ScheduleDAGInstrs.cpp revision 205218
192108Sphk//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
292108Sphk//
392108Sphk//                     The LLVM Compiler Infrastructure
492108Sphk//
592108Sphk// This file is distributed under the University of Illinois Open Source
692108Sphk// License. See LICENSE.TXT for details.
792108Sphk//
892108Sphk//===----------------------------------------------------------------------===//
992108Sphk//
1092108Sphk// This implements the ScheduleDAGInstrs class, which implements re-scheduling
1192108Sphk// of MachineInstrs.
1292108Sphk//
1392108Sphk//===----------------------------------------------------------------------===//
1492108Sphk
1592108Sphk#define DEBUG_TYPE "sched-instrs"
1692108Sphk#include "ScheduleDAGInstrs.h"
1792108Sphk#include "llvm/Operator.h"
1892108Sphk#include "llvm/Analysis/AliasAnalysis.h"
1992108Sphk#include "llvm/CodeGen/MachineFunctionPass.h"
2092108Sphk#include "llvm/CodeGen/MachineMemOperand.h"
2192108Sphk#include "llvm/CodeGen/MachineRegisterInfo.h"
2292108Sphk#include "llvm/CodeGen/PseudoSourceValue.h"
2392108Sphk#include "llvm/Target/TargetMachine.h"
2492108Sphk#include "llvm/Target/TargetInstrInfo.h"
2592108Sphk#include "llvm/Target/TargetRegisterInfo.h"
2692108Sphk#include "llvm/Target/TargetSubtarget.h"
2792108Sphk#include "llvm/Support/Debug.h"
2892108Sphk#include "llvm/Support/raw_ostream.h"
2992108Sphk#include "llvm/ADT/SmallSet.h"
3092108Sphkusing namespace llvm;
3192108Sphk
3292108SphkScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
3392108Sphk                                     const MachineLoopInfo &mli,
3492108Sphk                                     const MachineDominatorTree &mdt)
3592108Sphk  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {
3692108Sphk  MFI = mf.getFrameInfo();
3792108Sphk  DbgValueVec.clear();
3892108Sphk}
3992108Sphk
4092108Sphk/// Run - perform scheduling.
4192108Sphk///
4292108Sphkvoid ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
4392108Sphk                            MachineBasicBlock::iterator begin,
4492108Sphk                            MachineBasicBlock::iterator end,
4592108Sphk                            unsigned endcount) {
4692108Sphk  BB = bb;
4792108Sphk  Begin = begin;
4892108Sphk  InsertPosIndex = endcount;
4992108Sphk
5092108Sphk  ScheduleDAG::Run(bb, end);
5192108Sphk}
5292108Sphk
5392108Sphk/// getUnderlyingObjectFromInt - This is the function that does the work of
5492108Sphk/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
5592108Sphkstatic const Value *getUnderlyingObjectFromInt(const Value *V) {
5692108Sphk  do {
5792108Sphk    if (const Operator *U = dyn_cast<Operator>(V)) {
5892108Sphk      // If we find a ptrtoint, we can transfer control back to the
5993248Sphk      // regular getUnderlyingObjectFromInt.
6097075Sphk      if (U->getOpcode() == Instruction::PtrToInt)
6192108Sphk        return U->getOperand(0);
6292108Sphk      // If we find an add of a constant or a multiplied value, it's
6393776Sphk      // likely that the other operand will lead us to the base
6492108Sphk      // object. We don't have to worry about the case where the
6592108Sphk      // object address is somehow being computed by the multiply,
6692108Sphk      // because our callers only care when the result is an
6792108Sphk      // identifibale object.
6892108Sphk      if (U->getOpcode() != Instruction::Add ||
6992108Sphk          (!isa<ConstantInt>(U->getOperand(1)) &&
7092108Sphk           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
7192108Sphk        return V;
7292108Sphk      V = U->getOperand(0);
7392108Sphk    } else {
7492108Sphk      return V;
7592108Sphk    }
7692108Sphk    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
7792108Sphk  } while (1);
7892108Sphk}
7992108Sphk
8092108Sphk/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
8192108Sphk/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
8292108Sphkstatic const Value *getUnderlyingObject(const Value *V) {
8392108Sphk  // First just call Value::getUnderlyingObject to let it do what it does.
8492108Sphk  do {
8592108Sphk    V = V->getUnderlyingObject();
8692108Sphk    // If it found an inttoptr, use special code to continue climing.
8792108Sphk    if (Operator::getOpcode(V) != Instruction::IntToPtr)
8892108Sphk      break;
8992108Sphk    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
9092108Sphk    // If that succeeded in finding a pointer, continue the search.
9192108Sphk    if (!O->getType()->isPointerTy())
9292108Sphk      break;
9392108Sphk    V = O;
9492108Sphk  } while (1);
9592108Sphk  return V;
9693778Sphk}
9793778Sphk
9892108Sphk/// getUnderlyingObjectForInstr - If this machine instr has memory reference
9992108Sphk/// information and it can be tracked to a normal reference to a known
10092108Sphk/// object, return the Value for that object. Otherwise return null.
10192108Sphkstatic const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
10295038Sphk                                                const MachineFrameInfo *MFI,
10395038Sphk                                                bool &MayAlias) {
10495038Sphk  MayAlias = true;
10595038Sphk  if (!MI->hasOneMemOperand() ||
10695038Sphk      !(*MI->memoperands_begin())->getValue() ||
10795038Sphk      (*MI->memoperands_begin())->isVolatile())
10895038Sphk    return 0;
10995038Sphk
11095038Sphk  const Value *V = (*MI->memoperands_begin())->getValue();
11195038Sphk  if (!V)
11295038Sphk    return 0;
11395038Sphk
11495038Sphk  V = getUnderlyingObject(V);
11595038Sphk  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
11695038Sphk    // For now, ignore PseudoSourceValues which may alias LLVM IR values
11795038Sphk    // because the code that uses this function has no way to cope with
11895038Sphk    // such aliases.
11995038Sphk    if (PSV->isAliased(MFI))
12092108Sphk      return 0;
12192108Sphk
12292108Sphk    MayAlias = PSV->mayAlias(MFI);
12392108Sphk    return V;
12492108Sphk  }
12592108Sphk
12692108Sphk  if (isIdentifiedObject(V))
12792108Sphk    return V;
12892108Sphk
12992108Sphk  return 0;
13092108Sphk}
13192108Sphk
13292108Sphkvoid ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
13392108Sphk  if (MachineLoop *ML = MLI.getLoopFor(BB))
13492108Sphk    if (BB == ML->getLoopLatch()) {
13592403Sphk      MachineBasicBlock *Header = ML->getHeader();
13692403Sphk      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
13792108Sphk           E = Header->livein_end(); I != E; ++I)
13892108Sphk        LoopLiveInRegs.insert(*I);
13992108Sphk      LoopRegs.VisitLoop(ML);
14092403Sphk    }
14192108Sphk}
14292108Sphk
14392108Sphkvoid ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
14492108Sphk  // We'll be allocating one SUnit for each instruction, plus one for
14592108Sphk  // the region exit node.
14692108Sphk  SUnits.reserve(BB->size());
14792108Sphk
14892108Sphk  // We build scheduling units by walking a block's instruction list from bottom
14992108Sphk  // to top.
15092108Sphk
15192108Sphk  // Remember where a generic side-effecting instruction is as we procede.
15292108Sphk  SUnit *BarrierChain = 0, *AliasChain = 0;
15392108Sphk
15492108Sphk  // Memory references to specific known memory locations are tracked
15592108Sphk  // so that they can be given more precise dependencies. We track
15692108Sphk  // separately the known memory locations that may alias and those
15792403Sphk  // that are known not to alias
15892403Sphk  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
15992108Sphk  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
16092403Sphk
16192403Sphk  // Keep track of dangling debug references to registers.
16292108Sphk  std::pair<MachineInstr*, unsigned>
16392403Sphk        DanglingDebugValue[TargetRegisterInfo::FirstVirtualRegister];
16492403Sphk
16592108Sphk  // Check to see if the scheduler cares about latencies.
16692403Sphk  bool UnitLatencies = ForceUnitLatencies();
16794287Sphk
16894287Sphk  // Ask the target if address-backscheduling is desirable, and if so how much.
16995038Sphk  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
17095038Sphk  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
17192403Sphk
17292403Sphk  // Remove any stale debug info; sometimes BuildSchedGraph is called again
17392403Sphk  // without emitting the info from the previous call.
17492403Sphk  DbgValueVec.clear();
17592403Sphk  std::memset(DanglingDebugValue, 0, sizeof(DanglingDebugValue));
17692403Sphk
17792403Sphk  // Walk the list of instructions, from bottom moving up.
17892403Sphk  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
17992403Sphk       MII != MIE; --MII) {
18092403Sphk    MachineInstr *MI = prior(MII);
18192108Sphk    // DBG_VALUE does not have SUnit's built, so just remember these for later
18292403Sphk    // reinsertion.
18392403Sphk    if (MI->isDebugValue()) {
18492403Sphk      if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
18592403Sphk          MI->getOperand(0).getReg())
18692403Sphk        DanglingDebugValue[MI->getOperand(0).getReg()] =
18792108Sphk             std::make_pair(MI, DbgValueVec.size());
18892108Sphk      DbgValueVec.push_back(MI);
18992403Sphk      continue;
19092108Sphk    }
19192108Sphk    const TargetInstrDesc &TID = MI->getDesc();
19292108Sphk    assert(!TID.isTerminator() && !MI->isLabel() &&
19392108Sphk           "Cannot schedule terminators or labels!");
19492108Sphk    // Create the SUnit for this MI.
19592108Sphk    SUnit *SU = NewSUnit(MI);
19692108Sphk
19792108Sphk    // Assign the Latency field of SU using target-provided information.
19892108Sphk    if (UnitLatencies)
19992108Sphk      SU->Latency = 1;
20092108Sphk    else
20192108Sphk      ComputeLatency(SU);
20293248Sphk
20392108Sphk    // Add register-based dependencies (data, anti, and output).
20492108Sphk    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
20592108Sphk      const MachineOperand &MO = MI->getOperand(j);
20692108Sphk      if (!MO.isReg()) continue;
20793642Sphk      unsigned Reg = MO.getReg();
20892108Sphk      if (Reg == 0) continue;
20992108Sphk
21092108Sphk      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
21192108Sphk
21293248Sphk      if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
21392108Sphk        SU->setDbgInstr(DanglingDebugValue[Reg].first);
21493776Sphk        DbgValueVec[DanglingDebugValue[Reg].second] = 0;
21592108Sphk        DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
21692108Sphk      }
21792108Sphk
21892108Sphk      std::vector<SUnit *> &UseList = Uses[Reg];
21992108Sphk      std::vector<SUnit *> &DefList = Defs[Reg];
22092108Sphk      // Optionally add output and anti dependencies. For anti
22192108Sphk      // dependencies we use a latency of 0 because for a multi-issue
22292108Sphk      // target we want to allow the defining instruction to issue
22392108Sphk      // in the same cycle as the using instruction.
22492108Sphk      // TODO: Using a latency of 1 here for output dependencies assumes
22592108Sphk      //       there's no cost for reusing registers.
22692108Sphk      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
22792108Sphk      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
22892108Sphk      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
22992108Sphk        SUnit *DefSU = DefList[i];
23092108Sphk        if (DefSU != SU &&
23192108Sphk            (Kind != SDep::Output || !MO.isDead() ||
23292108Sphk             !DefSU->getInstr()->registerDefIsDead(Reg)))
23392108Sphk          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
23492108Sphk      }
23592108Sphk      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
23692108Sphk        std::vector<SUnit *> &DefList = Defs[*Alias];
23792108Sphk        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
23892108Sphk          SUnit *DefSU = DefList[i];
23992108Sphk          if (DefSU != SU &&
24092108Sphk              (Kind != SDep::Output || !MO.isDead() ||
24192108Sphk               !DefSU->getInstr()->registerDefIsDead(*Alias)))
24292108Sphk            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
24392108Sphk        }
24492108Sphk      }
24592108Sphk
24692108Sphk      if (MO.isDef()) {
24792108Sphk        // Add any data dependencies.
24892108Sphk        unsigned DataLatency = SU->Latency;
24992108Sphk        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
25092108Sphk          SUnit *UseSU = UseList[i];
25192108Sphk          if (UseSU != SU) {
25292108Sphk            unsigned LDataLatency = DataLatency;
25392108Sphk            // Optionally add in a special extra latency for nodes that
25492108Sphk            // feed addresses.
25592108Sphk            // TODO: Do this for register aliases too.
25692108Sphk            // TODO: Perhaps we should get rid of
25792108Sphk            // SpecialAddressLatency and just move this into
25892108Sphk            // adjustSchedDependency for the targets that care about
25992108Sphk            // it.
260            if (SpecialAddressLatency != 0 && !UnitLatencies) {
261              MachineInstr *UseMI = UseSU->getInstr();
262              const TargetInstrDesc &UseTID = UseMI->getDesc();
263              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
264              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
265              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
266                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
267                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
268                LDataLatency += SpecialAddressLatency;
269            }
270            // Adjust the dependence latency using operand def/use
271            // information (if any), and then allow the target to
272            // perform its own adjustments.
273            const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
274            if (!UnitLatencies) {
275              ComputeOperandLatency(SU, UseSU, (SDep &)dep);
276              ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
277            }
278            UseSU->addPred(dep);
279          }
280        }
281        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
282          std::vector<SUnit *> &UseList = Uses[*Alias];
283          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
284            SUnit *UseSU = UseList[i];
285            if (UseSU != SU) {
286              const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
287              if (!UnitLatencies) {
288                ComputeOperandLatency(SU, UseSU, (SDep &)dep);
289                ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
290              }
291              UseSU->addPred(dep);
292            }
293          }
294        }
295
296        // If a def is going to wrap back around to the top of the loop,
297        // backschedule it.
298        if (!UnitLatencies && DefList.empty()) {
299          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
300          if (I != LoopRegs.Deps.end()) {
301            const MachineOperand *UseMO = I->second.first;
302            unsigned Count = I->second.second;
303            const MachineInstr *UseMI = UseMO->getParent();
304            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
305            const TargetInstrDesc &UseTID = UseMI->getDesc();
306            // TODO: If we knew the total depth of the region here, we could
307            // handle the case where the whole loop is inside the region but
308            // is large enough that the isScheduleHigh trick isn't needed.
309            if (UseMOIdx < UseTID.getNumOperands()) {
310              // Currently, we only support scheduling regions consisting of
311              // single basic blocks. Check to see if the instruction is in
312              // the same region by checking to see if it has the same parent.
313              if (UseMI->getParent() != MI->getParent()) {
314                unsigned Latency = SU->Latency;
315                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
316                  Latency += SpecialAddressLatency;
317                // This is a wild guess as to the portion of the latency which
318                // will be overlapped by work done outside the current
319                // scheduling region.
320                Latency -= std::min(Latency, Count);
321                // Add the artifical edge.
322                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
323                                    /*Reg=*/0, /*isNormalMemory=*/false,
324                                    /*isMustAlias=*/false,
325                                    /*isArtificial=*/true));
326              } else if (SpecialAddressLatency > 0 &&
327                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
328                // The entire loop body is within the current scheduling region
329                // and the latency of this operation is assumed to be greater
330                // than the latency of the loop.
331                // TODO: Recursively mark data-edge predecessors as
332                //       isScheduleHigh too.
333                SU->isScheduleHigh = true;
334              }
335            }
336            LoopRegs.Deps.erase(I);
337          }
338        }
339
340        UseList.clear();
341        if (!MO.isDead())
342          DefList.clear();
343        DefList.push_back(SU);
344      } else {
345        UseList.push_back(SU);
346      }
347    }
348
349    // Add chain dependencies.
350    // Chain dependencies used to enforce memory order should have
351    // latency of 0 (except for true dependency of Store followed by
352    // aliased Load... we estimate that with a single cycle of latency
353    // assuming the hardware will bypass)
354    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
355    // after stack slots are lowered to actual addresses.
356    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
357    // produce more precise dependence information.
358#define STORE_LOAD_LATENCY 1
359    unsigned TrueMemOrderLatency = 0;
360    if (TID.isCall() || TID.hasUnmodeledSideEffects() ||
361        (MI->hasVolatileMemoryRef() &&
362         (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
363      // Be conservative with these and add dependencies on all memory
364      // references, even those that are known to not alias.
365      for (std::map<const Value *, SUnit *>::iterator I =
366             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
367        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
368      }
369      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
370             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
371        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
372          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
373      }
374      NonAliasMemDefs.clear();
375      NonAliasMemUses.clear();
376      // Add SU to the barrier chain.
377      if (BarrierChain)
378        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
379      BarrierChain = SU;
380
381      // fall-through
382    new_alias_chain:
383      // Chain all possibly aliasing memory references though SU.
384      if (AliasChain)
385        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
386      AliasChain = SU;
387      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
388        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
389      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
390           E = AliasMemDefs.end(); I != E; ++I) {
391        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
392      }
393      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
394           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
395        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
396          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
397      }
398      PendingLoads.clear();
399      AliasMemDefs.clear();
400      AliasMemUses.clear();
401    } else if (TID.mayStore()) {
402      bool MayAlias = true;
403      TrueMemOrderLatency = STORE_LOAD_LATENCY;
404      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
405        // A store to a specific PseudoSourceValue. Add precise dependencies.
406        // Record the def in MemDefs, first adding a dep if there is
407        // an existing def.
408        std::map<const Value *, SUnit *>::iterator I =
409          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
410        std::map<const Value *, SUnit *>::iterator IE =
411          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
412        if (I != IE) {
413          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
414                                  /*isNormalMemory=*/true));
415          I->second = SU;
416        } else {
417          if (MayAlias)
418            AliasMemDefs[V] = SU;
419          else
420            NonAliasMemDefs[V] = SU;
421        }
422        // Handle the uses in MemUses, if there are any.
423        std::map<const Value *, std::vector<SUnit *> >::iterator J =
424          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
425        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
426          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
427        if (J != JE) {
428          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
429            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
430                                       /*Reg=*/0, /*isNormalMemory=*/true));
431          J->second.clear();
432        }
433        if (MayAlias) {
434          // Add dependencies from all the PendingLoads, i.e. loads
435          // with no underlying object.
436          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
437            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
438          // Add dependence on alias chain, if needed.
439          if (AliasChain)
440            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
441        }
442        // Add dependence on barrier chain, if needed.
443        if (BarrierChain)
444          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
445      } else {
446        // Treat all other stores conservatively.
447        goto new_alias_chain;
448      }
449    } else if (TID.mayLoad()) {
450      bool MayAlias = true;
451      TrueMemOrderLatency = 0;
452      if (MI->isInvariantLoad(AA)) {
453        // Invariant load, no chain dependencies needed!
454      } else {
455        if (const Value *V =
456            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
457          // A load from a specific PseudoSourceValue. Add precise dependencies.
458          std::map<const Value *, SUnit *>::iterator I =
459            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
460          std::map<const Value *, SUnit *>::iterator IE =
461            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
462          if (I != IE)
463            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
464                                    /*isNormalMemory=*/true));
465          if (MayAlias)
466            AliasMemUses[V].push_back(SU);
467          else
468            NonAliasMemUses[V].push_back(SU);
469        } else {
470          // A load with no underlying object. Depend on all
471          // potentially aliasing stores.
472          for (std::map<const Value *, SUnit *>::iterator I =
473                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
474            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
475
476          PendingLoads.push_back(SU);
477          MayAlias = true;
478        }
479
480        // Add dependencies on alias and barrier chains, if needed.
481        if (MayAlias && AliasChain)
482          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
483        if (BarrierChain)
484          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
485      }
486    }
487  }
488
489  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
490    Defs[i].clear();
491    Uses[i].clear();
492  }
493  PendingLoads.clear();
494}
495
496void ScheduleDAGInstrs::FinishBlock() {
497  // Nothing to do.
498}
499
500void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
501  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
502
503  // Compute the latency for the node.
504  SU->Latency =
505    InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
506
507  // Simplistic target-independent heuristic: assume that loads take
508  // extra time.
509  if (InstrItins.isEmpty())
510    if (SU->getInstr()->getDesc().mayLoad())
511      SU->Latency += 2;
512}
513
514void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
515                                              SDep& dep) const {
516  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
517  if (InstrItins.isEmpty())
518    return;
519
520  // For a data dependency with a known register...
521  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
522    return;
523
524  const unsigned Reg = dep.getReg();
525
526  // ... find the definition of the register in the defining
527  // instruction
528  MachineInstr *DefMI = Def->getInstr();
529  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
530  if (DefIdx != -1) {
531    int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
532    if (DefCycle >= 0) {
533      MachineInstr *UseMI = Use->getInstr();
534      const unsigned UseClass = UseMI->getDesc().getSchedClass();
535
536      // For all uses of the register, calculate the maxmimum latency
537      int Latency = -1;
538      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
539        const MachineOperand &MO = UseMI->getOperand(i);
540        if (!MO.isReg() || !MO.isUse())
541          continue;
542        unsigned MOReg = MO.getReg();
543        if (MOReg != Reg)
544          continue;
545
546        int UseCycle = InstrItins.getOperandCycle(UseClass, i);
547        if (UseCycle >= 0)
548          Latency = std::max(Latency, DefCycle - UseCycle + 1);
549      }
550
551      // If we found a latency, then replace the existing dependence latency.
552      if (Latency >= 0)
553        dep.setLatency(Latency);
554    }
555  }
556}
557
558void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
559  SU->getInstr()->dump();
560}
561
562std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
563  std::string s;
564  raw_string_ostream oss(s);
565  if (SU == &EntrySU)
566    oss << "<entry>";
567  else if (SU == &ExitSU)
568    oss << "<exit>";
569  else
570    SU->getInstr()->print(oss);
571  return oss.str();
572}
573
574// EmitSchedule - Emit the machine code in scheduled order.
575MachineBasicBlock *ScheduleDAGInstrs::
576EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
577  // For MachineInstr-based scheduling, we're rescheduling the instructions in
578  // the block, so start by removing them from the block.
579  while (Begin != InsertPos) {
580    MachineBasicBlock::iterator I = Begin;
581    ++Begin;
582    BB->remove(I);
583  }
584
585  // First reinsert any remaining debug_values; these are either constants,
586  // or refer to live-in registers.  The beginning of the block is the right
587  // place for the latter.  The former might reasonably be placed elsewhere
588  // using some kind of ordering algorithm, but right now it doesn't matter.
589  for (int i = DbgValueVec.size()-1; i>=0; --i)
590    if (DbgValueVec[i])
591      BB->insert(InsertPos, DbgValueVec[i]);
592
593  // Then re-insert them according to the given schedule.
594  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
595    SUnit *SU = Sequence[i];
596    if (!SU) {
597      // Null SUnit* is a noop.
598      EmitNoop();
599      continue;
600    }
601
602    BB->insert(InsertPos, SU->getInstr());
603    if (SU->getDbgInstr())
604      BB->insert(InsertPos, SU->getDbgInstr());
605  }
606
607  // Update the Begin iterator, as the first instruction in the block
608  // may have been scheduled later.
609  if (!DbgValueVec.empty()) {
610    for (int i = DbgValueVec.size()-1; i>=0; --i)
611      if (DbgValueVec[i]!=0) {
612        Begin = DbgValueVec[DbgValueVec.size()-1];
613        break;
614      }
615  } else if (!Sequence.empty())
616    Begin = Sequence[0]->getInstr();
617
618  DbgValueVec.clear();
619  return BB;
620}
621