
934
935  MVT DestVT = TLI->getRegisterType(NewVT);
936  RegisterVT = DestVT;
937  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
938    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
939
940  // Otherwise, promotion or legal types use the same number of registers as
941  // the vector decimated to the appropriate level.
942  return NumVectorRegs;
943}
944
945/// isLegalRC - Return true if the value types that can be represented by the
946/// specified register class are all legal.
947bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
948  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
949       I != E; ++I) {
950    if (isTypeLegal(*I))
951      return true;
952  }
953  return false;
954}
955
956/// Replace/modify any TargetFrameIndex operands with a targte-dependent
957/// sequence of memory operands that is recognized by PrologEpilogInserter.
958MachineBasicBlock*
959TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
960                                   MachineBasicBlock *MBB) const {
961  MachineFunction &MF = *MI->getParent()->getParent();
962
963  // MI changes inside this loop as we grow operands.
964  for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
965    MachineOperand &MO = MI->getOperand(OperIdx);
966    if (!MO.isFI())
967      continue;
968
969    // foldMemoryOperand builds a new MI after replacing a single FI operand
970    // with the canonical set of five x86 addressing-mode operands.
971    int FI = MO.getIndex();
972    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
973
974    // Copy operands before the frame-index.
975    for (unsigned i = 0; i < OperIdx; ++i)
976      MIB.addOperand(MI->getOperand(i));
977    // Add frame index operands: direct-mem-ref tag, #FI, offset.
978    MIB.addImm(StackMaps::DirectMemRefOp);
979    MIB.addOperand(MI->getOperand(OperIdx));
980    MIB.addImm(0);
981    // Copy the operands after the frame index.
982    for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
983      MIB.addOperand(MI->getOperand(i));
984
985    // Inherit previous memory operands.
986    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
987    assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
988
989    // Add a new memory operand for this FI.
990    const MachineFrameInfo &MFI = *MF.getFrameInfo();
991    assert(MFI.getObjectOffset(FI) != -1);
992
993    unsigned Flags = MachineMemOperand::MOLoad;
994    if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
995      Flags |= MachineMemOperand::MOStore;
996      Flags |= MachineMemOperand::MOVolatile;
997    }
998    MachineMemOperand *MMO = MF.getMachineMemOperand(
999        MachinePointerInfo::getFixedStack(FI), Flags,
1000        TM.getSubtargetImpl()->getDataLayout()->getPointerSize(),
1001        MFI.getObjectAlignment(FI));
1002    MIB->addMemOperand(MF, MMO);
1003
1004    // Replace the instruction and update the operand index.
1005    MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1006    OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1007    MI->eraseFromParent();
1008    MI = MIB;
1009  }
1010  return MBB;
1011}
1012
1013/// findRepresentativeClass - Return the largest legal super-reg register class
1014/// of the register class for the specified type and its associated "cost".
1015std::pair<const TargetRegisterClass*, uint8_t>
1016TargetLoweringBase::findRepresentativeClass(MVT VT) const {
1017  const TargetRegisterInfo *TRI =
1018      getTargetMachine().getSubtargetImpl()->getRegisterInfo();
1019  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1020  if (!RC)
1021    return std::make_pair(RC, 0);
1022
1023  // Compute the set of all super-register classes.
1024  BitVector SuperRegRC(TRI->getNumRegClasses());
1025  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1026    SuperRegRC.setBitsInMask(RCI.getMask());
1027
1028  // Find the first legal register class with the largest spill size.
1029  const TargetRegisterClass *BestRC = RC;
1030  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
1031    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1032    // We want the largest possible spill size.
1033    if (SuperRC->getSize() <= BestRC->getSize())
1034      continue;
1035    if (!isLegalRC(SuperRC))
1036      continue;
1037    BestRC = SuperRC;
1038  }
1039  return std::make_pair(BestRC, 1);
1040}
1041
1042/// computeRegisterProperties - Once all of the register classes are added,
1043/// this allows us to compute derived properties we expose.
1044void TargetLoweringBase::computeRegisterProperties() {
1045  static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1046                "Too many value types for ValueTypeActions to hold!");
1047
1048  // Everything defaults to needing one register.
1049  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1050    NumRegistersForVT[i] = 1;
1051    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1052  }
1053  // ...except isVoid, which doesn't need any registers.
1054  NumRegistersForVT[MVT::isVoid] = 0;
1055
1056  // Find the largest integer register class.
1057  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1058  for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1059    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1060
1061  // Every integer value type larger than this largest register takes twice as
1062  // many registers to represent as the previous ValueType.
1063  for (unsigned ExpandedReg = LargestIntReg + 1;
1064       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1065    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1066    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1067    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1068    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1069                                   TypeExpandInteger);
1070  }
1071
1072  // Inspect all of the ValueType's smaller than the largest integer
1073  // register to see which ones need promotion.
1074  unsigned LegalIntReg = LargestIntReg;
1075  for (unsigned IntReg = LargestIntReg - 1;
1076       IntReg >= (unsigned)MVT::i1; --IntReg) {
1077    MVT IVT = (MVT::SimpleValueType)IntReg;
1078    if (isTypeLegal(IVT)) {
1079      LegalIntReg = IntReg;
1080    } else {
1081      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1082        (const MVT::SimpleValueType)LegalIntReg;
1083      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1084    }
1085  }
1086
1087  // ppcf128 type is really two f64's.
1088  if (!isTypeLegal(MVT::ppcf128)) {
1089    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1090    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1091    TransformToType[MVT::ppcf128] = MVT::f64;
1092    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1093  }
1094
1095  // Decide how to handle f128. If the target does not have native f128 support,
1096  // expand it to i128 and we will be generating soft float library calls.
1097  if (!isTypeLegal(MVT::f128)) {
1098    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1099    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1100    TransformToType[MVT::f128] = MVT::i128;
1101    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1102  }
1103
1104  // Decide how to handle f64. If the target does not have native f64 support,
1105  // expand it to i64 and we will be generating soft float library calls.
1106  if (!isTypeLegal(MVT::f64)) {
1107    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1108    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1109    TransformToType[MVT::f64] = MVT::i64;
1110    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1111  }
1112
1113  // Decide how to handle f32. If the target does not have native support for
1114  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
1115  if (!isTypeLegal(MVT::f32)) {
1116    if (isTypeLegal(MVT::f64)) {
1117      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
1118      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
1119      TransformToType[MVT::f32] = MVT::f64;
1120      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
1121    } else {
1122      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1123      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1124      TransformToType[MVT::f32] = MVT::i32;
1125      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1126    }
1127  }
1128
1129  if (!isTypeLegal(MVT::f16)) {
1130    NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1131    RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1132    TransformToType[MVT::f16] = MVT::i16;
1133    ValueTypeActions.setTypeAction(MVT::f16, TypeSoftenFloat);
1134  }
1135
1136  // Loop over all of the vector value types to see which need transformations.
1137  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1138       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1139    MVT VT = (MVT::SimpleValueType) i;
1140    if (isTypeLegal(VT))
1141      continue;
1142
1143    MVT EltVT = VT.getVectorElementType();
1144    unsigned NElts = VT.getVectorNumElements();
1145    bool IsLegalWiderType = false;
1146    LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1147    switch (PreferredAction) {
1148    case TypePromoteInteger: {
1149      // Try to promote the elements of integer vectors. If no legal
1150      // promotion was found, fall through to the widen-vector method.
1151      for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1152        MVT SVT = (MVT::SimpleValueType) nVT;
1153        // Promote vectors of integers to vectors with the same number
1154        // of elements, with a wider element type.
1155        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
1156            && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
1157            && SVT.getScalarType().isInteger()) {
1158          TransformToType[i] = SVT;
1159          RegisterTypeForVT[i] = SVT;
1160          NumRegistersForVT[i] = 1;
1161          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1162          IsLegalWiderType = true;
1163          break;
1164        }
1165      }
1166      if (IsLegalWiderType)
1167        break;
1168    }
1169    case TypeWidenVector: {
1170      // Try to widen the vector.
1171      for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1172        MVT SVT = (MVT::SimpleValueType) nVT;
1173        if (SVT.getVectorElementType() == EltVT
1174            && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1175          TransformToType[i] = SVT;
1176          RegisterTypeForVT[i] = SVT;
1177          NumRegistersForVT[i] = 1;
1178          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1179          IsLegalWiderType = true;
1180          break;
1181        }
1182      }
1183      if (IsLegalWiderType)
1184        break;
1185    }
1186    case TypeSplitVector:
1187    case TypeScalarizeVector: {
1188      MVT IntermediateVT;
1189      MVT RegisterVT;
1190      unsigned NumIntermediates;
1191      NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1192          NumIntermediates, RegisterVT, this);
1193      RegisterTypeForVT[i] = RegisterVT;
1194
1195      MVT NVT = VT.getPow2VectorType();
1196      if (NVT == VT) {
1197        // Type is already a power of 2.  The default action is to split.
1198        TransformToType[i] = MVT::Other;
1199        if (PreferredAction == TypeScalarizeVector)
1200          ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1201        else if (PreferredAction == TypeSplitVector)
1202          ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1203        else
1204          // Set type action according to the number of elements.
1205          ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1206                                                        : TypeSplitVector);
1207      } else {
1208        TransformToType[i] = NVT;
1209        ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1210      }
1211      break;
1212    }
1213    default:
1214      llvm_unreachable("Unknown vector legalization action!");
1215    }
1216  }
1217
1218  // Determine the 'representative' register class for each value type.
1219  // An representative register class is the largest (meaning one which is
1220  // not a sub-register class / subreg register class) legal register class for
1221  // a group of value types. For example, on i386, i8, i16, and i32
1222  // representative would be GR32; while on x86_64 it's GR64.
1223  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1224    const TargetRegisterClass* RRC;
1225    uint8_t Cost;
1226    std::tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
1227    RepRegClassForVT[i] = RRC;
1228    RepRegClassCostForVT[i] = Cost;
1229  }
1230}
1231
1232EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
1233  assert(!VT.isVector() && "No default SetCC type for vectors!");
1234  return getPointerTy(0).SimpleTy;
1235}
1236
1237MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1238  return MVT::i32; // return the default value
1239}
1240
1241/// getVectorTypeBreakdown - Vector types are broken down into some number of
1242/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1243/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1244/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1245///
1246/// This method returns the number of registers needed, and the VT for each
1247/// register.  It also returns the VT and quantity of the intermediate values
1248/// before they are promoted/expanded.
1249///
1250unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1251                                                EVT &IntermediateVT,
1252                                                unsigned &NumIntermediates,
1253                                                MVT &RegisterVT) const {
1254  unsigned NumElts = VT.getVectorNumElements();
1255
1256  // If there is a wider vector type with the same element type as this one,
1257  // or a promoted vector type that has the same number of elements which
1258  // are wider, then we should convert to that legal vector type.
1259  // This handles things like <2 x float> -> <4 x float> and
1260  // <4 x i1> -> <4 x i32>.
1261  LegalizeTypeAction TA = getTypeAction(Context, VT);
1262  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1263    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1264    if (isTypeLegal(RegisterEVT)) {
1265      IntermediateVT = RegisterEVT;
1266      RegisterVT = RegisterEVT.getSimpleVT();
1267      NumIntermediates = 1;
1268      return 1;
1269    }
1270  }
1271
1272  // Figure out the right, legal destination reg to copy into.
1273  EVT EltTy = VT.getVectorElementType();
1274
1275  unsigned NumVectorRegs = 1;
1276
1277  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1278  // could break down into LHS/RHS like LegalizeDAG does.
1279  if (!isPowerOf2_32(NumElts)) {
1280    NumVectorRegs = NumElts;
1281    NumElts = 1;
1282  }
1283
1284  // Divide the input until we get to a supported size.  This will always
1285  // end with a scalar if the target doesn't support vectors.
1286  while (NumElts > 1 && !isTypeLegal(
1287                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
1288    NumElts >>= 1;
1289    NumVectorRegs <<= 1;
1290  }
1291
1292  NumIntermediates = NumVectorRegs;
1293
1294  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1295  if (!isTypeLegal(NewVT))
1296    NewVT = EltTy;
1297  IntermediateVT = NewVT;
1298
1299  MVT DestVT = getRegisterType(Context, NewVT);
1300  RegisterVT = DestVT;
1301  unsigned NewVTSize = NewVT.getSizeInBits();
1302
1303  // Convert sizes such as i33 to i64.
1304  if (!isPowerOf2_32(NewVTSize))
1305    NewVTSize = NextPowerOf2(NewVTSize);
1306
1307  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1308    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1309
1310  // Otherwise, promotion or legal types use the same number of registers as
1311  // the vector decimated to the appropriate level.
1312  return NumVectorRegs;
1313}
1314
1315/// Get the EVTs and ArgFlags collections that represent the legalized return
1316/// type of the given function.  This does not require a DAG or a return value,
1317/// and is suitable for use before any DAGs for the function are constructed.
1318/// TODO: Move this out of TargetLowering.cpp.
1319void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1320                         SmallVectorImpl<ISD::OutputArg> &Outs,
1321                         const TargetLowering &TLI) {
1322  SmallVector<EVT, 4> ValueVTs;
1323  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1324  unsigned NumValues = ValueVTs.size();
1325  if (NumValues == 0) return;
1326
1327  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1328    EVT VT = ValueVTs[j];
1329    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1330
1331    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1332      ExtendKind = ISD::SIGN_EXTEND;
1333    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1334      ExtendKind = ISD::ZERO_EXTEND;
1335
1336    // FIXME: C calling convention requires the return type to be promoted to
1337    // at least 32-bit. But this is not necessary for non-C calling
1338    // conventions. The frontend should mark functions whose return values
1339    // require promoting with signext or zeroext attributes.
1340    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1341      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1342      if (VT.bitsLT(MinVT))
1343        VT = MinVT;
1344    }
1345
1346    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1347    MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1348
1349    // 'inreg' on function refers to return value
1350    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1351    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1352      Flags.setInReg();
1353
1354    // Propagate extension type if any
1355    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1356      Flags.setSExt();
1357    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1358      Flags.setZExt();
1359
1360    for (unsigned i = 0; i < NumParts; ++i)
1361      Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1362  }
1363}
1364
1365/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1366/// function arguments in the caller parameter area.  This is the actual
1367/// alignment, not its logarithm.
1368unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1369  return DL->getABITypeAlignment(Ty);
1370}
1371
1372//===----------------------------------------------------------------------===//
1373//  TargetTransformInfo Helpers
1374//===----------------------------------------------------------------------===//
1375
1376int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1377  enum InstructionOpcodes {
1378#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1379#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1380#include "llvm/IR/Instruction.def"
1381  };
1382  switch (static_cast<InstructionOpcodes>(Opcode)) {
1383  case Ret:            return 0;
1384  case Br:             return 0;
1385  case Switch:         return 0;
1386  case IndirectBr:     return 0;
1387  case Invoke:         return 0;
1388  case Resume:         return 0;
1389  case Unreachable:    return 0;
1390  case Add:            return ISD::ADD;
1391  case FAdd:           return ISD::FADD;
1392  case Sub:            return ISD::SUB;
1393  case FSub:           return ISD::FSUB;
1394  case Mul:            return ISD::MUL;
1395  case FMul:           return ISD::FMUL;
1396  case UDiv:           return ISD::UDIV;
1397  case SDiv:           return ISD::SDIV;
1398  case FDiv:           return ISD::FDIV;
1399  case URem:           return ISD::UREM;
1400  case SRem:           return ISD::SREM;
1401  case FRem:           return ISD::FREM;
1402  case Shl:            return ISD::SHL;
1403  case LShr:           return ISD::SRL;
1404  case AShr:           return ISD::SRA;
1405  case And:            return ISD::AND;
1406  case Or:             return ISD::OR;
1407  case Xor:            return ISD::XOR;
1408  case Alloca:         return 0;
1409  case Load:           return ISD::LOAD;
1410  case Store:          return ISD::STORE;
1411  case GetElementPtr:  return 0;
1412  case Fence:          return 0;
1413  case AtomicCmpXchg:  return 0;
1414  case AtomicRMW:      return 0;
1415  case Trunc:          return ISD::TRUNCATE;
1416  case ZExt:           return ISD::ZERO_EXTEND;
1417  case SExt:           return ISD::SIGN_EXTEND;
1418  case FPToUI:         return ISD::FP_TO_UINT;
1419  case FPToSI:         return ISD::FP_TO_SINT;
1420  case UIToFP:         return ISD::UINT_TO_FP;
1421  case SIToFP:         return ISD::SINT_TO_FP;
1422  case FPTrunc:        return ISD::FP_ROUND;
1423  case FPExt:          return ISD::FP_EXTEND;
1424  case PtrToInt:       return ISD::BITCAST;
1425  case IntToPtr:       return ISD::BITCAST;
1426  case BitCast:        return ISD::BITCAST;
1427  case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1428  case ICmp:           return ISD::SETCC;
1429  case FCmp:           return ISD::SETCC;
1430  case PHI:            return 0;
1431  case Call:           return 0;
1432  case Select:         return ISD::SELECT;
1433  case UserOp1:        return 0;
1434  case UserOp2:        return 0;
1435  case VAArg:          return 0;
1436  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1437  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1438  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1439  case ExtractValue:   return ISD::MERGE_VALUES;
1440  case InsertValue:    return ISD::MERGE_VALUES;
1441  case LandingPad:     return 0;
1442  }
1443
1444  llvm_unreachable("Unknown instruction type encountered!");
1445}
1446
1447std::pair<unsigned, MVT>
1448TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1449  LLVMContext &C = Ty->getContext();
1450  EVT MTy = getValueType(Ty);
1451
1452  unsigned Cost = 1;
1453  // We keep legalizing the type until we find a legal kind. We assume that
1454  // the only operation that costs anything is the split. After splitting
1455  // we need to handle two types.
1456  while (true) {
1457    LegalizeKind LK = getTypeConversion(C, MTy);
1458
1459    if (LK.first == TypeLegal)
1460      return std::make_pair(Cost, MTy.getSimpleVT());
1461
1462    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1463      Cost *= 2;
1464
1465    // Keep legalizing the type.
1466    MTy = LK.second;
1467  }
1468}
1469
1470//===----------------------------------------------------------------------===//
1471//  Loop Strength Reduction hooks
1472//===----------------------------------------------------------------------===//
1473
1474/// isLegalAddressingMode - Return true if the addressing mode represented
1475/// by AM is legal for this target, for a load/store of the specified type.
1476bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1477                                           Type *Ty) const {
1478  // The default implementation of this implements a conservative RISCy, r+r and
1479  // r+i addr mode.
1480
1481  // Allows a sign-extended 16-bit immediate field.
1482  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1483    return false;
1484
1485  // No global is ever allowed as a base.
1486  if (AM.BaseGV)
1487    return false;
1488
1489  // Only support r+r,
1490  switch (AM.Scale) {
1491  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1492    break;
1493  case 1:
1494    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1495      return false;
1496    // Otherwise we have r+r or r+i.
1497    break;
1498  case 2:
1499    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1500      return false;
1501    // Allow 2*r as r+r.
1502    break;
1503  default: // Don't allow n * r
1504    return false;
1505  }
1506
1507  return true;
1508}
1509