InterleavedAccessPass.cpp revision 303975
1//=----------------------- InterleavedAccessPass.cpp -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Interleaved Access pass, which identifies
11// interleaved memory accesses and transforms into target specific intrinsics.
12//
13// An interleaved load reads data from memory into several vectors, with
14// DE-interleaving the data on a factor. An interleaved store writes several
15// vectors to memory with RE-interleaving the data on a factor.
16//
17// As interleaved accesses are hard to be identified in CodeGen (mainly because
18// the VECTOR_SHUFFLE DAG node is quite different from the shufflevector IR),
19// we identify and transform them to intrinsics in this pass. So the intrinsics
20// can be easily matched into target specific instructions later in CodeGen.
21//
22// E.g. An interleaved load (Factor = 2):
23//        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
24//        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
25//        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
26//
27// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
28// intrinsic in ARM backend.
29//
30// E.g. An interleaved store (Factor = 3):
31//        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
32//                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
33//        store <12 x i32> %i.vec, <12 x i32>* %ptr
34//
35// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
36// intrinsic in ARM backend.
37//
38//===----------------------------------------------------------------------===//
39
40#include "llvm/CodeGen/Passes.h"
41#include "llvm/IR/InstIterator.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetSubtargetInfo.h"
47
48using namespace llvm;
49
50#define DEBUG_TYPE "interleaved-access"
51
52static cl::opt<bool> LowerInterleavedAccesses(
53    "lower-interleaved-accesses",
54    cl::desc("Enable lowering interleaved accesses to intrinsics"),
55    cl::init(true), cl::Hidden);
56
57static unsigned MaxFactor; // The maximum supported interleave factor.
58
59namespace llvm {
60static void initializeInterleavedAccessPass(PassRegistry &);
61}
62
63namespace {
64
65class InterleavedAccess : public FunctionPass {
66
67public:
68  static char ID;
69  InterleavedAccess(const TargetMachine *TM = nullptr)
70      : FunctionPass(ID), TM(TM), TLI(nullptr) {
71    initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
72  }
73
74  const char *getPassName() const override { return "Interleaved Access Pass"; }
75
76  bool runOnFunction(Function &F) override;
77
78private:
79  const TargetMachine *TM;
80  const TargetLowering *TLI;
81
82  /// \brief Transform an interleaved load into target specific intrinsics.
83  bool lowerInterleavedLoad(LoadInst *LI,
84                            SmallVector<Instruction *, 32> &DeadInsts);
85
86  /// \brief Transform an interleaved store into target specific intrinsics.
87  bool lowerInterleavedStore(StoreInst *SI,
88                             SmallVector<Instruction *, 32> &DeadInsts);
89};
90} // end anonymous namespace.
91
92char InterleavedAccess::ID = 0;
93INITIALIZE_TM_PASS(InterleavedAccess, "interleaved-access",
94    "Lower interleaved memory accesses to target specific intrinsics",
95    false, false)
96
97FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) {
98  return new InterleavedAccess(TM);
99}
100
101/// \brief Check if the mask is a DE-interleave mask of the given factor
102/// \p Factor like:
103///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
104static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
105                                       unsigned &Index) {
106  // Check all potential start indices from 0 to (Factor - 1).
107  for (Index = 0; Index < Factor; Index++) {
108    unsigned i = 0;
109
110    // Check that elements are in ascending order by Factor. Ignore undef
111    // elements.
112    for (; i < Mask.size(); i++)
113      if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
114        break;
115
116    if (i == Mask.size())
117      return true;
118  }
119
120  return false;
121}
122
123/// \brief Check if the mask is a DE-interleave mask for an interleaved load.
124///
125/// E.g. DE-interleave masks (Factor = 2) could be:
126///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
127///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
128static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
129                               unsigned &Index) {
130  if (Mask.size() < 2)
131    return false;
132
133  // Check potential Factors.
134  for (Factor = 2; Factor <= MaxFactor; Factor++)
135    if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
136      return true;
137
138  return false;
139}
140
141/// \brief Check if the mask is RE-interleave mask for an interleaved store.
142///
143/// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...>
144///
145/// E.g. The RE-interleave mask (Factor = 2) could be:
146///     <0, 4, 1, 5, 2, 6, 3, 7>
147static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
148  unsigned NumElts = Mask.size();
149  if (NumElts < 4)
150    return false;
151
152  // Check potential Factors.
153  for (Factor = 2; Factor <= MaxFactor; Factor++) {
154    if (NumElts % Factor)
155      continue;
156
157    unsigned NumSubElts = NumElts / Factor;
158    if (!isPowerOf2_32(NumSubElts))
159      continue;
160
161    // Check whether each element matchs the RE-interleaved rule. Ignore undef
162    // elements.
163    unsigned i = 0;
164    for (; i < NumElts; i++)
165      if (Mask[i] >= 0 &&
166          static_cast<unsigned>(Mask[i]) !=
167              (i % Factor) * NumSubElts + i / Factor)
168        break;
169
170    // Find a RE-interleaved mask of current factor.
171    if (i == NumElts)
172      return true;
173  }
174
175  return false;
176}
177
178bool InterleavedAccess::lowerInterleavedLoad(
179    LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
180  if (!LI->isSimple())
181    return false;
182
183  SmallVector<ShuffleVectorInst *, 4> Shuffles;
184
185  // Check if all users of this load are shufflevectors.
186  for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
187    ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
188    if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
189      return false;
190
191    Shuffles.push_back(SVI);
192  }
193
194  if (Shuffles.empty())
195    return false;
196
197  unsigned Factor, Index;
198
199  // Check if the first shufflevector is DE-interleave shuffle.
200  if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index))
201    return false;
202
203  // Holds the corresponding index for each DE-interleave shuffle.
204  SmallVector<unsigned, 4> Indices;
205  Indices.push_back(Index);
206
207  Type *VecTy = Shuffles[0]->getType();
208
209  // Check if other shufflevectors are also DE-interleaved of the same type
210  // and factor as the first shufflevector.
211  for (unsigned i = 1; i < Shuffles.size(); i++) {
212    if (Shuffles[i]->getType() != VecTy)
213      return false;
214
215    if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
216                                    Index))
217      return false;
218
219    Indices.push_back(Index);
220  }
221
222  DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
223
224  // Try to create target specific intrinsics to replace the load and shuffles.
225  if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
226    return false;
227
228  for (auto SVI : Shuffles)
229    DeadInsts.push_back(SVI);
230
231  DeadInsts.push_back(LI);
232  return true;
233}
234
235bool InterleavedAccess::lowerInterleavedStore(
236    StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
237  if (!SI->isSimple())
238    return false;
239
240  ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
241  if (!SVI || !SVI->hasOneUse())
242    return false;
243
244  // Check if the shufflevector is RE-interleave shuffle.
245  unsigned Factor;
246  if (!isReInterleaveMask(SVI->getShuffleMask(), Factor))
247    return false;
248
249  DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
250
251  // Try to create target specific intrinsics to replace the store and shuffle.
252  if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
253    return false;
254
255  // Already have a new target specific interleaved store. Erase the old store.
256  DeadInsts.push_back(SI);
257  DeadInsts.push_back(SVI);
258  return true;
259}
260
261bool InterleavedAccess::runOnFunction(Function &F) {
262  if (!TM || !LowerInterleavedAccesses)
263    return false;
264
265  DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
266
267  TLI = TM->getSubtargetImpl(F)->getTargetLowering();
268  MaxFactor = TLI->getMaxSupportedInterleaveFactor();
269
270  // Holds dead instructions that will be erased later.
271  SmallVector<Instruction *, 32> DeadInsts;
272  bool Changed = false;
273
274  for (auto &I : instructions(F)) {
275    if (LoadInst *LI = dyn_cast<LoadInst>(&I))
276      Changed |= lowerInterleavedLoad(LI, DeadInsts);
277
278    if (StoreInst *SI = dyn_cast<StoreInst>(&I))
279      Changed |= lowerInterleavedStore(SI, DeadInsts);
280  }
281
282  for (auto I : DeadInsts)
283    I->eraseFromParent();
284
285  return Changed;
286}
287