LiveRangeCalc.cpp revision 302408
1//===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the LiveRangeCalc class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LiveRangeCalc.h"
15#include "llvm/CodeGen/MachineDominators.h"
16#include "llvm/CodeGen/MachineRegisterInfo.h"
17
18using namespace llvm;
19
20#define DEBUG_TYPE "regalloc"
21
22void LiveRangeCalc::resetLiveOutMap() {
23  unsigned NumBlocks = MF->getNumBlockIDs();
24  Seen.clear();
25  Seen.resize(NumBlocks);
26  Map.resize(NumBlocks);
27}
28
29void LiveRangeCalc::reset(const MachineFunction *mf,
30                          SlotIndexes *SI,
31                          MachineDominatorTree *MDT,
32                          VNInfo::Allocator *VNIA) {
33  MF = mf;
34  MRI = &MF->getRegInfo();
35  Indexes = SI;
36  DomTree = MDT;
37  Alloc = VNIA;
38  resetLiveOutMap();
39  LiveIn.clear();
40}
41
42
43static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
44                          LiveRange &LR, const MachineOperand &MO) {
45    const MachineInstr *MI = MO.getParent();
46    SlotIndex DefIdx =
47        Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
48
49    // Create the def in LR. This may find an existing def.
50    LR.createDeadDef(DefIdx, Alloc);
51}
52
53void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
54  assert(MRI && Indexes && "call reset() first");
55
56  // Step 1: Create minimal live segments for every definition of Reg.
57  // Visit all def operands. If the same instruction has multiple defs of Reg,
58  // createDeadDef() will deduplicate.
59  const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
60  unsigned Reg = LI.reg;
61  for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
62    if (!MO.isDef() && !MO.readsReg())
63      continue;
64
65    unsigned SubReg = MO.getSubReg();
66    if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
67      LaneBitmask Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
68                                     : MRI->getMaxLaneMaskForVReg(Reg);
69
70      // If this is the first time we see a subregister def, initialize
71      // subranges by creating a copy of the main range.
72      if (!LI.hasSubRanges() && !LI.empty()) {
73        LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
74        LI.createSubRangeFrom(*Alloc, ClassMask, LI);
75      }
76
77      for (LiveInterval::SubRange &S : LI.subranges()) {
78        // A Mask for subregs common to the existing subrange and current def.
79        LaneBitmask Common = S.LaneMask & Mask;
80        if (Common == 0)
81          continue;
82        // A Mask for subregs covered by the subrange but not the current def.
83        LaneBitmask LRest = S.LaneMask & ~Mask;
84        LiveInterval::SubRange *CommonRange;
85        if (LRest != 0) {
86          // Split current subrange into Common and LRest ranges.
87          S.LaneMask = LRest;
88          CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
89        } else {
90          assert(Common == S.LaneMask);
91          CommonRange = &S;
92        }
93        if (MO.isDef())
94          createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
95        Mask &= ~Common;
96      }
97      // Create a new SubRange for subregs we did not cover yet.
98      if (Mask != 0) {
99        LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
100        if (MO.isDef())
101          createDeadDef(*Indexes, *Alloc, *NewRange, MO);
102      }
103    }
104
105    // Create the def in the main liverange. We do not have to do this if
106    // subranges are tracked as we recreate the main range later in this case.
107    if (MO.isDef() && !LI.hasSubRanges())
108      createDeadDef(*Indexes, *Alloc, LI, MO);
109  }
110
111  // We may have created empty live ranges for partially undefined uses, we
112  // can't keep them because we won't find defs in them later.
113  LI.removeEmptySubRanges();
114
115  // Step 2: Extend live segments to all uses, constructing SSA form as
116  // necessary.
117  if (LI.hasSubRanges()) {
118    for (LiveInterval::SubRange &S : LI.subranges()) {
119      resetLiveOutMap();
120      extendToUses(S, Reg, S.LaneMask);
121    }
122    LI.clear();
123    LI.constructMainRangeFromSubranges(*Indexes, *Alloc);
124  } else {
125    resetLiveOutMap();
126    extendToUses(LI, Reg, ~0u);
127  }
128}
129
130
131void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
132  assert(MRI && Indexes && "call reset() first");
133
134  // Visit all def operands. If the same instruction has multiple defs of Reg,
135  // LR.createDeadDef() will deduplicate.
136  for (MachineOperand &MO : MRI->def_operands(Reg))
137    createDeadDef(*Indexes, *Alloc, LR, MO);
138}
139
140
141void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg,
142                                 LaneBitmask Mask) {
143  // Visit all operands that read Reg. This may include partial defs.
144  const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
145  for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
146    // Clear all kill flags. They will be reinserted after register allocation
147    // by LiveIntervalAnalysis::addKillFlags().
148    if (MO.isUse())
149      MO.setIsKill(false);
150    else {
151      // We only care about uses, but on the main range (mask ~0u) this includes
152      // the "virtual" reads happening for subregister defs.
153      if (Mask != ~0u)
154        continue;
155    }
156
157    if (!MO.readsReg())
158      continue;
159    unsigned SubReg = MO.getSubReg();
160    if (SubReg != 0) {
161      LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
162      // Ignore uses not covering the current subrange.
163      if ((SubRegMask & Mask) == 0)
164        continue;
165    }
166
167    // Determine the actual place of the use.
168    const MachineInstr *MI = MO.getParent();
169    unsigned OpNo = (&MO - &MI->getOperand(0));
170    SlotIndex UseIdx;
171    if (MI->isPHI()) {
172      assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
173      // The actual place where a phi operand is used is the end of the pred
174      // MBB. PHI operands are paired: (Reg, PredMBB).
175      UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
176    } else {
177      // Check for early-clobber redefs.
178      bool isEarlyClobber = false;
179      unsigned DefIdx;
180      if (MO.isDef())
181        isEarlyClobber = MO.isEarlyClobber();
182      else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
183        // FIXME: This would be a lot easier if tied early-clobber uses also
184        // had an early-clobber flag.
185        isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
186      }
187      UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
188    }
189
190    // MI is reading Reg. We may have visited MI before if it happens to be
191    // reading Reg multiple times. That is OK, extend() is idempotent.
192    extend(LR, UseIdx, Reg);
193  }
194}
195
196
197void LiveRangeCalc::updateFromLiveIns() {
198  LiveRangeUpdater Updater;
199  for (const LiveInBlock &I : LiveIn) {
200    if (!I.DomNode)
201      continue;
202    MachineBasicBlock *MBB = I.DomNode->getBlock();
203    assert(I.Value && "No live-in value found");
204    SlotIndex Start, End;
205    std::tie(Start, End) = Indexes->getMBBRange(MBB);
206
207    if (I.Kill.isValid())
208      // Value is killed inside this block.
209      End = I.Kill;
210    else {
211      // The value is live-through, update LiveOut as well.
212      // Defer the Domtree lookup until it is needed.
213      assert(Seen.test(MBB->getNumber()));
214      Map[MBB] = LiveOutPair(I.Value, nullptr);
215    }
216    Updater.setDest(&I.LR);
217    Updater.add(Start, End, I.Value);
218  }
219  LiveIn.clear();
220}
221
222
223void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
224  assert(Use.isValid() && "Invalid SlotIndex");
225  assert(Indexes && "Missing SlotIndexes");
226  assert(DomTree && "Missing dominator tree");
227
228  MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
229  assert(UseMBB && "No MBB at Use");
230
231  // Is there a def in the same MBB we can extend?
232  if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use))
233    return;
234
235  // Find the single reaching def, or determine if Use is jointly dominated by
236  // multiple values, and we may need to create even more phi-defs to preserve
237  // VNInfo SSA form.  Perform a search for all predecessor blocks where we
238  // know the dominating VNInfo.
239  if (findReachingDefs(LR, *UseMBB, Use, PhysReg))
240    return;
241
242  // When there were multiple different values, we may need new PHIs.
243  calculateValues();
244}
245
246
247// This function is called by a client after using the low-level API to add
248// live-out and live-in blocks.  The unique value optimization is not
249// available, SplitEditor::transferValues handles that case directly anyway.
250void LiveRangeCalc::calculateValues() {
251  assert(Indexes && "Missing SlotIndexes");
252  assert(DomTree && "Missing dominator tree");
253  updateSSA();
254  updateFromLiveIns();
255}
256
257
258bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
259                                     SlotIndex Use, unsigned PhysReg) {
260  unsigned UseMBBNum = UseMBB.getNumber();
261
262  // Block numbers where LR should be live-in.
263  SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
264
265  // Remember if we have seen more than one value.
266  bool UniqueVNI = true;
267  VNInfo *TheVNI = nullptr;
268
269  // Using Seen as a visited set, perform a BFS for all reaching defs.
270  for (unsigned i = 0; i != WorkList.size(); ++i) {
271    MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
272
273#ifndef NDEBUG
274    if (MBB->pred_empty()) {
275      MBB->getParent()->verify();
276      errs() << "Use of " << PrintReg(PhysReg)
277             << " does not have a corresponding definition on every path:\n";
278      const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
279      if (MI != nullptr)
280        errs() << Use << " " << *MI;
281      llvm_unreachable("Use not jointly dominated by defs.");
282    }
283
284    if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
285        !MBB->isLiveIn(PhysReg)) {
286      MBB->getParent()->verify();
287      errs() << "The register " << PrintReg(PhysReg)
288             << " needs to be live in to BB#" << MBB->getNumber()
289             << ", but is missing from the live-in list.\n";
290      llvm_unreachable("Invalid global physical register");
291    }
292#endif
293
294    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
295         PE = MBB->pred_end(); PI != PE; ++PI) {
296       MachineBasicBlock *Pred = *PI;
297
298       // Is this a known live-out block?
299       if (Seen.test(Pred->getNumber())) {
300         if (VNInfo *VNI = Map[Pred].first) {
301           if (TheVNI && TheVNI != VNI)
302             UniqueVNI = false;
303           TheVNI = VNI;
304         }
305         continue;
306       }
307
308       SlotIndex Start, End;
309       std::tie(Start, End) = Indexes->getMBBRange(Pred);
310
311       // First time we see Pred.  Try to determine the live-out value, but set
312       // it as null if Pred is live-through with an unknown value.
313       VNInfo *VNI = LR.extendInBlock(Start, End);
314       setLiveOutValue(Pred, VNI);
315       if (VNI) {
316         if (TheVNI && TheVNI != VNI)
317           UniqueVNI = false;
318         TheVNI = VNI;
319         continue;
320       }
321
322       // No, we need a live-in value for Pred as well
323       if (Pred != &UseMBB)
324          WorkList.push_back(Pred->getNumber());
325       else
326          // Loopback to UseMBB, so value is really live through.
327         Use = SlotIndex();
328    }
329  }
330
331  LiveIn.clear();
332
333  // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
334  // neither require it. Skip the sorting overhead for small updates.
335  if (WorkList.size() > 4)
336    array_pod_sort(WorkList.begin(), WorkList.end());
337
338  // If a unique reaching def was found, blit in the live ranges immediately.
339  if (UniqueVNI) {
340    LiveRangeUpdater Updater(&LR);
341    for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
342         E = WorkList.end(); I != E; ++I) {
343       SlotIndex Start, End;
344       std::tie(Start, End) = Indexes->getMBBRange(*I);
345       // Trim the live range in UseMBB.
346       if (*I == UseMBBNum && Use.isValid())
347         End = Use;
348       else
349         Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
350       Updater.add(Start, End, TheVNI);
351    }
352    return true;
353  }
354
355  // Multiple values were found, so transfer the work list to the LiveIn array
356  // where UpdateSSA will use it as a work list.
357  LiveIn.reserve(WorkList.size());
358  for (SmallVectorImpl<unsigned>::const_iterator
359       I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
360    MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
361    addLiveInBlock(LR, DomTree->getNode(MBB));
362    if (MBB == &UseMBB)
363      LiveIn.back().Kill = Use;
364  }
365
366  return false;
367}
368
369
370// This is essentially the same iterative algorithm that SSAUpdater uses,
371// except we already have a dominator tree, so we don't have to recompute it.
372void LiveRangeCalc::updateSSA() {
373  assert(Indexes && "Missing SlotIndexes");
374  assert(DomTree && "Missing dominator tree");
375
376  // Interate until convergence.
377  unsigned Changes;
378  do {
379    Changes = 0;
380    // Propagate live-out values down the dominator tree, inserting phi-defs
381    // when necessary.
382    for (LiveInBlock &I : LiveIn) {
383      MachineDomTreeNode *Node = I.DomNode;
384      // Skip block if the live-in value has already been determined.
385      if (!Node)
386        continue;
387      MachineBasicBlock *MBB = Node->getBlock();
388      MachineDomTreeNode *IDom = Node->getIDom();
389      LiveOutPair IDomValue;
390
391      // We need a live-in value to a block with no immediate dominator?
392      // This is probably an unreachable block that has survived somehow.
393      bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
394
395      // IDom dominates all of our predecessors, but it may not be their
396      // immediate dominator. Check if any of them have live-out values that are
397      // properly dominated by IDom. If so, we need a phi-def here.
398      if (!needPHI) {
399        IDomValue = Map[IDom->getBlock()];
400
401        // Cache the DomTree node that defined the value.
402        if (IDomValue.first && !IDomValue.second)
403          Map[IDom->getBlock()].second = IDomValue.second =
404            DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
405
406        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
407               PE = MBB->pred_end(); PI != PE; ++PI) {
408          LiveOutPair &Value = Map[*PI];
409          if (!Value.first || Value.first == IDomValue.first)
410            continue;
411
412          // Cache the DomTree node that defined the value.
413          if (!Value.second)
414            Value.second =
415              DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
416
417          // This predecessor is carrying something other than IDomValue.
418          // It could be because IDomValue hasn't propagated yet, or it could be
419          // because MBB is in the dominance frontier of that value.
420          if (DomTree->dominates(IDom, Value.second)) {
421            needPHI = true;
422            break;
423          }
424        }
425      }
426
427      // The value may be live-through even if Kill is set, as can happen when
428      // we are called from extendRange. In that case LiveOutSeen is true, and
429      // LiveOut indicates a foreign or missing value.
430      LiveOutPair &LOP = Map[MBB];
431
432      // Create a phi-def if required.
433      if (needPHI) {
434        ++Changes;
435        assert(Alloc && "Need VNInfo allocator to create PHI-defs");
436        SlotIndex Start, End;
437        std::tie(Start, End) = Indexes->getMBBRange(MBB);
438        LiveRange &LR = I.LR;
439        VNInfo *VNI = LR.getNextValue(Start, *Alloc);
440        I.Value = VNI;
441        // This block is done, we know the final value.
442        I.DomNode = nullptr;
443
444        // Add liveness since updateFromLiveIns now skips this node.
445        if (I.Kill.isValid())
446          LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
447        else {
448          LR.addSegment(LiveInterval::Segment(Start, End, VNI));
449          LOP = LiveOutPair(VNI, Node);
450        }
451      } else if (IDomValue.first) {
452        // No phi-def here. Remember incoming value.
453        I.Value = IDomValue.first;
454
455        // If the IDomValue is killed in the block, don't propagate through.
456        if (I.Kill.isValid())
457          continue;
458
459        // Propagate IDomValue if it isn't killed:
460        // MBB is live-out and doesn't define its own value.
461        if (LOP.first == IDomValue.first)
462          continue;
463        ++Changes;
464        LOP = IDomValue;
465      }
466    }
467  } while (Changes);
468}
469