RegAllocGreedy.cpp revision 239462
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRegMatrix.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Function.h"
28#include "llvm/PassAnalysisSupport.h"
29#include "llvm/CodeGen/CalcSpillWeights.h"
30#include "llvm/CodeGen/EdgeBundles.h"
31#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32#include "llvm/CodeGen/LiveRangeEdit.h"
33#include "llvm/CodeGen/LiveStackAnalysis.h"
34#include "llvm/CodeGen/MachineDominators.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/CodeGen/RegAllocRegistry.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Timer.h"
46
47#include <queue>
48
49using namespace llvm;
50
51STATISTIC(NumGlobalSplits, "Number of split global live ranges");
52STATISTIC(NumLocalSplits,  "Number of split local live ranges");
53STATISTIC(NumEvicted,      "Number of interferences evicted");
54
55static cl::opt<SplitEditor::ComplementSpillMode>
56SplitSpillMode("split-spill-mode", cl::Hidden,
57  cl::desc("Spill mode for splitting live ranges"),
58  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
59             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
60             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
61             clEnumValEnd),
62  cl::init(SplitEditor::SM_Partition));
63
64static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
65                                       createGreedyRegisterAllocator);
66
67namespace {
68class RAGreedy : public MachineFunctionPass,
69                 public RegAllocBase,
70                 private LiveRangeEdit::Delegate {
71
72  // context
73  MachineFunction *MF;
74
75  // analyses
76  SlotIndexes *Indexes;
77  MachineDominatorTree *DomTree;
78  MachineLoopInfo *Loops;
79  EdgeBundles *Bundles;
80  SpillPlacement *SpillPlacer;
81  LiveDebugVariables *DebugVars;
82
83  // state
84  std::auto_ptr<Spiller> SpillerInstance;
85  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
86  unsigned NextCascade;
87
88  // Live ranges pass through a number of stages as we try to allocate them.
89  // Some of the stages may also create new live ranges:
90  //
91  // - Region splitting.
92  // - Per-block splitting.
93  // - Local splitting.
94  // - Spilling.
95  //
96  // Ranges produced by one of the stages skip the previous stages when they are
97  // dequeued. This improves performance because we can skip interference checks
98  // that are unlikely to give any results. It also guarantees that the live
99  // range splitting algorithm terminates, something that is otherwise hard to
100  // ensure.
101  enum LiveRangeStage {
102    /// Newly created live range that has never been queued.
103    RS_New,
104
105    /// Only attempt assignment and eviction. Then requeue as RS_Split.
106    RS_Assign,
107
108    /// Attempt live range splitting if assignment is impossible.
109    RS_Split,
110
111    /// Attempt more aggressive live range splitting that is guaranteed to make
112    /// progress.  This is used for split products that may not be making
113    /// progress.
114    RS_Split2,
115
116    /// Live range will be spilled.  No more splitting will be attempted.
117    RS_Spill,
118
119    /// There is nothing more we can do to this live range.  Abort compilation
120    /// if it can't be assigned.
121    RS_Done
122  };
123
124  static const char *const StageName[];
125
126  // RegInfo - Keep additional information about each live range.
127  struct RegInfo {
128    LiveRangeStage Stage;
129
130    // Cascade - Eviction loop prevention. See canEvictInterference().
131    unsigned Cascade;
132
133    RegInfo() : Stage(RS_New), Cascade(0) {}
134  };
135
136  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
137
138  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
139    return ExtraRegInfo[VirtReg.reg].Stage;
140  }
141
142  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
143    ExtraRegInfo.resize(MRI->getNumVirtRegs());
144    ExtraRegInfo[VirtReg.reg].Stage = Stage;
145  }
146
147  template<typename Iterator>
148  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
149    ExtraRegInfo.resize(MRI->getNumVirtRegs());
150    for (;Begin != End; ++Begin) {
151      unsigned Reg = (*Begin)->reg;
152      if (ExtraRegInfo[Reg].Stage == RS_New)
153        ExtraRegInfo[Reg].Stage = NewStage;
154    }
155  }
156
157  /// Cost of evicting interference.
158  struct EvictionCost {
159    unsigned BrokenHints; ///< Total number of broken hints.
160    float MaxWeight;      ///< Maximum spill weight evicted.
161
162    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
163
164    bool operator<(const EvictionCost &O) const {
165      if (BrokenHints != O.BrokenHints)
166        return BrokenHints < O.BrokenHints;
167      return MaxWeight < O.MaxWeight;
168    }
169  };
170
171  // splitting state.
172  std::auto_ptr<SplitAnalysis> SA;
173  std::auto_ptr<SplitEditor> SE;
174
175  /// Cached per-block interference maps
176  InterferenceCache IntfCache;
177
178  /// All basic blocks where the current register has uses.
179  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
180
181  /// Global live range splitting candidate info.
182  struct GlobalSplitCandidate {
183    // Register intended for assignment, or 0.
184    unsigned PhysReg;
185
186    // SplitKit interval index for this candidate.
187    unsigned IntvIdx;
188
189    // Interference for PhysReg.
190    InterferenceCache::Cursor Intf;
191
192    // Bundles where this candidate should be live.
193    BitVector LiveBundles;
194    SmallVector<unsigned, 8> ActiveBlocks;
195
196    void reset(InterferenceCache &Cache, unsigned Reg) {
197      PhysReg = Reg;
198      IntvIdx = 0;
199      Intf.setPhysReg(Cache, Reg);
200      LiveBundles.clear();
201      ActiveBlocks.clear();
202    }
203
204    // Set B[i] = C for every live bundle where B[i] was NoCand.
205    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
206      unsigned Count = 0;
207      for (int i = LiveBundles.find_first(); i >= 0;
208           i = LiveBundles.find_next(i))
209        if (B[i] == NoCand) {
210          B[i] = C;
211          Count++;
212        }
213      return Count;
214    }
215  };
216
217  /// Candidate info for for each PhysReg in AllocationOrder.
218  /// This vector never shrinks, but grows to the size of the largest register
219  /// class.
220  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
221
222  enum { NoCand = ~0u };
223
224  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
225  /// NoCand which indicates the stack interval.
226  SmallVector<unsigned, 32> BundleCand;
227
228public:
229  RAGreedy();
230
231  /// Return the pass name.
232  virtual const char* getPassName() const {
233    return "Greedy Register Allocator";
234  }
235
236  /// RAGreedy analysis usage.
237  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
238  virtual void releaseMemory();
239  virtual Spiller &spiller() { return *SpillerInstance; }
240  virtual void enqueue(LiveInterval *LI);
241  virtual LiveInterval *dequeue();
242  virtual unsigned selectOrSplit(LiveInterval&,
243                                 SmallVectorImpl<LiveInterval*>&);
244
245  /// Perform register allocation.
246  virtual bool runOnMachineFunction(MachineFunction &mf);
247
248  static char ID;
249
250private:
251  bool LRE_CanEraseVirtReg(unsigned);
252  void LRE_WillShrinkVirtReg(unsigned);
253  void LRE_DidCloneVirtReg(unsigned, unsigned);
254
255  float calcSpillCost();
256  bool addSplitConstraints(InterferenceCache::Cursor, float&);
257  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
258  void growRegion(GlobalSplitCandidate &Cand);
259  float calcGlobalSplitCost(GlobalSplitCandidate&);
260  bool calcCompactRegion(GlobalSplitCandidate&);
261  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
262  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
263  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
264  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
265  void evictInterference(LiveInterval&, unsigned,
266                         SmallVectorImpl<LiveInterval*>&);
267
268  unsigned tryAssign(LiveInterval&, AllocationOrder&,
269                     SmallVectorImpl<LiveInterval*>&);
270  unsigned tryEvict(LiveInterval&, AllocationOrder&,
271                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
272  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
273                          SmallVectorImpl<LiveInterval*>&);
274  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
275                         SmallVectorImpl<LiveInterval*>&);
276  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
277                               SmallVectorImpl<LiveInterval*>&);
278  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
279    SmallVectorImpl<LiveInterval*>&);
280  unsigned trySplit(LiveInterval&, AllocationOrder&,
281                    SmallVectorImpl<LiveInterval*>&);
282};
283} // end anonymous namespace
284
285char RAGreedy::ID = 0;
286
287#ifndef NDEBUG
288const char *const RAGreedy::StageName[] = {
289    "RS_New",
290    "RS_Assign",
291    "RS_Split",
292    "RS_Split2",
293    "RS_Spill",
294    "RS_Done"
295};
296#endif
297
298// Hysteresis to use when comparing floats.
299// This helps stabilize decisions based on float comparisons.
300const float Hysteresis = 0.98f;
301
302
303FunctionPass* llvm::createGreedyRegisterAllocator() {
304  return new RAGreedy();
305}
306
307RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
308  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
309  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
310  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
311  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
312  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
313  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
314  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
315  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
316  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
317  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
318  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
319  initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
320  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
321  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
322}
323
324void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
325  AU.setPreservesCFG();
326  AU.addRequired<AliasAnalysis>();
327  AU.addPreserved<AliasAnalysis>();
328  AU.addRequired<LiveIntervals>();
329  AU.addPreserved<LiveIntervals>();
330  AU.addRequired<SlotIndexes>();
331  AU.addPreserved<SlotIndexes>();
332  AU.addRequired<LiveDebugVariables>();
333  AU.addPreserved<LiveDebugVariables>();
334  AU.addRequired<CalculateSpillWeights>();
335  AU.addRequired<LiveStacks>();
336  AU.addPreserved<LiveStacks>();
337  AU.addRequired<MachineDominatorTree>();
338  AU.addPreserved<MachineDominatorTree>();
339  AU.addRequired<MachineLoopInfo>();
340  AU.addPreserved<MachineLoopInfo>();
341  AU.addRequired<VirtRegMap>();
342  AU.addPreserved<VirtRegMap>();
343  AU.addRequired<LiveRegMatrix>();
344  AU.addPreserved<LiveRegMatrix>();
345  AU.addRequired<EdgeBundles>();
346  AU.addRequired<SpillPlacement>();
347  MachineFunctionPass::getAnalysisUsage(AU);
348}
349
350
351//===----------------------------------------------------------------------===//
352//                     LiveRangeEdit delegate methods
353//===----------------------------------------------------------------------===//
354
355bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
356  if (VRM->hasPhys(VirtReg)) {
357    Matrix->unassign(LIS->getInterval(VirtReg));
358    return true;
359  }
360  // Unassigned virtreg is probably in the priority queue.
361  // RegAllocBase will erase it after dequeueing.
362  return false;
363}
364
365void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
366  if (!VRM->hasPhys(VirtReg))
367    return;
368
369  // Register is assigned, put it back on the queue for reassignment.
370  LiveInterval &LI = LIS->getInterval(VirtReg);
371  Matrix->unassign(LI);
372  enqueue(&LI);
373}
374
375void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
376  // Cloning a register we haven't even heard about yet?  Just ignore it.
377  if (!ExtraRegInfo.inBounds(Old))
378    return;
379
380  // LRE may clone a virtual register because dead code elimination causes it to
381  // be split into connected components. The new components are much smaller
382  // than the original, so they should get a new chance at being assigned.
383  // same stage as the parent.
384  ExtraRegInfo[Old].Stage = RS_Assign;
385  ExtraRegInfo.grow(New);
386  ExtraRegInfo[New] = ExtraRegInfo[Old];
387}
388
389void RAGreedy::releaseMemory() {
390  SpillerInstance.reset(0);
391  ExtraRegInfo.clear();
392  GlobalCand.clear();
393}
394
395void RAGreedy::enqueue(LiveInterval *LI) {
396  // Prioritize live ranges by size, assigning larger ranges first.
397  // The queue holds (size, reg) pairs.
398  const unsigned Size = LI->getSize();
399  const unsigned Reg = LI->reg;
400  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
401         "Can only enqueue virtual registers");
402  unsigned Prio;
403
404  ExtraRegInfo.grow(Reg);
405  if (ExtraRegInfo[Reg].Stage == RS_New)
406    ExtraRegInfo[Reg].Stage = RS_Assign;
407
408  if (ExtraRegInfo[Reg].Stage == RS_Split) {
409    // Unsplit ranges that couldn't be allocated immediately are deferred until
410    // everything else has been allocated.
411    Prio = Size;
412  } else {
413    // Everything is allocated in long->short order. Long ranges that don't fit
414    // should be spilled (or split) ASAP so they don't create interference.
415    Prio = (1u << 31) + Size;
416
417    // Boost ranges that have a physical register hint.
418    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
419      Prio |= (1u << 30);
420  }
421
422  Queue.push(std::make_pair(Prio, ~Reg));
423}
424
425LiveInterval *RAGreedy::dequeue() {
426  if (Queue.empty())
427    return 0;
428  LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
429  Queue.pop();
430  return LI;
431}
432
433
434//===----------------------------------------------------------------------===//
435//                            Direct Assignment
436//===----------------------------------------------------------------------===//
437
438/// tryAssign - Try to assign VirtReg to an available register.
439unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
440                             AllocationOrder &Order,
441                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
442  Order.rewind();
443  unsigned PhysReg;
444  while ((PhysReg = Order.next()))
445    if (!Matrix->checkInterference(VirtReg, PhysReg))
446      break;
447  if (!PhysReg || Order.isHint(PhysReg))
448    return PhysReg;
449
450  // PhysReg is available, but there may be a better choice.
451
452  // If we missed a simple hint, try to cheaply evict interference from the
453  // preferred register.
454  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
455    if (Order.isHint(Hint)) {
456      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
457      EvictionCost MaxCost(1);
458      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
459        evictInterference(VirtReg, Hint, NewVRegs);
460        return Hint;
461      }
462    }
463
464  // Try to evict interference from a cheaper alternative.
465  unsigned Cost = TRI->getCostPerUse(PhysReg);
466
467  // Most registers have 0 additional cost.
468  if (!Cost)
469    return PhysReg;
470
471  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
472               << '\n');
473  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
474  return CheapReg ? CheapReg : PhysReg;
475}
476
477
478//===----------------------------------------------------------------------===//
479//                         Interference eviction
480//===----------------------------------------------------------------------===//
481
482/// shouldEvict - determine if A should evict the assigned live range B. The
483/// eviction policy defined by this function together with the allocation order
484/// defined by enqueue() decides which registers ultimately end up being split
485/// and spilled.
486///
487/// Cascade numbers are used to prevent infinite loops if this function is a
488/// cyclic relation.
489///
490/// @param A          The live range to be assigned.
491/// @param IsHint     True when A is about to be assigned to its preferred
492///                   register.
493/// @param B          The live range to be evicted.
494/// @param BreaksHint True when B is already assigned to its preferred register.
495bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
496                           LiveInterval &B, bool BreaksHint) {
497  bool CanSplit = getStage(B) < RS_Spill;
498
499  // Be fairly aggressive about following hints as long as the evictee can be
500  // split.
501  if (CanSplit && IsHint && !BreaksHint)
502    return true;
503
504  return A.weight > B.weight;
505}
506
507/// canEvictInterference - Return true if all interferences between VirtReg and
508/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
509///
510/// @param VirtReg Live range that is about to be assigned.
511/// @param PhysReg Desired register for assignment.
512/// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
513/// @param MaxCost Only look for cheaper candidates and update with new cost
514///                when returning true.
515/// @returns True when interference can be evicted cheaper than MaxCost.
516bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
517                                    bool IsHint, EvictionCost &MaxCost) {
518  // It is only possible to evict virtual register interference.
519  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
520    return false;
521
522  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
523  // involved in an eviction before. If a cascade number was assigned, deny
524  // evicting anything with the same or a newer cascade number. This prevents
525  // infinite eviction loops.
526  //
527  // This works out so a register without a cascade number is allowed to evict
528  // anything, and it can be evicted by anything.
529  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
530  if (!Cascade)
531    Cascade = NextCascade;
532
533  EvictionCost Cost;
534  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
535    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
536    // If there is 10 or more interferences, chances are one is heavier.
537    if (Q.collectInterferingVRegs(10) >= 10)
538      return false;
539
540    // Check if any interfering live range is heavier than MaxWeight.
541    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
542      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
543      assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
544             "Only expecting virtual register interference from query");
545      // Never evict spill products. They cannot split or spill.
546      if (getStage(*Intf) == RS_Done)
547        return false;
548      // Once a live range becomes small enough, it is urgent that we find a
549      // register for it. This is indicated by an infinite spill weight. These
550      // urgent live ranges get to evict almost anything.
551      //
552      // Also allow urgent evictions of unspillable ranges from a strictly
553      // larger allocation order.
554      bool Urgent = !VirtReg.isSpillable() &&
555        (Intf->isSpillable() ||
556         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
557         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
558      // Only evict older cascades or live ranges without a cascade.
559      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
560      if (Cascade <= IntfCascade) {
561        if (!Urgent)
562          return false;
563        // We permit breaking cascades for urgent evictions. It should be the
564        // last resort, though, so make it really expensive.
565        Cost.BrokenHints += 10;
566      }
567      // Would this break a satisfied hint?
568      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
569      // Update eviction cost.
570      Cost.BrokenHints += BreaksHint;
571      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
572      // Abort if this would be too expensive.
573      if (!(Cost < MaxCost))
574        return false;
575      // Finally, apply the eviction policy for non-urgent evictions.
576      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
577        return false;
578    }
579  }
580  MaxCost = Cost;
581  return true;
582}
583
584/// evictInterference - Evict any interferring registers that prevent VirtReg
585/// from being assigned to Physreg. This assumes that canEvictInterference
586/// returned true.
587void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
588                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
589  // Make sure that VirtReg has a cascade number, and assign that cascade
590  // number to every evicted register. These live ranges than then only be
591  // evicted by a newer cascade, preventing infinite loops.
592  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
593  if (!Cascade)
594    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
595
596  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
597               << " interference: Cascade " << Cascade << '\n');
598
599  // Collect all interfering virtregs first.
600  SmallVector<LiveInterval*, 8> Intfs;
601  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
602    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
603    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
604    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
605    Intfs.append(IVR.begin(), IVR.end());
606  }
607
608  // Evict them second. This will invalidate the queries.
609  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
610    LiveInterval *Intf = Intfs[i];
611    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
612    if (!VRM->hasPhys(Intf->reg))
613      continue;
614    Matrix->unassign(*Intf);
615    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
616            VirtReg.isSpillable() < Intf->isSpillable()) &&
617           "Cannot decrease cascade number, illegal eviction");
618    ExtraRegInfo[Intf->reg].Cascade = Cascade;
619    ++NumEvicted;
620    NewVRegs.push_back(Intf);
621  }
622}
623
624/// tryEvict - Try to evict all interferences for a physreg.
625/// @param  VirtReg Currently unassigned virtual register.
626/// @param  Order   Physregs to try.
627/// @return         Physreg to assign VirtReg, or 0.
628unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
629                            AllocationOrder &Order,
630                            SmallVectorImpl<LiveInterval*> &NewVRegs,
631                            unsigned CostPerUseLimit) {
632  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
633
634  // Keep track of the cheapest interference seen so far.
635  EvictionCost BestCost(~0u);
636  unsigned BestPhys = 0;
637
638  // When we are just looking for a reduced cost per use, don't break any
639  // hints, and only evict smaller spill weights.
640  if (CostPerUseLimit < ~0u) {
641    BestCost.BrokenHints = 0;
642    BestCost.MaxWeight = VirtReg.weight;
643  }
644
645  Order.rewind();
646  while (unsigned PhysReg = Order.next()) {
647    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
648      continue;
649    // The first use of a callee-saved register in a function has cost 1.
650    // Don't start using a CSR when the CostPerUseLimit is low.
651    if (CostPerUseLimit == 1)
652     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
653       if (!MRI->isPhysRegUsed(CSR)) {
654         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
655                      << PrintReg(CSR, TRI) << '\n');
656         continue;
657       }
658
659    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
660      continue;
661
662    // Best so far.
663    BestPhys = PhysReg;
664
665    // Stop if the hint can be used.
666    if (Order.isHint(PhysReg))
667      break;
668  }
669
670  if (!BestPhys)
671    return 0;
672
673  evictInterference(VirtReg, BestPhys, NewVRegs);
674  return BestPhys;
675}
676
677
678//===----------------------------------------------------------------------===//
679//                              Region Splitting
680//===----------------------------------------------------------------------===//
681
682/// addSplitConstraints - Fill out the SplitConstraints vector based on the
683/// interference pattern in Physreg and its aliases. Add the constraints to
684/// SpillPlacement and return the static cost of this split in Cost, assuming
685/// that all preferences in SplitConstraints are met.
686/// Return false if there are no bundles with positive bias.
687bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
688                                   float &Cost) {
689  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
690
691  // Reset interference dependent info.
692  SplitConstraints.resize(UseBlocks.size());
693  float StaticCost = 0;
694  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
695    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
696    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
697
698    BC.Number = BI.MBB->getNumber();
699    Intf.moveToBlock(BC.Number);
700    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
701    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
702    BC.ChangesValue = BI.FirstDef;
703
704    if (!Intf.hasInterference())
705      continue;
706
707    // Number of spill code instructions to insert.
708    unsigned Ins = 0;
709
710    // Interference for the live-in value.
711    if (BI.LiveIn) {
712      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
713        BC.Entry = SpillPlacement::MustSpill, ++Ins;
714      else if (Intf.first() < BI.FirstInstr)
715        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
716      else if (Intf.first() < BI.LastInstr)
717        ++Ins;
718    }
719
720    // Interference for the live-out value.
721    if (BI.LiveOut) {
722      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
723        BC.Exit = SpillPlacement::MustSpill, ++Ins;
724      else if (Intf.last() > BI.LastInstr)
725        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
726      else if (Intf.last() > BI.FirstInstr)
727        ++Ins;
728    }
729
730    // Accumulate the total frequency of inserted spill code.
731    if (Ins)
732      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
733  }
734  Cost = StaticCost;
735
736  // Add constraints for use-blocks. Note that these are the only constraints
737  // that may add a positive bias, it is downhill from here.
738  SpillPlacer->addConstraints(SplitConstraints);
739  return SpillPlacer->scanActiveBundles();
740}
741
742
743/// addThroughConstraints - Add constraints and links to SpillPlacer from the
744/// live-through blocks in Blocks.
745void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
746                                     ArrayRef<unsigned> Blocks) {
747  const unsigned GroupSize = 8;
748  SpillPlacement::BlockConstraint BCS[GroupSize];
749  unsigned TBS[GroupSize];
750  unsigned B = 0, T = 0;
751
752  for (unsigned i = 0; i != Blocks.size(); ++i) {
753    unsigned Number = Blocks[i];
754    Intf.moveToBlock(Number);
755
756    if (!Intf.hasInterference()) {
757      assert(T < GroupSize && "Array overflow");
758      TBS[T] = Number;
759      if (++T == GroupSize) {
760        SpillPlacer->addLinks(makeArrayRef(TBS, T));
761        T = 0;
762      }
763      continue;
764    }
765
766    assert(B < GroupSize && "Array overflow");
767    BCS[B].Number = Number;
768
769    // Interference for the live-in value.
770    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
771      BCS[B].Entry = SpillPlacement::MustSpill;
772    else
773      BCS[B].Entry = SpillPlacement::PrefSpill;
774
775    // Interference for the live-out value.
776    if (Intf.last() >= SA->getLastSplitPoint(Number))
777      BCS[B].Exit = SpillPlacement::MustSpill;
778    else
779      BCS[B].Exit = SpillPlacement::PrefSpill;
780
781    if (++B == GroupSize) {
782      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
783      SpillPlacer->addConstraints(Array);
784      B = 0;
785    }
786  }
787
788  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
789  SpillPlacer->addConstraints(Array);
790  SpillPlacer->addLinks(makeArrayRef(TBS, T));
791}
792
793void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
794  // Keep track of through blocks that have not been added to SpillPlacer.
795  BitVector Todo = SA->getThroughBlocks();
796  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
797  unsigned AddedTo = 0;
798#ifndef NDEBUG
799  unsigned Visited = 0;
800#endif
801
802  for (;;) {
803    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
804    // Find new through blocks in the periphery of PrefRegBundles.
805    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
806      unsigned Bundle = NewBundles[i];
807      // Look at all blocks connected to Bundle in the full graph.
808      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
809      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
810           I != E; ++I) {
811        unsigned Block = *I;
812        if (!Todo.test(Block))
813          continue;
814        Todo.reset(Block);
815        // This is a new through block. Add it to SpillPlacer later.
816        ActiveBlocks.push_back(Block);
817#ifndef NDEBUG
818        ++Visited;
819#endif
820      }
821    }
822    // Any new blocks to add?
823    if (ActiveBlocks.size() == AddedTo)
824      break;
825
826    // Compute through constraints from the interference, or assume that all
827    // through blocks prefer spilling when forming compact regions.
828    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
829    if (Cand.PhysReg)
830      addThroughConstraints(Cand.Intf, NewBlocks);
831    else
832      // Provide a strong negative bias on through blocks to prevent unwanted
833      // liveness on loop backedges.
834      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
835    AddedTo = ActiveBlocks.size();
836
837    // Perhaps iterating can enable more bundles?
838    SpillPlacer->iterate();
839  }
840  DEBUG(dbgs() << ", v=" << Visited);
841}
842
843/// calcCompactRegion - Compute the set of edge bundles that should be live
844/// when splitting the current live range into compact regions.  Compact
845/// regions can be computed without looking at interference.  They are the
846/// regions formed by removing all the live-through blocks from the live range.
847///
848/// Returns false if the current live range is already compact, or if the
849/// compact regions would form single block regions anyway.
850bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
851  // Without any through blocks, the live range is already compact.
852  if (!SA->getNumThroughBlocks())
853    return false;
854
855  // Compact regions don't correspond to any physreg.
856  Cand.reset(IntfCache, 0);
857
858  DEBUG(dbgs() << "Compact region bundles");
859
860  // Use the spill placer to determine the live bundles. GrowRegion pretends
861  // that all the through blocks have interference when PhysReg is unset.
862  SpillPlacer->prepare(Cand.LiveBundles);
863
864  // The static split cost will be zero since Cand.Intf reports no interference.
865  float Cost;
866  if (!addSplitConstraints(Cand.Intf, Cost)) {
867    DEBUG(dbgs() << ", none.\n");
868    return false;
869  }
870
871  growRegion(Cand);
872  SpillPlacer->finish();
873
874  if (!Cand.LiveBundles.any()) {
875    DEBUG(dbgs() << ", none.\n");
876    return false;
877  }
878
879  DEBUG({
880    for (int i = Cand.LiveBundles.find_first(); i>=0;
881         i = Cand.LiveBundles.find_next(i))
882    dbgs() << " EB#" << i;
883    dbgs() << ".\n";
884  });
885  return true;
886}
887
888/// calcSpillCost - Compute how expensive it would be to split the live range in
889/// SA around all use blocks instead of forming bundle regions.
890float RAGreedy::calcSpillCost() {
891  float Cost = 0;
892  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
893  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
894    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
895    unsigned Number = BI.MBB->getNumber();
896    // We normally only need one spill instruction - a load or a store.
897    Cost += SpillPlacer->getBlockFrequency(Number);
898
899    // Unless the value is redefined in the block.
900    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
901      Cost += SpillPlacer->getBlockFrequency(Number);
902  }
903  return Cost;
904}
905
906/// calcGlobalSplitCost - Return the global split cost of following the split
907/// pattern in LiveBundles. This cost should be added to the local cost of the
908/// interference pattern in SplitConstraints.
909///
910float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
911  float GlobalCost = 0;
912  const BitVector &LiveBundles = Cand.LiveBundles;
913  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
914  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
915    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
916    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
917    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
918    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
919    unsigned Ins = 0;
920
921    if (BI.LiveIn)
922      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
923    if (BI.LiveOut)
924      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
925    if (Ins)
926      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
927  }
928
929  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
930    unsigned Number = Cand.ActiveBlocks[i];
931    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
932    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
933    if (!RegIn && !RegOut)
934      continue;
935    if (RegIn && RegOut) {
936      // We need double spill code if this block has interference.
937      Cand.Intf.moveToBlock(Number);
938      if (Cand.Intf.hasInterference())
939        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
940      continue;
941    }
942    // live-in / stack-out or stack-in live-out.
943    GlobalCost += SpillPlacer->getBlockFrequency(Number);
944  }
945  return GlobalCost;
946}
947
948/// splitAroundRegion - Split the current live range around the regions
949/// determined by BundleCand and GlobalCand.
950///
951/// Before calling this function, GlobalCand and BundleCand must be initialized
952/// so each bundle is assigned to a valid candidate, or NoCand for the
953/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
954/// objects must be initialized for the current live range, and intervals
955/// created for the used candidates.
956///
957/// @param LREdit    The LiveRangeEdit object handling the current split.
958/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
959///                  must appear in this list.
960void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
961                                 ArrayRef<unsigned> UsedCands) {
962  // These are the intervals created for new global ranges. We may create more
963  // intervals for local ranges.
964  const unsigned NumGlobalIntvs = LREdit.size();
965  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
966  assert(NumGlobalIntvs && "No global intervals configured");
967
968  // Isolate even single instructions when dealing with a proper sub-class.
969  // That guarantees register class inflation for the stack interval because it
970  // is all copies.
971  unsigned Reg = SA->getParent().reg;
972  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
973
974  // First handle all the blocks with uses.
975  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
976  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
977    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
978    unsigned Number = BI.MBB->getNumber();
979    unsigned IntvIn = 0, IntvOut = 0;
980    SlotIndex IntfIn, IntfOut;
981    if (BI.LiveIn) {
982      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
983      if (CandIn != NoCand) {
984        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
985        IntvIn = Cand.IntvIdx;
986        Cand.Intf.moveToBlock(Number);
987        IntfIn = Cand.Intf.first();
988      }
989    }
990    if (BI.LiveOut) {
991      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
992      if (CandOut != NoCand) {
993        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
994        IntvOut = Cand.IntvIdx;
995        Cand.Intf.moveToBlock(Number);
996        IntfOut = Cand.Intf.last();
997      }
998    }
999
1000    // Create separate intervals for isolated blocks with multiple uses.
1001    if (!IntvIn && !IntvOut) {
1002      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1003      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1004        SE->splitSingleBlock(BI);
1005      continue;
1006    }
1007
1008    if (IntvIn && IntvOut)
1009      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1010    else if (IntvIn)
1011      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1012    else
1013      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1014  }
1015
1016  // Handle live-through blocks. The relevant live-through blocks are stored in
1017  // the ActiveBlocks list with each candidate. We need to filter out
1018  // duplicates.
1019  BitVector Todo = SA->getThroughBlocks();
1020  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1021    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1022    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1023      unsigned Number = Blocks[i];
1024      if (!Todo.test(Number))
1025        continue;
1026      Todo.reset(Number);
1027
1028      unsigned IntvIn = 0, IntvOut = 0;
1029      SlotIndex IntfIn, IntfOut;
1030
1031      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1032      if (CandIn != NoCand) {
1033        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1034        IntvIn = Cand.IntvIdx;
1035        Cand.Intf.moveToBlock(Number);
1036        IntfIn = Cand.Intf.first();
1037      }
1038
1039      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1040      if (CandOut != NoCand) {
1041        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1042        IntvOut = Cand.IntvIdx;
1043        Cand.Intf.moveToBlock(Number);
1044        IntfOut = Cand.Intf.last();
1045      }
1046      if (!IntvIn && !IntvOut)
1047        continue;
1048      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1049    }
1050  }
1051
1052  ++NumGlobalSplits;
1053
1054  SmallVector<unsigned, 8> IntvMap;
1055  SE->finish(&IntvMap);
1056  DebugVars->splitRegister(Reg, LREdit.regs());
1057
1058  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1059  unsigned OrigBlocks = SA->getNumLiveBlocks();
1060
1061  // Sort out the new intervals created by splitting. We get four kinds:
1062  // - Remainder intervals should not be split again.
1063  // - Candidate intervals can be assigned to Cand.PhysReg.
1064  // - Block-local splits are candidates for local splitting.
1065  // - DCE leftovers should go back on the queue.
1066  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1067    LiveInterval &Reg = *LREdit.get(i);
1068
1069    // Ignore old intervals from DCE.
1070    if (getStage(Reg) != RS_New)
1071      continue;
1072
1073    // Remainder interval. Don't try splitting again, spill if it doesn't
1074    // allocate.
1075    if (IntvMap[i] == 0) {
1076      setStage(Reg, RS_Spill);
1077      continue;
1078    }
1079
1080    // Global intervals. Allow repeated splitting as long as the number of live
1081    // blocks is strictly decreasing.
1082    if (IntvMap[i] < NumGlobalIntvs) {
1083      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1084        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1085                     << " blocks as original.\n");
1086        // Don't allow repeated splitting as a safe guard against looping.
1087        setStage(Reg, RS_Split2);
1088      }
1089      continue;
1090    }
1091
1092    // Other intervals are treated as new. This includes local intervals created
1093    // for blocks with multiple uses, and anything created by DCE.
1094  }
1095
1096  if (VerifyEnabled)
1097    MF->verify(this, "After splitting live range around region");
1098}
1099
1100unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1101                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1102  unsigned NumCands = 0;
1103  unsigned BestCand = NoCand;
1104  float BestCost;
1105  SmallVector<unsigned, 8> UsedCands;
1106
1107  // Check if we can split this live range around a compact region.
1108  bool HasCompact = calcCompactRegion(GlobalCand.front());
1109  if (HasCompact) {
1110    // Yes, keep GlobalCand[0] as the compact region candidate.
1111    NumCands = 1;
1112    BestCost = HUGE_VALF;
1113  } else {
1114    // No benefit from the compact region, our fallback will be per-block
1115    // splitting. Make sure we find a solution that is cheaper than spilling.
1116    BestCost = Hysteresis * calcSpillCost();
1117    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1118  }
1119
1120  Order.rewind();
1121  while (unsigned PhysReg = Order.next()) {
1122    // Discard bad candidates before we run out of interference cache cursors.
1123    // This will only affect register classes with a lot of registers (>32).
1124    if (NumCands == IntfCache.getMaxCursors()) {
1125      unsigned WorstCount = ~0u;
1126      unsigned Worst = 0;
1127      for (unsigned i = 0; i != NumCands; ++i) {
1128        if (i == BestCand || !GlobalCand[i].PhysReg)
1129          continue;
1130        unsigned Count = GlobalCand[i].LiveBundles.count();
1131        if (Count < WorstCount)
1132          Worst = i, WorstCount = Count;
1133      }
1134      --NumCands;
1135      GlobalCand[Worst] = GlobalCand[NumCands];
1136      if (BestCand == NumCands)
1137        BestCand = Worst;
1138    }
1139
1140    if (GlobalCand.size() <= NumCands)
1141      GlobalCand.resize(NumCands+1);
1142    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1143    Cand.reset(IntfCache, PhysReg);
1144
1145    SpillPlacer->prepare(Cand.LiveBundles);
1146    float Cost;
1147    if (!addSplitConstraints(Cand.Intf, Cost)) {
1148      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1149      continue;
1150    }
1151    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1152    if (Cost >= BestCost) {
1153      DEBUG({
1154        if (BestCand == NoCand)
1155          dbgs() << " worse than no bundles\n";
1156        else
1157          dbgs() << " worse than "
1158                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1159      });
1160      continue;
1161    }
1162    growRegion(Cand);
1163
1164    SpillPlacer->finish();
1165
1166    // No live bundles, defer to splitSingleBlocks().
1167    if (!Cand.LiveBundles.any()) {
1168      DEBUG(dbgs() << " no bundles.\n");
1169      continue;
1170    }
1171
1172    Cost += calcGlobalSplitCost(Cand);
1173    DEBUG({
1174      dbgs() << ", total = " << Cost << " with bundles";
1175      for (int i = Cand.LiveBundles.find_first(); i>=0;
1176           i = Cand.LiveBundles.find_next(i))
1177        dbgs() << " EB#" << i;
1178      dbgs() << ".\n";
1179    });
1180    if (Cost < BestCost) {
1181      BestCand = NumCands;
1182      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1183    }
1184    ++NumCands;
1185  }
1186
1187  // No solutions found, fall back to single block splitting.
1188  if (!HasCompact && BestCand == NoCand)
1189    return 0;
1190
1191  // Prepare split editor.
1192  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1193  SE->reset(LREdit, SplitSpillMode);
1194
1195  // Assign all edge bundles to the preferred candidate, or NoCand.
1196  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1197
1198  // Assign bundles for the best candidate region.
1199  if (BestCand != NoCand) {
1200    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1201    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1202      UsedCands.push_back(BestCand);
1203      Cand.IntvIdx = SE->openIntv();
1204      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1205                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1206      (void)B;
1207    }
1208  }
1209
1210  // Assign bundles for the compact region.
1211  if (HasCompact) {
1212    GlobalSplitCandidate &Cand = GlobalCand.front();
1213    assert(!Cand.PhysReg && "Compact region has no physreg");
1214    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1215      UsedCands.push_back(0);
1216      Cand.IntvIdx = SE->openIntv();
1217      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1218                   << Cand.IntvIdx << ".\n");
1219      (void)B;
1220    }
1221  }
1222
1223  splitAroundRegion(LREdit, UsedCands);
1224  return 0;
1225}
1226
1227
1228//===----------------------------------------------------------------------===//
1229//                            Per-Block Splitting
1230//===----------------------------------------------------------------------===//
1231
1232/// tryBlockSplit - Split a global live range around every block with uses. This
1233/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1234/// they don't allocate.
1235unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1236                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1237  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1238  unsigned Reg = VirtReg.reg;
1239  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1240  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1241  SE->reset(LREdit, SplitSpillMode);
1242  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1243  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1244    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1245    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1246      SE->splitSingleBlock(BI);
1247  }
1248  // No blocks were split.
1249  if (LREdit.empty())
1250    return 0;
1251
1252  // We did split for some blocks.
1253  SmallVector<unsigned, 8> IntvMap;
1254  SE->finish(&IntvMap);
1255
1256  // Tell LiveDebugVariables about the new ranges.
1257  DebugVars->splitRegister(Reg, LREdit.regs());
1258
1259  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1260
1261  // Sort out the new intervals created by splitting. The remainder interval
1262  // goes straight to spilling, the new local ranges get to stay RS_New.
1263  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1264    LiveInterval &LI = *LREdit.get(i);
1265    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1266      setStage(LI, RS_Spill);
1267  }
1268
1269  if (VerifyEnabled)
1270    MF->verify(this, "After splitting live range around basic blocks");
1271  return 0;
1272}
1273
1274
1275//===----------------------------------------------------------------------===//
1276//                         Per-Instruction Splitting
1277//===----------------------------------------------------------------------===//
1278
1279/// tryInstructionSplit - Split a live range around individual instructions.
1280/// This is normally not worthwhile since the spiller is doing essentially the
1281/// same thing. However, when the live range is in a constrained register
1282/// class, it may help to insert copies such that parts of the live range can
1283/// be moved to a larger register class.
1284///
1285/// This is similar to spilling to a larger register class.
1286unsigned
1287RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1288                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
1289  // There is no point to this if there are no larger sub-classes.
1290  if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
1291    return 0;
1292
1293  // Always enable split spill mode, since we're effectively spilling to a
1294  // register.
1295  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1296  SE->reset(LREdit, SplitEditor::SM_Size);
1297
1298  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1299  if (Uses.size() <= 1)
1300    return 0;
1301
1302  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1303
1304  // Split around every non-copy instruction.
1305  for (unsigned i = 0; i != Uses.size(); ++i) {
1306    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1307      if (MI->isFullCopy()) {
1308        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1309        continue;
1310      }
1311    SE->openIntv();
1312    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1313    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1314    SE->useIntv(SegStart, SegStop);
1315  }
1316
1317  if (LREdit.empty()) {
1318    DEBUG(dbgs() << "All uses were copies.\n");
1319    return 0;
1320  }
1321
1322  SmallVector<unsigned, 8> IntvMap;
1323  SE->finish(&IntvMap);
1324  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1325  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1326
1327  // Assign all new registers to RS_Spill. This was the last chance.
1328  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1329  return 0;
1330}
1331
1332
1333//===----------------------------------------------------------------------===//
1334//                             Local Splitting
1335//===----------------------------------------------------------------------===//
1336
1337
1338/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1339/// in order to use PhysReg between two entries in SA->UseSlots.
1340///
1341/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1342///
1343void RAGreedy::calcGapWeights(unsigned PhysReg,
1344                              SmallVectorImpl<float> &GapWeight) {
1345  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1346  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1347  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1348  const unsigned NumGaps = Uses.size()-1;
1349
1350  // Start and end points for the interference check.
1351  SlotIndex StartIdx =
1352    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1353  SlotIndex StopIdx =
1354    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1355
1356  GapWeight.assign(NumGaps, 0.0f);
1357
1358  // Add interference from each overlapping register.
1359  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1360    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1361          .checkInterference())
1362      continue;
1363
1364    // We know that VirtReg is a continuous interval from FirstInstr to
1365    // LastInstr, so we don't need InterferenceQuery.
1366    //
1367    // Interference that overlaps an instruction is counted in both gaps
1368    // surrounding the instruction. The exception is interference before
1369    // StartIdx and after StopIdx.
1370    //
1371    LiveIntervalUnion::SegmentIter IntI =
1372      Matrix->getLiveUnions()[*Units] .find(StartIdx);
1373    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1374      // Skip the gaps before IntI.
1375      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1376        if (++Gap == NumGaps)
1377          break;
1378      if (Gap == NumGaps)
1379        break;
1380
1381      // Update the gaps covered by IntI.
1382      const float weight = IntI.value()->weight;
1383      for (; Gap != NumGaps; ++Gap) {
1384        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1385        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1386          break;
1387      }
1388      if (Gap == NumGaps)
1389        break;
1390    }
1391  }
1392
1393  // Add fixed interference.
1394  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1395    const LiveInterval &LI = LIS->getRegUnit(*Units);
1396    LiveInterval::const_iterator I = LI.find(StartIdx);
1397    LiveInterval::const_iterator E = LI.end();
1398
1399    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1400    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1401      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1402        if (++Gap == NumGaps)
1403          break;
1404      if (Gap == NumGaps)
1405        break;
1406
1407      for (; Gap != NumGaps; ++Gap) {
1408        GapWeight[Gap] = HUGE_VALF;
1409        if (Uses[Gap+1].getBaseIndex() >= I->end)
1410          break;
1411      }
1412      if (Gap == NumGaps)
1413        break;
1414    }
1415  }
1416}
1417
1418/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1419/// basic block.
1420///
1421unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1422                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1423  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1424  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1425
1426  // Note that it is possible to have an interval that is live-in or live-out
1427  // while only covering a single block - A phi-def can use undef values from
1428  // predecessors, and the block could be a single-block loop.
1429  // We don't bother doing anything clever about such a case, we simply assume
1430  // that the interval is continuous from FirstInstr to LastInstr. We should
1431  // make sure that we don't do anything illegal to such an interval, though.
1432
1433  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1434  if (Uses.size() <= 2)
1435    return 0;
1436  const unsigned NumGaps = Uses.size()-1;
1437
1438  DEBUG({
1439    dbgs() << "tryLocalSplit: ";
1440    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1441      dbgs() << ' ' << Uses[i];
1442    dbgs() << '\n';
1443  });
1444
1445  // If VirtReg is live across any register mask operands, compute a list of
1446  // gaps with register masks.
1447  SmallVector<unsigned, 8> RegMaskGaps;
1448  if (Matrix->checkRegMaskInterference(VirtReg)) {
1449    // Get regmask slots for the whole block.
1450    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1451    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1452    // Constrain to VirtReg's live range.
1453    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1454                                   Uses.front().getRegSlot()) - RMS.begin();
1455    unsigned re = RMS.size();
1456    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1457      // Look for Uses[i] <= RMS <= Uses[i+1].
1458      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1459      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1460        continue;
1461      // Skip a regmask on the same instruction as the last use. It doesn't
1462      // overlap the live range.
1463      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1464        break;
1465      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1466      RegMaskGaps.push_back(i);
1467      // Advance ri to the next gap. A regmask on one of the uses counts in
1468      // both gaps.
1469      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1470        ++ri;
1471    }
1472    DEBUG(dbgs() << '\n');
1473  }
1474
1475  // Since we allow local split results to be split again, there is a risk of
1476  // creating infinite loops. It is tempting to require that the new live
1477  // ranges have less instructions than the original. That would guarantee
1478  // convergence, but it is too strict. A live range with 3 instructions can be
1479  // split 2+3 (including the COPY), and we want to allow that.
1480  //
1481  // Instead we use these rules:
1482  //
1483  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1484  //    noop split, of course).
1485  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1486  //    the new ranges must have fewer instructions than before the split.
1487  // 3. New ranges with the same number of instructions are marked RS_Split2,
1488  //    smaller ranges are marked RS_New.
1489  //
1490  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1491  // excessive splitting and infinite loops.
1492  //
1493  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1494
1495  // Best split candidate.
1496  unsigned BestBefore = NumGaps;
1497  unsigned BestAfter = 0;
1498  float BestDiff = 0;
1499
1500  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1501  SmallVector<float, 8> GapWeight;
1502
1503  Order.rewind();
1504  while (unsigned PhysReg = Order.next()) {
1505    // Keep track of the largest spill weight that would need to be evicted in
1506    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1507    calcGapWeights(PhysReg, GapWeight);
1508
1509    // Remove any gaps with regmask clobbers.
1510    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1511      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1512        GapWeight[RegMaskGaps[i]] = HUGE_VALF;
1513
1514    // Try to find the best sequence of gaps to close.
1515    // The new spill weight must be larger than any gap interference.
1516
1517    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1518    unsigned SplitBefore = 0, SplitAfter = 1;
1519
1520    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1521    // It is the spill weight that needs to be evicted.
1522    float MaxGap = GapWeight[0];
1523
1524    for (;;) {
1525      // Live before/after split?
1526      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1527      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1528
1529      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1530                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1531                   << " i=" << MaxGap);
1532
1533      // Stop before the interval gets so big we wouldn't be making progress.
1534      if (!LiveBefore && !LiveAfter) {
1535        DEBUG(dbgs() << " all\n");
1536        break;
1537      }
1538      // Should the interval be extended or shrunk?
1539      bool Shrink = true;
1540
1541      // How many gaps would the new range have?
1542      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1543
1544      // Legally, without causing looping?
1545      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1546
1547      if (Legal && MaxGap < HUGE_VALF) {
1548        // Estimate the new spill weight. Each instruction reads or writes the
1549        // register. Conservatively assume there are no read-modify-write
1550        // instructions.
1551        //
1552        // Try to guess the size of the new interval.
1553        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1554                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1555                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1556        // Would this split be possible to allocate?
1557        // Never allocate all gaps, we wouldn't be making progress.
1558        DEBUG(dbgs() << " w=" << EstWeight);
1559        if (EstWeight * Hysteresis >= MaxGap) {
1560          Shrink = false;
1561          float Diff = EstWeight - MaxGap;
1562          if (Diff > BestDiff) {
1563            DEBUG(dbgs() << " (best)");
1564            BestDiff = Hysteresis * Diff;
1565            BestBefore = SplitBefore;
1566            BestAfter = SplitAfter;
1567          }
1568        }
1569      }
1570
1571      // Try to shrink.
1572      if (Shrink) {
1573        if (++SplitBefore < SplitAfter) {
1574          DEBUG(dbgs() << " shrink\n");
1575          // Recompute the max when necessary.
1576          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1577            MaxGap = GapWeight[SplitBefore];
1578            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1579              MaxGap = std::max(MaxGap, GapWeight[i]);
1580          }
1581          continue;
1582        }
1583        MaxGap = 0;
1584      }
1585
1586      // Try to extend the interval.
1587      if (SplitAfter >= NumGaps) {
1588        DEBUG(dbgs() << " end\n");
1589        break;
1590      }
1591
1592      DEBUG(dbgs() << " extend\n");
1593      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1594    }
1595  }
1596
1597  // Didn't find any candidates?
1598  if (BestBefore == NumGaps)
1599    return 0;
1600
1601  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1602               << '-' << Uses[BestAfter] << ", " << BestDiff
1603               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1604
1605  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1606  SE->reset(LREdit);
1607
1608  SE->openIntv();
1609  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1610  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1611  SE->useIntv(SegStart, SegStop);
1612  SmallVector<unsigned, 8> IntvMap;
1613  SE->finish(&IntvMap);
1614  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1615
1616  // If the new range has the same number of instructions as before, mark it as
1617  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1618  // leave the new intervals as RS_New so they can compete.
1619  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1620  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1621  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1622  if (NewGaps >= NumGaps) {
1623    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1624    assert(!ProgressRequired && "Didn't make progress when it was required.");
1625    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1626      if (IntvMap[i] == 1) {
1627        setStage(*LREdit.get(i), RS_Split2);
1628        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1629      }
1630    DEBUG(dbgs() << '\n');
1631  }
1632  ++NumLocalSplits;
1633
1634  return 0;
1635}
1636
1637//===----------------------------------------------------------------------===//
1638//                          Live Range Splitting
1639//===----------------------------------------------------------------------===//
1640
1641/// trySplit - Try to split VirtReg or one of its interferences, making it
1642/// assignable.
1643/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1644unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1645                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1646  // Ranges must be Split2 or less.
1647  if (getStage(VirtReg) >= RS_Spill)
1648    return 0;
1649
1650  // Local intervals are handled separately.
1651  if (LIS->intervalIsInOneMBB(VirtReg)) {
1652    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1653    SA->analyze(&VirtReg);
1654    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1655    if (PhysReg || !NewVRegs.empty())
1656      return PhysReg;
1657    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1658  }
1659
1660  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1661
1662  SA->analyze(&VirtReg);
1663
1664  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1665  // coalescer. That may cause the range to become allocatable which means that
1666  // tryRegionSplit won't be making progress. This check should be replaced with
1667  // an assertion when the coalescer is fixed.
1668  if (SA->didRepairRange()) {
1669    // VirtReg has changed, so all cached queries are invalid.
1670    Matrix->invalidateVirtRegs();
1671    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1672      return PhysReg;
1673  }
1674
1675  // First try to split around a region spanning multiple blocks. RS_Split2
1676  // ranges already made dubious progress with region splitting, so they go
1677  // straight to single block splitting.
1678  if (getStage(VirtReg) < RS_Split2) {
1679    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1680    if (PhysReg || !NewVRegs.empty())
1681      return PhysReg;
1682  }
1683
1684  // Then isolate blocks.
1685  return tryBlockSplit(VirtReg, Order, NewVRegs);
1686}
1687
1688
1689//===----------------------------------------------------------------------===//
1690//                            Main Entry Point
1691//===----------------------------------------------------------------------===//
1692
1693unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1694                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1695  // First try assigning a free register.
1696  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1697  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1698    return PhysReg;
1699
1700  LiveRangeStage Stage = getStage(VirtReg);
1701  DEBUG(dbgs() << StageName[Stage]
1702               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1703
1704  // Try to evict a less worthy live range, but only for ranges from the primary
1705  // queue. The RS_Split ranges already failed to do this, and they should not
1706  // get a second chance until they have been split.
1707  if (Stage != RS_Split)
1708    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1709      return PhysReg;
1710
1711  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1712
1713  // The first time we see a live range, don't try to split or spill.
1714  // Wait until the second time, when all smaller ranges have been allocated.
1715  // This gives a better picture of the interference to split around.
1716  if (Stage < RS_Split) {
1717    setStage(VirtReg, RS_Split);
1718    DEBUG(dbgs() << "wait for second round\n");
1719    NewVRegs.push_back(&VirtReg);
1720    return 0;
1721  }
1722
1723  // If we couldn't allocate a register from spilling, there is probably some
1724  // invalid inline assembly. The base class wil report it.
1725  if (Stage >= RS_Done || !VirtReg.isSpillable())
1726    return ~0u;
1727
1728  // Try splitting VirtReg or interferences.
1729  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1730  if (PhysReg || !NewVRegs.empty())
1731    return PhysReg;
1732
1733  // Finally spill VirtReg itself.
1734  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1735  LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1736  spiller().spill(LRE);
1737  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1738
1739  if (VerifyEnabled)
1740    MF->verify(this, "After spilling");
1741
1742  // The live virtual register requesting allocation was spilled, so tell
1743  // the caller not to allocate anything during this round.
1744  return 0;
1745}
1746
1747bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1748  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1749               << "********** Function: "
1750               << ((Value*)mf.getFunction())->getName() << '\n');
1751
1752  MF = &mf;
1753  if (VerifyEnabled)
1754    MF->verify(this, "Before greedy register allocator");
1755
1756  RegAllocBase::init(getAnalysis<VirtRegMap>(),
1757                     getAnalysis<LiveIntervals>(),
1758                     getAnalysis<LiveRegMatrix>());
1759  Indexes = &getAnalysis<SlotIndexes>();
1760  DomTree = &getAnalysis<MachineDominatorTree>();
1761  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1762  Loops = &getAnalysis<MachineLoopInfo>();
1763  Bundles = &getAnalysis<EdgeBundles>();
1764  SpillPlacer = &getAnalysis<SpillPlacement>();
1765  DebugVars = &getAnalysis<LiveDebugVariables>();
1766
1767  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1768  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1769  ExtraRegInfo.clear();
1770  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1771  NextCascade = 1;
1772  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
1773  GlobalCand.resize(32);  // This will grow as needed.
1774
1775  allocatePhysRegs();
1776  releaseMemory();
1777  return true;
1778}
1779