ScheduleDAGInstrs.cpp revision 296417
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/ScheduleDAGInstrs.h"
16#include "llvm/ADT/IntEqClasses.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineMemOperand.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/RegisterPressure.h"
29#include "llvm/CodeGen/ScheduleDFS.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39#include <queue>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "misched"
44
45static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
46    cl::ZeroOrMore, cl::init(false),
47    cl::desc("Enable use of AA during MI DAG construction"));
48
49static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
50    cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
51
52ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
53                                     const MachineLoopInfo *mli,
54                                     bool RemoveKillFlags)
55    : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
56      RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
57      TrackLaneMasks(false), FirstDbgValue(nullptr) {
58  DbgValues.clear();
59
60  const TargetSubtargetInfo &ST = mf.getSubtarget();
61  SchedModel.init(ST.getSchedModel(), &ST, TII);
62}
63
64/// getUnderlyingObjectFromInt - This is the function that does the work of
65/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
66static const Value *getUnderlyingObjectFromInt(const Value *V) {
67  do {
68    if (const Operator *U = dyn_cast<Operator>(V)) {
69      // If we find a ptrtoint, we can transfer control back to the
70      // regular getUnderlyingObjectFromInt.
71      if (U->getOpcode() == Instruction::PtrToInt)
72        return U->getOperand(0);
73      // If we find an add of a constant, a multiplied value, or a phi, it's
74      // likely that the other operand will lead us to the base
75      // object. We don't have to worry about the case where the
76      // object address is somehow being computed by the multiply,
77      // because our callers only care when the result is an
78      // identifiable object.
79      if (U->getOpcode() != Instruction::Add ||
80          (!isa<ConstantInt>(U->getOperand(1)) &&
81           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
82           !isa<PHINode>(U->getOperand(1))))
83        return V;
84      V = U->getOperand(0);
85    } else {
86      return V;
87    }
88    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
89  } while (1);
90}
91
92/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
93/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
94static void getUnderlyingObjects(const Value *V,
95                                 SmallVectorImpl<Value *> &Objects,
96                                 const DataLayout &DL) {
97  SmallPtrSet<const Value *, 16> Visited;
98  SmallVector<const Value *, 4> Working(1, V);
99  do {
100    V = Working.pop_back_val();
101
102    SmallVector<Value *, 4> Objs;
103    GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
104
105    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
106         I != IE; ++I) {
107      V = *I;
108      if (!Visited.insert(V).second)
109        continue;
110      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
111        const Value *O =
112          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
113        if (O->getType()->isPointerTy()) {
114          Working.push_back(O);
115          continue;
116        }
117      }
118      Objects.push_back(const_cast<Value *>(V));
119    }
120  } while (!Working.empty());
121}
122
123typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
124typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
125UnderlyingObjectsVector;
126
127/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
128/// information and it can be tracked to a normal reference to a known
129/// object, return the Value for that object.
130static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
131                                         const MachineFrameInfo *MFI,
132                                         UnderlyingObjectsVector &Objects,
133                                         const DataLayout &DL) {
134  if (!MI->hasOneMemOperand() ||
135      (!(*MI->memoperands_begin())->getValue() &&
136       !(*MI->memoperands_begin())->getPseudoValue()) ||
137      (*MI->memoperands_begin())->isVolatile())
138    return;
139
140  if (const PseudoSourceValue *PSV =
141      (*MI->memoperands_begin())->getPseudoValue()) {
142    // Function that contain tail calls don't have unique PseudoSourceValue
143    // objects. Two PseudoSourceValues might refer to the same or overlapping
144    // locations. The client code calling this function assumes this is not the
145    // case. So return a conservative answer of no known object.
146    if (MFI->hasTailCall())
147      return;
148
149    // For now, ignore PseudoSourceValues which may alias LLVM IR values
150    // because the code that uses this function has no way to cope with
151    // such aliases.
152    if (!PSV->isAliased(MFI)) {
153      bool MayAlias = PSV->mayAlias(MFI);
154      Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
155    }
156    return;
157  }
158
159  const Value *V = (*MI->memoperands_begin())->getValue();
160  if (!V)
161    return;
162
163  SmallVector<Value *, 4> Objs;
164  getUnderlyingObjects(V, Objs, DL);
165
166  for (Value *V : Objs) {
167    if (!isIdentifiedObject(V)) {
168      Objects.clear();
169      return;
170    }
171
172    Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
173  }
174}
175
176void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
177  BB = bb;
178}
179
180void ScheduleDAGInstrs::finishBlock() {
181  // Subclasses should no longer refer to the old block.
182  BB = nullptr;
183}
184
185/// Initialize the DAG and common scheduler state for the current scheduling
186/// region. This does not actually create the DAG, only clears it. The
187/// scheduling driver may call BuildSchedGraph multiple times per scheduling
188/// region.
189void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190                                    MachineBasicBlock::iterator begin,
191                                    MachineBasicBlock::iterator end,
192                                    unsigned regioninstrs) {
193  assert(bb == BB && "startBlock should set BB");
194  RegionBegin = begin;
195  RegionEnd = end;
196  NumRegionInstrs = regioninstrs;
197}
198
199/// Close the current scheduling region. Don't clear any state in case the
200/// driver wants to refer to the previous scheduling region.
201void ScheduleDAGInstrs::exitRegion() {
202  // Nothing to do.
203}
204
205/// addSchedBarrierDeps - Add dependencies from instructions in the current
206/// list of instructions being scheduled to scheduling barrier by adding
207/// the exit SU to the register defs and use list. This is because we want to
208/// make sure instructions which define registers that are either used by
209/// the terminator or are live-out are properly scheduled. This is
210/// especially important when the definition latency of the return value(s)
211/// are too high to be hidden by the branch or when the liveout registers
212/// used by instructions in the fallthrough block.
213void ScheduleDAGInstrs::addSchedBarrierDeps() {
214  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
215  ExitSU.setInstr(ExitMI);
216  bool AllDepKnown = ExitMI &&
217    (ExitMI->isCall() || ExitMI->isBarrier());
218  if (ExitMI && AllDepKnown) {
219    // If it's a call or a barrier, add dependencies on the defs and uses of
220    // instruction.
221    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
222      const MachineOperand &MO = ExitMI->getOperand(i);
223      if (!MO.isReg() || MO.isDef()) continue;
224      unsigned Reg = MO.getReg();
225      if (Reg == 0) continue;
226
227      if (TRI->isPhysicalRegister(Reg))
228        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
229      else if (MO.readsReg()) // ignore undef operands
230        addVRegUseDeps(&ExitSU, i);
231    }
232  } else {
233    // For others, e.g. fallthrough, conditional branch, assume the exit
234    // uses all the registers that are livein to the successor blocks.
235    assert(Uses.empty() && "Uses in set before adding deps?");
236    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
237           SE = BB->succ_end(); SI != SE; ++SI)
238      for (const auto &LI : (*SI)->liveins()) {
239        if (!Uses.contains(LI.PhysReg))
240          Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
241      }
242  }
243}
244
245/// MO is an operand of SU's instruction that defines a physical register. Add
246/// data dependencies from SU to any uses of the physical register.
247void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
248  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
249  assert(MO.isDef() && "expect physreg def");
250
251  // Ask the target if address-backscheduling is desirable, and if so how much.
252  const TargetSubtargetInfo &ST = MF.getSubtarget();
253
254  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
255       Alias.isValid(); ++Alias) {
256    if (!Uses.contains(*Alias))
257      continue;
258    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
259      SUnit *UseSU = I->SU;
260      if (UseSU == SU)
261        continue;
262
263      // Adjust the dependence latency using operand def/use information,
264      // then allow the target to perform its own adjustments.
265      int UseOp = I->OpIdx;
266      MachineInstr *RegUse = nullptr;
267      SDep Dep;
268      if (UseOp < 0)
269        Dep = SDep(SU, SDep::Artificial);
270      else {
271        // Set the hasPhysRegDefs only for physreg defs that have a use within
272        // the scheduling region.
273        SU->hasPhysRegDefs = true;
274        Dep = SDep(SU, SDep::Data, *Alias);
275        RegUse = UseSU->getInstr();
276      }
277      Dep.setLatency(
278        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
279                                         UseOp));
280
281      ST.adjustSchedDependency(SU, UseSU, Dep);
282      UseSU->addPred(Dep);
283    }
284  }
285}
286
287/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
288/// this SUnit to following instructions in the same scheduling region that
289/// depend the physical register referenced at OperIdx.
290void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
291  MachineInstr *MI = SU->getInstr();
292  MachineOperand &MO = MI->getOperand(OperIdx);
293
294  // Optionally add output and anti dependencies. For anti
295  // dependencies we use a latency of 0 because for a multi-issue
296  // target we want to allow the defining instruction to issue
297  // in the same cycle as the using instruction.
298  // TODO: Using a latency of 1 here for output dependencies assumes
299  //       there's no cost for reusing registers.
300  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
301  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
302       Alias.isValid(); ++Alias) {
303    if (!Defs.contains(*Alias))
304      continue;
305    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
306      SUnit *DefSU = I->SU;
307      if (DefSU == &ExitSU)
308        continue;
309      if (DefSU != SU &&
310          (Kind != SDep::Output || !MO.isDead() ||
311           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
312        if (Kind == SDep::Anti)
313          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
314        else {
315          SDep Dep(SU, Kind, /*Reg=*/*Alias);
316          Dep.setLatency(
317            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
318          DefSU->addPred(Dep);
319        }
320      }
321    }
322  }
323
324  if (!MO.isDef()) {
325    SU->hasPhysRegUses = true;
326    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
327    // retrieve the existing SUnits list for this register's uses.
328    // Push this SUnit on the use list.
329    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
330    if (RemoveKillFlags)
331      MO.setIsKill(false);
332  }
333  else {
334    addPhysRegDataDeps(SU, OperIdx);
335    unsigned Reg = MO.getReg();
336
337    // clear this register's use list
338    if (Uses.contains(Reg))
339      Uses.eraseAll(Reg);
340
341    if (!MO.isDead()) {
342      Defs.eraseAll(Reg);
343    } else if (SU->isCall) {
344      // Calls will not be reordered because of chain dependencies (see
345      // below). Since call operands are dead, calls may continue to be added
346      // to the DefList making dependence checking quadratic in the size of
347      // the block. Instead, we leave only one call at the back of the
348      // DefList.
349      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
350      Reg2SUnitsMap::iterator B = P.first;
351      Reg2SUnitsMap::iterator I = P.second;
352      for (bool isBegin = I == B; !isBegin; /* empty */) {
353        isBegin = (--I) == B;
354        if (!I->SU->isCall)
355          break;
356        I = Defs.erase(I);
357      }
358    }
359
360    // Defs are pushed in the order they are visited and never reordered.
361    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
362  }
363}
364
365LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
366{
367  unsigned Reg = MO.getReg();
368  // No point in tracking lanemasks if we don't have interesting subregisters.
369  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
370  if (!RC.HasDisjunctSubRegs)
371    return ~0u;
372
373  unsigned SubReg = MO.getSubReg();
374  if (SubReg == 0)
375    return RC.getLaneMask();
376  return TRI->getSubRegIndexLaneMask(SubReg);
377}
378
379/// addVRegDefDeps - Add register output and data dependencies from this SUnit
380/// to instructions that occur later in the same scheduling region if they read
381/// from or write to the virtual register defined at OperIdx.
382///
383/// TODO: Hoist loop induction variable increments. This has to be
384/// reevaluated. Generally, IV scheduling should be done before coalescing.
385void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
386  MachineInstr *MI = SU->getInstr();
387  MachineOperand &MO = MI->getOperand(OperIdx);
388  unsigned Reg = MO.getReg();
389
390  LaneBitmask DefLaneMask;
391  LaneBitmask KillLaneMask;
392  if (TrackLaneMasks) {
393    bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
394    DefLaneMask = getLaneMaskForMO(MO);
395    // If we have a <read-undef> flag, none of the lane values comes from an
396    // earlier instruction.
397    KillLaneMask = IsKill ? ~0u : DefLaneMask;
398
399    // Clear undef flag, we'll re-add it later once we know which subregister
400    // Def is first.
401    MO.setIsUndef(false);
402  } else {
403    DefLaneMask = ~0u;
404    KillLaneMask = ~0u;
405  }
406
407  if (MO.isDead()) {
408    assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
409           "Dead defs should have no uses");
410  } else {
411    // Add data dependence to all uses we found so far.
412    const TargetSubtargetInfo &ST = MF.getSubtarget();
413    for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
414         E = CurrentVRegUses.end(); I != E; /*empty*/) {
415      LaneBitmask LaneMask = I->LaneMask;
416      // Ignore uses of other lanes.
417      if ((LaneMask & KillLaneMask) == 0) {
418        ++I;
419        continue;
420      }
421
422      if ((LaneMask & DefLaneMask) != 0) {
423        SUnit *UseSU = I->SU;
424        MachineInstr *Use = UseSU->getInstr();
425        SDep Dep(SU, SDep::Data, Reg);
426        Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
427                                                        I->OperandIndex));
428        ST.adjustSchedDependency(SU, UseSU, Dep);
429        UseSU->addPred(Dep);
430      }
431
432      LaneMask &= ~KillLaneMask;
433      // If we found a Def for all lanes of this use, remove it from the list.
434      if (LaneMask != 0) {
435        I->LaneMask = LaneMask;
436        ++I;
437      } else
438        I = CurrentVRegUses.erase(I);
439    }
440  }
441
442  // Shortcut: Singly defined vregs do not have output/anti dependencies.
443  if (MRI.hasOneDef(Reg))
444    return;
445
446  // Add output dependence to the next nearest defs of this vreg.
447  //
448  // Unless this definition is dead, the output dependence should be
449  // transitively redundant with antidependencies from this definition's
450  // uses. We're conservative for now until we have a way to guarantee the uses
451  // are not eliminated sometime during scheduling. The output dependence edge
452  // is also useful if output latency exceeds def-use latency.
453  LaneBitmask LaneMask = DefLaneMask;
454  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
455                                     CurrentVRegDefs.end())) {
456    // Ignore defs for other lanes.
457    if ((V2SU.LaneMask & LaneMask) == 0)
458      continue;
459    // Add an output dependence.
460    SUnit *DefSU = V2SU.SU;
461    // Ignore additional defs of the same lanes in one instruction. This can
462    // happen because lanemasks are shared for targets with too many
463    // subregisters. We also use some representration tricks/hacks where we
464    // add super-register defs/uses, to imply that although we only access parts
465    // of the reg we care about the full one.
466    if (DefSU == SU)
467      continue;
468    SDep Dep(SU, SDep::Output, Reg);
469    Dep.setLatency(
470      SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
471    DefSU->addPred(Dep);
472
473    // Update current definition. This can get tricky if the def was about a
474    // bigger lanemask before. We then have to shrink it and create a new
475    // VReg2SUnit for the non-overlapping part.
476    LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
477    LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
478    if (NonOverlapMask != 0)
479      CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU));
480    V2SU.SU = SU;
481    V2SU.LaneMask = OverlapMask;
482  }
483  // If there was no CurrentVRegDefs entry for some lanes yet, create one.
484  if (LaneMask != 0)
485    CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
486}
487
488/// addVRegUseDeps - Add a register data dependency if the instruction that
489/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
490/// register antidependency from this SUnit to instructions that occur later in
491/// the same scheduling region if they write the virtual register.
492///
493/// TODO: Handle ExitSU "uses" properly.
494void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
495  const MachineInstr *MI = SU->getInstr();
496  const MachineOperand &MO = MI->getOperand(OperIdx);
497  unsigned Reg = MO.getReg();
498
499  // Remember the use. Data dependencies will be added when we find the def.
500  LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
501  CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
502
503  // Add antidependences to the following defs of the vreg.
504  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
505                                     CurrentVRegDefs.end())) {
506    // Ignore defs for unrelated lanes.
507    LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
508    if ((PrevDefLaneMask & LaneMask) == 0)
509      continue;
510    if (V2SU.SU == SU)
511      continue;
512
513    V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
514  }
515}
516
517/// Return true if MI is an instruction we are unable to reason about
518/// (like a call or something with unmodeled side effects).
519static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
520  return MI->isCall() || MI->hasUnmodeledSideEffects() ||
521         (MI->hasOrderedMemoryRef() &&
522          (!MI->mayLoad() || !MI->isInvariantLoad(AA)));
523}
524
525// This MI might have either incomplete info, or known to be unsafe
526// to deal with (i.e. volatile object).
527static inline bool isUnsafeMemoryObject(MachineInstr *MI,
528                                        const MachineFrameInfo *MFI,
529                                        const DataLayout &DL) {
530  if (!MI || MI->memoperands_empty())
531    return true;
532  // We purposefully do no check for hasOneMemOperand() here
533  // in hope to trigger an assert downstream in order to
534  // finish implementation.
535  if ((*MI->memoperands_begin())->isVolatile() ||
536       MI->hasUnmodeledSideEffects())
537    return true;
538
539  if ((*MI->memoperands_begin())->getPseudoValue()) {
540    // Similarly to getUnderlyingObjectForInstr:
541    // For now, ignore PseudoSourceValues which may alias LLVM IR values
542    // because the code that uses this function has no way to cope with
543    // such aliases.
544    return true;
545  }
546
547  const Value *V = (*MI->memoperands_begin())->getValue();
548  if (!V)
549    return true;
550
551  SmallVector<Value *, 4> Objs;
552  getUnderlyingObjects(V, Objs, DL);
553  for (Value *V : Objs) {
554    // Does this pointer refer to a distinct and identifiable object?
555    if (!isIdentifiedObject(V))
556      return true;
557  }
558
559  return false;
560}
561
562/// This returns true if the two MIs need a chain edge between them.
563/// If these are not even memory operations, we still may need
564/// chain deps between them. The question really is - could
565/// these two MIs be reordered during scheduling from memory dependency
566/// point of view.
567static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
568                             const DataLayout &DL, MachineInstr *MIa,
569                             MachineInstr *MIb) {
570  const MachineFunction *MF = MIa->getParent()->getParent();
571  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
572
573  // Cover a trivial case - no edge is need to itself.
574  if (MIa == MIb)
575    return false;
576
577  // Let the target decide if memory accesses cannot possibly overlap.
578  if ((MIa->mayLoad() || MIa->mayStore()) &&
579      (MIb->mayLoad() || MIb->mayStore()))
580    if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
581      return false;
582
583  // FIXME: Need to handle multiple memory operands to support all targets.
584  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
585    return true;
586
587  if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL))
588    return true;
589
590  // If we are dealing with two "normal" loads, we do not need an edge
591  // between them - they could be reordered.
592  if (!MIa->mayStore() && !MIb->mayStore())
593    return false;
594
595  // To this point analysis is generic. From here on we do need AA.
596  if (!AA)
597    return true;
598
599  MachineMemOperand *MMOa = *MIa->memoperands_begin();
600  MachineMemOperand *MMOb = *MIb->memoperands_begin();
601
602  if (!MMOa->getValue() || !MMOb->getValue())
603    return true;
604
605  // The following interface to AA is fashioned after DAGCombiner::isAlias
606  // and operates with MachineMemOperand offset with some important
607  // assumptions:
608  //   - LLVM fundamentally assumes flat address spaces.
609  //   - MachineOperand offset can *only* result from legalization and
610  //     cannot affect queries other than the trivial case of overlap
611  //     checking.
612  //   - These offsets never wrap and never step outside
613  //     of allocated objects.
614  //   - There should never be any negative offsets here.
615  //
616  // FIXME: Modify API to hide this math from "user"
617  // FIXME: Even before we go to AA we can reason locally about some
618  // memory objects. It can save compile time, and possibly catch some
619  // corner cases not currently covered.
620
621  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
622  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
623
624  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
625  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
626  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
627
628  AliasResult AAResult =
629      AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
630                               UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
631                MemoryLocation(MMOb->getValue(), Overlapb,
632                               UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
633
634  return (AAResult != NoAlias);
635}
636
637/// This recursive function iterates over chain deps of SUb looking for
638/// "latest" node that needs a chain edge to SUa.
639static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
640                                 const DataLayout &DL, SUnit *SUa, SUnit *SUb,
641                                 SUnit *ExitSU, unsigned *Depth,
642                                 SmallPtrSetImpl<const SUnit *> &Visited) {
643  if (!SUa || !SUb || SUb == ExitSU)
644    return *Depth;
645
646  // Remember visited nodes.
647  if (!Visited.insert(SUb).second)
648      return *Depth;
649  // If there is _some_ dependency already in place, do not
650  // descend any further.
651  // TODO: Need to make sure that if that dependency got eliminated or ignored
652  // for any reason in the future, we would not violate DAG topology.
653  // Currently it does not happen, but makes an implicit assumption about
654  // future implementation.
655  //
656  // Independently, if we encounter node that is some sort of global
657  // object (like a call) we already have full set of dependencies to it
658  // and we can stop descending.
659  if (SUa->isSucc(SUb) ||
660      isGlobalMemoryObject(AA, SUb->getInstr()))
661    return *Depth;
662
663  // If we do need an edge, or we have exceeded depth budget,
664  // add that edge to the predecessors chain of SUb,
665  // and stop descending.
666  if (*Depth > 200 ||
667      MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
668    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
669    return *Depth;
670  }
671  // Track current depth.
672  (*Depth)++;
673  // Iterate over memory dependencies only.
674  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
675       I != E; ++I)
676    if (I->isNormalMemoryOrBarrier())
677      iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited);
678  return *Depth;
679}
680
681/// This function assumes that "downward" from SU there exist
682/// tail/leaf of already constructed DAG. It iterates downward and
683/// checks whether SU can be aliasing any node dominated
684/// by it.
685static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
686                            const DataLayout &DL, SUnit *SU, SUnit *ExitSU,
687                            std::set<SUnit *> &CheckList,
688                            unsigned LatencyToLoad) {
689  if (!SU)
690    return;
691
692  SmallPtrSet<const SUnit*, 16> Visited;
693  unsigned Depth = 0;
694
695  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
696       I != IE; ++I) {
697    if (SU == *I)
698      continue;
699    if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) {
700      SDep Dep(SU, SDep::MayAliasMem);
701      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
702      (*I)->addPred(Dep);
703    }
704
705    // Iterate recursively over all previously added memory chain
706    // successors. Keep track of visited nodes.
707    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
708         JE = (*I)->Succs.end(); J != JE; ++J)
709      if (J->isNormalMemoryOrBarrier())
710        iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth,
711                         Visited);
712  }
713}
714
715/// Check whether two objects need a chain edge, if so, add it
716/// otherwise remember the rejected SU.
717static inline void addChainDependency(AliasAnalysis *AA,
718                                      const MachineFrameInfo *MFI,
719                                      const DataLayout &DL, SUnit *SUa,
720                                      SUnit *SUb, std::set<SUnit *> &RejectList,
721                                      unsigned TrueMemOrderLatency = 0,
722                                      bool isNormalMemory = false) {
723  // If this is a false dependency,
724  // do not add the edge, but remember the rejected node.
725  if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
726    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
727    Dep.setLatency(TrueMemOrderLatency);
728    SUb->addPred(Dep);
729  }
730  else {
731    // Duplicate entries should be ignored.
732    RejectList.insert(SUb);
733    DEBUG(dbgs() << "\tReject chain dep between SU("
734          << SUa->NodeNum << ") and SU("
735          << SUb->NodeNum << ")\n");
736  }
737}
738
739/// Create an SUnit for each real instruction, numbered in top-down topological
740/// order. The instruction order A < B, implies that no edge exists from B to A.
741///
742/// Map each real instruction to its SUnit.
743///
744/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
745/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
746/// instead of pointers.
747///
748/// MachineScheduler relies on initSUnits numbering the nodes by their order in
749/// the original instruction list.
750void ScheduleDAGInstrs::initSUnits() {
751  // We'll be allocating one SUnit for each real instruction in the region,
752  // which is contained within a basic block.
753  SUnits.reserve(NumRegionInstrs);
754
755  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
756    MachineInstr *MI = I;
757    if (MI->isDebugValue())
758      continue;
759
760    SUnit *SU = newSUnit(MI);
761    MISUnitMap[MI] = SU;
762
763    SU->isCall = MI->isCall();
764    SU->isCommutable = MI->isCommutable();
765
766    // Assign the Latency field of SU using target-provided information.
767    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
768
769    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
770    //
771    // Reserved resources block an instruction from issuing and stall the
772    // entire pipeline. These are identified by BufferSize=0.
773    //
774    // Unbuffered resources prevent execution of subsequent instructions that
775    // require the same resources. This is used for in-order execution pipelines
776    // within an out-of-order core. These are identified by BufferSize=1.
777    if (SchedModel.hasInstrSchedModel()) {
778      const MCSchedClassDesc *SC = getSchedClass(SU);
779      for (TargetSchedModel::ProcResIter
780             PI = SchedModel.getWriteProcResBegin(SC),
781             PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
782        switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
783        case 0:
784          SU->hasReservedResource = true;
785          break;
786        case 1:
787          SU->isUnbuffered = true;
788          break;
789        default:
790          break;
791        }
792      }
793    }
794  }
795}
796
797void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
798  const MachineInstr *MI = SU->getInstr();
799  for (const MachineOperand &MO : MI->operands()) {
800    if (!MO.isReg())
801      continue;
802    if (!MO.readsReg())
803      continue;
804    if (TrackLaneMasks && !MO.isUse())
805      continue;
806
807    unsigned Reg = MO.getReg();
808    if (!TargetRegisterInfo::isVirtualRegister(Reg))
809      continue;
810
811    // Record this local VReg use.
812    VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
813    for (; UI != VRegUses.end(); ++UI) {
814      if (UI->SU == SU)
815        break;
816    }
817    if (UI == VRegUses.end())
818      VRegUses.insert(VReg2SUnit(Reg, 0, SU));
819  }
820}
821
822/// If RegPressure is non-null, compute register pressure as a side effect. The
823/// DAG builder is an efficient place to do it because it already visits
824/// operands.
825void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
826                                        RegPressureTracker *RPTracker,
827                                        PressureDiffs *PDiffs,
828                                        bool TrackLaneMasks) {
829  const TargetSubtargetInfo &ST = MF.getSubtarget();
830  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
831                                                       : ST.useAA();
832  AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
833
834  this->TrackLaneMasks = TrackLaneMasks;
835  MISUnitMap.clear();
836  ScheduleDAG::clearDAG();
837
838  // Create an SUnit for each real instruction.
839  initSUnits();
840
841  if (PDiffs)
842    PDiffs->init(SUnits.size());
843
844  // We build scheduling units by walking a block's instruction list from bottom
845  // to top.
846
847  // Remember where a generic side-effecting instruction is as we proceed.
848  SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
849
850  // Memory references to specific known memory locations are tracked
851  // so that they can be given more precise dependencies. We track
852  // separately the known memory locations that may alias and those
853  // that are known not to alias
854  MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
855  MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
856  std::set<SUnit*> RejectMemNodes;
857
858  // Remove any stale debug info; sometimes BuildSchedGraph is called again
859  // without emitting the info from the previous call.
860  DbgValues.clear();
861  FirstDbgValue = nullptr;
862
863  assert(Defs.empty() && Uses.empty() &&
864         "Only BuildGraph should update Defs/Uses");
865  Defs.setUniverse(TRI->getNumRegs());
866  Uses.setUniverse(TRI->getNumRegs());
867
868  assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
869  assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
870  unsigned NumVirtRegs = MRI.getNumVirtRegs();
871  CurrentVRegDefs.setUniverse(NumVirtRegs);
872  CurrentVRegUses.setUniverse(NumVirtRegs);
873
874  VRegUses.clear();
875  VRegUses.setUniverse(NumVirtRegs);
876
877  // Model data dependencies between instructions being scheduled and the
878  // ExitSU.
879  addSchedBarrierDeps();
880
881  // Walk the list of instructions, from bottom moving up.
882  MachineInstr *DbgMI = nullptr;
883  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
884       MII != MIE; --MII) {
885    MachineInstr *MI = std::prev(MII);
886    if (MI && DbgMI) {
887      DbgValues.push_back(std::make_pair(DbgMI, MI));
888      DbgMI = nullptr;
889    }
890
891    if (MI->isDebugValue()) {
892      DbgMI = MI;
893      continue;
894    }
895    SUnit *SU = MISUnitMap[MI];
896    assert(SU && "No SUnit mapped to this MI");
897
898    if (RPTracker) {
899      collectVRegUses(SU);
900
901      RegisterOperands RegOpers;
902      RegOpers.collect(*MI, *TRI, MRI);
903      if (PDiffs != nullptr)
904        PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
905
906      RPTracker->recedeSkipDebugValues();
907      assert(&*RPTracker->getPos() == MI && "RPTracker in sync");
908      RPTracker->recede(RegOpers);
909    }
910
911    assert(
912        (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
913        "Cannot schedule terminators or labels!");
914
915    // Add register-based dependencies (data, anti, and output).
916    bool HasVRegDef = false;
917    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
918      const MachineOperand &MO = MI->getOperand(j);
919      if (!MO.isReg()) continue;
920      unsigned Reg = MO.getReg();
921      if (Reg == 0) continue;
922
923      if (TRI->isPhysicalRegister(Reg))
924        addPhysRegDeps(SU, j);
925      else {
926        if (MO.isDef()) {
927          HasVRegDef = true;
928          addVRegDefDeps(SU, j);
929        }
930        else if (MO.readsReg()) // ignore undef operands
931          addVRegUseDeps(SU, j);
932      }
933    }
934    // If we haven't seen any uses in this scheduling region, create a
935    // dependence edge to ExitSU to model the live-out latency. This is required
936    // for vreg defs with no in-region use, and prefetches with no vreg def.
937    //
938    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
939    // check currently relies on being called before adding chain deps.
940    if (SU->NumSuccs == 0 && SU->Latency > 1
941        && (HasVRegDef || MI->mayLoad())) {
942      SDep Dep(SU, SDep::Artificial);
943      Dep.setLatency(SU->Latency - 1);
944      ExitSU.addPred(Dep);
945    }
946
947    // Add chain dependencies.
948    // Chain dependencies used to enforce memory order should have
949    // latency of 0 (except for true dependency of Store followed by
950    // aliased Load... we estimate that with a single cycle of latency
951    // assuming the hardware will bypass)
952    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
953    // after stack slots are lowered to actual addresses.
954    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
955    // produce more precise dependence information.
956    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
957    if (isGlobalMemoryObject(AA, MI)) {
958      // Be conservative with these and add dependencies on all memory
959      // references, even those that are known to not alias.
960      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
961             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
962        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
963          I->second[i]->addPred(SDep(SU, SDep::Barrier));
964        }
965      }
966      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
967             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
968        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
969          SDep Dep(SU, SDep::Barrier);
970          Dep.setLatency(TrueMemOrderLatency);
971          I->second[i]->addPred(Dep);
972        }
973      }
974      // Add SU to the barrier chain.
975      if (BarrierChain)
976        BarrierChain->addPred(SDep(SU, SDep::Barrier));
977      BarrierChain = SU;
978      // This is a barrier event that acts as a pivotal node in the DAG,
979      // so it is safe to clear list of exposed nodes.
980      adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
981                      TrueMemOrderLatency);
982      RejectMemNodes.clear();
983      NonAliasMemDefs.clear();
984      NonAliasMemUses.clear();
985
986      // fall-through
987    new_alias_chain:
988      // Chain all possibly aliasing memory references through SU.
989      if (AliasChain) {
990        unsigned ChainLatency = 0;
991        if (AliasChain->getInstr()->mayLoad())
992          ChainLatency = TrueMemOrderLatency;
993        addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
994                           RejectMemNodes, ChainLatency);
995      }
996      AliasChain = SU;
997      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
998        addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
999                           PendingLoads[k], RejectMemNodes,
1000                           TrueMemOrderLatency);
1001      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1002           AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
1003        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1004          addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1005                             I->second[i], RejectMemNodes);
1006      }
1007      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1008           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
1009        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1010          addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1011                             I->second[i], RejectMemNodes, TrueMemOrderLatency);
1012      }
1013      // This call must come after calls to addChainDependency() since it
1014      // consumes the 'RejectMemNodes' list that addChainDependency() possibly
1015      // adds to.
1016      adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1017                      TrueMemOrderLatency);
1018      PendingLoads.clear();
1019      AliasMemDefs.clear();
1020      AliasMemUses.clear();
1021    } else if (MI->mayStore()) {
1022      // Add dependence on barrier chain, if needed.
1023      // There is no point to check aliasing on barrier event. Even if
1024      // SU and barrier _could_ be reordered, they should not. In addition,
1025      // we have lost all RejectMemNodes below barrier.
1026      if (BarrierChain)
1027        BarrierChain->addPred(SDep(SU, SDep::Barrier));
1028
1029      UnderlyingObjectsVector Objs;
1030      getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1031
1032      if (Objs.empty()) {
1033        // Treat all other stores conservatively.
1034        goto new_alias_chain;
1035      }
1036
1037      bool MayAlias = false;
1038      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
1039           K != KE; ++K) {
1040        ValueType V = K->getPointer();
1041        bool ThisMayAlias = K->getInt();
1042        if (ThisMayAlias)
1043          MayAlias = true;
1044
1045        // A store to a specific PseudoSourceValue. Add precise dependencies.
1046        // Record the def in MemDefs, first adding a dep if there is
1047        // an existing def.
1048        MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1049          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1050        MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1051          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1052        if (I != IE) {
1053          for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1054            addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1055                               I->second[i], RejectMemNodes, 0, true);
1056
1057          // If we're not using AA, then we only need one store per object.
1058          if (!AAForDep)
1059            I->second.clear();
1060          I->second.push_back(SU);
1061        } else {
1062          if (ThisMayAlias) {
1063            if (!AAForDep)
1064              AliasMemDefs[V].clear();
1065            AliasMemDefs[V].push_back(SU);
1066          } else {
1067            if (!AAForDep)
1068              NonAliasMemDefs[V].clear();
1069            NonAliasMemDefs[V].push_back(SU);
1070          }
1071        }
1072        // Handle the uses in MemUses, if there are any.
1073        MapVector<ValueType, std::vector<SUnit *> >::iterator J =
1074          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
1075        MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
1076          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
1077        if (J != JE) {
1078          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
1079            addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1080                               J->second[i], RejectMemNodes,
1081                               TrueMemOrderLatency, true);
1082          J->second.clear();
1083        }
1084      }
1085      if (MayAlias) {
1086        // Add dependencies from all the PendingLoads, i.e. loads
1087        // with no underlying object.
1088        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
1089          addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1090                             PendingLoads[k], RejectMemNodes,
1091                             TrueMemOrderLatency);
1092        // Add dependence on alias chain, if needed.
1093        if (AliasChain)
1094          addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1095                             RejectMemNodes);
1096      }
1097      // This call must come after calls to addChainDependency() since it
1098      // consumes the 'RejectMemNodes' list that addChainDependency() possibly
1099      // adds to.
1100      adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1101                      TrueMemOrderLatency);
1102    } else if (MI->mayLoad()) {
1103      bool MayAlias = true;
1104      if (MI->isInvariantLoad(AA)) {
1105        // Invariant load, no chain dependencies needed!
1106      } else {
1107        UnderlyingObjectsVector Objs;
1108        getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1109
1110        if (Objs.empty()) {
1111          // A load with no underlying object. Depend on all
1112          // potentially aliasing stores.
1113          for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1114                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
1115            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1116              addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1117                                 I->second[i], RejectMemNodes);
1118
1119          PendingLoads.push_back(SU);
1120          MayAlias = true;
1121        } else {
1122          MayAlias = false;
1123        }
1124
1125        for (UnderlyingObjectsVector::iterator
1126             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
1127          ValueType V = J->getPointer();
1128          bool ThisMayAlias = J->getInt();
1129
1130          if (ThisMayAlias)
1131            MayAlias = true;
1132
1133          // A load from a specific PseudoSourceValue. Add precise dependencies.
1134          MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1135            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1136          MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1137            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1138          if (I != IE)
1139            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1140              addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1141                                 I->second[i], RejectMemNodes, 0, true);
1142          if (ThisMayAlias)
1143            AliasMemUses[V].push_back(SU);
1144          else
1145            NonAliasMemUses[V].push_back(SU);
1146        }
1147        // Add dependencies on alias and barrier chains, if needed.
1148        if (MayAlias && AliasChain)
1149          addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1150                             RejectMemNodes);
1151        if (MayAlias)
1152          // This call must come after calls to addChainDependency() since it
1153          // consumes the 'RejectMemNodes' list that addChainDependency()
1154          // possibly adds to.
1155          adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU,
1156                          RejectMemNodes, /*Latency=*/0);
1157        if (BarrierChain)
1158          BarrierChain->addPred(SDep(SU, SDep::Barrier));
1159      }
1160    }
1161  }
1162  if (DbgMI)
1163    FirstDbgValue = DbgMI;
1164
1165  Defs.clear();
1166  Uses.clear();
1167  CurrentVRegDefs.clear();
1168  CurrentVRegUses.clear();
1169  PendingLoads.clear();
1170}
1171
1172/// \brief Initialize register live-range state for updating kills.
1173void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1174  // Start with no live registers.
1175  LiveRegs.reset();
1176
1177  // Examine the live-in regs of all successors.
1178  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1179       SE = BB->succ_end(); SI != SE; ++SI) {
1180    for (const auto &LI : (*SI)->liveins()) {
1181      // Repeat, for reg and all subregs.
1182      for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
1183           SubRegs.isValid(); ++SubRegs)
1184        LiveRegs.set(*SubRegs);
1185    }
1186  }
1187}
1188
1189/// \brief If we change a kill flag on the bundle instruction implicit register
1190/// operands, then we also need to propagate that to any instructions inside
1191/// the bundle which had the same kill state.
1192static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
1193                                 bool NewKillState) {
1194  if (MI->getOpcode() != TargetOpcode::BUNDLE)
1195    return;
1196
1197  // Walk backwards from the last instruction in the bundle to the first.
1198  // Once we set a kill flag on an instruction, we bail out, as otherwise we
1199  // might set it on too many operands.  We will clear as many flags as we
1200  // can though.
1201  MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1202  MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1203  while (Begin != End) {
1204    for (MachineOperand &MO : (--End)->operands()) {
1205      if (!MO.isReg() || MO.isDef() || Reg != MO.getReg())
1206        continue;
1207
1208      // DEBUG_VALUE nodes do not contribute to code generation and should
1209      // always be ignored.  Failure to do so may result in trying to modify
1210      // KILL flags on DEBUG_VALUE nodes, which is distressing.
1211      if (MO.isDebug())
1212        continue;
1213
1214      // If the register has the internal flag then it could be killing an
1215      // internal def of the register.  In this case, just skip.  We only want
1216      // to toggle the flag on operands visible outside the bundle.
1217      if (MO.isInternalRead())
1218        continue;
1219
1220      if (MO.isKill() == NewKillState)
1221        continue;
1222      MO.setIsKill(NewKillState);
1223      if (NewKillState)
1224        return;
1225    }
1226  }
1227}
1228
1229bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1230  // Setting kill flag...
1231  if (!MO.isKill()) {
1232    MO.setIsKill(true);
1233    toggleBundleKillFlag(MI, MO.getReg(), true);
1234    return false;
1235  }
1236
1237  // If MO itself is live, clear the kill flag...
1238  if (LiveRegs.test(MO.getReg())) {
1239    MO.setIsKill(false);
1240    toggleBundleKillFlag(MI, MO.getReg(), false);
1241    return false;
1242  }
1243
1244  // If any subreg of MO is live, then create an imp-def for that
1245  // subreg and keep MO marked as killed.
1246  MO.setIsKill(false);
1247  toggleBundleKillFlag(MI, MO.getReg(), false);
1248  bool AllDead = true;
1249  const unsigned SuperReg = MO.getReg();
1250  MachineInstrBuilder MIB(MF, MI);
1251  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1252    if (LiveRegs.test(*SubRegs)) {
1253      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1254      AllDead = false;
1255    }
1256  }
1257
1258  if(AllDead) {
1259    MO.setIsKill(true);
1260    toggleBundleKillFlag(MI, MO.getReg(), true);
1261  }
1262  return false;
1263}
1264
1265// FIXME: Reuse the LivePhysRegs utility for this.
1266void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1267  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1268
1269  LiveRegs.resize(TRI->getNumRegs());
1270  BitVector killedRegs(TRI->getNumRegs());
1271
1272  startBlockForKills(MBB);
1273
1274  // Examine block from end to start...
1275  unsigned Count = MBB->size();
1276  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1277       I != E; --Count) {
1278    MachineInstr *MI = --I;
1279    if (MI->isDebugValue())
1280      continue;
1281
1282    // Update liveness.  Registers that are defed but not used in this
1283    // instruction are now dead. Mark register and all subregs as they
1284    // are completely defined.
1285    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1286      MachineOperand &MO = MI->getOperand(i);
1287      if (MO.isRegMask())
1288        LiveRegs.clearBitsNotInMask(MO.getRegMask());
1289      if (!MO.isReg()) continue;
1290      unsigned Reg = MO.getReg();
1291      if (Reg == 0) continue;
1292      if (!MO.isDef()) continue;
1293      // Ignore two-addr defs.
1294      if (MI->isRegTiedToUseOperand(i)) continue;
1295
1296      // Repeat for reg and all subregs.
1297      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1298           SubRegs.isValid(); ++SubRegs)
1299        LiveRegs.reset(*SubRegs);
1300    }
1301
1302    // Examine all used registers and set/clear kill flag. When a
1303    // register is used multiple times we only set the kill flag on
1304    // the first use. Don't set kill flags on undef operands.
1305    killedRegs.reset();
1306    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1307      MachineOperand &MO = MI->getOperand(i);
1308      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1309      unsigned Reg = MO.getReg();
1310      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1311
1312      bool kill = false;
1313      if (!killedRegs.test(Reg)) {
1314        kill = true;
1315        // A register is not killed if any subregs are live...
1316        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1317          if (LiveRegs.test(*SubRegs)) {
1318            kill = false;
1319            break;
1320          }
1321        }
1322
1323        // If subreg is not live, then register is killed if it became
1324        // live in this instruction
1325        if (kill)
1326          kill = !LiveRegs.test(Reg);
1327      }
1328
1329      if (MO.isKill() != kill) {
1330        DEBUG(dbgs() << "Fixing " << MO << " in ");
1331        // Warning: toggleKillFlag may invalidate MO.
1332        toggleKillFlag(MI, MO);
1333        DEBUG(MI->dump());
1334        DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) {
1335          MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1336          MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1337          while (++Begin != End)
1338            DEBUG(Begin->dump());
1339        });
1340      }
1341
1342      killedRegs.set(Reg);
1343    }
1344
1345    // Mark any used register (that is not using undef) and subregs as
1346    // now live...
1347    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1348      MachineOperand &MO = MI->getOperand(i);
1349      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1350      unsigned Reg = MO.getReg();
1351      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1352
1353      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1354           SubRegs.isValid(); ++SubRegs)
1355        LiveRegs.set(*SubRegs);
1356    }
1357  }
1358}
1359
1360void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1361#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1362  SU->getInstr()->dump();
1363#endif
1364}
1365
1366std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1367  std::string s;
1368  raw_string_ostream oss(s);
1369  if (SU == &EntrySU)
1370    oss << "<entry>";
1371  else if (SU == &ExitSU)
1372    oss << "<exit>";
1373  else
1374    SU->getInstr()->print(oss, /*SkipOpers=*/true);
1375  return oss.str();
1376}
1377
1378/// Return the basic block label. It is not necessarilly unique because a block
1379/// contains multiple scheduling regions. But it is fine for visualization.
1380std::string ScheduleDAGInstrs::getDAGName() const {
1381  return "dag." + BB->getFullName();
1382}
1383
1384//===----------------------------------------------------------------------===//
1385// SchedDFSResult Implementation
1386//===----------------------------------------------------------------------===//
1387
1388namespace llvm {
1389/// \brief Internal state used to compute SchedDFSResult.
1390class SchedDFSImpl {
1391  SchedDFSResult &R;
1392
1393  /// Join DAG nodes into equivalence classes by their subtree.
1394  IntEqClasses SubtreeClasses;
1395  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1396  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1397
1398  struct RootData {
1399    unsigned NodeID;
1400    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1401    unsigned SubInstrCount; // Instr count in this tree only, not children.
1402
1403    RootData(unsigned id): NodeID(id),
1404                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1405                           SubInstrCount(0) {}
1406
1407    unsigned getSparseSetIndex() const { return NodeID; }
1408  };
1409
1410  SparseSet<RootData> RootSet;
1411
1412public:
1413  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1414    RootSet.setUniverse(R.DFSNodeData.size());
1415  }
1416
1417  /// Return true if this node been visited by the DFS traversal.
1418  ///
1419  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1420  /// ID. Later, SubtreeID is updated but remains valid.
1421  bool isVisited(const SUnit *SU) const {
1422    return R.DFSNodeData[SU->NodeNum].SubtreeID
1423      != SchedDFSResult::InvalidSubtreeID;
1424  }
1425
1426  /// Initialize this node's instruction count. We don't need to flag the node
1427  /// visited until visitPostorder because the DAG cannot have cycles.
1428  void visitPreorder(const SUnit *SU) {
1429    R.DFSNodeData[SU->NodeNum].InstrCount =
1430      SU->getInstr()->isTransient() ? 0 : 1;
1431  }
1432
1433  /// Called once for each node after all predecessors are visited. Revisit this
1434  /// node's predecessors and potentially join them now that we know the ILP of
1435  /// the other predecessors.
1436  void visitPostorderNode(const SUnit *SU) {
1437    // Mark this node as the root of a subtree. It may be joined with its
1438    // successors later.
1439    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1440    RootData RData(SU->NodeNum);
1441    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1442
1443    // If any predecessors are still in their own subtree, they either cannot be
1444    // joined or are large enough to remain separate. If this parent node's
1445    // total instruction count is not greater than a child subtree by at least
1446    // the subtree limit, then try to join it now since splitting subtrees is
1447    // only useful if multiple high-pressure paths are possible.
1448    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1449    for (SUnit::const_pred_iterator
1450           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1451      if (PI->getKind() != SDep::Data)
1452        continue;
1453      unsigned PredNum = PI->getSUnit()->NodeNum;
1454      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1455        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1456
1457      // Either link or merge the TreeData entry from the child to the parent.
1458      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1459        // If the predecessor's parent is invalid, this is a tree edge and the
1460        // current node is the parent.
1461        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1462          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1463      }
1464      else if (RootSet.count(PredNum)) {
1465        // The predecessor is not a root, but is still in the root set. This
1466        // must be the new parent that it was just joined to. Note that
1467        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1468        // set to the original parent.
1469        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1470        RootSet.erase(PredNum);
1471      }
1472    }
1473    RootSet[SU->NodeNum] = RData;
1474  }
1475
1476  /// Called once for each tree edge after calling visitPostOrderNode on the
1477  /// predecessor. Increment the parent node's instruction count and
1478  /// preemptively join this subtree to its parent's if it is small enough.
1479  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1480    R.DFSNodeData[Succ->NodeNum].InstrCount
1481      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1482    joinPredSubtree(PredDep, Succ);
1483  }
1484
1485  /// Add a connection for cross edges.
1486  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1487    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1488  }
1489
1490  /// Set each node's subtree ID to the representative ID and record connections
1491  /// between trees.
1492  void finalize() {
1493    SubtreeClasses.compress();
1494    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1495    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1496           && "number of roots should match trees");
1497    for (SparseSet<RootData>::const_iterator
1498           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1499      unsigned TreeID = SubtreeClasses[RI->NodeID];
1500      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1501        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1502      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1503      // Note that SubInstrCount may be greater than InstrCount if we joined
1504      // subtrees across a cross edge. InstrCount will be attributed to the
1505      // original parent, while SubInstrCount will be attributed to the joined
1506      // parent.
1507    }
1508    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1509    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1510    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1511    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1512      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1513      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1514            << R.DFSNodeData[Idx].SubtreeID << '\n');
1515    }
1516    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1517           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1518         I != E; ++I) {
1519      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1520      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1521      if (PredTree == SuccTree)
1522        continue;
1523      unsigned Depth = I->first->getDepth();
1524      addConnection(PredTree, SuccTree, Depth);
1525      addConnection(SuccTree, PredTree, Depth);
1526    }
1527  }
1528
1529protected:
1530  /// Join the predecessor subtree with the successor that is its DFS
1531  /// parent. Apply some heuristics before joining.
1532  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1533                       bool CheckLimit = true) {
1534    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1535
1536    // Check if the predecessor is already joined.
1537    const SUnit *PredSU = PredDep.getSUnit();
1538    unsigned PredNum = PredSU->NodeNum;
1539    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1540      return false;
1541
1542    // Four is the magic number of successors before a node is considered a
1543    // pinch point.
1544    unsigned NumDataSucs = 0;
1545    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1546           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1547      if (SI->getKind() == SDep::Data) {
1548        if (++NumDataSucs >= 4)
1549          return false;
1550      }
1551    }
1552    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1553      return false;
1554    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1555    SubtreeClasses.join(Succ->NodeNum, PredNum);
1556    return true;
1557  }
1558
1559  /// Called by finalize() to record a connection between trees.
1560  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1561    if (!Depth)
1562      return;
1563
1564    do {
1565      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1566        R.SubtreeConnections[FromTree];
1567      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1568             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1569        if (I->TreeID == ToTree) {
1570          I->Level = std::max(I->Level, Depth);
1571          return;
1572        }
1573      }
1574      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1575      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1576    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1577  }
1578};
1579} // namespace llvm
1580
1581namespace {
1582/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1583class SchedDAGReverseDFS {
1584  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1585public:
1586  bool isComplete() const { return DFSStack.empty(); }
1587
1588  void follow(const SUnit *SU) {
1589    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1590  }
1591  void advance() { ++DFSStack.back().second; }
1592
1593  const SDep *backtrack() {
1594    DFSStack.pop_back();
1595    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1596  }
1597
1598  const SUnit *getCurr() const { return DFSStack.back().first; }
1599
1600  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1601
1602  SUnit::const_pred_iterator getPredEnd() const {
1603    return getCurr()->Preds.end();
1604  }
1605};
1606} // anonymous
1607
1608static bool hasDataSucc(const SUnit *SU) {
1609  for (SUnit::const_succ_iterator
1610         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1611    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1612      return true;
1613  }
1614  return false;
1615}
1616
1617/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1618/// search from this root.
1619void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1620  if (!IsBottomUp)
1621    llvm_unreachable("Top-down ILP metric is unimplemnted");
1622
1623  SchedDFSImpl Impl(*this);
1624  for (ArrayRef<SUnit>::const_iterator
1625         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1626    const SUnit *SU = &*SI;
1627    if (Impl.isVisited(SU) || hasDataSucc(SU))
1628      continue;
1629
1630    SchedDAGReverseDFS DFS;
1631    Impl.visitPreorder(SU);
1632    DFS.follow(SU);
1633    for (;;) {
1634      // Traverse the leftmost path as far as possible.
1635      while (DFS.getPred() != DFS.getPredEnd()) {
1636        const SDep &PredDep = *DFS.getPred();
1637        DFS.advance();
1638        // Ignore non-data edges.
1639        if (PredDep.getKind() != SDep::Data
1640            || PredDep.getSUnit()->isBoundaryNode()) {
1641          continue;
1642        }
1643        // An already visited edge is a cross edge, assuming an acyclic DAG.
1644        if (Impl.isVisited(PredDep.getSUnit())) {
1645          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1646          continue;
1647        }
1648        Impl.visitPreorder(PredDep.getSUnit());
1649        DFS.follow(PredDep.getSUnit());
1650      }
1651      // Visit the top of the stack in postorder and backtrack.
1652      const SUnit *Child = DFS.getCurr();
1653      const SDep *PredDep = DFS.backtrack();
1654      Impl.visitPostorderNode(Child);
1655      if (PredDep)
1656        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1657      if (DFS.isComplete())
1658        break;
1659    }
1660  }
1661  Impl.finalize();
1662}
1663
1664/// The root of the given SubtreeID was just scheduled. For all subtrees
1665/// connected to this tree, record the depth of the connection so that the
1666/// nearest connected subtrees can be prioritized.
1667void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1668  for (SmallVectorImpl<Connection>::const_iterator
1669         I = SubtreeConnections[SubtreeID].begin(),
1670         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1671    SubtreeConnectLevels[I->TreeID] =
1672      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1673    DEBUG(dbgs() << "  Tree: " << I->TreeID
1674          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1675  }
1676}
1677
1678LLVM_DUMP_METHOD
1679void ILPValue::print(raw_ostream &OS) const {
1680  OS << InstrCount << " / " << Length << " = ";
1681  if (!Length)
1682    OS << "BADILP";
1683  else
1684    OS << format("%g", ((double)InstrCount / Length));
1685}
1686
1687LLVM_DUMP_METHOD
1688void ILPValue::dump() const {
1689  dbgs() << *this << '\n';
1690}
1691
1692namespace llvm {
1693
1694LLVM_DUMP_METHOD
1695raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1696  Val.print(OS);
1697  return OS;
1698}
1699
1700} // namespace llvm
1701