ScheduleDAGSDNodes.cpp revision 218893
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(LoadsClustered, "Number of loads clustered together");
35
36ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
37  : ScheduleDAG(mf),
38    InstrItins(mf.getTarget().getInstrItineraryData()) {}
39
40/// Run - perform scheduling.
41///
42void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
43                             MachineBasicBlock::iterator insertPos) {
44  DAG = dag;
45  ScheduleDAG::Run(bb, insertPos);
46}
47
48/// NewSUnit - Creates a new SUnit and return a ptr to it.
49///
50SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
51#ifndef NDEBUG
52  const SUnit *Addr = 0;
53  if (!SUnits.empty())
54    Addr = &SUnits[0];
55#endif
56  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
57  assert((Addr == 0 || Addr == &SUnits[0]) &&
58         "SUnits std::vector reallocated on the fly!");
59  SUnits.back().OrigNode = &SUnits.back();
60  SUnit *SU = &SUnits.back();
61  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
62  if (!N ||
63      (N->isMachineOpcode() &&
64       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
65    SU->SchedulingPref = Sched::None;
66  else
67    SU->SchedulingPref = TLI.getSchedulingPreference(N);
68  return SU;
69}
70
71SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
72  SUnit *SU = NewSUnit(Old->getNode());
73  SU->OrigNode = Old->OrigNode;
74  SU->Latency = Old->Latency;
75  SU->isCall = Old->isCall;
76  SU->isTwoAddress = Old->isTwoAddress;
77  SU->isCommutable = Old->isCommutable;
78  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
79  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
80  SU->SchedulingPref = Old->SchedulingPref;
81  Old->isCloned = true;
82  return SU;
83}
84
85/// CheckForPhysRegDependency - Check if the dependency between def and use of
86/// a specified operand is a physical register dependency. If so, returns the
87/// register and the cost of copying the register.
88static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
89                                      const TargetRegisterInfo *TRI,
90                                      const TargetInstrInfo *TII,
91                                      unsigned &PhysReg, int &Cost) {
92  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
93    return;
94
95  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
96  if (TargetRegisterInfo::isVirtualRegister(Reg))
97    return;
98
99  unsigned ResNo = User->getOperand(2).getResNo();
100  if (Def->isMachineOpcode()) {
101    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
102    if (ResNo >= II.getNumDefs() &&
103        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
104      PhysReg = Reg;
105      const TargetRegisterClass *RC =
106        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
107      Cost = RC->getCopyCost();
108    }
109  }
110}
111
112static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
113  SmallVector<EVT, 4> VTs;
114  SDNode *GlueDestNode = Glue.getNode();
115
116  // Don't add glue from a node to itself.
117  if (GlueDestNode == N) return;
118
119  // Don't add glue to something which already has glue.
120  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
121
122  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
123    VTs.push_back(N->getValueType(I));
124
125  if (AddGlue)
126    VTs.push_back(MVT::Glue);
127
128  SmallVector<SDValue, 4> Ops;
129  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
130    Ops.push_back(N->getOperand(I));
131
132  if (GlueDestNode)
133    Ops.push_back(Glue);
134
135  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
136  MachineSDNode::mmo_iterator Begin = 0, End = 0;
137  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
138
139  // Store memory references.
140  if (MN) {
141    Begin = MN->memoperands_begin();
142    End = MN->memoperands_end();
143  }
144
145  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
146
147  // Reset the memory references
148  if (MN)
149    MN->setMemRefs(Begin, End);
150}
151
152/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
153/// This function finds loads of the same base and different offsets. If the
154/// offsets are not far apart (target specific), it add MVT::Glue inputs and
155/// outputs to ensure they are scheduled together and in order. This
156/// optimization may benefit some targets by improving cache locality.
157void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
158  SDNode *Chain = 0;
159  unsigned NumOps = Node->getNumOperands();
160  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
161    Chain = Node->getOperand(NumOps-1).getNode();
162  if (!Chain)
163    return;
164
165  // Look for other loads of the same chain. Find loads that are loading from
166  // the same base pointer and different offsets.
167  SmallPtrSet<SDNode*, 16> Visited;
168  SmallVector<int64_t, 4> Offsets;
169  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
170  bool Cluster = false;
171  SDNode *Base = Node;
172  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
173       I != E; ++I) {
174    SDNode *User = *I;
175    if (User == Node || !Visited.insert(User))
176      continue;
177    int64_t Offset1, Offset2;
178    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
179        Offset1 == Offset2)
180      // FIXME: Should be ok if they addresses are identical. But earlier
181      // optimizations really should have eliminated one of the loads.
182      continue;
183    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
184      Offsets.push_back(Offset1);
185    O2SMap.insert(std::make_pair(Offset2, User));
186    Offsets.push_back(Offset2);
187    if (Offset2 < Offset1)
188      Base = User;
189    Cluster = true;
190  }
191
192  if (!Cluster)
193    return;
194
195  // Sort them in increasing order.
196  std::sort(Offsets.begin(), Offsets.end());
197
198  // Check if the loads are close enough.
199  SmallVector<SDNode*, 4> Loads;
200  unsigned NumLoads = 0;
201  int64_t BaseOff = Offsets[0];
202  SDNode *BaseLoad = O2SMap[BaseOff];
203  Loads.push_back(BaseLoad);
204  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
205    int64_t Offset = Offsets[i];
206    SDNode *Load = O2SMap[Offset];
207    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
208      break; // Stop right here. Ignore loads that are further away.
209    Loads.push_back(Load);
210    ++NumLoads;
211  }
212
213  if (NumLoads == 0)
214    return;
215
216  // Cluster loads by adding MVT::Glue outputs and inputs. This also
217  // ensure they are scheduled in order of increasing addresses.
218  SDNode *Lead = Loads[0];
219  AddGlue(Lead, SDValue(0, 0), true, DAG);
220
221  SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
222  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
223    bool OutGlue = I < E - 1;
224    SDNode *Load = Loads[I];
225
226    AddGlue(Load, InGlue, OutGlue, DAG);
227
228    if (OutGlue)
229      InGlue = SDValue(Load, Load->getNumValues() - 1);
230
231    ++LoadsClustered;
232  }
233}
234
235/// ClusterNodes - Cluster certain nodes which should be scheduled together.
236///
237void ScheduleDAGSDNodes::ClusterNodes() {
238  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
239       E = DAG->allnodes_end(); NI != E; ++NI) {
240    SDNode *Node = &*NI;
241    if (!Node || !Node->isMachineOpcode())
242      continue;
243
244    unsigned Opc = Node->getMachineOpcode();
245    const TargetInstrDesc &TID = TII->get(Opc);
246    if (TID.mayLoad())
247      // Cluster loads from "near" addresses into combined SUnits.
248      ClusterNeighboringLoads(Node);
249  }
250}
251
252void ScheduleDAGSDNodes::BuildSchedUnits() {
253  // During scheduling, the NodeId field of SDNode is used to map SDNodes
254  // to their associated SUnits by holding SUnits table indices. A value
255  // of -1 means the SDNode does not yet have an associated SUnit.
256  unsigned NumNodes = 0;
257  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
258       E = DAG->allnodes_end(); NI != E; ++NI) {
259    NI->setNodeId(-1);
260    ++NumNodes;
261  }
262
263  // Reserve entries in the vector for each of the SUnits we are creating.  This
264  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
265  // invalidated.
266  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
267  // This is a temporary workaround.
268  SUnits.reserve(NumNodes * 2);
269
270  // Add all nodes in depth first order.
271  SmallVector<SDNode*, 64> Worklist;
272  SmallPtrSet<SDNode*, 64> Visited;
273  Worklist.push_back(DAG->getRoot().getNode());
274  Visited.insert(DAG->getRoot().getNode());
275
276  while (!Worklist.empty()) {
277    SDNode *NI = Worklist.pop_back_val();
278
279    // Add all operands to the worklist unless they've already been added.
280    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
281      if (Visited.insert(NI->getOperand(i).getNode()))
282        Worklist.push_back(NI->getOperand(i).getNode());
283
284    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
285      continue;
286
287    // If this node has already been processed, stop now.
288    if (NI->getNodeId() != -1) continue;
289
290    SUnit *NodeSUnit = NewSUnit(NI);
291
292    // See if anything is glued to this node, if so, add them to glued
293    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
294    // is required to be the last operand and result of a node.
295
296    // Scan up to find glued preds.
297    SDNode *N = NI;
298    while (N->getNumOperands() &&
299           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
300      N = N->getOperand(N->getNumOperands()-1).getNode();
301      assert(N->getNodeId() == -1 && "Node already inserted!");
302      N->setNodeId(NodeSUnit->NodeNum);
303      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
304        NodeSUnit->isCall = true;
305    }
306
307    // Scan down to find any glued succs.
308    N = NI;
309    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
310      SDValue GlueVal(N, N->getNumValues()-1);
311
312      // There are either zero or one users of the Glue result.
313      bool HasGlueUse = false;
314      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
315           UI != E; ++UI)
316        if (GlueVal.isOperandOf(*UI)) {
317          HasGlueUse = true;
318          assert(N->getNodeId() == -1 && "Node already inserted!");
319          N->setNodeId(NodeSUnit->NodeNum);
320          N = *UI;
321          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
322            NodeSUnit->isCall = true;
323          break;
324        }
325      if (!HasGlueUse) break;
326    }
327
328    // If there are glue operands involved, N is now the bottom-most node
329    // of the sequence of nodes that are glued together.
330    // Update the SUnit.
331    NodeSUnit->setNode(N);
332    assert(N->getNodeId() == -1 && "Node already inserted!");
333    N->setNodeId(NodeSUnit->NodeNum);
334
335    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
336    InitNumRegDefsLeft(NodeSUnit);
337
338    // Assign the Latency field of NodeSUnit using target-provided information.
339    ComputeLatency(NodeSUnit);
340  }
341}
342
343void ScheduleDAGSDNodes::AddSchedEdges() {
344  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
345
346  // Check to see if the scheduler cares about latencies.
347  bool UnitLatencies = ForceUnitLatencies();
348
349  // Pass 2: add the preds, succs, etc.
350  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
351    SUnit *SU = &SUnits[su];
352    SDNode *MainNode = SU->getNode();
353
354    if (MainNode->isMachineOpcode()) {
355      unsigned Opc = MainNode->getMachineOpcode();
356      const TargetInstrDesc &TID = TII->get(Opc);
357      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
358        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
359          SU->isTwoAddress = true;
360          break;
361        }
362      }
363      if (TID.isCommutable())
364        SU->isCommutable = true;
365    }
366
367    // Find all predecessors and successors of the group.
368    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
369      if (N->isMachineOpcode() &&
370          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
371        SU->hasPhysRegClobbers = true;
372        unsigned NumUsed = InstrEmitter::CountResults(N);
373        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
374          --NumUsed;    // Skip over unused values at the end.
375        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
376          SU->hasPhysRegDefs = true;
377      }
378
379      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
380        SDNode *OpN = N->getOperand(i).getNode();
381        if (isPassiveNode(OpN)) continue;   // Not scheduled.
382        SUnit *OpSU = &SUnits[OpN->getNodeId()];
383        assert(OpSU && "Node has no SUnit!");
384        if (OpSU == SU) continue;           // In the same group.
385
386        EVT OpVT = N->getOperand(i).getValueType();
387        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
388        bool isChain = OpVT == MVT::Other;
389
390        unsigned PhysReg = 0;
391        int Cost = 1;
392        // Determine if this is a physical register dependency.
393        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
394        assert((PhysReg == 0 || !isChain) &&
395               "Chain dependence via physreg data?");
396        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
397        // emits a copy from the physical register to a virtual register unless
398        // it requires a cross class copy (cost < 0). That means we are only
399        // treating "expensive to copy" register dependency as physical register
400        // dependency. This may change in the future though.
401        if (Cost >= 0)
402          PhysReg = 0;
403
404        // If this is a ctrl dep, latency is 1.
405        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
406        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
407                               OpLatency, PhysReg);
408        if (!isChain && !UnitLatencies) {
409          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
410          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
411        }
412
413        if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 0) {
414          // Multiple register uses are combined in the same SUnit. For example,
415          // we could have a set of glued nodes with all their defs consumed by
416          // another set of glued nodes. Register pressure tracking sees this as
417          // a single use, so to keep pressure balanced we reduce the defs.
418          --OpSU->NumRegDefsLeft;
419        }
420      }
421    }
422  }
423}
424
425/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
426/// are input.  This SUnit graph is similar to the SelectionDAG, but
427/// excludes nodes that aren't interesting to scheduling, and represents
428/// glued together nodes with a single SUnit.
429void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
430  // Cluster certain nodes which should be scheduled together.
431  ClusterNodes();
432  // Populate the SUnits array.
433  BuildSchedUnits();
434  // Compute all the scheduling dependencies between nodes.
435  AddSchedEdges();
436}
437
438// Initialize NumNodeDefs for the current Node's opcode.
439void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
440  if (!Node->isMachineOpcode()) {
441    if (Node->getOpcode() == ISD::CopyFromReg)
442      NodeNumDefs = 1;
443    else
444      NodeNumDefs = 0;
445    return;
446  }
447  unsigned POpc = Node->getMachineOpcode();
448  if (POpc == TargetOpcode::IMPLICIT_DEF) {
449    // No register need be allocated for this.
450    NodeNumDefs = 0;
451    return;
452  }
453  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
454  // Some instructions define regs that are not represented in the selection DAG
455  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
456  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
457  DefIdx = 0;
458}
459
460// Construct a RegDefIter for this SUnit and find the first valid value.
461ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
462                                           const ScheduleDAGSDNodes *SD)
463  : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
464  InitNodeNumDefs();
465  Advance();
466}
467
468// Advance to the next valid value defined by the SUnit.
469void ScheduleDAGSDNodes::RegDefIter::Advance() {
470  for (;Node;) { // Visit all glued nodes.
471    for (;DefIdx < NodeNumDefs; ++DefIdx) {
472      if (!Node->hasAnyUseOfValue(DefIdx))
473        continue;
474      if (Node->isMachineOpcode() &&
475          Node->getMachineOpcode() == TargetOpcode::EXTRACT_SUBREG) {
476        // Propagate the incoming (full-register) type. I doubt it's needed.
477        ValueType = Node->getOperand(0).getValueType();
478      }
479      else {
480        ValueType = Node->getValueType(DefIdx);
481      }
482      ++DefIdx;
483      return; // Found a normal regdef.
484    }
485    Node = Node->getGluedNode();
486    if (Node == NULL) {
487      return; // No values left to visit.
488    }
489    InitNodeNumDefs();
490  }
491}
492
493void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
494  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
495  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
496    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
497    ++SU->NumRegDefsLeft;
498  }
499}
500
501void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
502  // Check to see if the scheduler cares about latencies.
503  if (ForceUnitLatencies()) {
504    SU->Latency = 1;
505    return;
506  }
507
508  if (!InstrItins || InstrItins->isEmpty()) {
509    SU->Latency = 1;
510    return;
511  }
512
513  // Compute the latency for the node.  We use the sum of the latencies for
514  // all nodes glued together into this SUnit.
515  SU->Latency = 0;
516  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
517    if (N->isMachineOpcode())
518      SU->Latency += TII->getInstrLatency(InstrItins, N);
519}
520
521void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
522                                               unsigned OpIdx, SDep& dep) const{
523  // Check to see if the scheduler cares about latencies.
524  if (ForceUnitLatencies())
525    return;
526
527  if (dep.getKind() != SDep::Data)
528    return;
529
530  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
531  if (Use->isMachineOpcode())
532    // Adjust the use operand index by num of defs.
533    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
534  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
535  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
536      !BB->succ_empty()) {
537    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
538    if (TargetRegisterInfo::isVirtualRegister(Reg))
539      // This copy is a liveout value. It is likely coalesced, so reduce the
540      // latency so not to penalize the def.
541      // FIXME: need target specific adjustment here?
542      Latency = (Latency > 1) ? Latency - 1 : 1;
543  }
544  if (Latency >= 0)
545    dep.setLatency(Latency);
546}
547
548void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
549  if (!SU->getNode()) {
550    dbgs() << "PHYS REG COPY\n";
551    return;
552  }
553
554  SU->getNode()->dump(DAG);
555  dbgs() << "\n";
556  SmallVector<SDNode *, 4> GluedNodes;
557  for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
558    GluedNodes.push_back(N);
559  while (!GluedNodes.empty()) {
560    dbgs() << "    ";
561    GluedNodes.back()->dump(DAG);
562    dbgs() << "\n";
563    GluedNodes.pop_back();
564  }
565}
566
567namespace {
568  struct OrderSorter {
569    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
570                    const std::pair<unsigned, MachineInstr*> &B) {
571      return A.first < B.first;
572    }
573  };
574}
575
576/// ProcessSDDbgValues - Process SDDbgValues assoicated with this node.
577static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
578                               InstrEmitter &Emitter,
579                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
580                            DenseMap<SDValue, unsigned> &VRBaseMap,
581                            unsigned Order) {
582  if (!N->getHasDebugValue())
583    return;
584
585  // Opportunistically insert immediate dbg_value uses, i.e. those with source
586  // order number right after the N.
587  MachineBasicBlock *BB = Emitter.getBlock();
588  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
589  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
590  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
591    if (DVs[i]->isInvalidated())
592      continue;
593    unsigned DVOrder = DVs[i]->getOrder();
594    if (!Order || DVOrder == ++Order) {
595      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
596      if (DbgMI) {
597        Orders.push_back(std::make_pair(DVOrder, DbgMI));
598        BB->insert(InsertPos, DbgMI);
599      }
600      DVs[i]->setIsInvalidated();
601    }
602  }
603}
604
605// ProcessSourceNode - Process nodes with source order numbers. These are added
606// to a vector which EmitSchedule uses to determine how to insert dbg_value
607// instructions in the right order.
608static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
609                           InstrEmitter &Emitter,
610                           DenseMap<SDValue, unsigned> &VRBaseMap,
611                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
612                           SmallSet<unsigned, 8> &Seen) {
613  unsigned Order = DAG->GetOrdering(N);
614  if (!Order || !Seen.insert(Order)) {
615    // Process any valid SDDbgValues even if node does not have any order
616    // assigned.
617    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
618    return;
619  }
620
621  MachineBasicBlock *BB = Emitter.getBlock();
622  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
623    // Did not insert any instruction.
624    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
625    return;
626  }
627
628  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
629  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
630}
631
632
633/// EmitSchedule - Emit the machine code in scheduled order.
634MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
635  InstrEmitter Emitter(BB, InsertPos);
636  DenseMap<SDValue, unsigned> VRBaseMap;
637  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
638  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
639  SmallSet<unsigned, 8> Seen;
640  bool HasDbg = DAG->hasDebugValues();
641
642  // If this is the first BB, emit byval parameter dbg_value's.
643  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
644    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
645    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
646    for (; PDI != PDE; ++PDI) {
647      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
648      if (DbgMI)
649        BB->insert(InsertPos, DbgMI);
650    }
651  }
652
653  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
654    SUnit *SU = Sequence[i];
655    if (!SU) {
656      // Null SUnit* is a noop.
657      EmitNoop();
658      continue;
659    }
660
661    // For pre-regalloc scheduling, create instructions corresponding to the
662    // SDNode and any glued SDNodes and append them to the block.
663    if (!SU->getNode()) {
664      // Emit a copy.
665      EmitPhysRegCopy(SU, CopyVRBaseMap);
666      continue;
667    }
668
669    SmallVector<SDNode *, 4> GluedNodes;
670    for (SDNode *N = SU->getNode()->getGluedNode(); N;
671         N = N->getGluedNode())
672      GluedNodes.push_back(N);
673    while (!GluedNodes.empty()) {
674      SDNode *N = GluedNodes.back();
675      Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
676                       VRBaseMap);
677      // Remember the source order of the inserted instruction.
678      if (HasDbg)
679        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
680      GluedNodes.pop_back();
681    }
682    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
683                     VRBaseMap);
684    // Remember the source order of the inserted instruction.
685    if (HasDbg)
686      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
687                        Seen);
688  }
689
690  // Insert all the dbg_values which have not already been inserted in source
691  // order sequence.
692  if (HasDbg) {
693    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
694
695    // Sort the source order instructions and use the order to insert debug
696    // values.
697    std::sort(Orders.begin(), Orders.end(), OrderSorter());
698
699    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
700    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
701    // Now emit the rest according to source order.
702    unsigned LastOrder = 0;
703    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
704      unsigned Order = Orders[i].first;
705      MachineInstr *MI = Orders[i].second;
706      // Insert all SDDbgValue's whose order(s) are before "Order".
707      if (!MI)
708        continue;
709      for (; DI != DE &&
710             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
711        if ((*DI)->isInvalidated())
712          continue;
713        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
714        if (DbgMI) {
715          if (!LastOrder)
716            // Insert to start of the BB (after PHIs).
717            BB->insert(BBBegin, DbgMI);
718          else {
719            // Insert at the instruction, which may be in a different
720            // block, if the block was split by a custom inserter.
721            MachineBasicBlock::iterator Pos = MI;
722            MI->getParent()->insert(llvm::next(Pos), DbgMI);
723          }
724        }
725      }
726      LastOrder = Order;
727    }
728    // Add trailing DbgValue's before the terminator. FIXME: May want to add
729    // some of them before one or more conditional branches?
730    while (DI != DE) {
731      MachineBasicBlock *InsertBB = Emitter.getBlock();
732      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
733      if (!(*DI)->isInvalidated()) {
734        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
735        if (DbgMI)
736          InsertBB->insert(Pos, DbgMI);
737      }
738      ++DI;
739    }
740  }
741
742  BB = Emitter.getBlock();
743  InsertPos = Emitter.getInsertPos();
744  return BB;
745}
746