RegAllocGreedy.cpp revision 303975
1170754Sdelphij//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2170754Sdelphij//
3170754Sdelphij//                     The LLVM Compiler Infrastructure
4170754Sdelphij//
5170754Sdelphij// This file is distributed under the University of Illinois Open Source
6170754Sdelphij// License. See LICENSE.TXT for details.
7170754Sdelphij//
8170754Sdelphij//===----------------------------------------------------------------------===//
9170754Sdelphij//
10170754Sdelphij// This file defines the RAGreedy function pass for register allocation in
11170754Sdelphij// optimized builds.
12170754Sdelphij//
13170754Sdelphij//===----------------------------------------------------------------------===//
14170754Sdelphij
15170754Sdelphij#include "llvm/CodeGen/Passes.h"
16170754Sdelphij#include "AllocationOrder.h"
17170754Sdelphij#include "InterferenceCache.h"
18170754Sdelphij#include "LiveDebugVariables.h"
19170754Sdelphij#include "RegAllocBase.h"
20170754Sdelphij#include "SpillPlacement.h"
21170754Sdelphij#include "Spiller.h"
22170754Sdelphij#include "SplitKit.h"
23170754Sdelphij#include "llvm/ADT/Statistic.h"
24170754Sdelphij#include "llvm/Analysis/AliasAnalysis.h"
25170754Sdelphij#include "llvm/CodeGen/CalcSpillWeights.h"
26170754Sdelphij#include "llvm/CodeGen/EdgeBundles.h"
27170754Sdelphij#include "llvm/CodeGen/LiveIntervalAnalysis.h"
28170754Sdelphij#include "llvm/CodeGen/LiveRangeEdit.h"
29170754Sdelphij#include "llvm/CodeGen/LiveRegMatrix.h"
30170754Sdelphij#include "llvm/CodeGen/LiveStackAnalysis.h"
31170754Sdelphij#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32170754Sdelphij#include "llvm/CodeGen/MachineDominators.h"
33170754Sdelphij#include "llvm/CodeGen/MachineFunctionPass.h"
34170754Sdelphij#include "llvm/CodeGen/MachineLoopInfo.h"
35170754Sdelphij#include "llvm/CodeGen/MachineRegisterInfo.h"
36170754Sdelphij#include "llvm/CodeGen/RegAllocRegistry.h"
37170754Sdelphij#include "llvm/CodeGen/RegisterClassInfo.h"
38170754Sdelphij#include "llvm/CodeGen/VirtRegMap.h"
39170754Sdelphij#include "llvm/IR/LLVMContext.h"
40170754Sdelphij#include "llvm/PassAnalysisSupport.h"
41170754Sdelphij#include "llvm/Support/BranchProbability.h"
42170754Sdelphij#include "llvm/Support/CommandLine.h"
43170754Sdelphij#include "llvm/Support/Debug.h"
44170754Sdelphij#include "llvm/Support/ErrorHandling.h"
45170754Sdelphij#include "llvm/Support/Timer.h"
46170754Sdelphij#include "llvm/Support/raw_ostream.h"
47170754Sdelphij#include "llvm/Target/TargetSubtargetInfo.h"
48170754Sdelphij#include <queue>
49170754Sdelphij
50170754Sdelphijusing namespace llvm;
51170754Sdelphij
52170754Sdelphij#define DEBUG_TYPE "regalloc"
53170754Sdelphij
54170754SdelphijSTATISTIC(NumGlobalSplits, "Number of split global live ranges");
55170754SdelphijSTATISTIC(NumLocalSplits,  "Number of split local live ranges");
56170754SdelphijSTATISTIC(NumEvicted,      "Number of interferences evicted");
57170754Sdelphij
58170754Sdelphijstatic cl::opt<SplitEditor::ComplementSpillMode>
59170754SdelphijSplitSpillMode("split-spill-mode", cl::Hidden,
60170754Sdelphij  cl::desc("Spill mode for splitting live ranges"),
61170754Sdelphij  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
62170754Sdelphij             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
63170754Sdelphij             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
64170754Sdelphij             clEnumValEnd),
65170754Sdelphij  cl::init(SplitEditor::SM_Partition));
66170754Sdelphij
67170754Sdelphijstatic cl::opt<unsigned>
68170754SdelphijLastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
69170754Sdelphij                             cl::desc("Last chance recoloring max depth"),
70170754Sdelphij                             cl::init(5));
71170754Sdelphij
72170754Sdelphijstatic cl::opt<unsigned> LastChanceRecoloringMaxInterference(
73170754Sdelphij    "lcr-max-interf", cl::Hidden,
74170754Sdelphij    cl::desc("Last chance recoloring maximum number of considered"
75170754Sdelphij             " interference at a time"),
76170754Sdelphij    cl::init(8));
77170754Sdelphij
78170754Sdelphijstatic cl::opt<bool>
79170754SdelphijExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
80170754Sdelphij                 cl::desc("Exhaustive Search for registers bypassing the depth "
81170754Sdelphij                          "and interference cutoffs of last chance recoloring"));
82170754Sdelphij
83170754Sdelphijstatic cl::opt<bool> EnableLocalReassignment(
84170754Sdelphij    "enable-local-reassign", cl::Hidden,
85170754Sdelphij    cl::desc("Local reassignment can yield better allocation decisions, but "
86170754Sdelphij             "may be compile time intensive"),
87170754Sdelphij    cl::init(false));
88170754Sdelphij
89170754Sdelphijstatic cl::opt<bool> EnableDeferredSpilling(
90170754Sdelphij    "enable-deferred-spilling", cl::Hidden,
91170754Sdelphij    cl::desc("Instead of spilling a variable right away, defer the actual "
92170754Sdelphij             "code insertion to the end of the allocation. That way the "
93170754Sdelphij             "allocator might still find a suitable coloring for this "
94170754Sdelphij             "variable because of other evicted variables."),
95170754Sdelphij    cl::init(false));
96170754Sdelphij
97170754Sdelphij// FIXME: Find a good default for this flag and remove the flag.
98170754Sdelphijstatic cl::opt<unsigned>
99170754SdelphijCSRFirstTimeCost("regalloc-csr-first-time-cost",
100170754Sdelphij              cl::desc("Cost for first time use of callee-saved register."),
101170754Sdelphij              cl::init(0), cl::Hidden);
102170754Sdelphij
103170754Sdelphijstatic RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
104170754Sdelphij                                       createGreedyRegisterAllocator);
105170754Sdelphij
106170754Sdelphijnamespace {
107170754Sdelphijclass RAGreedy : public MachineFunctionPass,
108170754Sdelphij                 public RegAllocBase,
109170754Sdelphij                 private LiveRangeEdit::Delegate {
110170754Sdelphij  // Convenient shortcuts.
111170754Sdelphij  typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
112170754Sdelphij  typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
113170754Sdelphij  typedef SmallSet<unsigned, 16> SmallVirtRegSet;
114170754Sdelphij
115170754Sdelphij  // context
116170754Sdelphij  MachineFunction *MF;
117170754Sdelphij
118170754Sdelphij  // Shortcuts to some useful interface.
119170754Sdelphij  const TargetInstrInfo *TII;
120170754Sdelphij  const TargetRegisterInfo *TRI;
121170754Sdelphij  RegisterClassInfo RCI;
122170754Sdelphij
123170754Sdelphij  // analyses
124170754Sdelphij  SlotIndexes *Indexes;
125170754Sdelphij  MachineBlockFrequencyInfo *MBFI;
126170754Sdelphij  MachineDominatorTree *DomTree;
127170754Sdelphij  MachineLoopInfo *Loops;
128170754Sdelphij  EdgeBundles *Bundles;
129170754Sdelphij  SpillPlacement *SpillPlacer;
130170754Sdelphij  LiveDebugVariables *DebugVars;
131170754Sdelphij
132170754Sdelphij  // state
133170754Sdelphij  std::unique_ptr<Spiller> SpillerInstance;
134170754Sdelphij  PQueue Queue;
135170754Sdelphij  unsigned NextCascade;
136170754Sdelphij
137170754Sdelphij  // Live ranges pass through a number of stages as we try to allocate them.
138170754Sdelphij  // Some of the stages may also create new live ranges:
139170754Sdelphij  //
140170754Sdelphij  // - Region splitting.
141170754Sdelphij  // - Per-block splitting.
142170754Sdelphij  // - Local splitting.
143170754Sdelphij  // - Spilling.
144170754Sdelphij  //
145170754Sdelphij  // Ranges produced by one of the stages skip the previous stages when they are
146170754Sdelphij  // dequeued. This improves performance because we can skip interference checks
147170754Sdelphij  // that are unlikely to give any results. It also guarantees that the live
148170754Sdelphij  // range splitting algorithm terminates, something that is otherwise hard to
149170754Sdelphij  // ensure.
150170754Sdelphij  enum LiveRangeStage {
151170754Sdelphij    /// Newly created live range that has never been queued.
152170754Sdelphij    RS_New,
153170754Sdelphij
154170754Sdelphij    /// Only attempt assignment and eviction. Then requeue as RS_Split.
155170754Sdelphij    RS_Assign,
156170754Sdelphij
157170754Sdelphij    /// Attempt live range splitting if assignment is impossible.
158170754Sdelphij    RS_Split,
159170754Sdelphij
160170754Sdelphij    /// Attempt more aggressive live range splitting that is guaranteed to make
161170754Sdelphij    /// progress.  This is used for split products that may not be making
162170754Sdelphij    /// progress.
163170754Sdelphij    RS_Split2,
164170754Sdelphij
165170754Sdelphij    /// Live range will be spilled.  No more splitting will be attempted.
166170754Sdelphij    RS_Spill,
167170754Sdelphij
168170754Sdelphij
169170754Sdelphij    /// Live range is in memory. Because of other evictions, it might get moved
170170754Sdelphij    /// in a register in the end.
171170754Sdelphij    RS_Memory,
172170754Sdelphij
173170754Sdelphij    /// There is nothing more we can do to this live range.  Abort compilation
174170754Sdelphij    /// if it can't be assigned.
175170754Sdelphij    RS_Done
176170754Sdelphij  };
177170754Sdelphij
178170754Sdelphij  // Enum CutOffStage to keep a track whether the register allocation failed
179170754Sdelphij  // because of the cutoffs encountered in last chance recoloring.
180170754Sdelphij  // Note: This is used as bitmask. New value should be next power of 2.
181170754Sdelphij  enum CutOffStage {
182170754Sdelphij    // No cutoffs encountered
183170754Sdelphij    CO_None = 0,
184170754Sdelphij
185170754Sdelphij    // lcr-max-depth cutoff encountered
186170754Sdelphij    CO_Depth = 1,
187170754Sdelphij
188170754Sdelphij    // lcr-max-interf cutoff encountered
189170754Sdelphij    CO_Interf = 2
190170754Sdelphij  };
191170754Sdelphij
192170754Sdelphij  uint8_t CutOffInfo;
193170754Sdelphij
194170754Sdelphij#ifndef NDEBUG
195170754Sdelphij  static const char *const StageName[];
196170754Sdelphij#endif
197170754Sdelphij
198170754Sdelphij  // RegInfo - Keep additional information about each live range.
199170754Sdelphij  struct RegInfo {
200170754Sdelphij    LiveRangeStage Stage;
201170754Sdelphij
202170754Sdelphij    // Cascade - Eviction loop prevention. See canEvictInterference().
203170754Sdelphij    unsigned Cascade;
204170754Sdelphij
205170754Sdelphij    RegInfo() : Stage(RS_New), Cascade(0) {}
206170754Sdelphij  };
207170754Sdelphij
208170754Sdelphij  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
209170754Sdelphij
210170754Sdelphij  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
211170754Sdelphij    return ExtraRegInfo[VirtReg.reg].Stage;
212170754Sdelphij  }
213170754Sdelphij
214170754Sdelphij  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
215170754Sdelphij    ExtraRegInfo.resize(MRI->getNumVirtRegs());
216170754Sdelphij    ExtraRegInfo[VirtReg.reg].Stage = Stage;
217170754Sdelphij  }
218170754Sdelphij
219170754Sdelphij  template<typename Iterator>
220170754Sdelphij  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
221170754Sdelphij    ExtraRegInfo.resize(MRI->getNumVirtRegs());
222170754Sdelphij    for (;Begin != End; ++Begin) {
223170754Sdelphij      unsigned Reg = *Begin;
224170754Sdelphij      if (ExtraRegInfo[Reg].Stage == RS_New)
225170754Sdelphij        ExtraRegInfo[Reg].Stage = NewStage;
226170754Sdelphij    }
227170754Sdelphij  }
228170754Sdelphij
229170754Sdelphij  /// Cost of evicting interference.
230170754Sdelphij  struct EvictionCost {
231170754Sdelphij    unsigned BrokenHints; ///< Total number of broken hints.
232170754Sdelphij    float MaxWeight;      ///< Maximum spill weight evicted.
233170754Sdelphij
234170754Sdelphij    EvictionCost(): BrokenHints(0), MaxWeight(0) {}
235170754Sdelphij
236170754Sdelphij    bool isMax() const { return BrokenHints == ~0u; }
237170754Sdelphij
238170754Sdelphij    void setMax() { BrokenHints = ~0u; }
239170754Sdelphij
240170754Sdelphij    void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
241170754Sdelphij
242170754Sdelphij    bool operator<(const EvictionCost &O) const {
243170754Sdelphij      return std::tie(BrokenHints, MaxWeight) <
244170754Sdelphij             std::tie(O.BrokenHints, O.MaxWeight);
245170754Sdelphij    }
246170754Sdelphij  };
247170754Sdelphij
248170754Sdelphij  // splitting state.
249170754Sdelphij  std::unique_ptr<SplitAnalysis> SA;
250170754Sdelphij  std::unique_ptr<SplitEditor> SE;
251170754Sdelphij
252170754Sdelphij  /// Cached per-block interference maps
253170754Sdelphij  InterferenceCache IntfCache;
254170754Sdelphij
255170754Sdelphij  /// All basic blocks where the current register has uses.
256170754Sdelphij  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
257170754Sdelphij
258170754Sdelphij  /// Global live range splitting candidate info.
259170754Sdelphij  struct GlobalSplitCandidate {
260170754Sdelphij    // Register intended for assignment, or 0.
261170754Sdelphij    unsigned PhysReg;
262170754Sdelphij
263170754Sdelphij    // SplitKit interval index for this candidate.
264170754Sdelphij    unsigned IntvIdx;
265170754Sdelphij
266170754Sdelphij    // Interference for PhysReg.
267170754Sdelphij    InterferenceCache::Cursor Intf;
268170754Sdelphij
269170754Sdelphij    // Bundles where this candidate should be live.
270170754Sdelphij    BitVector LiveBundles;
271170754Sdelphij    SmallVector<unsigned, 8> ActiveBlocks;
272170754Sdelphij
273170754Sdelphij    void reset(InterferenceCache &Cache, unsigned Reg) {
274170754Sdelphij      PhysReg = Reg;
275170754Sdelphij      IntvIdx = 0;
276170754Sdelphij      Intf.setPhysReg(Cache, Reg);
277170754Sdelphij      LiveBundles.clear();
278170754Sdelphij      ActiveBlocks.clear();
279170754Sdelphij    }
280170754Sdelphij
281170754Sdelphij    // Set B[i] = C for every live bundle where B[i] was NoCand.
282170754Sdelphij    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
283170754Sdelphij      unsigned Count = 0;
284170754Sdelphij      for (int i = LiveBundles.find_first(); i >= 0;
285170754Sdelphij           i = LiveBundles.find_next(i))
286170754Sdelphij        if (B[i] == NoCand) {
287170754Sdelphij          B[i] = C;
288170754Sdelphij          Count++;
289170754Sdelphij        }
290170754Sdelphij      return Count;
291170754Sdelphij    }
292170754Sdelphij  };
293170754Sdelphij
294170754Sdelphij  /// Candidate info for each PhysReg in AllocationOrder.
295170754Sdelphij  /// This vector never shrinks, but grows to the size of the largest register
296170754Sdelphij  /// class.
297170754Sdelphij  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
298170754Sdelphij
299170754Sdelphij  enum : unsigned { NoCand = ~0u };
300170754Sdelphij
301170754Sdelphij  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
302170754Sdelphij  /// NoCand which indicates the stack interval.
303170754Sdelphij  SmallVector<unsigned, 32> BundleCand;
304170754Sdelphij
305170754Sdelphij  /// Callee-save register cost, calculated once per machine function.
306170754Sdelphij  BlockFrequency CSRCost;
307170754Sdelphij
308170754Sdelphij  /// Run or not the local reassignment heuristic. This information is
309170754Sdelphij  /// obtained from the TargetSubtargetInfo.
310170754Sdelphij  bool EnableLocalReassign;
311170754Sdelphij
312170754Sdelphij  /// Set of broken hints that may be reconciled later because of eviction.
313170754Sdelphij  SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
314170754Sdelphij
315170754Sdelphijpublic:
316170754Sdelphij  RAGreedy();
317170754Sdelphij
318170754Sdelphij  /// Return the pass name.
319170754Sdelphij  const char* getPassName() const override {
320170754Sdelphij    return "Greedy Register Allocator";
321170754Sdelphij  }
322170754Sdelphij
323170754Sdelphij  /// RAGreedy analysis usage.
324170754Sdelphij  void getAnalysisUsage(AnalysisUsage &AU) const override;
325170754Sdelphij  void releaseMemory() override;
326170754Sdelphij  Spiller &spiller() override { return *SpillerInstance; }
327170754Sdelphij  void enqueue(LiveInterval *LI) override;
328170754Sdelphij  LiveInterval *dequeue() override;
329170754Sdelphij  unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
330170754Sdelphij  void aboutToRemoveInterval(LiveInterval &) override;
331170754Sdelphij
332170754Sdelphij  /// Perform register allocation.
333170754Sdelphij  bool runOnMachineFunction(MachineFunction &mf) override;
334170754Sdelphij
335170754Sdelphij  static char ID;
336170754Sdelphij
337170754Sdelphijprivate:
338170754Sdelphij  unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
339170754Sdelphij                             SmallVirtRegSet &, unsigned = 0);
340170754Sdelphij
341170754Sdelphij  bool LRE_CanEraseVirtReg(unsigned) override;
342170754Sdelphij  void LRE_WillShrinkVirtReg(unsigned) override;
343170754Sdelphij  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
344170754Sdelphij  void enqueue(PQueue &CurQueue, LiveInterval *LI);
345170754Sdelphij  LiveInterval *dequeue(PQueue &CurQueue);
346170754Sdelphij
347170754Sdelphij  BlockFrequency calcSpillCost();
348170754Sdelphij  bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
349170754Sdelphij  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
350170754Sdelphij  void growRegion(GlobalSplitCandidate &Cand);
351170754Sdelphij  BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
352170754Sdelphij  bool calcCompactRegion(GlobalSplitCandidate&);
353170754Sdelphij  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
354170754Sdelphij  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
355170754Sdelphij  unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
356170754Sdelphij  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
357170754Sdelphij  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
358170754Sdelphij  void evictInterference(LiveInterval&, unsigned,
359170754Sdelphij                         SmallVectorImpl<unsigned>&);
360170754Sdelphij  bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
361170754Sdelphij                                  SmallLISet &RecoloringCandidates,
362170754Sdelphij                                  const SmallVirtRegSet &FixedRegisters);
363170754Sdelphij
364170754Sdelphij  unsigned tryAssign(LiveInterval&, AllocationOrder&,
365170754Sdelphij                     SmallVectorImpl<unsigned>&);
366170754Sdelphij  unsigned tryEvict(LiveInterval&, AllocationOrder&,
367170754Sdelphij                    SmallVectorImpl<unsigned>&, unsigned = ~0u);
368170754Sdelphij  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
369170754Sdelphij                          SmallVectorImpl<unsigned>&);
370170754Sdelphij  /// Calculate cost of region splitting.
371170754Sdelphij  unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
372170754Sdelphij                                    AllocationOrder &Order,
373170754Sdelphij                                    BlockFrequency &BestCost,
374170754Sdelphij                                    unsigned &NumCands, bool IgnoreCSR);
375170754Sdelphij  /// Perform region splitting.
376170754Sdelphij  unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
377170754Sdelphij                         bool HasCompact,
378170754Sdelphij                         SmallVectorImpl<unsigned> &NewVRegs);
379170754Sdelphij  /// Check other options before using a callee-saved register for the first
380170754Sdelphij  /// time.
381170754Sdelphij  unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
382170754Sdelphij                                 unsigned PhysReg, unsigned &CostPerUseLimit,
383170754Sdelphij                                 SmallVectorImpl<unsigned> &NewVRegs);
384170754Sdelphij  void initializeCSRCost();
385170754Sdelphij  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
386170754Sdelphij                         SmallVectorImpl<unsigned>&);
387170754Sdelphij  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
388170754Sdelphij                               SmallVectorImpl<unsigned>&);
389170754Sdelphij  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
390170754Sdelphij    SmallVectorImpl<unsigned>&);
391170754Sdelphij  unsigned trySplit(LiveInterval&, AllocationOrder&,
392170754Sdelphij                    SmallVectorImpl<unsigned>&);
393170754Sdelphij  unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
394170754Sdelphij                                   SmallVectorImpl<unsigned> &,
395170754Sdelphij                                   SmallVirtRegSet &, unsigned);
396170754Sdelphij  bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
397170754Sdelphij                               SmallVirtRegSet &, unsigned);
398170754Sdelphij  void tryHintRecoloring(LiveInterval &);
399170754Sdelphij  void tryHintsRecoloring();
400170754Sdelphij
401170754Sdelphij  /// Model the information carried by one end of a copy.
402170754Sdelphij  struct HintInfo {
403170754Sdelphij    /// The frequency of the copy.
404170754Sdelphij    BlockFrequency Freq;
405170754Sdelphij    /// The virtual register or physical register.
406170754Sdelphij    unsigned Reg;
407170754Sdelphij    /// Its currently assigned register.
408170754Sdelphij    /// In case of a physical register Reg == PhysReg.
409170754Sdelphij    unsigned PhysReg;
410170754Sdelphij    HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
411170754Sdelphij        : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
412170754Sdelphij  };
413170754Sdelphij  typedef SmallVector<HintInfo, 4> HintsInfo;
414170754Sdelphij  BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
415170754Sdelphij  void collectHintInfo(unsigned, HintsInfo &);
416170754Sdelphij
417170754Sdelphij  bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
418170754Sdelphij};
419170754Sdelphij} // end anonymous namespace
420170754Sdelphij
421170754Sdelphijchar RAGreedy::ID = 0;
422170754Sdelphij
423170754Sdelphij#ifndef NDEBUG
424170754Sdelphijconst char *const RAGreedy::StageName[] = {
425170754Sdelphij    "RS_New",
426170754Sdelphij    "RS_Assign",
427170754Sdelphij    "RS_Split",
428170754Sdelphij    "RS_Split2",
429170754Sdelphij    "RS_Spill",
430170754Sdelphij    "RS_Memory",
431170754Sdelphij    "RS_Done"
432170754Sdelphij};
433170754Sdelphij#endif
434170754Sdelphij
435170754Sdelphij// Hysteresis to use when comparing floats.
436170754Sdelphij// This helps stabilize decisions based on float comparisons.
437170754Sdelphijconst float Hysteresis = (2007 / 2048.0f); // 0.97998046875
438170754Sdelphij
439170754Sdelphij
440170754SdelphijFunctionPass* llvm::createGreedyRegisterAllocator() {
441170754Sdelphij  return new RAGreedy();
442170754Sdelphij}
443170754Sdelphij
444170754SdelphijRAGreedy::RAGreedy(): MachineFunctionPass(ID) {
445170754Sdelphij  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
446170754Sdelphij  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
447170754Sdelphij  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
448170754Sdelphij  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
449170754Sdelphij  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
450170754Sdelphij  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
451170754Sdelphij  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
452170754Sdelphij  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
453170754Sdelphij  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
454170754Sdelphij  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
455170754Sdelphij  initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
456170754Sdelphij  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
457170754Sdelphij  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
458170754Sdelphij}
459170754Sdelphij
460170754Sdelphijvoid RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
461170754Sdelphij  AU.setPreservesCFG();
462170754Sdelphij  AU.addRequired<MachineBlockFrequencyInfo>();
463170754Sdelphij  AU.addPreserved<MachineBlockFrequencyInfo>();
464170754Sdelphij  AU.addRequired<AAResultsWrapperPass>();
465170754Sdelphij  AU.addPreserved<AAResultsWrapperPass>();
466170754Sdelphij  AU.addRequired<LiveIntervals>();
467170754Sdelphij  AU.addPreserved<LiveIntervals>();
468170754Sdelphij  AU.addRequired<SlotIndexes>();
469170754Sdelphij  AU.addPreserved<SlotIndexes>();
470170754Sdelphij  AU.addRequired<LiveDebugVariables>();
471170754Sdelphij  AU.addPreserved<LiveDebugVariables>();
472170754Sdelphij  AU.addRequired<LiveStacks>();
473170754Sdelphij  AU.addPreserved<LiveStacks>();
474170754Sdelphij  AU.addRequired<MachineDominatorTree>();
475170754Sdelphij  AU.addPreserved<MachineDominatorTree>();
476170754Sdelphij  AU.addRequired<MachineLoopInfo>();
477170754Sdelphij  AU.addPreserved<MachineLoopInfo>();
478170754Sdelphij  AU.addRequired<VirtRegMap>();
479170754Sdelphij  AU.addPreserved<VirtRegMap>();
480170754Sdelphij  AU.addRequired<LiveRegMatrix>();
481170754Sdelphij  AU.addPreserved<LiveRegMatrix>();
482170754Sdelphij  AU.addRequired<EdgeBundles>();
483170754Sdelphij  AU.addRequired<SpillPlacement>();
484170754Sdelphij  MachineFunctionPass::getAnalysisUsage(AU);
485170754Sdelphij}
486170754Sdelphij
487170754Sdelphij
488170754Sdelphij//===----------------------------------------------------------------------===//
489170754Sdelphij//                     LiveRangeEdit delegate methods
490170754Sdelphij//===----------------------------------------------------------------------===//
491170754Sdelphij
492170754Sdelphijbool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
493170754Sdelphij  if (VRM->hasPhys(VirtReg)) {
494170754Sdelphij    LiveInterval &LI = LIS->getInterval(VirtReg);
495170754Sdelphij    Matrix->unassign(LI);
496170754Sdelphij    aboutToRemoveInterval(LI);
497170754Sdelphij    return true;
498170754Sdelphij  }
499170754Sdelphij  // Unassigned virtreg is probably in the priority queue.
500170754Sdelphij  // RegAllocBase will erase it after dequeueing.
501170754Sdelphij  return false;
502170754Sdelphij}
503170754Sdelphij
504170754Sdelphijvoid RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
505170754Sdelphij  if (!VRM->hasPhys(VirtReg))
506170754Sdelphij    return;
507170754Sdelphij
508170754Sdelphij  // Register is assigned, put it back on the queue for reassignment.
509170754Sdelphij  LiveInterval &LI = LIS->getInterval(VirtReg);
510170754Sdelphij  Matrix->unassign(LI);
511170754Sdelphij  enqueue(&LI);
512170754Sdelphij}
513170754Sdelphij
514170754Sdelphijvoid RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
515170754Sdelphij  // Cloning a register we haven't even heard about yet?  Just ignore it.
516170754Sdelphij  if (!ExtraRegInfo.inBounds(Old))
517170754Sdelphij    return;
518170754Sdelphij
519170754Sdelphij  // LRE may clone a virtual register because dead code elimination causes it to
520170754Sdelphij  // be split into connected components. The new components are much smaller
521170754Sdelphij  // than the original, so they should get a new chance at being assigned.
522170754Sdelphij  // same stage as the parent.
523170754Sdelphij  ExtraRegInfo[Old].Stage = RS_Assign;
524170754Sdelphij  ExtraRegInfo.grow(New);
525170754Sdelphij  ExtraRegInfo[New] = ExtraRegInfo[Old];
526170754Sdelphij}
527170754Sdelphij
528170754Sdelphijvoid RAGreedy::releaseMemory() {
529170754Sdelphij  SpillerInstance.reset();
530170754Sdelphij  ExtraRegInfo.clear();
531170754Sdelphij  GlobalCand.clear();
532170754Sdelphij}
533170754Sdelphij
534170754Sdelphijvoid RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
535170754Sdelphij
536170754Sdelphijvoid RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
537170754Sdelphij  // Prioritize live ranges by size, assigning larger ranges first.
538170754Sdelphij  // The queue holds (size, reg) pairs.
539170754Sdelphij  const unsigned Size = LI->getSize();
540170754Sdelphij  const unsigned Reg = LI->reg;
541170754Sdelphij  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
542170754Sdelphij         "Can only enqueue virtual registers");
543170754Sdelphij  unsigned Prio;
544170754Sdelphij
545170754Sdelphij  ExtraRegInfo.grow(Reg);
546170754Sdelphij  if (ExtraRegInfo[Reg].Stage == RS_New)
547170754Sdelphij    ExtraRegInfo[Reg].Stage = RS_Assign;
548170754Sdelphij
549170754Sdelphij  if (ExtraRegInfo[Reg].Stage == RS_Split) {
550170754Sdelphij    // Unsplit ranges that couldn't be allocated immediately are deferred until
551170754Sdelphij    // everything else has been allocated.
552170754Sdelphij    Prio = Size;
553170754Sdelphij  } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
554170754Sdelphij    // Memory operand should be considered last.
555170754Sdelphij    // Change the priority such that Memory operand are assigned in
556170754Sdelphij    // the reverse order that they came in.
557170754Sdelphij    // TODO: Make this a member variable and probably do something about hints.
558170754Sdelphij    static unsigned MemOp = 0;
559170754Sdelphij    Prio = MemOp++;
560170754Sdelphij  } else {
561170754Sdelphij    // Giant live ranges fall back to the global assignment heuristic, which
562170754Sdelphij    // prevents excessive spilling in pathological cases.
563170754Sdelphij    bool ReverseLocal = TRI->reverseLocalAssignment();
564170754Sdelphij    const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
565170754Sdelphij    bool ForceGlobal = !ReverseLocal &&
566170754Sdelphij      (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
567170754Sdelphij
568170754Sdelphij    if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
569170754Sdelphij        LIS->intervalIsInOneMBB(*LI)) {
570170754Sdelphij      // Allocate original local ranges in linear instruction order. Since they
571170754Sdelphij      // are singly defined, this produces optimal coloring in the absence of
572170754Sdelphij      // global interference and other constraints.
573170754Sdelphij      if (!ReverseLocal)
574170754Sdelphij        Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
575170754Sdelphij      else {
576170754Sdelphij        // Allocating bottom up may allow many short LRGs to be assigned first
577170754Sdelphij        // to one of the cheap registers. This could be much faster for very
578170754Sdelphij        // large blocks on targets with many physical registers.
579170754Sdelphij        Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
580170754Sdelphij      }
581170754Sdelphij      Prio |= RC.AllocationPriority << 24;
582170754Sdelphij    } else {
583170754Sdelphij      // Allocate global and split ranges in long->short order. Long ranges that
584170754Sdelphij      // don't fit should be spilled (or split) ASAP so they don't create
585170754Sdelphij      // interference.  Mark a bit to prioritize global above local ranges.
586170754Sdelphij      Prio = (1u << 29) + Size;
587170754Sdelphij    }
588170754Sdelphij    // Mark a higher bit to prioritize global and local above RS_Split.
589170754Sdelphij    Prio |= (1u << 31);
590170754Sdelphij
591170754Sdelphij    // Boost ranges that have a physical register hint.
592170754Sdelphij    if (VRM->hasKnownPreference(Reg))
593170754Sdelphij      Prio |= (1u << 30);
594170754Sdelphij  }
595170754Sdelphij  // The virtual register number is a tie breaker for same-sized ranges.
596170754Sdelphij  // Give lower vreg numbers higher priority to assign them first.
597170754Sdelphij  CurQueue.push(std::make_pair(Prio, ~Reg));
598170754Sdelphij}
599170754Sdelphij
600170754SdelphijLiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
601170754Sdelphij
602170754SdelphijLiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
603170754Sdelphij  if (CurQueue.empty())
604170754Sdelphij    return nullptr;
605170754Sdelphij  LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
606170754Sdelphij  CurQueue.pop();
607170754Sdelphij  return LI;
608170754Sdelphij}
609170754Sdelphij
610170754Sdelphij
611170754Sdelphij//===----------------------------------------------------------------------===//
612170754Sdelphij//                            Direct Assignment
613170754Sdelphij//===----------------------------------------------------------------------===//
614170754Sdelphij
615170754Sdelphij/// tryAssign - Try to assign VirtReg to an available register.
616170754Sdelphijunsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
617170754Sdelphij                             AllocationOrder &Order,
618170754Sdelphij                             SmallVectorImpl<unsigned> &NewVRegs) {
619170754Sdelphij  Order.rewind();
620170754Sdelphij  unsigned PhysReg;
621170754Sdelphij  while ((PhysReg = Order.next()))
622170754Sdelphij    if (!Matrix->checkInterference(VirtReg, PhysReg))
623170754Sdelphij      break;
624170754Sdelphij  if (!PhysReg || Order.isHint())
625170754Sdelphij    return PhysReg;
626170754Sdelphij
627170754Sdelphij  // PhysReg is available, but there may be a better choice.
628170754Sdelphij
629170754Sdelphij  // If we missed a simple hint, try to cheaply evict interference from the
630170754Sdelphij  // preferred register.
631170754Sdelphij  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
632170754Sdelphij    if (Order.isHint(Hint)) {
633170754Sdelphij      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
634170754Sdelphij      EvictionCost MaxCost;
635170754Sdelphij      MaxCost.setBrokenHints(1);
636170754Sdelphij      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
637170754Sdelphij        evictInterference(VirtReg, Hint, NewVRegs);
638170754Sdelphij        return Hint;
639170754Sdelphij      }
640170754Sdelphij    }
641170754Sdelphij
642170754Sdelphij  // Try to evict interference from a cheaper alternative.
643170754Sdelphij  unsigned Cost = TRI->getCostPerUse(PhysReg);
644170754Sdelphij
645170754Sdelphij  // Most registers have 0 additional cost.
646170754Sdelphij  if (!Cost)
647170754Sdelphij    return PhysReg;
648170754Sdelphij
649170754Sdelphij  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
650170754Sdelphij               << '\n');
651170754Sdelphij  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
652170754Sdelphij  return CheapReg ? CheapReg : PhysReg;
653170754Sdelphij}
654170754Sdelphij
655170754Sdelphij
656170754Sdelphij//===----------------------------------------------------------------------===//
657170754Sdelphij//                         Interference eviction
658170754Sdelphij//===----------------------------------------------------------------------===//
659170754Sdelphij
660170754Sdelphijunsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
661170754Sdelphij  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
662170754Sdelphij  unsigned PhysReg;
663170754Sdelphij  while ((PhysReg = Order.next())) {
664170754Sdelphij    if (PhysReg == PrevReg)
665170754Sdelphij      continue;
666170754Sdelphij
667170754Sdelphij    MCRegUnitIterator Units(PhysReg, TRI);
668170754Sdelphij    for (; Units.isValid(); ++Units) {
669170754Sdelphij      // Instantiate a "subquery", not to be confused with the Queries array.
670170754Sdelphij      LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
671170754Sdelphij      if (subQ.checkInterference())
672170754Sdelphij        break;
673170754Sdelphij    }
674170754Sdelphij    // If no units have interference, break out with the current PhysReg.
675170754Sdelphij    if (!Units.isValid())
676170754Sdelphij      break;
677170754Sdelphij  }
678170754Sdelphij  if (PhysReg)
679170754Sdelphij    DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
680170754Sdelphij          << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
681170754Sdelphij          << '\n');
682170754Sdelphij  return PhysReg;
683170754Sdelphij}
684170754Sdelphij
685170754Sdelphij/// shouldEvict - determine if A should evict the assigned live range B. The
686170754Sdelphij/// eviction policy defined by this function together with the allocation order
687170754Sdelphij/// defined by enqueue() decides which registers ultimately end up being split
688170754Sdelphij/// and spilled.
689170754Sdelphij///
690170754Sdelphij/// Cascade numbers are used to prevent infinite loops if this function is a
691170754Sdelphij/// cyclic relation.
692170754Sdelphij///
693170754Sdelphij/// @param A          The live range to be assigned.
694170754Sdelphij/// @param IsHint     True when A is about to be assigned to its preferred
695170754Sdelphij///                   register.
696170754Sdelphij/// @param B          The live range to be evicted.
697170754Sdelphij/// @param BreaksHint True when B is already assigned to its preferred register.
698170754Sdelphijbool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
699170754Sdelphij                           LiveInterval &B, bool BreaksHint) {
700170754Sdelphij  bool CanSplit = getStage(B) < RS_Spill;
701170754Sdelphij
702170754Sdelphij  // Be fairly aggressive about following hints as long as the evictee can be
703170754Sdelphij  // split.
704170754Sdelphij  if (CanSplit && IsHint && !BreaksHint)
705170754Sdelphij    return true;
706170754Sdelphij
707170754Sdelphij  if (A.weight > B.weight) {
708170754Sdelphij    DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
709170754Sdelphij    return true;
710170754Sdelphij  }
711170754Sdelphij  return false;
712170754Sdelphij}
713170754Sdelphij
714170754Sdelphij/// canEvictInterference - Return true if all interferences between VirtReg and
715170754Sdelphij/// PhysReg can be evicted.
716170754Sdelphij///
717170754Sdelphij/// @param VirtReg Live range that is about to be assigned.
718170754Sdelphij/// @param PhysReg Desired register for assignment.
719170754Sdelphij/// @param IsHint  True when PhysReg is VirtReg's preferred register.
720170754Sdelphij/// @param MaxCost Only look for cheaper candidates and update with new cost
721170754Sdelphij///                when returning true.
722170754Sdelphij/// @returns True when interference can be evicted cheaper than MaxCost.
723170754Sdelphijbool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
724170754Sdelphij                                    bool IsHint, EvictionCost &MaxCost) {
725170754Sdelphij  // It is only possible to evict virtual register interference.
726170754Sdelphij  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
727170754Sdelphij    return false;
728170754Sdelphij
729170754Sdelphij  bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
730170754Sdelphij
731170754Sdelphij  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
732170754Sdelphij  // involved in an eviction before. If a cascade number was assigned, deny
733170754Sdelphij  // evicting anything with the same or a newer cascade number. This prevents
734170754Sdelphij  // infinite eviction loops.
735170754Sdelphij  //
736170754Sdelphij  // This works out so a register without a cascade number is allowed to evict
737170754Sdelphij  // anything, and it can be evicted by anything.
738170754Sdelphij  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
739170754Sdelphij  if (!Cascade)
740170754Sdelphij    Cascade = NextCascade;
741170754Sdelphij
742170754Sdelphij  EvictionCost Cost;
743170754Sdelphij  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
744170754Sdelphij    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
745170754Sdelphij    // If there is 10 or more interferences, chances are one is heavier.
746170754Sdelphij    if (Q.collectInterferingVRegs(10) >= 10)
747170754Sdelphij      return false;
748170754Sdelphij
749170754Sdelphij    // Check if any interfering live range is heavier than MaxWeight.
750170754Sdelphij    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
751170754Sdelphij      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
752170754Sdelphij      assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
753170754Sdelphij             "Only expecting virtual register interference from query");
754170754Sdelphij      // Never evict spill products. They cannot split or spill.
755170754Sdelphij      if (getStage(*Intf) == RS_Done)
756170754Sdelphij        return false;
757170754Sdelphij      // Once a live range becomes small enough, it is urgent that we find a
758170754Sdelphij      // register for it. This is indicated by an infinite spill weight. These
759170754Sdelphij      // urgent live ranges get to evict almost anything.
760170754Sdelphij      //
761170754Sdelphij      // Also allow urgent evictions of unspillable ranges from a strictly
762170754Sdelphij      // larger allocation order.
763170754Sdelphij      bool Urgent = !VirtReg.isSpillable() &&
764170754Sdelphij        (Intf->isSpillable() ||
765170754Sdelphij         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
766170754Sdelphij         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
767170754Sdelphij      // Only evict older cascades or live ranges without a cascade.
768170754Sdelphij      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
769170754Sdelphij      if (Cascade <= IntfCascade) {
770170754Sdelphij        if (!Urgent)
771170754Sdelphij          return false;
772170754Sdelphij        // We permit breaking cascades for urgent evictions. It should be the
773170754Sdelphij        // last resort, though, so make it really expensive.
774170754Sdelphij        Cost.BrokenHints += 10;
775170754Sdelphij      }
776170754Sdelphij      // Would this break a satisfied hint?
777170754Sdelphij      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
778170754Sdelphij      // Update eviction cost.
779170754Sdelphij      Cost.BrokenHints += BreaksHint;
780170754Sdelphij      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
781170754Sdelphij      // Abort if this would be too expensive.
782170754Sdelphij      if (!(Cost < MaxCost))
783170754Sdelphij        return false;
784170754Sdelphij      if (Urgent)
785170754Sdelphij        continue;
786170754Sdelphij      // Apply the eviction policy for non-urgent evictions.
787170754Sdelphij      if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
788170754Sdelphij        return false;
789170754Sdelphij      // If !MaxCost.isMax(), then we're just looking for a cheap register.
790170754Sdelphij      // Evicting another local live range in this case could lead to suboptimal
791170754Sdelphij      // coloring.
792170754Sdelphij      if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
793170754Sdelphij          (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
794170754Sdelphij        return false;
795170754Sdelphij      }
796170754Sdelphij    }
797170754Sdelphij  }
798170754Sdelphij  MaxCost = Cost;
799170754Sdelphij  return true;
800170754Sdelphij}
801170754Sdelphij
802170754Sdelphij/// evictInterference - Evict any interferring registers that prevent VirtReg
803170754Sdelphij/// from being assigned to Physreg. This assumes that canEvictInterference
804170754Sdelphij/// returned true.
805170754Sdelphijvoid RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
806170754Sdelphij                                 SmallVectorImpl<unsigned> &NewVRegs) {
807170754Sdelphij  // Make sure that VirtReg has a cascade number, and assign that cascade
808170754Sdelphij  // number to every evicted register. These live ranges than then only be
809170754Sdelphij  // evicted by a newer cascade, preventing infinite loops.
810170754Sdelphij  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
811170754Sdelphij  if (!Cascade)
812170754Sdelphij    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
813170754Sdelphij
814170754Sdelphij  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
815170754Sdelphij               << " interference: Cascade " << Cascade << '\n');
816170754Sdelphij
817170754Sdelphij  // Collect all interfering virtregs first.
818170754Sdelphij  SmallVector<LiveInterval*, 8> Intfs;
819170754Sdelphij  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
820170754Sdelphij    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
821170754Sdelphij    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
822170754Sdelphij    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
823170754Sdelphij    Intfs.append(IVR.begin(), IVR.end());
824170754Sdelphij  }
825170754Sdelphij
826170754Sdelphij  // Evict them second. This will invalidate the queries.
827170754Sdelphij  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
828170754Sdelphij    LiveInterval *Intf = Intfs[i];
829170754Sdelphij    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
830170754Sdelphij    if (!VRM->hasPhys(Intf->reg))
831170754Sdelphij      continue;
832170754Sdelphij    Matrix->unassign(*Intf);
833170754Sdelphij    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
834170754Sdelphij            VirtReg.isSpillable() < Intf->isSpillable()) &&
835170754Sdelphij           "Cannot decrease cascade number, illegal eviction");
836170754Sdelphij    ExtraRegInfo[Intf->reg].Cascade = Cascade;
837170754Sdelphij    ++NumEvicted;
838170754Sdelphij    NewVRegs.push_back(Intf->reg);
839170754Sdelphij  }
840170754Sdelphij}
841170754Sdelphij
842170754Sdelphij/// Returns true if the given \p PhysReg is a callee saved register and has not
843170754Sdelphij/// been used for allocation yet.
844170754Sdelphijbool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
845170754Sdelphij  unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
846170754Sdelphij  if (CSR == 0)
847170754Sdelphij    return false;
848170754Sdelphij
849170754Sdelphij  return !Matrix->isPhysRegUsed(PhysReg);
850170754Sdelphij}
851170754Sdelphij
852170754Sdelphij/// tryEvict - Try to evict all interferences for a physreg.
853170754Sdelphij/// @param  VirtReg Currently unassigned virtual register.
854170754Sdelphij/// @param  Order   Physregs to try.
855170754Sdelphij/// @return         Physreg to assign VirtReg, or 0.
856170754Sdelphijunsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
857170754Sdelphij                            AllocationOrder &Order,
858170754Sdelphij                            SmallVectorImpl<unsigned> &NewVRegs,
859170754Sdelphij                            unsigned CostPerUseLimit) {
860170754Sdelphij  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
861170754Sdelphij
862170754Sdelphij  // Keep track of the cheapest interference seen so far.
863170754Sdelphij  EvictionCost BestCost;
864170754Sdelphij  BestCost.setMax();
865170754Sdelphij  unsigned BestPhys = 0;
866170754Sdelphij  unsigned OrderLimit = Order.getOrder().size();
867170754Sdelphij
868170754Sdelphij  // When we are just looking for a reduced cost per use, don't break any
869170754Sdelphij  // hints, and only evict smaller spill weights.
870170754Sdelphij  if (CostPerUseLimit < ~0u) {
871170754Sdelphij    BestCost.BrokenHints = 0;
872170754Sdelphij    BestCost.MaxWeight = VirtReg.weight;
873170754Sdelphij
874170754Sdelphij    // Check of any registers in RC are below CostPerUseLimit.
875170754Sdelphij    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
876170754Sdelphij    unsigned MinCost = RegClassInfo.getMinCost(RC);
877170754Sdelphij    if (MinCost >= CostPerUseLimit) {
878170754Sdelphij      DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
879170754Sdelphij                   << ", no cheaper registers to be found.\n");
880170754Sdelphij      return 0;
881170754Sdelphij    }
882170754Sdelphij
883170754Sdelphij    // It is normal for register classes to have a long tail of registers with
884170754Sdelphij    // the same cost. We don't need to look at them if they're too expensive.
885170754Sdelphij    if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
886170754Sdelphij      OrderLimit = RegClassInfo.getLastCostChange(RC);
887170754Sdelphij      DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
888170754Sdelphij    }
889170754Sdelphij  }
890170754Sdelphij
891170754Sdelphij  Order.rewind();
892170754Sdelphij  while (unsigned PhysReg = Order.next(OrderLimit)) {
893170754Sdelphij    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
894170754Sdelphij      continue;
895170754Sdelphij    // The first use of a callee-saved register in a function has cost 1.
896170754Sdelphij    // Don't start using a CSR when the CostPerUseLimit is low.
897170754Sdelphij    if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
898170754Sdelphij      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
899170754Sdelphij            << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
900170754Sdelphij            << '\n');
901170754Sdelphij      continue;
902170754Sdelphij    }
903170754Sdelphij
904170754Sdelphij    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
905170754Sdelphij      continue;
906170754Sdelphij
907170754Sdelphij    // Best so far.
908170754Sdelphij    BestPhys = PhysReg;
909170754Sdelphij
910170754Sdelphij    // Stop if the hint can be used.
911170754Sdelphij    if (Order.isHint())
912170754Sdelphij      break;
913170754Sdelphij  }
914170754Sdelphij
915170754Sdelphij  if (!BestPhys)
916170754Sdelphij    return 0;
917170754Sdelphij
918170754Sdelphij  evictInterference(VirtReg, BestPhys, NewVRegs);
919170754Sdelphij  return BestPhys;
920170754Sdelphij}
921170754Sdelphij
922170754Sdelphij
923170754Sdelphij//===----------------------------------------------------------------------===//
924170754Sdelphij//                              Region Splitting
925170754Sdelphij//===----------------------------------------------------------------------===//
926170754Sdelphij
927170754Sdelphij/// addSplitConstraints - Fill out the SplitConstraints vector based on the
928170754Sdelphij/// interference pattern in Physreg and its aliases. Add the constraints to
929170754Sdelphij/// SpillPlacement and return the static cost of this split in Cost, assuming
930170754Sdelphij/// that all preferences in SplitConstraints are met.
931170754Sdelphij/// Return false if there are no bundles with positive bias.
932170754Sdelphijbool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
933170754Sdelphij                                   BlockFrequency &Cost) {
934170754Sdelphij  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
935170754Sdelphij
936170754Sdelphij  // Reset interference dependent info.
937170754Sdelphij  SplitConstraints.resize(UseBlocks.size());
938170754Sdelphij  BlockFrequency StaticCost = 0;
939170754Sdelphij  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
940170754Sdelphij    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
941170754Sdelphij    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
942170754Sdelphij
943170754Sdelphij    BC.Number = BI.MBB->getNumber();
944170754Sdelphij    Intf.moveToBlock(BC.Number);
945170754Sdelphij    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
946170754Sdelphij    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
947170754Sdelphij    BC.ChangesValue = BI.FirstDef.isValid();
948170754Sdelphij
949170754Sdelphij    if (!Intf.hasInterference())
950170754Sdelphij      continue;
951170754Sdelphij
952170754Sdelphij    // Number of spill code instructions to insert.
953170754Sdelphij    unsigned Ins = 0;
954170754Sdelphij
955170754Sdelphij    // Interference for the live-in value.
956170754Sdelphij    if (BI.LiveIn) {
957170754Sdelphij      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
958170754Sdelphij        BC.Entry = SpillPlacement::MustSpill, ++Ins;
959170754Sdelphij      else if (Intf.first() < BI.FirstInstr)
960170754Sdelphij        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
961170754Sdelphij      else if (Intf.first() < BI.LastInstr)
962170754Sdelphij        ++Ins;
963170754Sdelphij    }
964170754Sdelphij
965170754Sdelphij    // Interference for the live-out value.
966170754Sdelphij    if (BI.LiveOut) {
967170754Sdelphij      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
968170754Sdelphij        BC.Exit = SpillPlacement::MustSpill, ++Ins;
969170754Sdelphij      else if (Intf.last() > BI.LastInstr)
970170754Sdelphij        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
971170754Sdelphij      else if (Intf.last() > BI.FirstInstr)
972170754Sdelphij        ++Ins;
973170754Sdelphij    }
974170754Sdelphij
975170754Sdelphij    // Accumulate the total frequency of inserted spill code.
976170754Sdelphij    while (Ins--)
977170754Sdelphij      StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
978170754Sdelphij  }
979170754Sdelphij  Cost = StaticCost;
980170754Sdelphij
981170754Sdelphij  // Add constraints for use-blocks. Note that these are the only constraints
982170754Sdelphij  // that may add a positive bias, it is downhill from here.
983170754Sdelphij  SpillPlacer->addConstraints(SplitConstraints);
984170754Sdelphij  return SpillPlacer->scanActiveBundles();
985170754Sdelphij}
986170754Sdelphij
987170754Sdelphij
988170754Sdelphij/// addThroughConstraints - Add constraints and links to SpillPlacer from the
989170754Sdelphij/// live-through blocks in Blocks.
990170754Sdelphijvoid RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
991170754Sdelphij                                     ArrayRef<unsigned> Blocks) {
992170754Sdelphij  const unsigned GroupSize = 8;
993170754Sdelphij  SpillPlacement::BlockConstraint BCS[GroupSize];
994170754Sdelphij  unsigned TBS[GroupSize];
995170754Sdelphij  unsigned B = 0, T = 0;
996170754Sdelphij
997170754Sdelphij  for (unsigned i = 0; i != Blocks.size(); ++i) {
998170754Sdelphij    unsigned Number = Blocks[i];
999170754Sdelphij    Intf.moveToBlock(Number);
1000170754Sdelphij
1001170754Sdelphij    if (!Intf.hasInterference()) {
1002170754Sdelphij      assert(T < GroupSize && "Array overflow");
1003170754Sdelphij      TBS[T] = Number;
1004170754Sdelphij      if (++T == GroupSize) {
1005170754Sdelphij        SpillPlacer->addLinks(makeArrayRef(TBS, T));
1006170754Sdelphij        T = 0;
1007170754Sdelphij      }
1008170754Sdelphij      continue;
1009170754Sdelphij    }
1010170754Sdelphij
1011170754Sdelphij    assert(B < GroupSize && "Array overflow");
1012170754Sdelphij    BCS[B].Number = Number;
1013170754Sdelphij
1014170754Sdelphij    // Interference for the live-in value.
1015170754Sdelphij    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1016170754Sdelphij      BCS[B].Entry = SpillPlacement::MustSpill;
1017170754Sdelphij    else
1018170754Sdelphij      BCS[B].Entry = SpillPlacement::PrefSpill;
1019170754Sdelphij
1020170754Sdelphij    // Interference for the live-out value.
1021170754Sdelphij    if (Intf.last() >= SA->getLastSplitPoint(Number))
1022170754Sdelphij      BCS[B].Exit = SpillPlacement::MustSpill;
1023170754Sdelphij    else
1024170754Sdelphij      BCS[B].Exit = SpillPlacement::PrefSpill;
1025170754Sdelphij
1026170754Sdelphij    if (++B == GroupSize) {
1027170754Sdelphij      SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1028170754Sdelphij      B = 0;
1029170754Sdelphij    }
1030170754Sdelphij  }
1031170754Sdelphij
1032170754Sdelphij  SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1033170754Sdelphij  SpillPlacer->addLinks(makeArrayRef(TBS, T));
1034170754Sdelphij}
1035170754Sdelphij
1036170754Sdelphijvoid RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1037170754Sdelphij  // Keep track of through blocks that have not been added to SpillPlacer.
1038170754Sdelphij  BitVector Todo = SA->getThroughBlocks();
1039170754Sdelphij  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1040170754Sdelphij  unsigned AddedTo = 0;
1041170754Sdelphij#ifndef NDEBUG
1042170754Sdelphij  unsigned Visited = 0;
1043170754Sdelphij#endif
1044170754Sdelphij
1045170754Sdelphij  for (;;) {
1046170754Sdelphij    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1047170754Sdelphij    // Find new through blocks in the periphery of PrefRegBundles.
1048170754Sdelphij    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1049170754Sdelphij      unsigned Bundle = NewBundles[i];
1050170754Sdelphij      // Look at all blocks connected to Bundle in the full graph.
1051170754Sdelphij      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1052170754Sdelphij      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1053170754Sdelphij           I != E; ++I) {
1054170754Sdelphij        unsigned Block = *I;
1055170754Sdelphij        if (!Todo.test(Block))
1056170754Sdelphij          continue;
1057170754Sdelphij        Todo.reset(Block);
1058170754Sdelphij        // This is a new through block. Add it to SpillPlacer later.
1059170754Sdelphij        ActiveBlocks.push_back(Block);
1060170754Sdelphij#ifndef NDEBUG
1061170754Sdelphij        ++Visited;
1062170754Sdelphij#endif
1063170754Sdelphij      }
1064170754Sdelphij    }
1065170754Sdelphij    // Any new blocks to add?
1066170754Sdelphij    if (ActiveBlocks.size() == AddedTo)
1067170754Sdelphij      break;
1068170754Sdelphij
1069170754Sdelphij    // Compute through constraints from the interference, or assume that all
1070170754Sdelphij    // through blocks prefer spilling when forming compact regions.
1071170754Sdelphij    auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1072170754Sdelphij    if (Cand.PhysReg)
1073170754Sdelphij      addThroughConstraints(Cand.Intf, NewBlocks);
1074170754Sdelphij    else
1075170754Sdelphij      // Provide a strong negative bias on through blocks to prevent unwanted
1076170754Sdelphij      // liveness on loop backedges.
1077170754Sdelphij      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1078170754Sdelphij    AddedTo = ActiveBlocks.size();
1079170754Sdelphij
1080170754Sdelphij    // Perhaps iterating can enable more bundles?
1081170754Sdelphij    SpillPlacer->iterate();
1082170754Sdelphij  }
1083170754Sdelphij  DEBUG(dbgs() << ", v=" << Visited);
1084170754Sdelphij}
1085170754Sdelphij
1086170754Sdelphij/// calcCompactRegion - Compute the set of edge bundles that should be live
1087170754Sdelphij/// when splitting the current live range into compact regions.  Compact
1088170754Sdelphij/// regions can be computed without looking at interference.  They are the
1089170754Sdelphij/// regions formed by removing all the live-through blocks from the live range.
1090170754Sdelphij///
1091170754Sdelphij/// Returns false if the current live range is already compact, or if the
1092170754Sdelphij/// compact regions would form single block regions anyway.
1093170754Sdelphijbool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1094170754Sdelphij  // Without any through blocks, the live range is already compact.
1095170754Sdelphij  if (!SA->getNumThroughBlocks())
1096170754Sdelphij    return false;
1097170754Sdelphij
1098170754Sdelphij  // Compact regions don't correspond to any physreg.
1099170754Sdelphij  Cand.reset(IntfCache, 0);
1100170754Sdelphij
1101170754Sdelphij  DEBUG(dbgs() << "Compact region bundles");
1102170754Sdelphij
1103170754Sdelphij  // Use the spill placer to determine the live bundles. GrowRegion pretends
1104170754Sdelphij  // that all the through blocks have interference when PhysReg is unset.
1105170754Sdelphij  SpillPlacer->prepare(Cand.LiveBundles);
1106170754Sdelphij
1107170754Sdelphij  // The static split cost will be zero since Cand.Intf reports no interference.
1108170754Sdelphij  BlockFrequency Cost;
1109170754Sdelphij  if (!addSplitConstraints(Cand.Intf, Cost)) {
1110170754Sdelphij    DEBUG(dbgs() << ", none.\n");
1111170754Sdelphij    return false;
1112170754Sdelphij  }
1113170754Sdelphij
1114170754Sdelphij  growRegion(Cand);
1115170754Sdelphij  SpillPlacer->finish();
1116170754Sdelphij
1117170754Sdelphij  if (!Cand.LiveBundles.any()) {
1118170754Sdelphij    DEBUG(dbgs() << ", none.\n");
1119170754Sdelphij    return false;
1120170754Sdelphij  }
1121170754Sdelphij
1122170754Sdelphij  DEBUG({
1123170754Sdelphij    for (int i = Cand.LiveBundles.find_first(); i>=0;
1124170754Sdelphij         i = Cand.LiveBundles.find_next(i))
1125170754Sdelphij    dbgs() << " EB#" << i;
1126170754Sdelphij    dbgs() << ".\n";
1127170754Sdelphij  });
1128170754Sdelphij  return true;
1129170754Sdelphij}
1130170754Sdelphij
1131170754Sdelphij/// calcSpillCost - Compute how expensive it would be to split the live range in
1132170754Sdelphij/// SA around all use blocks instead of forming bundle regions.
1133170754SdelphijBlockFrequency RAGreedy::calcSpillCost() {
1134170754Sdelphij  BlockFrequency Cost = 0;
1135170754Sdelphij  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1136170754Sdelphij  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1137170754Sdelphij    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1138170754Sdelphij    unsigned Number = BI.MBB->getNumber();
1139170754Sdelphij    // We normally only need one spill instruction - a load or a store.
1140170754Sdelphij    Cost += SpillPlacer->getBlockFrequency(Number);
1141170754Sdelphij
1142170754Sdelphij    // Unless the value is redefined in the block.
1143170754Sdelphij    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1144170754Sdelphij      Cost += SpillPlacer->getBlockFrequency(Number);
1145170754Sdelphij  }
1146170754Sdelphij  return Cost;
1147170754Sdelphij}
1148170754Sdelphij
1149170754Sdelphij/// calcGlobalSplitCost - Return the global split cost of following the split
1150170754Sdelphij/// pattern in LiveBundles. This cost should be added to the local cost of the
1151170754Sdelphij/// interference pattern in SplitConstraints.
1152170754Sdelphij///
1153170754SdelphijBlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1154170754Sdelphij  BlockFrequency GlobalCost = 0;
1155170754Sdelphij  const BitVector &LiveBundles = Cand.LiveBundles;
1156170754Sdelphij  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1157170754Sdelphij  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1158170754Sdelphij    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1159170754Sdelphij    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1160170754Sdelphij    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
1161170754Sdelphij    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
1162170754Sdelphij    unsigned Ins = 0;
1163170754Sdelphij
1164170754Sdelphij    if (BI.LiveIn)
1165170754Sdelphij      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1166170754Sdelphij    if (BI.LiveOut)
1167170754Sdelphij      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1168170754Sdelphij    while (Ins--)
1169170754Sdelphij      GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1170170754Sdelphij  }
1171170754Sdelphij
1172170754Sdelphij  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1173170754Sdelphij    unsigned Number = Cand.ActiveBlocks[i];
1174170754Sdelphij    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
1175170754Sdelphij    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1176170754Sdelphij    if (!RegIn && !RegOut)
1177170754Sdelphij      continue;
1178170754Sdelphij    if (RegIn && RegOut) {
1179170754Sdelphij      // We need double spill code if this block has interference.
1180170754Sdelphij      Cand.Intf.moveToBlock(Number);
1181170754Sdelphij      if (Cand.Intf.hasInterference()) {
1182170754Sdelphij        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1183170754Sdelphij        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1184170754Sdelphij      }
1185170754Sdelphij      continue;
1186170754Sdelphij    }
1187170754Sdelphij    // live-in / stack-out or stack-in live-out.
1188170754Sdelphij    GlobalCost += SpillPlacer->getBlockFrequency(Number);
1189170754Sdelphij  }
1190170754Sdelphij  return GlobalCost;
1191170754Sdelphij}
1192170754Sdelphij
1193170754Sdelphij/// splitAroundRegion - Split the current live range around the regions
1194170754Sdelphij/// determined by BundleCand and GlobalCand.
1195170754Sdelphij///
1196170754Sdelphij/// Before calling this function, GlobalCand and BundleCand must be initialized
1197170754Sdelphij/// so each bundle is assigned to a valid candidate, or NoCand for the
1198170754Sdelphij/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1199170754Sdelphij/// objects must be initialized for the current live range, and intervals
1200170754Sdelphij/// created for the used candidates.
1201170754Sdelphij///
1202170754Sdelphij/// @param LREdit    The LiveRangeEdit object handling the current split.
1203170754Sdelphij/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1204170754Sdelphij///                  must appear in this list.
1205170754Sdelphijvoid RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1206170754Sdelphij                                 ArrayRef<unsigned> UsedCands) {
1207170754Sdelphij  // These are the intervals created for new global ranges. We may create more
1208170754Sdelphij  // intervals for local ranges.
1209170754Sdelphij  const unsigned NumGlobalIntvs = LREdit.size();
1210170754Sdelphij  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1211170754Sdelphij  assert(NumGlobalIntvs && "No global intervals configured");
1212170754Sdelphij
1213170754Sdelphij  // Isolate even single instructions when dealing with a proper sub-class.
1214170754Sdelphij  // That guarantees register class inflation for the stack interval because it
1215170754Sdelphij  // is all copies.
1216170754Sdelphij  unsigned Reg = SA->getParent().reg;
1217170754Sdelphij  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1218170754Sdelphij
1219170754Sdelphij  // First handle all the blocks with uses.
1220170754Sdelphij  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1221170754Sdelphij  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1222170754Sdelphij    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1223170754Sdelphij    unsigned Number = BI.MBB->getNumber();
1224170754Sdelphij    unsigned IntvIn = 0, IntvOut = 0;
1225170754Sdelphij    SlotIndex IntfIn, IntfOut;
1226    if (BI.LiveIn) {
1227      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1228      if (CandIn != NoCand) {
1229        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1230        IntvIn = Cand.IntvIdx;
1231        Cand.Intf.moveToBlock(Number);
1232        IntfIn = Cand.Intf.first();
1233      }
1234    }
1235    if (BI.LiveOut) {
1236      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1237      if (CandOut != NoCand) {
1238        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1239        IntvOut = Cand.IntvIdx;
1240        Cand.Intf.moveToBlock(Number);
1241        IntfOut = Cand.Intf.last();
1242      }
1243    }
1244
1245    // Create separate intervals for isolated blocks with multiple uses.
1246    if (!IntvIn && !IntvOut) {
1247      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1248      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1249        SE->splitSingleBlock(BI);
1250      continue;
1251    }
1252
1253    if (IntvIn && IntvOut)
1254      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1255    else if (IntvIn)
1256      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1257    else
1258      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1259  }
1260
1261  // Handle live-through blocks. The relevant live-through blocks are stored in
1262  // the ActiveBlocks list with each candidate. We need to filter out
1263  // duplicates.
1264  BitVector Todo = SA->getThroughBlocks();
1265  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1266    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1267    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1268      unsigned Number = Blocks[i];
1269      if (!Todo.test(Number))
1270        continue;
1271      Todo.reset(Number);
1272
1273      unsigned IntvIn = 0, IntvOut = 0;
1274      SlotIndex IntfIn, IntfOut;
1275
1276      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1277      if (CandIn != NoCand) {
1278        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1279        IntvIn = Cand.IntvIdx;
1280        Cand.Intf.moveToBlock(Number);
1281        IntfIn = Cand.Intf.first();
1282      }
1283
1284      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1285      if (CandOut != NoCand) {
1286        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1287        IntvOut = Cand.IntvIdx;
1288        Cand.Intf.moveToBlock(Number);
1289        IntfOut = Cand.Intf.last();
1290      }
1291      if (!IntvIn && !IntvOut)
1292        continue;
1293      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1294    }
1295  }
1296
1297  ++NumGlobalSplits;
1298
1299  SmallVector<unsigned, 8> IntvMap;
1300  SE->finish(&IntvMap);
1301  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1302
1303  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1304  unsigned OrigBlocks = SA->getNumLiveBlocks();
1305
1306  // Sort out the new intervals created by splitting. We get four kinds:
1307  // - Remainder intervals should not be split again.
1308  // - Candidate intervals can be assigned to Cand.PhysReg.
1309  // - Block-local splits are candidates for local splitting.
1310  // - DCE leftovers should go back on the queue.
1311  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1312    LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1313
1314    // Ignore old intervals from DCE.
1315    if (getStage(Reg) != RS_New)
1316      continue;
1317
1318    // Remainder interval. Don't try splitting again, spill if it doesn't
1319    // allocate.
1320    if (IntvMap[i] == 0) {
1321      setStage(Reg, RS_Spill);
1322      continue;
1323    }
1324
1325    // Global intervals. Allow repeated splitting as long as the number of live
1326    // blocks is strictly decreasing.
1327    if (IntvMap[i] < NumGlobalIntvs) {
1328      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1329        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1330                     << " blocks as original.\n");
1331        // Don't allow repeated splitting as a safe guard against looping.
1332        setStage(Reg, RS_Split2);
1333      }
1334      continue;
1335    }
1336
1337    // Other intervals are treated as new. This includes local intervals created
1338    // for blocks with multiple uses, and anything created by DCE.
1339  }
1340
1341  if (VerifyEnabled)
1342    MF->verify(this, "After splitting live range around region");
1343}
1344
1345unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1346                                  SmallVectorImpl<unsigned> &NewVRegs) {
1347  unsigned NumCands = 0;
1348  BlockFrequency BestCost;
1349
1350  // Check if we can split this live range around a compact region.
1351  bool HasCompact = calcCompactRegion(GlobalCand.front());
1352  if (HasCompact) {
1353    // Yes, keep GlobalCand[0] as the compact region candidate.
1354    NumCands = 1;
1355    BestCost = BlockFrequency::getMaxFrequency();
1356  } else {
1357    // No benefit from the compact region, our fallback will be per-block
1358    // splitting. Make sure we find a solution that is cheaper than spilling.
1359    BestCost = calcSpillCost();
1360    DEBUG(dbgs() << "Cost of isolating all blocks = ";
1361                 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1362  }
1363
1364  unsigned BestCand =
1365      calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1366                               false/*IgnoreCSR*/);
1367
1368  // No solutions found, fall back to single block splitting.
1369  if (!HasCompact && BestCand == NoCand)
1370    return 0;
1371
1372  return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1373}
1374
1375unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1376                                            AllocationOrder &Order,
1377                                            BlockFrequency &BestCost,
1378                                            unsigned &NumCands,
1379                                            bool IgnoreCSR) {
1380  unsigned BestCand = NoCand;
1381  Order.rewind();
1382  while (unsigned PhysReg = Order.next()) {
1383    if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1384      continue;
1385
1386    // Discard bad candidates before we run out of interference cache cursors.
1387    // This will only affect register classes with a lot of registers (>32).
1388    if (NumCands == IntfCache.getMaxCursors()) {
1389      unsigned WorstCount = ~0u;
1390      unsigned Worst = 0;
1391      for (unsigned i = 0; i != NumCands; ++i) {
1392        if (i == BestCand || !GlobalCand[i].PhysReg)
1393          continue;
1394        unsigned Count = GlobalCand[i].LiveBundles.count();
1395        if (Count < WorstCount)
1396          Worst = i, WorstCount = Count;
1397      }
1398      --NumCands;
1399      GlobalCand[Worst] = GlobalCand[NumCands];
1400      if (BestCand == NumCands)
1401        BestCand = Worst;
1402    }
1403
1404    if (GlobalCand.size() <= NumCands)
1405      GlobalCand.resize(NumCands+1);
1406    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1407    Cand.reset(IntfCache, PhysReg);
1408
1409    SpillPlacer->prepare(Cand.LiveBundles);
1410    BlockFrequency Cost;
1411    if (!addSplitConstraints(Cand.Intf, Cost)) {
1412      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1413      continue;
1414    }
1415    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1416                 MBFI->printBlockFreq(dbgs(), Cost));
1417    if (Cost >= BestCost) {
1418      DEBUG({
1419        if (BestCand == NoCand)
1420          dbgs() << " worse than no bundles\n";
1421        else
1422          dbgs() << " worse than "
1423                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1424      });
1425      continue;
1426    }
1427    growRegion(Cand);
1428
1429    SpillPlacer->finish();
1430
1431    // No live bundles, defer to splitSingleBlocks().
1432    if (!Cand.LiveBundles.any()) {
1433      DEBUG(dbgs() << " no bundles.\n");
1434      continue;
1435    }
1436
1437    Cost += calcGlobalSplitCost(Cand);
1438    DEBUG({
1439      dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1440                                << " with bundles";
1441      for (int i = Cand.LiveBundles.find_first(); i>=0;
1442           i = Cand.LiveBundles.find_next(i))
1443        dbgs() << " EB#" << i;
1444      dbgs() << ".\n";
1445    });
1446    if (Cost < BestCost) {
1447      BestCand = NumCands;
1448      BestCost = Cost;
1449    }
1450    ++NumCands;
1451  }
1452  return BestCand;
1453}
1454
1455unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1456                                 bool HasCompact,
1457                                 SmallVectorImpl<unsigned> &NewVRegs) {
1458  SmallVector<unsigned, 8> UsedCands;
1459  // Prepare split editor.
1460  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1461  SE->reset(LREdit, SplitSpillMode);
1462
1463  // Assign all edge bundles to the preferred candidate, or NoCand.
1464  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1465
1466  // Assign bundles for the best candidate region.
1467  if (BestCand != NoCand) {
1468    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1469    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1470      UsedCands.push_back(BestCand);
1471      Cand.IntvIdx = SE->openIntv();
1472      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1473                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1474      (void)B;
1475    }
1476  }
1477
1478  // Assign bundles for the compact region.
1479  if (HasCompact) {
1480    GlobalSplitCandidate &Cand = GlobalCand.front();
1481    assert(!Cand.PhysReg && "Compact region has no physreg");
1482    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1483      UsedCands.push_back(0);
1484      Cand.IntvIdx = SE->openIntv();
1485      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1486                   << Cand.IntvIdx << ".\n");
1487      (void)B;
1488    }
1489  }
1490
1491  splitAroundRegion(LREdit, UsedCands);
1492  return 0;
1493}
1494
1495
1496//===----------------------------------------------------------------------===//
1497//                            Per-Block Splitting
1498//===----------------------------------------------------------------------===//
1499
1500/// tryBlockSplit - Split a global live range around every block with uses. This
1501/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1502/// they don't allocate.
1503unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1504                                 SmallVectorImpl<unsigned> &NewVRegs) {
1505  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1506  unsigned Reg = VirtReg.reg;
1507  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1508  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1509  SE->reset(LREdit, SplitSpillMode);
1510  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1511  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1512    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1513    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1514      SE->splitSingleBlock(BI);
1515  }
1516  // No blocks were split.
1517  if (LREdit.empty())
1518    return 0;
1519
1520  // We did split for some blocks.
1521  SmallVector<unsigned, 8> IntvMap;
1522  SE->finish(&IntvMap);
1523
1524  // Tell LiveDebugVariables about the new ranges.
1525  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1526
1527  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1528
1529  // Sort out the new intervals created by splitting. The remainder interval
1530  // goes straight to spilling, the new local ranges get to stay RS_New.
1531  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1532    LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1533    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1534      setStage(LI, RS_Spill);
1535  }
1536
1537  if (VerifyEnabled)
1538    MF->verify(this, "After splitting live range around basic blocks");
1539  return 0;
1540}
1541
1542
1543//===----------------------------------------------------------------------===//
1544//                         Per-Instruction Splitting
1545//===----------------------------------------------------------------------===//
1546
1547/// Get the number of allocatable registers that match the constraints of \p Reg
1548/// on \p MI and that are also in \p SuperRC.
1549static unsigned getNumAllocatableRegsForConstraints(
1550    const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1551    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1552    const RegisterClassInfo &RCI) {
1553  assert(SuperRC && "Invalid register class");
1554
1555  const TargetRegisterClass *ConstrainedRC =
1556      MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1557                                             /* ExploreBundle */ true);
1558  if (!ConstrainedRC)
1559    return 0;
1560  return RCI.getNumAllocatableRegs(ConstrainedRC);
1561}
1562
1563/// tryInstructionSplit - Split a live range around individual instructions.
1564/// This is normally not worthwhile since the spiller is doing essentially the
1565/// same thing. However, when the live range is in a constrained register
1566/// class, it may help to insert copies such that parts of the live range can
1567/// be moved to a larger register class.
1568///
1569/// This is similar to spilling to a larger register class.
1570unsigned
1571RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1572                              SmallVectorImpl<unsigned> &NewVRegs) {
1573  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1574  // There is no point to this if there are no larger sub-classes.
1575  if (!RegClassInfo.isProperSubClass(CurRC))
1576    return 0;
1577
1578  // Always enable split spill mode, since we're effectively spilling to a
1579  // register.
1580  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1581  SE->reset(LREdit, SplitEditor::SM_Size);
1582
1583  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1584  if (Uses.size() <= 1)
1585    return 0;
1586
1587  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1588
1589  const TargetRegisterClass *SuperRC =
1590      TRI->getLargestLegalSuperClass(CurRC, *MF);
1591  unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1592  // Split around every non-copy instruction if this split will relax
1593  // the constraints on the virtual register.
1594  // Otherwise, splitting just inserts uncoalescable copies that do not help
1595  // the allocation.
1596  for (unsigned i = 0; i != Uses.size(); ++i) {
1597    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1598      if (MI->isFullCopy() ||
1599          SuperRCNumAllocatableRegs ==
1600              getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1601                                                  TRI, RCI)) {
1602        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1603        continue;
1604      }
1605    SE->openIntv();
1606    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1607    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1608    SE->useIntv(SegStart, SegStop);
1609  }
1610
1611  if (LREdit.empty()) {
1612    DEBUG(dbgs() << "All uses were copies.\n");
1613    return 0;
1614  }
1615
1616  SmallVector<unsigned, 8> IntvMap;
1617  SE->finish(&IntvMap);
1618  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1619  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1620
1621  // Assign all new registers to RS_Spill. This was the last chance.
1622  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1623  return 0;
1624}
1625
1626
1627//===----------------------------------------------------------------------===//
1628//                             Local Splitting
1629//===----------------------------------------------------------------------===//
1630
1631
1632/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1633/// in order to use PhysReg between two entries in SA->UseSlots.
1634///
1635/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1636///
1637void RAGreedy::calcGapWeights(unsigned PhysReg,
1638                              SmallVectorImpl<float> &GapWeight) {
1639  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1640  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1641  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1642  const unsigned NumGaps = Uses.size()-1;
1643
1644  // Start and end points for the interference check.
1645  SlotIndex StartIdx =
1646    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1647  SlotIndex StopIdx =
1648    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1649
1650  GapWeight.assign(NumGaps, 0.0f);
1651
1652  // Add interference from each overlapping register.
1653  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1654    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1655          .checkInterference())
1656      continue;
1657
1658    // We know that VirtReg is a continuous interval from FirstInstr to
1659    // LastInstr, so we don't need InterferenceQuery.
1660    //
1661    // Interference that overlaps an instruction is counted in both gaps
1662    // surrounding the instruction. The exception is interference before
1663    // StartIdx and after StopIdx.
1664    //
1665    LiveIntervalUnion::SegmentIter IntI =
1666      Matrix->getLiveUnions()[*Units] .find(StartIdx);
1667    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1668      // Skip the gaps before IntI.
1669      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1670        if (++Gap == NumGaps)
1671          break;
1672      if (Gap == NumGaps)
1673        break;
1674
1675      // Update the gaps covered by IntI.
1676      const float weight = IntI.value()->weight;
1677      for (; Gap != NumGaps; ++Gap) {
1678        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1679        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1680          break;
1681      }
1682      if (Gap == NumGaps)
1683        break;
1684    }
1685  }
1686
1687  // Add fixed interference.
1688  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1689    const LiveRange &LR = LIS->getRegUnit(*Units);
1690    LiveRange::const_iterator I = LR.find(StartIdx);
1691    LiveRange::const_iterator E = LR.end();
1692
1693    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1694    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1695      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1696        if (++Gap == NumGaps)
1697          break;
1698      if (Gap == NumGaps)
1699        break;
1700
1701      for (; Gap != NumGaps; ++Gap) {
1702        GapWeight[Gap] = llvm::huge_valf;
1703        if (Uses[Gap+1].getBaseIndex() >= I->end)
1704          break;
1705      }
1706      if (Gap == NumGaps)
1707        break;
1708    }
1709  }
1710}
1711
1712/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1713/// basic block.
1714///
1715unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1716                                 SmallVectorImpl<unsigned> &NewVRegs) {
1717  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1718  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1719
1720  // Note that it is possible to have an interval that is live-in or live-out
1721  // while only covering a single block - A phi-def can use undef values from
1722  // predecessors, and the block could be a single-block loop.
1723  // We don't bother doing anything clever about such a case, we simply assume
1724  // that the interval is continuous from FirstInstr to LastInstr. We should
1725  // make sure that we don't do anything illegal to such an interval, though.
1726
1727  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1728  if (Uses.size() <= 2)
1729    return 0;
1730  const unsigned NumGaps = Uses.size()-1;
1731
1732  DEBUG({
1733    dbgs() << "tryLocalSplit: ";
1734    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1735      dbgs() << ' ' << Uses[i];
1736    dbgs() << '\n';
1737  });
1738
1739  // If VirtReg is live across any register mask operands, compute a list of
1740  // gaps with register masks.
1741  SmallVector<unsigned, 8> RegMaskGaps;
1742  if (Matrix->checkRegMaskInterference(VirtReg)) {
1743    // Get regmask slots for the whole block.
1744    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1745    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1746    // Constrain to VirtReg's live range.
1747    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1748                                   Uses.front().getRegSlot()) - RMS.begin();
1749    unsigned re = RMS.size();
1750    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1751      // Look for Uses[i] <= RMS <= Uses[i+1].
1752      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1753      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1754        continue;
1755      // Skip a regmask on the same instruction as the last use. It doesn't
1756      // overlap the live range.
1757      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1758        break;
1759      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1760      RegMaskGaps.push_back(i);
1761      // Advance ri to the next gap. A regmask on one of the uses counts in
1762      // both gaps.
1763      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1764        ++ri;
1765    }
1766    DEBUG(dbgs() << '\n');
1767  }
1768
1769  // Since we allow local split results to be split again, there is a risk of
1770  // creating infinite loops. It is tempting to require that the new live
1771  // ranges have less instructions than the original. That would guarantee
1772  // convergence, but it is too strict. A live range with 3 instructions can be
1773  // split 2+3 (including the COPY), and we want to allow that.
1774  //
1775  // Instead we use these rules:
1776  //
1777  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1778  //    noop split, of course).
1779  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1780  //    the new ranges must have fewer instructions than before the split.
1781  // 3. New ranges with the same number of instructions are marked RS_Split2,
1782  //    smaller ranges are marked RS_New.
1783  //
1784  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1785  // excessive splitting and infinite loops.
1786  //
1787  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1788
1789  // Best split candidate.
1790  unsigned BestBefore = NumGaps;
1791  unsigned BestAfter = 0;
1792  float BestDiff = 0;
1793
1794  const float blockFreq =
1795    SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1796    (1.0f / MBFI->getEntryFreq());
1797  SmallVector<float, 8> GapWeight;
1798
1799  Order.rewind();
1800  while (unsigned PhysReg = Order.next()) {
1801    // Keep track of the largest spill weight that would need to be evicted in
1802    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1803    calcGapWeights(PhysReg, GapWeight);
1804
1805    // Remove any gaps with regmask clobbers.
1806    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1807      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1808        GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1809
1810    // Try to find the best sequence of gaps to close.
1811    // The new spill weight must be larger than any gap interference.
1812
1813    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1814    unsigned SplitBefore = 0, SplitAfter = 1;
1815
1816    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1817    // It is the spill weight that needs to be evicted.
1818    float MaxGap = GapWeight[0];
1819
1820    for (;;) {
1821      // Live before/after split?
1822      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1823      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1824
1825      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1826                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1827                   << " i=" << MaxGap);
1828
1829      // Stop before the interval gets so big we wouldn't be making progress.
1830      if (!LiveBefore && !LiveAfter) {
1831        DEBUG(dbgs() << " all\n");
1832        break;
1833      }
1834      // Should the interval be extended or shrunk?
1835      bool Shrink = true;
1836
1837      // How many gaps would the new range have?
1838      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1839
1840      // Legally, without causing looping?
1841      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1842
1843      if (Legal && MaxGap < llvm::huge_valf) {
1844        // Estimate the new spill weight. Each instruction reads or writes the
1845        // register. Conservatively assume there are no read-modify-write
1846        // instructions.
1847        //
1848        // Try to guess the size of the new interval.
1849        const float EstWeight = normalizeSpillWeight(
1850            blockFreq * (NewGaps + 1),
1851            Uses[SplitBefore].distance(Uses[SplitAfter]) +
1852                (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1853            1);
1854        // Would this split be possible to allocate?
1855        // Never allocate all gaps, we wouldn't be making progress.
1856        DEBUG(dbgs() << " w=" << EstWeight);
1857        if (EstWeight * Hysteresis >= MaxGap) {
1858          Shrink = false;
1859          float Diff = EstWeight - MaxGap;
1860          if (Diff > BestDiff) {
1861            DEBUG(dbgs() << " (best)");
1862            BestDiff = Hysteresis * Diff;
1863            BestBefore = SplitBefore;
1864            BestAfter = SplitAfter;
1865          }
1866        }
1867      }
1868
1869      // Try to shrink.
1870      if (Shrink) {
1871        if (++SplitBefore < SplitAfter) {
1872          DEBUG(dbgs() << " shrink\n");
1873          // Recompute the max when necessary.
1874          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1875            MaxGap = GapWeight[SplitBefore];
1876            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1877              MaxGap = std::max(MaxGap, GapWeight[i]);
1878          }
1879          continue;
1880        }
1881        MaxGap = 0;
1882      }
1883
1884      // Try to extend the interval.
1885      if (SplitAfter >= NumGaps) {
1886        DEBUG(dbgs() << " end\n");
1887        break;
1888      }
1889
1890      DEBUG(dbgs() << " extend\n");
1891      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1892    }
1893  }
1894
1895  // Didn't find any candidates?
1896  if (BestBefore == NumGaps)
1897    return 0;
1898
1899  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1900               << '-' << Uses[BestAfter] << ", " << BestDiff
1901               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1902
1903  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1904  SE->reset(LREdit);
1905
1906  SE->openIntv();
1907  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1908  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1909  SE->useIntv(SegStart, SegStop);
1910  SmallVector<unsigned, 8> IntvMap;
1911  SE->finish(&IntvMap);
1912  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1913
1914  // If the new range has the same number of instructions as before, mark it as
1915  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1916  // leave the new intervals as RS_New so they can compete.
1917  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1918  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1919  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1920  if (NewGaps >= NumGaps) {
1921    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1922    assert(!ProgressRequired && "Didn't make progress when it was required.");
1923    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1924      if (IntvMap[i] == 1) {
1925        setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1926        DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1927      }
1928    DEBUG(dbgs() << '\n');
1929  }
1930  ++NumLocalSplits;
1931
1932  return 0;
1933}
1934
1935//===----------------------------------------------------------------------===//
1936//                          Live Range Splitting
1937//===----------------------------------------------------------------------===//
1938
1939/// trySplit - Try to split VirtReg or one of its interferences, making it
1940/// assignable.
1941/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1942unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1943                            SmallVectorImpl<unsigned>&NewVRegs) {
1944  // Ranges must be Split2 or less.
1945  if (getStage(VirtReg) >= RS_Spill)
1946    return 0;
1947
1948  // Local intervals are handled separately.
1949  if (LIS->intervalIsInOneMBB(VirtReg)) {
1950    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1951    SA->analyze(&VirtReg);
1952    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1953    if (PhysReg || !NewVRegs.empty())
1954      return PhysReg;
1955    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1956  }
1957
1958  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1959
1960  SA->analyze(&VirtReg);
1961
1962  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1963  // coalescer. That may cause the range to become allocatable which means that
1964  // tryRegionSplit won't be making progress. This check should be replaced with
1965  // an assertion when the coalescer is fixed.
1966  if (SA->didRepairRange()) {
1967    // VirtReg has changed, so all cached queries are invalid.
1968    Matrix->invalidateVirtRegs();
1969    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1970      return PhysReg;
1971  }
1972
1973  // First try to split around a region spanning multiple blocks. RS_Split2
1974  // ranges already made dubious progress with region splitting, so they go
1975  // straight to single block splitting.
1976  if (getStage(VirtReg) < RS_Split2) {
1977    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1978    if (PhysReg || !NewVRegs.empty())
1979      return PhysReg;
1980  }
1981
1982  // Then isolate blocks.
1983  return tryBlockSplit(VirtReg, Order, NewVRegs);
1984}
1985
1986//===----------------------------------------------------------------------===//
1987//                          Last Chance Recoloring
1988//===----------------------------------------------------------------------===//
1989
1990/// mayRecolorAllInterferences - Check if the virtual registers that
1991/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1992/// recolored to free \p PhysReg.
1993/// When true is returned, \p RecoloringCandidates has been augmented with all
1994/// the live intervals that need to be recolored in order to free \p PhysReg
1995/// for \p VirtReg.
1996/// \p FixedRegisters contains all the virtual registers that cannot be
1997/// recolored.
1998bool
1999RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2000                                     SmallLISet &RecoloringCandidates,
2001                                     const SmallVirtRegSet &FixedRegisters) {
2002  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2003
2004  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2005    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2006    // If there is LastChanceRecoloringMaxInterference or more interferences,
2007    // chances are one would not be recolorable.
2008    if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2009        LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2010      DEBUG(dbgs() << "Early abort: too many interferences.\n");
2011      CutOffInfo |= CO_Interf;
2012      return false;
2013    }
2014    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2015      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2016      // If Intf is done and sit on the same register class as VirtReg,
2017      // it would not be recolorable as it is in the same state as VirtReg.
2018      if ((getStage(*Intf) == RS_Done &&
2019           MRI->getRegClass(Intf->reg) == CurRC) ||
2020          FixedRegisters.count(Intf->reg)) {
2021        DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
2022        return false;
2023      }
2024      RecoloringCandidates.insert(Intf);
2025    }
2026  }
2027  return true;
2028}
2029
2030/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2031/// its interferences.
2032/// Last chance recoloring chooses a color for \p VirtReg and recolors every
2033/// virtual register that was using it. The recoloring process may recursively
2034/// use the last chance recoloring. Therefore, when a virtual register has been
2035/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2036/// be last-chance-recolored again during this recoloring "session".
2037/// E.g.,
2038/// Let
2039/// vA can use {R1, R2    }
2040/// vB can use {    R2, R3}
2041/// vC can use {R1        }
2042/// Where vA, vB, and vC cannot be split anymore (they are reloads for
2043/// instance) and they all interfere.
2044///
2045/// vA is assigned R1
2046/// vB is assigned R2
2047/// vC tries to evict vA but vA is already done.
2048/// Regular register allocation fails.
2049///
2050/// Last chance recoloring kicks in:
2051/// vC does as if vA was evicted => vC uses R1.
2052/// vC is marked as fixed.
2053/// vA needs to find a color.
2054/// None are available.
2055/// vA cannot evict vC: vC is a fixed virtual register now.
2056/// vA does as if vB was evicted => vA uses R2.
2057/// vB needs to find a color.
2058/// R3 is available.
2059/// Recoloring => vC = R1, vA = R2, vB = R3
2060///
2061/// \p Order defines the preferred allocation order for \p VirtReg.
2062/// \p NewRegs will contain any new virtual register that have been created
2063/// (split, spill) during the process and that must be assigned.
2064/// \p FixedRegisters contains all the virtual registers that cannot be
2065/// recolored.
2066/// \p Depth gives the current depth of the last chance recoloring.
2067/// \return a physical register that can be used for VirtReg or ~0u if none
2068/// exists.
2069unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2070                                           AllocationOrder &Order,
2071                                           SmallVectorImpl<unsigned> &NewVRegs,
2072                                           SmallVirtRegSet &FixedRegisters,
2073                                           unsigned Depth) {
2074  DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2075  // Ranges must be Done.
2076  assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2077         "Last chance recoloring should really be last chance");
2078  // Set the max depth to LastChanceRecoloringMaxDepth.
2079  // We may want to reconsider that if we end up with a too large search space
2080  // for target with hundreds of registers.
2081  // Indeed, in that case we may want to cut the search space earlier.
2082  if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2083    DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2084    CutOffInfo |= CO_Depth;
2085    return ~0u;
2086  }
2087
2088  // Set of Live intervals that will need to be recolored.
2089  SmallLISet RecoloringCandidates;
2090  // Record the original mapping virtual register to physical register in case
2091  // the recoloring fails.
2092  DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2093  // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2094  // this recoloring "session".
2095  FixedRegisters.insert(VirtReg.reg);
2096
2097  Order.rewind();
2098  while (unsigned PhysReg = Order.next()) {
2099    DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2100                 << PrintReg(PhysReg, TRI) << '\n');
2101    RecoloringCandidates.clear();
2102    VirtRegToPhysReg.clear();
2103
2104    // It is only possible to recolor virtual register interference.
2105    if (Matrix->checkInterference(VirtReg, PhysReg) >
2106        LiveRegMatrix::IK_VirtReg) {
2107      DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
2108
2109      continue;
2110    }
2111
2112    // Early give up on this PhysReg if it is obvious we cannot recolor all
2113    // the interferences.
2114    if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2115                                    FixedRegisters)) {
2116      DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
2117      continue;
2118    }
2119
2120    // RecoloringCandidates contains all the virtual registers that interfer
2121    // with VirtReg on PhysReg (or one of its aliases).
2122    // Enqueue them for recoloring and perform the actual recoloring.
2123    PQueue RecoloringQueue;
2124    for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2125                              EndIt = RecoloringCandidates.end();
2126         It != EndIt; ++It) {
2127      unsigned ItVirtReg = (*It)->reg;
2128      enqueue(RecoloringQueue, *It);
2129      assert(VRM->hasPhys(ItVirtReg) &&
2130             "Interferences are supposed to be with allocated vairables");
2131
2132      // Record the current allocation.
2133      VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2134      // unset the related struct.
2135      Matrix->unassign(**It);
2136    }
2137
2138    // Do as if VirtReg was assigned to PhysReg so that the underlying
2139    // recoloring has the right information about the interferes and
2140    // available colors.
2141    Matrix->assign(VirtReg, PhysReg);
2142
2143    // Save the current recoloring state.
2144    // If we cannot recolor all the interferences, we will have to start again
2145    // at this point for the next physical register.
2146    SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2147    if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
2148                                Depth)) {
2149      // Do not mess up with the global assignment process.
2150      // I.e., VirtReg must be unassigned.
2151      Matrix->unassign(VirtReg);
2152      return PhysReg;
2153    }
2154
2155    DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2156                 << PrintReg(PhysReg, TRI) << '\n');
2157
2158    // The recoloring attempt failed, undo the changes.
2159    FixedRegisters = SaveFixedRegisters;
2160    Matrix->unassign(VirtReg);
2161
2162    for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2163                              EndIt = RecoloringCandidates.end();
2164         It != EndIt; ++It) {
2165      unsigned ItVirtReg = (*It)->reg;
2166      if (VRM->hasPhys(ItVirtReg))
2167        Matrix->unassign(**It);
2168      unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2169      Matrix->assign(**It, ItPhysReg);
2170    }
2171  }
2172
2173  // Last chance recoloring did not worked either, give up.
2174  return ~0u;
2175}
2176
2177/// tryRecoloringCandidates - Try to assign a new color to every register
2178/// in \RecoloringQueue.
2179/// \p NewRegs will contain any new virtual register created during the
2180/// recoloring process.
2181/// \p FixedRegisters[in/out] contains all the registers that have been
2182/// recolored.
2183/// \return true if all virtual registers in RecoloringQueue were successfully
2184/// recolored, false otherwise.
2185bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2186                                       SmallVectorImpl<unsigned> &NewVRegs,
2187                                       SmallVirtRegSet &FixedRegisters,
2188                                       unsigned Depth) {
2189  while (!RecoloringQueue.empty()) {
2190    LiveInterval *LI = dequeue(RecoloringQueue);
2191    DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2192    unsigned PhysReg;
2193    PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2194    if (PhysReg == ~0u || !PhysReg)
2195      return false;
2196    DEBUG(dbgs() << "Recoloring of " << *LI
2197                 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2198    Matrix->assign(*LI, PhysReg);
2199    FixedRegisters.insert(LI->reg);
2200  }
2201  return true;
2202}
2203
2204//===----------------------------------------------------------------------===//
2205//                            Main Entry Point
2206//===----------------------------------------------------------------------===//
2207
2208unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2209                                 SmallVectorImpl<unsigned> &NewVRegs) {
2210  CutOffInfo = CO_None;
2211  LLVMContext &Ctx = MF->getFunction()->getContext();
2212  SmallVirtRegSet FixedRegisters;
2213  unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2214  if (Reg == ~0U && (CutOffInfo != CO_None)) {
2215    uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2216    if (CutOffEncountered == CO_Depth)
2217      Ctx.emitError("register allocation failed: maximum depth for recoloring "
2218                    "reached. Use -fexhaustive-register-search to skip "
2219                    "cutoffs");
2220    else if (CutOffEncountered == CO_Interf)
2221      Ctx.emitError("register allocation failed: maximum interference for "
2222                    "recoloring reached. Use -fexhaustive-register-search "
2223                    "to skip cutoffs");
2224    else if (CutOffEncountered == (CO_Depth | CO_Interf))
2225      Ctx.emitError("register allocation failed: maximum interference and "
2226                    "depth for recoloring reached. Use "
2227                    "-fexhaustive-register-search to skip cutoffs");
2228  }
2229  return Reg;
2230}
2231
2232/// Using a CSR for the first time has a cost because it causes push|pop
2233/// to be added to prologue|epilogue. Splitting a cold section of the live
2234/// range can have lower cost than using the CSR for the first time;
2235/// Spilling a live range in the cold path can have lower cost than using
2236/// the CSR for the first time. Returns the physical register if we decide
2237/// to use the CSR; otherwise return 0.
2238unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2239                                         AllocationOrder &Order,
2240                                         unsigned PhysReg,
2241                                         unsigned &CostPerUseLimit,
2242                                         SmallVectorImpl<unsigned> &NewVRegs) {
2243  if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2244    // We choose spill over using the CSR for the first time if the spill cost
2245    // is lower than CSRCost.
2246    SA->analyze(&VirtReg);
2247    if (calcSpillCost() >= CSRCost)
2248      return PhysReg;
2249
2250    // We are going to spill, set CostPerUseLimit to 1 to make sure that
2251    // we will not use a callee-saved register in tryEvict.
2252    CostPerUseLimit = 1;
2253    return 0;
2254  }
2255  if (getStage(VirtReg) < RS_Split) {
2256    // We choose pre-splitting over using the CSR for the first time if
2257    // the cost of splitting is lower than CSRCost.
2258    SA->analyze(&VirtReg);
2259    unsigned NumCands = 0;
2260    BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2261    unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2262                                                 NumCands, true /*IgnoreCSR*/);
2263    if (BestCand == NoCand)
2264      // Use the CSR if we can't find a region split below CSRCost.
2265      return PhysReg;
2266
2267    // Perform the actual pre-splitting.
2268    doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2269    return 0;
2270  }
2271  return PhysReg;
2272}
2273
2274void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2275  // Do not keep invalid information around.
2276  SetOfBrokenHints.remove(&LI);
2277}
2278
2279void RAGreedy::initializeCSRCost() {
2280  // We use the larger one out of the command-line option and the value report
2281  // by TRI.
2282  CSRCost = BlockFrequency(
2283      std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2284  if (!CSRCost.getFrequency())
2285    return;
2286
2287  // Raw cost is relative to Entry == 2^14; scale it appropriately.
2288  uint64_t ActualEntry = MBFI->getEntryFreq();
2289  if (!ActualEntry) {
2290    CSRCost = 0;
2291    return;
2292  }
2293  uint64_t FixedEntry = 1 << 14;
2294  if (ActualEntry < FixedEntry)
2295    CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2296  else if (ActualEntry <= UINT32_MAX)
2297    // Invert the fraction and divide.
2298    CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2299  else
2300    // Can't use BranchProbability in general, since it takes 32-bit numbers.
2301    CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2302}
2303
2304/// \brief Collect the hint info for \p Reg.
2305/// The results are stored into \p Out.
2306/// \p Out is not cleared before being populated.
2307void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2308  for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2309    if (!Instr.isFullCopy())
2310      continue;
2311    // Look for the other end of the copy.
2312    unsigned OtherReg = Instr.getOperand(0).getReg();
2313    if (OtherReg == Reg) {
2314      OtherReg = Instr.getOperand(1).getReg();
2315      if (OtherReg == Reg)
2316        continue;
2317    }
2318    // Get the current assignment.
2319    unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2320                                ? OtherReg
2321                                : VRM->getPhys(OtherReg);
2322    // Push the collected information.
2323    Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2324                           OtherPhysReg));
2325  }
2326}
2327
2328/// \brief Using the given \p List, compute the cost of the broken hints if
2329/// \p PhysReg was used.
2330/// \return The cost of \p List for \p PhysReg.
2331BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2332                                           unsigned PhysReg) {
2333  BlockFrequency Cost = 0;
2334  for (const HintInfo &Info : List) {
2335    if (Info.PhysReg != PhysReg)
2336      Cost += Info.Freq;
2337  }
2338  return Cost;
2339}
2340
2341/// \brief Using the register assigned to \p VirtReg, try to recolor
2342/// all the live ranges that are copy-related with \p VirtReg.
2343/// The recoloring is then propagated to all the live-ranges that have
2344/// been recolored and so on, until no more copies can be coalesced or
2345/// it is not profitable.
2346/// For a given live range, profitability is determined by the sum of the
2347/// frequencies of the non-identity copies it would introduce with the old
2348/// and new register.
2349void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2350  // We have a broken hint, check if it is possible to fix it by
2351  // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2352  // some register and PhysReg may be available for the other live-ranges.
2353  SmallSet<unsigned, 4> Visited;
2354  SmallVector<unsigned, 2> RecoloringCandidates;
2355  HintsInfo Info;
2356  unsigned Reg = VirtReg.reg;
2357  unsigned PhysReg = VRM->getPhys(Reg);
2358  // Start the recoloring algorithm from the input live-interval, then
2359  // it will propagate to the ones that are copy-related with it.
2360  Visited.insert(Reg);
2361  RecoloringCandidates.push_back(Reg);
2362
2363  DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
2364               << PrintReg(PhysReg, TRI) << ")\n");
2365
2366  do {
2367    Reg = RecoloringCandidates.pop_back_val();
2368
2369    // We cannot recolor physcal register.
2370    if (TargetRegisterInfo::isPhysicalRegister(Reg))
2371      continue;
2372
2373    assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2374
2375    // Get the live interval mapped with this virtual register to be able
2376    // to check for the interference with the new color.
2377    LiveInterval &LI = LIS->getInterval(Reg);
2378    unsigned CurrPhys = VRM->getPhys(Reg);
2379    // Check that the new color matches the register class constraints and
2380    // that it is free for this live range.
2381    if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2382                                Matrix->checkInterference(LI, PhysReg)))
2383      continue;
2384
2385    DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
2386                 << ") is recolorable.\n");
2387
2388    // Gather the hint info.
2389    Info.clear();
2390    collectHintInfo(Reg, Info);
2391    // Check if recoloring the live-range will increase the cost of the
2392    // non-identity copies.
2393    if (CurrPhys != PhysReg) {
2394      DEBUG(dbgs() << "Checking profitability:\n");
2395      BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2396      BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2397      DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2398                   << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
2399      if (OldCopiesCost < NewCopiesCost) {
2400        DEBUG(dbgs() << "=> Not profitable.\n");
2401        continue;
2402      }
2403      // At this point, the cost is either cheaper or equal. If it is
2404      // equal, we consider this is profitable because it may expose
2405      // more recoloring opportunities.
2406      DEBUG(dbgs() << "=> Profitable.\n");
2407      // Recolor the live-range.
2408      Matrix->unassign(LI);
2409      Matrix->assign(LI, PhysReg);
2410    }
2411    // Push all copy-related live-ranges to keep reconciling the broken
2412    // hints.
2413    for (const HintInfo &HI : Info) {
2414      if (Visited.insert(HI.Reg).second)
2415        RecoloringCandidates.push_back(HI.Reg);
2416    }
2417  } while (!RecoloringCandidates.empty());
2418}
2419
2420/// \brief Try to recolor broken hints.
2421/// Broken hints may be repaired by recoloring when an evicted variable
2422/// freed up a register for a larger live-range.
2423/// Consider the following example:
2424/// BB1:
2425///   a =
2426///   b =
2427/// BB2:
2428///   ...
2429///   = b
2430///   = a
2431/// Let us assume b gets split:
2432/// BB1:
2433///   a =
2434///   b =
2435/// BB2:
2436///   c = b
2437///   ...
2438///   d = c
2439///   = d
2440///   = a
2441/// Because of how the allocation work, b, c, and d may be assigned different
2442/// colors. Now, if a gets evicted later:
2443/// BB1:
2444///   a =
2445///   st a, SpillSlot
2446///   b =
2447/// BB2:
2448///   c = b
2449///   ...
2450///   d = c
2451///   = d
2452///   e = ld SpillSlot
2453///   = e
2454/// This is likely that we can assign the same register for b, c, and d,
2455/// getting rid of 2 copies.
2456void RAGreedy::tryHintsRecoloring() {
2457  for (LiveInterval *LI : SetOfBrokenHints) {
2458    assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2459           "Recoloring is possible only for virtual registers");
2460    // Some dead defs may be around (e.g., because of debug uses).
2461    // Ignore those.
2462    if (!VRM->hasPhys(LI->reg))
2463      continue;
2464    tryHintRecoloring(*LI);
2465  }
2466}
2467
2468unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2469                                     SmallVectorImpl<unsigned> &NewVRegs,
2470                                     SmallVirtRegSet &FixedRegisters,
2471                                     unsigned Depth) {
2472  unsigned CostPerUseLimit = ~0u;
2473  // First try assigning a free register.
2474  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2475  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2476    // When NewVRegs is not empty, we may have made decisions such as evicting
2477    // a virtual register, go with the earlier decisions and use the physical
2478    // register.
2479    if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
2480        NewVRegs.empty()) {
2481      unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2482                                              CostPerUseLimit, NewVRegs);
2483      if (CSRReg || !NewVRegs.empty())
2484        // Return now if we decide to use a CSR or create new vregs due to
2485        // pre-splitting.
2486        return CSRReg;
2487    } else
2488      return PhysReg;
2489  }
2490
2491  LiveRangeStage Stage = getStage(VirtReg);
2492  DEBUG(dbgs() << StageName[Stage]
2493               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2494
2495  // Try to evict a less worthy live range, but only for ranges from the primary
2496  // queue. The RS_Split ranges already failed to do this, and they should not
2497  // get a second chance until they have been split.
2498  if (Stage != RS_Split)
2499    if (unsigned PhysReg =
2500            tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
2501      unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
2502      // If VirtReg has a hint and that hint is broken record this
2503      // virtual register as a recoloring candidate for broken hint.
2504      // Indeed, since we evicted a variable in its neighborhood it is
2505      // likely we can at least partially recolor some of the
2506      // copy-related live-ranges.
2507      if (Hint && Hint != PhysReg)
2508        SetOfBrokenHints.insert(&VirtReg);
2509      return PhysReg;
2510    }
2511
2512  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
2513
2514  // The first time we see a live range, don't try to split or spill.
2515  // Wait until the second time, when all smaller ranges have been allocated.
2516  // This gives a better picture of the interference to split around.
2517  if (Stage < RS_Split) {
2518    setStage(VirtReg, RS_Split);
2519    DEBUG(dbgs() << "wait for second round\n");
2520    NewVRegs.push_back(VirtReg.reg);
2521    return 0;
2522  }
2523
2524  // If we couldn't allocate a register from spilling, there is probably some
2525  // invalid inline assembly. The base class wil report it.
2526  if (Stage >= RS_Done || !VirtReg.isSpillable())
2527    return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2528                                   Depth);
2529
2530  // Try splitting VirtReg or interferences.
2531  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2532  if (PhysReg || !NewVRegs.empty())
2533    return PhysReg;
2534
2535  // Finally spill VirtReg itself.
2536  if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
2537    // TODO: This is experimental and in particular, we do not model
2538    // the live range splitting done by spilling correctly.
2539    // We would need a deep integration with the spiller to do the
2540    // right thing here. Anyway, that is still good for early testing.
2541    setStage(VirtReg, RS_Memory);
2542    DEBUG(dbgs() << "Do as if this register is in memory\n");
2543    NewVRegs.push_back(VirtReg.reg);
2544  } else {
2545    NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
2546    LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
2547    spiller().spill(LRE);
2548    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2549
2550    if (VerifyEnabled)
2551      MF->verify(this, "After spilling");
2552  }
2553
2554  // The live virtual register requesting allocation was spilled, so tell
2555  // the caller not to allocate anything during this round.
2556  return 0;
2557}
2558
2559bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2560  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2561               << "********** Function: " << mf.getName() << '\n');
2562
2563  MF = &mf;
2564  TRI = MF->getSubtarget().getRegisterInfo();
2565  TII = MF->getSubtarget().getInstrInfo();
2566  RCI.runOnMachineFunction(mf);
2567
2568  EnableLocalReassign = EnableLocalReassignment ||
2569                        MF->getSubtarget().enableRALocalReassignment(
2570                            MF->getTarget().getOptLevel());
2571
2572  if (VerifyEnabled)
2573    MF->verify(this, "Before greedy register allocator");
2574
2575  RegAllocBase::init(getAnalysis<VirtRegMap>(),
2576                     getAnalysis<LiveIntervals>(),
2577                     getAnalysis<LiveRegMatrix>());
2578  Indexes = &getAnalysis<SlotIndexes>();
2579  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2580  DomTree = &getAnalysis<MachineDominatorTree>();
2581  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2582  Loops = &getAnalysis<MachineLoopInfo>();
2583  Bundles = &getAnalysis<EdgeBundles>();
2584  SpillPlacer = &getAnalysis<SpillPlacement>();
2585  DebugVars = &getAnalysis<LiveDebugVariables>();
2586
2587  initializeCSRCost();
2588
2589  calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
2590
2591  DEBUG(LIS->dump());
2592
2593  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2594  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
2595  ExtraRegInfo.clear();
2596  ExtraRegInfo.resize(MRI->getNumVirtRegs());
2597  NextCascade = 1;
2598  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2599  GlobalCand.resize(32);  // This will grow as needed.
2600  SetOfBrokenHints.clear();
2601
2602  allocatePhysRegs();
2603  tryHintsRecoloring();
2604  releaseMemory();
2605  return true;
2606}
2607