1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/TargetLibraryInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/CallSite.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Dominators.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GetElementPtrTypeIterator.h"
31#include "llvm/IR/IRBuilder.h"
32#include "llvm/IR/InlineAsm.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/MDBuilder.h"
36#include "llvm/IR/PatternMatch.h"
37#include "llvm/IR/Statepoint.h"
38#include "llvm/IR/ValueHandle.h"
39#include "llvm/IR/ValueMap.h"
40#include "llvm/Pass.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetSubtargetInfo.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/BuildLibCalls.h"
48#include "llvm/Transforms/Utils/BypassSlowDivision.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
51using namespace llvm;
52using namespace llvm::PatternMatch;
53
54#define DEBUG_TYPE "codegenprepare"
55
56STATISTIC(NumBlocksElim, "Number of blocks eliminated");
57STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
58STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
59STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
60                      "sunken Cmps");
61STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
62                       "of sunken Casts");
63STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
64                          "computations were sunk");
65STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
66STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
67STATISTIC(NumAndsAdded,
68          "Number of and mask instructions added to form ext loads");
69STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
70STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
71STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
72STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
73STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
74STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
75
76static cl::opt<bool> DisableBranchOpts(
77  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
78  cl::desc("Disable branch optimizations in CodeGenPrepare"));
79
80static cl::opt<bool>
81    DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
82                  cl::desc("Disable GC optimizations in CodeGenPrepare"));
83
84static cl::opt<bool> DisableSelectToBranch(
85  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
86  cl::desc("Disable select to branch conversion."));
87
88static cl::opt<bool> AddrSinkUsingGEPs(
89  "addr-sink-using-gep", cl::Hidden, cl::init(false),
90  cl::desc("Address sinking in CGP using GEPs."));
91
92static cl::opt<bool> EnableAndCmpSinking(
93   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
94   cl::desc("Enable sinkinig and/cmp into branches."));
95
96static cl::opt<bool> DisableStoreExtract(
97    "disable-cgp-store-extract", cl::Hidden, cl::init(false),
98    cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
99
100static cl::opt<bool> StressStoreExtract(
101    "stress-cgp-store-extract", cl::Hidden, cl::init(false),
102    cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
103
104static cl::opt<bool> DisableExtLdPromotion(
105    "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
106    cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
107             "CodeGenPrepare"));
108
109static cl::opt<bool> StressExtLdPromotion(
110    "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
111    cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
112             "optimization in CodeGenPrepare"));
113
114namespace {
115typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
116typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
117typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
118class TypePromotionTransaction;
119
120  class CodeGenPrepare : public FunctionPass {
121    const TargetMachine *TM;
122    const TargetLowering *TLI;
123    const TargetTransformInfo *TTI;
124    const TargetLibraryInfo *TLInfo;
125
126    /// As we scan instructions optimizing them, this is the next instruction
127    /// to optimize. Transforms that can invalidate this should update it.
128    BasicBlock::iterator CurInstIterator;
129
130    /// Keeps track of non-local addresses that have been sunk into a block.
131    /// This allows us to avoid inserting duplicate code for blocks with
132    /// multiple load/stores of the same address.
133    ValueMap<Value*, Value*> SunkAddrs;
134
135    /// Keeps track of all instructions inserted for the current function.
136    SetOfInstrs InsertedInsts;
137    /// Keeps track of the type of the related instruction before their
138    /// promotion for the current function.
139    InstrToOrigTy PromotedInsts;
140
141    /// True if CFG is modified in any way.
142    bool ModifiedDT;
143
144    /// True if optimizing for size.
145    bool OptSize;
146
147    /// DataLayout for the Function being processed.
148    const DataLayout *DL;
149
150  public:
151    static char ID; // Pass identification, replacement for typeid
152    explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
153        : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
154        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
155      }
156    bool runOnFunction(Function &F) override;
157
158    const char *getPassName() const override { return "CodeGen Prepare"; }
159
160    void getAnalysisUsage(AnalysisUsage &AU) const override {
161      AU.addPreserved<DominatorTreeWrapperPass>();
162      AU.addRequired<TargetLibraryInfoWrapperPass>();
163      AU.addRequired<TargetTransformInfoWrapperPass>();
164    }
165
166  private:
167    bool eliminateFallThrough(Function &F);
168    bool eliminateMostlyEmptyBlocks(Function &F);
169    bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
170    void eliminateMostlyEmptyBlock(BasicBlock *BB);
171    bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
172    bool optimizeInst(Instruction *I, bool& ModifiedDT);
173    bool optimizeMemoryInst(Instruction *I, Value *Addr,
174                            Type *AccessTy, unsigned AS);
175    bool optimizeInlineAsmInst(CallInst *CS);
176    bool optimizeCallInst(CallInst *CI, bool& ModifiedDT);
177    bool moveExtToFormExtLoad(Instruction *&I);
178    bool optimizeExtUses(Instruction *I);
179    bool optimizeLoadExt(LoadInst *I);
180    bool optimizeSelectInst(SelectInst *SI);
181    bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
182    bool optimizeSwitchInst(SwitchInst *CI);
183    bool optimizeExtractElementInst(Instruction *Inst);
184    bool dupRetToEnableTailCallOpts(BasicBlock *BB);
185    bool placeDbgValues(Function &F);
186    bool sinkAndCmp(Function &F);
187    bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
188                        Instruction *&Inst,
189                        const SmallVectorImpl<Instruction *> &Exts,
190                        unsigned CreatedInstCost);
191    bool splitBranchCondition(Function &F);
192    bool simplifyOffsetableRelocate(Instruction &I);
193    void stripInvariantGroupMetadata(Instruction &I);
194  };
195}
196
197char CodeGenPrepare::ID = 0;
198INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
199                   "Optimize for code generation", false, false)
200
201FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
202  return new CodeGenPrepare(TM);
203}
204
205bool CodeGenPrepare::runOnFunction(Function &F) {
206  if (skipOptnoneFunction(F))
207    return false;
208
209  DL = &F.getParent()->getDataLayout();
210
211  bool EverMadeChange = false;
212  // Clear per function information.
213  InsertedInsts.clear();
214  PromotedInsts.clear();
215
216  ModifiedDT = false;
217  if (TM)
218    TLI = TM->getSubtargetImpl(F)->getTargetLowering();
219  TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
220  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
221  OptSize = F.optForSize();
222
223  /// This optimization identifies DIV instructions that can be
224  /// profitably bypassed and carried out with a shorter, faster divide.
225  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
226    const DenseMap<unsigned int, unsigned int> &BypassWidths =
227       TLI->getBypassSlowDivWidths();
228    BasicBlock* BB = &*F.begin();
229    while (BB != nullptr) {
230      // bypassSlowDivision may create new BBs, but we don't want to reapply the
231      // optimization to those blocks.
232      BasicBlock* Next = BB->getNextNode();
233      EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
234      BB = Next;
235    }
236  }
237
238  // Eliminate blocks that contain only PHI nodes and an
239  // unconditional branch.
240  EverMadeChange |= eliminateMostlyEmptyBlocks(F);
241
242  // llvm.dbg.value is far away from the value then iSel may not be able
243  // handle it properly. iSel will drop llvm.dbg.value if it can not
244  // find a node corresponding to the value.
245  EverMadeChange |= placeDbgValues(F);
246
247  // If there is a mask, compare against zero, and branch that can be combined
248  // into a single target instruction, push the mask and compare into branch
249  // users. Do this before OptimizeBlock -> OptimizeInst ->
250  // OptimizeCmpExpression, which perturbs the pattern being searched for.
251  if (!DisableBranchOpts) {
252    EverMadeChange |= sinkAndCmp(F);
253    EverMadeChange |= splitBranchCondition(F);
254  }
255
256  bool MadeChange = true;
257  while (MadeChange) {
258    MadeChange = false;
259    for (Function::iterator I = F.begin(); I != F.end(); ) {
260      BasicBlock *BB = &*I++;
261      bool ModifiedDTOnIteration = false;
262      MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
263
264      // Restart BB iteration if the dominator tree of the Function was changed
265      if (ModifiedDTOnIteration)
266        break;
267    }
268    EverMadeChange |= MadeChange;
269  }
270
271  SunkAddrs.clear();
272
273  if (!DisableBranchOpts) {
274    MadeChange = false;
275    SmallPtrSet<BasicBlock*, 8> WorkList;
276    for (BasicBlock &BB : F) {
277      SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
278      MadeChange |= ConstantFoldTerminator(&BB, true);
279      if (!MadeChange) continue;
280
281      for (SmallVectorImpl<BasicBlock*>::iterator
282             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
283        if (pred_begin(*II) == pred_end(*II))
284          WorkList.insert(*II);
285    }
286
287    // Delete the dead blocks and any of their dead successors.
288    MadeChange |= !WorkList.empty();
289    while (!WorkList.empty()) {
290      BasicBlock *BB = *WorkList.begin();
291      WorkList.erase(BB);
292      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
293
294      DeleteDeadBlock(BB);
295
296      for (SmallVectorImpl<BasicBlock*>::iterator
297             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
298        if (pred_begin(*II) == pred_end(*II))
299          WorkList.insert(*II);
300    }
301
302    // Merge pairs of basic blocks with unconditional branches, connected by
303    // a single edge.
304    if (EverMadeChange || MadeChange)
305      MadeChange |= eliminateFallThrough(F);
306
307    EverMadeChange |= MadeChange;
308  }
309
310  if (!DisableGCOpts) {
311    SmallVector<Instruction *, 2> Statepoints;
312    for (BasicBlock &BB : F)
313      for (Instruction &I : BB)
314        if (isStatepoint(I))
315          Statepoints.push_back(&I);
316    for (auto &I : Statepoints)
317      EverMadeChange |= simplifyOffsetableRelocate(*I);
318  }
319
320  return EverMadeChange;
321}
322
323/// Merge basic blocks which are connected by a single edge, where one of the
324/// basic blocks has a single successor pointing to the other basic block,
325/// which has a single predecessor.
326bool CodeGenPrepare::eliminateFallThrough(Function &F) {
327  bool Changed = false;
328  // Scan all of the blocks in the function, except for the entry block.
329  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
330    BasicBlock *BB = &*I++;
331    // If the destination block has a single pred, then this is a trivial
332    // edge, just collapse it.
333    BasicBlock *SinglePred = BB->getSinglePredecessor();
334
335    // Don't merge if BB's address is taken.
336    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
337
338    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
339    if (Term && !Term->isConditional()) {
340      Changed = true;
341      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
342      // Remember if SinglePred was the entry block of the function.
343      // If so, we will need to move BB back to the entry position.
344      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
345      MergeBasicBlockIntoOnlyPred(BB, nullptr);
346
347      if (isEntry && BB != &BB->getParent()->getEntryBlock())
348        BB->moveBefore(&BB->getParent()->getEntryBlock());
349
350      // We have erased a block. Update the iterator.
351      I = BB->getIterator();
352    }
353  }
354  return Changed;
355}
356
357/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
358/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
359/// edges in ways that are non-optimal for isel. Start by eliminating these
360/// blocks so we can split them the way we want them.
361bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
362  bool MadeChange = false;
363  // Note that this intentionally skips the entry block.
364  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
365    BasicBlock *BB = &*I++;
366
367    // If this block doesn't end with an uncond branch, ignore it.
368    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
369    if (!BI || !BI->isUnconditional())
370      continue;
371
372    // If the instruction before the branch (skipping debug info) isn't a phi
373    // node, then other stuff is happening here.
374    BasicBlock::iterator BBI = BI->getIterator();
375    if (BBI != BB->begin()) {
376      --BBI;
377      while (isa<DbgInfoIntrinsic>(BBI)) {
378        if (BBI == BB->begin())
379          break;
380        --BBI;
381      }
382      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
383        continue;
384    }
385
386    // Do not break infinite loops.
387    BasicBlock *DestBB = BI->getSuccessor(0);
388    if (DestBB == BB)
389      continue;
390
391    if (!canMergeBlocks(BB, DestBB))
392      continue;
393
394    eliminateMostlyEmptyBlock(BB);
395    MadeChange = true;
396  }
397  return MadeChange;
398}
399
400/// Return true if we can merge BB into DestBB if there is a single
401/// unconditional branch between them, and BB contains no other non-phi
402/// instructions.
403bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
404                                    const BasicBlock *DestBB) const {
405  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
406  // the successor.  If there are more complex condition (e.g. preheaders),
407  // don't mess around with them.
408  BasicBlock::const_iterator BBI = BB->begin();
409  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
410    for (const User *U : PN->users()) {
411      const Instruction *UI = cast<Instruction>(U);
412      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
413        return false;
414      // If User is inside DestBB block and it is a PHINode then check
415      // incoming value. If incoming value is not from BB then this is
416      // a complex condition (e.g. preheaders) we want to avoid here.
417      if (UI->getParent() == DestBB) {
418        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
419          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
420            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
421            if (Insn && Insn->getParent() == BB &&
422                Insn->getParent() != UPN->getIncomingBlock(I))
423              return false;
424          }
425      }
426    }
427  }
428
429  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
430  // and DestBB may have conflicting incoming values for the block.  If so, we
431  // can't merge the block.
432  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
433  if (!DestBBPN) return true;  // no conflict.
434
435  // Collect the preds of BB.
436  SmallPtrSet<const BasicBlock*, 16> BBPreds;
437  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
438    // It is faster to get preds from a PHI than with pred_iterator.
439    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
440      BBPreds.insert(BBPN->getIncomingBlock(i));
441  } else {
442    BBPreds.insert(pred_begin(BB), pred_end(BB));
443  }
444
445  // Walk the preds of DestBB.
446  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
447    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
448    if (BBPreds.count(Pred)) {   // Common predecessor?
449      BBI = DestBB->begin();
450      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
451        const Value *V1 = PN->getIncomingValueForBlock(Pred);
452        const Value *V2 = PN->getIncomingValueForBlock(BB);
453
454        // If V2 is a phi node in BB, look up what the mapped value will be.
455        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
456          if (V2PN->getParent() == BB)
457            V2 = V2PN->getIncomingValueForBlock(Pred);
458
459        // If there is a conflict, bail out.
460        if (V1 != V2) return false;
461      }
462    }
463  }
464
465  return true;
466}
467
468
469/// Eliminate a basic block that has only phi's and an unconditional branch in
470/// it.
471void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
472  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
473  BasicBlock *DestBB = BI->getSuccessor(0);
474
475  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
476
477  // If the destination block has a single pred, then this is a trivial edge,
478  // just collapse it.
479  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
480    if (SinglePred != DestBB) {
481      // Remember if SinglePred was the entry block of the function.  If so, we
482      // will need to move BB back to the entry position.
483      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
484      MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
485
486      if (isEntry && BB != &BB->getParent()->getEntryBlock())
487        BB->moveBefore(&BB->getParent()->getEntryBlock());
488
489      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
490      return;
491    }
492  }
493
494  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
495  // to handle the new incoming edges it is about to have.
496  PHINode *PN;
497  for (BasicBlock::iterator BBI = DestBB->begin();
498       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
499    // Remove the incoming value for BB, and remember it.
500    Value *InVal = PN->removeIncomingValue(BB, false);
501
502    // Two options: either the InVal is a phi node defined in BB or it is some
503    // value that dominates BB.
504    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
505    if (InValPhi && InValPhi->getParent() == BB) {
506      // Add all of the input values of the input PHI as inputs of this phi.
507      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
508        PN->addIncoming(InValPhi->getIncomingValue(i),
509                        InValPhi->getIncomingBlock(i));
510    } else {
511      // Otherwise, add one instance of the dominating value for each edge that
512      // we will be adding.
513      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
514        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
515          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
516      } else {
517        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
518          PN->addIncoming(InVal, *PI);
519      }
520    }
521  }
522
523  // The PHIs are now updated, change everything that refers to BB to use
524  // DestBB and remove BB.
525  BB->replaceAllUsesWith(DestBB);
526  BB->eraseFromParent();
527  ++NumBlocksElim;
528
529  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
530}
531
532// Computes a map of base pointer relocation instructions to corresponding
533// derived pointer relocation instructions given a vector of all relocate calls
534static void computeBaseDerivedRelocateMap(
535    const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
536    DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
537        &RelocateInstMap) {
538  // Collect information in two maps: one primarily for locating the base object
539  // while filling the second map; the second map is the final structure holding
540  // a mapping between Base and corresponding Derived relocate calls
541  DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
542  for (auto *ThisRelocate : AllRelocateCalls) {
543    auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
544                            ThisRelocate->getDerivedPtrIndex());
545    RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
546  }
547  for (auto &Item : RelocateIdxMap) {
548    std::pair<unsigned, unsigned> Key = Item.first;
549    if (Key.first == Key.second)
550      // Base relocation: nothing to insert
551      continue;
552
553    GCRelocateInst *I = Item.second;
554    auto BaseKey = std::make_pair(Key.first, Key.first);
555
556    // We're iterating over RelocateIdxMap so we cannot modify it.
557    auto MaybeBase = RelocateIdxMap.find(BaseKey);
558    if (MaybeBase == RelocateIdxMap.end())
559      // TODO: We might want to insert a new base object relocate and gep off
560      // that, if there are enough derived object relocates.
561      continue;
562
563    RelocateInstMap[MaybeBase->second].push_back(I);
564  }
565}
566
567// Accepts a GEP and extracts the operands into a vector provided they're all
568// small integer constants
569static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
570                                          SmallVectorImpl<Value *> &OffsetV) {
571  for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
572    // Only accept small constant integer operands
573    auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
574    if (!Op || Op->getZExtValue() > 20)
575      return false;
576  }
577
578  for (unsigned i = 1; i < GEP->getNumOperands(); i++)
579    OffsetV.push_back(GEP->getOperand(i));
580  return true;
581}
582
583// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
584// replace, computes a replacement, and affects it.
585static bool
586simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
587                          const SmallVectorImpl<GCRelocateInst *> &Targets) {
588  bool MadeChange = false;
589  for (GCRelocateInst *ToReplace : Targets) {
590    assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
591           "Not relocating a derived object of the original base object");
592    if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
593      // A duplicate relocate call. TODO: coalesce duplicates.
594      continue;
595    }
596
597    if (RelocatedBase->getParent() != ToReplace->getParent()) {
598      // Base and derived relocates are in different basic blocks.
599      // In this case transform is only valid when base dominates derived
600      // relocate. However it would be too expensive to check dominance
601      // for each such relocate, so we skip the whole transformation.
602      continue;
603    }
604
605    Value *Base = ToReplace->getBasePtr();
606    auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
607    if (!Derived || Derived->getPointerOperand() != Base)
608      continue;
609
610    SmallVector<Value *, 2> OffsetV;
611    if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
612      continue;
613
614    // Create a Builder and replace the target callsite with a gep
615    assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator");
616
617    // Insert after RelocatedBase
618    IRBuilder<> Builder(RelocatedBase->getNextNode());
619    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
620
621    // If gc_relocate does not match the actual type, cast it to the right type.
622    // In theory, there must be a bitcast after gc_relocate if the type does not
623    // match, and we should reuse it to get the derived pointer. But it could be
624    // cases like this:
625    // bb1:
626    //  ...
627    //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
628    //  br label %merge
629    //
630    // bb2:
631    //  ...
632    //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
633    //  br label %merge
634    //
635    // merge:
636    //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
637    //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
638    //
639    // In this case, we can not find the bitcast any more. So we insert a new bitcast
640    // no matter there is already one or not. In this way, we can handle all cases, and
641    // the extra bitcast should be optimized away in later passes.
642    Value *ActualRelocatedBase = RelocatedBase;
643    if (RelocatedBase->getType() != Base->getType()) {
644      ActualRelocatedBase =
645          Builder.CreateBitCast(RelocatedBase, Base->getType());
646    }
647    Value *Replacement = Builder.CreateGEP(
648        Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
649    Replacement->takeName(ToReplace);
650    // If the newly generated derived pointer's type does not match the original derived
651    // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
652    Value *ActualReplacement = Replacement;
653    if (Replacement->getType() != ToReplace->getType()) {
654      ActualReplacement =
655          Builder.CreateBitCast(Replacement, ToReplace->getType());
656    }
657    ToReplace->replaceAllUsesWith(ActualReplacement);
658    ToReplace->eraseFromParent();
659
660    MadeChange = true;
661  }
662  return MadeChange;
663}
664
665// Turns this:
666//
667// %base = ...
668// %ptr = gep %base + 15
669// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
670// %base' = relocate(%tok, i32 4, i32 4)
671// %ptr' = relocate(%tok, i32 4, i32 5)
672// %val = load %ptr'
673//
674// into this:
675//
676// %base = ...
677// %ptr = gep %base + 15
678// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
679// %base' = gc.relocate(%tok, i32 4, i32 4)
680// %ptr' = gep %base' + 15
681// %val = load %ptr'
682bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
683  bool MadeChange = false;
684  SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
685
686  for (auto *U : I.users())
687    if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
688      // Collect all the relocate calls associated with a statepoint
689      AllRelocateCalls.push_back(Relocate);
690
691  // We need atleast one base pointer relocation + one derived pointer
692  // relocation to mangle
693  if (AllRelocateCalls.size() < 2)
694    return false;
695
696  // RelocateInstMap is a mapping from the base relocate instruction to the
697  // corresponding derived relocate instructions
698  DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
699  computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
700  if (RelocateInstMap.empty())
701    return false;
702
703  for (auto &Item : RelocateInstMap)
704    // Item.first is the RelocatedBase to offset against
705    // Item.second is the vector of Targets to replace
706    MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
707  return MadeChange;
708}
709
710/// SinkCast - Sink the specified cast instruction into its user blocks
711static bool SinkCast(CastInst *CI) {
712  BasicBlock *DefBB = CI->getParent();
713
714  /// InsertedCasts - Only insert a cast in each block once.
715  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
716
717  bool MadeChange = false;
718  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
719       UI != E; ) {
720    Use &TheUse = UI.getUse();
721    Instruction *User = cast<Instruction>(*UI);
722
723    // Figure out which BB this cast is used in.  For PHI's this is the
724    // appropriate predecessor block.
725    BasicBlock *UserBB = User->getParent();
726    if (PHINode *PN = dyn_cast<PHINode>(User)) {
727      UserBB = PN->getIncomingBlock(TheUse);
728    }
729
730    // Preincrement use iterator so we don't invalidate it.
731    ++UI;
732
733    // If the block selected to receive the cast is an EH pad that does not
734    // allow non-PHI instructions before the terminator, we can't sink the
735    // cast.
736    if (UserBB->getTerminator()->isEHPad())
737      continue;
738
739    // If this user is in the same block as the cast, don't change the cast.
740    if (UserBB == DefBB) continue;
741
742    // If we have already inserted a cast into this block, use it.
743    CastInst *&InsertedCast = InsertedCasts[UserBB];
744
745    if (!InsertedCast) {
746      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
747      assert(InsertPt != UserBB->end());
748      InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
749                                      CI->getType(), "", &*InsertPt);
750    }
751
752    // Replace a use of the cast with a use of the new cast.
753    TheUse = InsertedCast;
754    MadeChange = true;
755    ++NumCastUses;
756  }
757
758  // If we removed all uses, nuke the cast.
759  if (CI->use_empty()) {
760    CI->eraseFromParent();
761    MadeChange = true;
762  }
763
764  return MadeChange;
765}
766
767/// If the specified cast instruction is a noop copy (e.g. it's casting from
768/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
769/// reduce the number of virtual registers that must be created and coalesced.
770///
771/// Return true if any changes are made.
772///
773static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
774                                       const DataLayout &DL) {
775  // If this is a noop copy,
776  EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
777  EVT DstVT = TLI.getValueType(DL, CI->getType());
778
779  // This is an fp<->int conversion?
780  if (SrcVT.isInteger() != DstVT.isInteger())
781    return false;
782
783  // If this is an extension, it will be a zero or sign extension, which
784  // isn't a noop.
785  if (SrcVT.bitsLT(DstVT)) return false;
786
787  // If these values will be promoted, find out what they will be promoted
788  // to.  This helps us consider truncates on PPC as noop copies when they
789  // are.
790  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
791      TargetLowering::TypePromoteInteger)
792    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
793  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
794      TargetLowering::TypePromoteInteger)
795    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
796
797  // If, after promotion, these are the same types, this is a noop copy.
798  if (SrcVT != DstVT)
799    return false;
800
801  return SinkCast(CI);
802}
803
804/// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
805/// possible.
806///
807/// Return true if any changes were made.
808static bool CombineUAddWithOverflow(CmpInst *CI) {
809  Value *A, *B;
810  Instruction *AddI;
811  if (!match(CI,
812             m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
813    return false;
814
815  Type *Ty = AddI->getType();
816  if (!isa<IntegerType>(Ty))
817    return false;
818
819  // We don't want to move around uses of condition values this late, so we we
820  // check if it is legal to create the call to the intrinsic in the basic
821  // block containing the icmp:
822
823  if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
824    return false;
825
826#ifndef NDEBUG
827  // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
828  // for now:
829  if (AddI->hasOneUse())
830    assert(*AddI->user_begin() == CI && "expected!");
831#endif
832
833  Module *M = CI->getModule();
834  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
835
836  auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
837
838  auto *UAddWithOverflow =
839      CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
840  auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
841  auto *Overflow =
842      ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
843
844  CI->replaceAllUsesWith(Overflow);
845  AddI->replaceAllUsesWith(UAdd);
846  CI->eraseFromParent();
847  AddI->eraseFromParent();
848  return true;
849}
850
851/// Sink the given CmpInst into user blocks to reduce the number of virtual
852/// registers that must be created and coalesced. This is a clear win except on
853/// targets with multiple condition code registers (PowerPC), where it might
854/// lose; some adjustment may be wanted there.
855///
856/// Return true if any changes are made.
857static bool SinkCmpExpression(CmpInst *CI) {
858  BasicBlock *DefBB = CI->getParent();
859
860  /// Only insert a cmp in each block once.
861  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
862
863  bool MadeChange = false;
864  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
865       UI != E; ) {
866    Use &TheUse = UI.getUse();
867    Instruction *User = cast<Instruction>(*UI);
868
869    // Preincrement use iterator so we don't invalidate it.
870    ++UI;
871
872    // Don't bother for PHI nodes.
873    if (isa<PHINode>(User))
874      continue;
875
876    // Figure out which BB this cmp is used in.
877    BasicBlock *UserBB = User->getParent();
878
879    // If this user is in the same block as the cmp, don't change the cmp.
880    if (UserBB == DefBB) continue;
881
882    // If we have already inserted a cmp into this block, use it.
883    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
884
885    if (!InsertedCmp) {
886      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
887      assert(InsertPt != UserBB->end());
888      InsertedCmp =
889          CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
890                          CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
891    }
892
893    // Replace a use of the cmp with a use of the new cmp.
894    TheUse = InsertedCmp;
895    MadeChange = true;
896    ++NumCmpUses;
897  }
898
899  // If we removed all uses, nuke the cmp.
900  if (CI->use_empty()) {
901    CI->eraseFromParent();
902    MadeChange = true;
903  }
904
905  return MadeChange;
906}
907
908static bool OptimizeCmpExpression(CmpInst *CI) {
909  if (SinkCmpExpression(CI))
910    return true;
911
912  if (CombineUAddWithOverflow(CI))
913    return true;
914
915  return false;
916}
917
918/// Check if the candidates could be combined with a shift instruction, which
919/// includes:
920/// 1. Truncate instruction
921/// 2. And instruction and the imm is a mask of the low bits:
922/// imm & (imm+1) == 0
923static bool isExtractBitsCandidateUse(Instruction *User) {
924  if (!isa<TruncInst>(User)) {
925    if (User->getOpcode() != Instruction::And ||
926        !isa<ConstantInt>(User->getOperand(1)))
927      return false;
928
929    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
930
931    if ((Cimm & (Cimm + 1)).getBoolValue())
932      return false;
933  }
934  return true;
935}
936
937/// Sink both shift and truncate instruction to the use of truncate's BB.
938static bool
939SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
940                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
941                     const TargetLowering &TLI, const DataLayout &DL) {
942  BasicBlock *UserBB = User->getParent();
943  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
944  TruncInst *TruncI = dyn_cast<TruncInst>(User);
945  bool MadeChange = false;
946
947  for (Value::user_iterator TruncUI = TruncI->user_begin(),
948                            TruncE = TruncI->user_end();
949       TruncUI != TruncE;) {
950
951    Use &TruncTheUse = TruncUI.getUse();
952    Instruction *TruncUser = cast<Instruction>(*TruncUI);
953    // Preincrement use iterator so we don't invalidate it.
954
955    ++TruncUI;
956
957    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
958    if (!ISDOpcode)
959      continue;
960
961    // If the use is actually a legal node, there will not be an
962    // implicit truncate.
963    // FIXME: always querying the result type is just an
964    // approximation; some nodes' legality is determined by the
965    // operand or other means. There's no good way to find out though.
966    if (TLI.isOperationLegalOrCustom(
967            ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
968      continue;
969
970    // Don't bother for PHI nodes.
971    if (isa<PHINode>(TruncUser))
972      continue;
973
974    BasicBlock *TruncUserBB = TruncUser->getParent();
975
976    if (UserBB == TruncUserBB)
977      continue;
978
979    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
980    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
981
982    if (!InsertedShift && !InsertedTrunc) {
983      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
984      assert(InsertPt != TruncUserBB->end());
985      // Sink the shift
986      if (ShiftI->getOpcode() == Instruction::AShr)
987        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
988                                                   "", &*InsertPt);
989      else
990        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
991                                                   "", &*InsertPt);
992
993      // Sink the trunc
994      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
995      TruncInsertPt++;
996      assert(TruncInsertPt != TruncUserBB->end());
997
998      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
999                                       TruncI->getType(), "", &*TruncInsertPt);
1000
1001      MadeChange = true;
1002
1003      TruncTheUse = InsertedTrunc;
1004    }
1005  }
1006  return MadeChange;
1007}
1008
1009/// Sink the shift *right* instruction into user blocks if the uses could
1010/// potentially be combined with this shift instruction and generate BitExtract
1011/// instruction. It will only be applied if the architecture supports BitExtract
1012/// instruction. Here is an example:
1013/// BB1:
1014///   %x.extract.shift = lshr i64 %arg1, 32
1015/// BB2:
1016///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1017/// ==>
1018///
1019/// BB2:
1020///   %x.extract.shift.1 = lshr i64 %arg1, 32
1021///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1022///
1023/// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1024/// instruction.
1025/// Return true if any changes are made.
1026static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1027                                const TargetLowering &TLI,
1028                                const DataLayout &DL) {
1029  BasicBlock *DefBB = ShiftI->getParent();
1030
1031  /// Only insert instructions in each block once.
1032  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1033
1034  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1035
1036  bool MadeChange = false;
1037  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1038       UI != E;) {
1039    Use &TheUse = UI.getUse();
1040    Instruction *User = cast<Instruction>(*UI);
1041    // Preincrement use iterator so we don't invalidate it.
1042    ++UI;
1043
1044    // Don't bother for PHI nodes.
1045    if (isa<PHINode>(User))
1046      continue;
1047
1048    if (!isExtractBitsCandidateUse(User))
1049      continue;
1050
1051    BasicBlock *UserBB = User->getParent();
1052
1053    if (UserBB == DefBB) {
1054      // If the shift and truncate instruction are in the same BB. The use of
1055      // the truncate(TruncUse) may still introduce another truncate if not
1056      // legal. In this case, we would like to sink both shift and truncate
1057      // instruction to the BB of TruncUse.
1058      // for example:
1059      // BB1:
1060      // i64 shift.result = lshr i64 opnd, imm
1061      // trunc.result = trunc shift.result to i16
1062      //
1063      // BB2:
1064      //   ----> We will have an implicit truncate here if the architecture does
1065      //   not have i16 compare.
1066      // cmp i16 trunc.result, opnd2
1067      //
1068      if (isa<TruncInst>(User) && shiftIsLegal
1069          // If the type of the truncate is legal, no trucate will be
1070          // introduced in other basic blocks.
1071          &&
1072          (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1073        MadeChange =
1074            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1075
1076      continue;
1077    }
1078    // If we have already inserted a shift into this block, use it.
1079    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1080
1081    if (!InsertedShift) {
1082      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1083      assert(InsertPt != UserBB->end());
1084
1085      if (ShiftI->getOpcode() == Instruction::AShr)
1086        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1087                                                   "", &*InsertPt);
1088      else
1089        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1090                                                   "", &*InsertPt);
1091
1092      MadeChange = true;
1093    }
1094
1095    // Replace a use of the shift with a use of the new shift.
1096    TheUse = InsertedShift;
1097  }
1098
1099  // If we removed all uses, nuke the shift.
1100  if (ShiftI->use_empty())
1101    ShiftI->eraseFromParent();
1102
1103  return MadeChange;
1104}
1105
1106// Translate a masked load intrinsic like
1107// <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
1108//                               <16 x i1> %mask, <16 x i32> %passthru)
1109// to a chain of basic blocks, with loading element one-by-one if
1110// the appropriate mask bit is set
1111//
1112//  %1 = bitcast i8* %addr to i32*
1113//  %2 = extractelement <16 x i1> %mask, i32 0
1114//  %3 = icmp eq i1 %2, true
1115//  br i1 %3, label %cond.load, label %else
1116//
1117//cond.load:                                        ; preds = %0
1118//  %4 = getelementptr i32* %1, i32 0
1119//  %5 = load i32* %4
1120//  %6 = insertelement <16 x i32> undef, i32 %5, i32 0
1121//  br label %else
1122//
1123//else:                                             ; preds = %0, %cond.load
1124//  %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
1125//  %7 = extractelement <16 x i1> %mask, i32 1
1126//  %8 = icmp eq i1 %7, true
1127//  br i1 %8, label %cond.load1, label %else2
1128//
1129//cond.load1:                                       ; preds = %else
1130//  %9 = getelementptr i32* %1, i32 1
1131//  %10 = load i32* %9
1132//  %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
1133//  br label %else2
1134//
1135//else2:                                            ; preds = %else, %cond.load1
1136//  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1137//  %12 = extractelement <16 x i1> %mask, i32 2
1138//  %13 = icmp eq i1 %12, true
1139//  br i1 %13, label %cond.load4, label %else5
1140//
1141static void ScalarizeMaskedLoad(CallInst *CI) {
1142  Value *Ptr  = CI->getArgOperand(0);
1143  Value *Alignment = CI->getArgOperand(1);
1144  Value *Mask = CI->getArgOperand(2);
1145  Value *Src0 = CI->getArgOperand(3);
1146
1147  unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1148  VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1149  assert(VecType && "Unexpected return type of masked load intrinsic");
1150
1151  Type *EltTy = CI->getType()->getVectorElementType();
1152
1153  IRBuilder<> Builder(CI->getContext());
1154  Instruction *InsertPt = CI;
1155  BasicBlock *IfBlock = CI->getParent();
1156  BasicBlock *CondBlock = nullptr;
1157  BasicBlock *PrevIfBlock = CI->getParent();
1158
1159  Builder.SetInsertPoint(InsertPt);
1160  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1161
1162  // Short-cut if the mask is all-true.
1163  bool IsAllOnesMask = isa<Constant>(Mask) &&
1164    cast<Constant>(Mask)->isAllOnesValue();
1165
1166  if (IsAllOnesMask) {
1167    Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal);
1168    CI->replaceAllUsesWith(NewI);
1169    CI->eraseFromParent();
1170    return;
1171  }
1172
1173  // Adjust alignment for the scalar instruction.
1174  AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8);
1175  // Bitcast %addr fron i8* to EltTy*
1176  Type *NewPtrType =
1177    EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1178  Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1179  unsigned VectorWidth = VecType->getNumElements();
1180
1181  Value *UndefVal = UndefValue::get(VecType);
1182
1183  // The result vector
1184  Value *VResult = UndefVal;
1185
1186  if (isa<ConstantVector>(Mask)) {
1187    for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1188      if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1189          continue;
1190      Value *Gep =
1191          Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1192      LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal);
1193      VResult = Builder.CreateInsertElement(VResult, Load,
1194                                            Builder.getInt32(Idx));
1195    }
1196    Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
1197    CI->replaceAllUsesWith(NewI);
1198    CI->eraseFromParent();
1199    return;
1200  }
1201
1202  PHINode *Phi = nullptr;
1203  Value *PrevPhi = UndefVal;
1204
1205  for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1206
1207    // Fill the "else" block, created in the previous iteration
1208    //
1209    //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1210    //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1211    //  %to_load = icmp eq i1 %mask_1, true
1212    //  br i1 %to_load, label %cond.load, label %else
1213    //
1214    if (Idx > 0) {
1215      Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1216      Phi->addIncoming(VResult, CondBlock);
1217      Phi->addIncoming(PrevPhi, PrevIfBlock);
1218      PrevPhi = Phi;
1219      VResult = Phi;
1220    }
1221
1222    Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1223    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1224                                    ConstantInt::get(Predicate->getType(), 1));
1225
1226    // Create "cond" block
1227    //
1228    //  %EltAddr = getelementptr i32* %1, i32 0
1229    //  %Elt = load i32* %EltAddr
1230    //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1231    //
1232    CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load");
1233    Builder.SetInsertPoint(InsertPt);
1234
1235    Value *Gep =
1236        Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1237    LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal);
1238    VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
1239
1240    // Create "else" block, fill it in the next iteration
1241    BasicBlock *NewIfBlock =
1242        CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
1243    Builder.SetInsertPoint(InsertPt);
1244    Instruction *OldBr = IfBlock->getTerminator();
1245    BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1246    OldBr->eraseFromParent();
1247    PrevIfBlock = IfBlock;
1248    IfBlock = NewIfBlock;
1249  }
1250
1251  Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1252  Phi->addIncoming(VResult, CondBlock);
1253  Phi->addIncoming(PrevPhi, PrevIfBlock);
1254  Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1255  CI->replaceAllUsesWith(NewI);
1256  CI->eraseFromParent();
1257}
1258
1259// Translate a masked store intrinsic, like
1260// void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
1261//                               <16 x i1> %mask)
1262// to a chain of basic blocks, that stores element one-by-one if
1263// the appropriate mask bit is set
1264//
1265//   %1 = bitcast i8* %addr to i32*
1266//   %2 = extractelement <16 x i1> %mask, i32 0
1267//   %3 = icmp eq i1 %2, true
1268//   br i1 %3, label %cond.store, label %else
1269//
1270// cond.store:                                       ; preds = %0
1271//   %4 = extractelement <16 x i32> %val, i32 0
1272//   %5 = getelementptr i32* %1, i32 0
1273//   store i32 %4, i32* %5
1274//   br label %else
1275//
1276// else:                                             ; preds = %0, %cond.store
1277//   %6 = extractelement <16 x i1> %mask, i32 1
1278//   %7 = icmp eq i1 %6, true
1279//   br i1 %7, label %cond.store1, label %else2
1280//
1281// cond.store1:                                      ; preds = %else
1282//   %8 = extractelement <16 x i32> %val, i32 1
1283//   %9 = getelementptr i32* %1, i32 1
1284//   store i32 %8, i32* %9
1285//   br label %else2
1286//   . . .
1287static void ScalarizeMaskedStore(CallInst *CI) {
1288  Value *Src = CI->getArgOperand(0);
1289  Value *Ptr  = CI->getArgOperand(1);
1290  Value *Alignment = CI->getArgOperand(2);
1291  Value *Mask = CI->getArgOperand(3);
1292
1293  unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1294  VectorType *VecType = dyn_cast<VectorType>(Src->getType());
1295  assert(VecType && "Unexpected data type in masked store intrinsic");
1296
1297  Type *EltTy = VecType->getElementType();
1298
1299  IRBuilder<> Builder(CI->getContext());
1300  Instruction *InsertPt = CI;
1301  BasicBlock *IfBlock = CI->getParent();
1302  Builder.SetInsertPoint(InsertPt);
1303  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1304
1305  // Short-cut if the mask is all-true.
1306  bool IsAllOnesMask = isa<Constant>(Mask) &&
1307    cast<Constant>(Mask)->isAllOnesValue();
1308
1309  if (IsAllOnesMask) {
1310    Builder.CreateAlignedStore(Src, Ptr, AlignVal);
1311    CI->eraseFromParent();
1312    return;
1313  }
1314
1315  // Adjust alignment for the scalar instruction.
1316  AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8);
1317  // Bitcast %addr fron i8* to EltTy*
1318  Type *NewPtrType =
1319    EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1320  Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1321  unsigned VectorWidth = VecType->getNumElements();
1322
1323  if (isa<ConstantVector>(Mask)) {
1324    for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1325      if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1326          continue;
1327      Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1328      Value *Gep =
1329          Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1330      Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
1331    }
1332    CI->eraseFromParent();
1333    return;
1334  }
1335
1336  for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1337
1338    // Fill the "else" block, created in the previous iteration
1339    //
1340    //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1341    //  %to_store = icmp eq i1 %mask_1, true
1342    //  br i1 %to_store, label %cond.store, label %else
1343    //
1344    Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1345    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1346                                    ConstantInt::get(Predicate->getType(), 1));
1347
1348    // Create "cond" block
1349    //
1350    //  %OneElt = extractelement <16 x i32> %Src, i32 Idx
1351    //  %EltAddr = getelementptr i32* %1, i32 0
1352    //  %store i32 %OneElt, i32* %EltAddr
1353    //
1354    BasicBlock *CondBlock =
1355        IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store");
1356    Builder.SetInsertPoint(InsertPt);
1357
1358    Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1359    Value *Gep =
1360        Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1361    Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
1362
1363    // Create "else" block, fill it in the next iteration
1364    BasicBlock *NewIfBlock =
1365        CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
1366    Builder.SetInsertPoint(InsertPt);
1367    Instruction *OldBr = IfBlock->getTerminator();
1368    BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1369    OldBr->eraseFromParent();
1370    IfBlock = NewIfBlock;
1371  }
1372  CI->eraseFromParent();
1373}
1374
1375// Translate a masked gather intrinsic like
1376// <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4,
1377//                               <16 x i1> %Mask, <16 x i32> %Src)
1378// to a chain of basic blocks, with loading element one-by-one if
1379// the appropriate mask bit is set
1380//
1381// % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind
1382// % Mask0 = extractelement <16 x i1> %Mask, i32 0
1383// % ToLoad0 = icmp eq i1 % Mask0, true
1384// br i1 % ToLoad0, label %cond.load, label %else
1385//
1386// cond.load:
1387// % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
1388// % Load0 = load i32, i32* % Ptr0, align 4
1389// % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0
1390// br label %else
1391//
1392// else:
1393// %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0]
1394// % Mask1 = extractelement <16 x i1> %Mask, i32 1
1395// % ToLoad1 = icmp eq i1 % Mask1, true
1396// br i1 % ToLoad1, label %cond.load1, label %else2
1397//
1398// cond.load1:
1399// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1400// % Load1 = load i32, i32* % Ptr1, align 4
1401// % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1
1402// br label %else2
1403// . . .
1404// % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src
1405// ret <16 x i32> %Result
1406static void ScalarizeMaskedGather(CallInst *CI) {
1407  Value *Ptrs = CI->getArgOperand(0);
1408  Value *Alignment = CI->getArgOperand(1);
1409  Value *Mask = CI->getArgOperand(2);
1410  Value *Src0 = CI->getArgOperand(3);
1411
1412  VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1413
1414  assert(VecType && "Unexpected return type of masked load intrinsic");
1415
1416  IRBuilder<> Builder(CI->getContext());
1417  Instruction *InsertPt = CI;
1418  BasicBlock *IfBlock = CI->getParent();
1419  BasicBlock *CondBlock = nullptr;
1420  BasicBlock *PrevIfBlock = CI->getParent();
1421  Builder.SetInsertPoint(InsertPt);
1422  unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1423
1424  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1425
1426  Value *UndefVal = UndefValue::get(VecType);
1427
1428  // The result vector
1429  Value *VResult = UndefVal;
1430  unsigned VectorWidth = VecType->getNumElements();
1431
1432  // Shorten the way if the mask is a vector of constants.
1433  bool IsConstMask = isa<ConstantVector>(Mask);
1434
1435  if (IsConstMask) {
1436    for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1437      if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1438        continue;
1439      Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1440                                                "Ptr" + Twine(Idx));
1441      LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
1442                                                 "Load" + Twine(Idx));
1443      VResult = Builder.CreateInsertElement(VResult, Load,
1444                                            Builder.getInt32(Idx),
1445                                            "Res" + Twine(Idx));
1446    }
1447    Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
1448    CI->replaceAllUsesWith(NewI);
1449    CI->eraseFromParent();
1450    return;
1451  }
1452
1453  PHINode *Phi = nullptr;
1454  Value *PrevPhi = UndefVal;
1455
1456  for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1457
1458    // Fill the "else" block, created in the previous iteration
1459    //
1460    //  %Mask1 = extractelement <16 x i1> %Mask, i32 1
1461    //  %ToLoad1 = icmp eq i1 %Mask1, true
1462    //  br i1 %ToLoad1, label %cond.load, label %else
1463    //
1464    if (Idx > 0) {
1465      Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1466      Phi->addIncoming(VResult, CondBlock);
1467      Phi->addIncoming(PrevPhi, PrevIfBlock);
1468      PrevPhi = Phi;
1469      VResult = Phi;
1470    }
1471
1472    Value *Predicate = Builder.CreateExtractElement(Mask,
1473                                                    Builder.getInt32(Idx),
1474                                                    "Mask" + Twine(Idx));
1475    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1476                                    ConstantInt::get(Predicate->getType(), 1),
1477                                    "ToLoad" + Twine(Idx));
1478
1479    // Create "cond" block
1480    //
1481    //  %EltAddr = getelementptr i32* %1, i32 0
1482    //  %Elt = load i32* %EltAddr
1483    //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1484    //
1485    CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
1486    Builder.SetInsertPoint(InsertPt);
1487
1488    Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1489                                              "Ptr" + Twine(Idx));
1490    LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
1491                                               "Load" + Twine(Idx));
1492    VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx),
1493                                          "Res" + Twine(Idx));
1494
1495    // Create "else" block, fill it in the next iteration
1496    BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1497    Builder.SetInsertPoint(InsertPt);
1498    Instruction *OldBr = IfBlock->getTerminator();
1499    BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1500    OldBr->eraseFromParent();
1501    PrevIfBlock = IfBlock;
1502    IfBlock = NewIfBlock;
1503  }
1504
1505  Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1506  Phi->addIncoming(VResult, CondBlock);
1507  Phi->addIncoming(PrevPhi, PrevIfBlock);
1508  Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1509  CI->replaceAllUsesWith(NewI);
1510  CI->eraseFromParent();
1511}
1512
1513// Translate a masked scatter intrinsic, like
1514// void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4,
1515//                                  <16 x i1> %Mask)
1516// to a chain of basic blocks, that stores element one-by-one if
1517// the appropriate mask bit is set.
1518//
1519// % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind
1520// % Mask0 = extractelement <16 x i1> % Mask, i32 0
1521// % ToStore0 = icmp eq i1 % Mask0, true
1522// br i1 %ToStore0, label %cond.store, label %else
1523//
1524// cond.store:
1525// % Elt0 = extractelement <16 x i32> %Src, i32 0
1526// % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
1527// store i32 %Elt0, i32* % Ptr0, align 4
1528// br label %else
1529//
1530// else:
1531// % Mask1 = extractelement <16 x i1> % Mask, i32 1
1532// % ToStore1 = icmp eq i1 % Mask1, true
1533// br i1 % ToStore1, label %cond.store1, label %else2
1534//
1535// cond.store1:
1536// % Elt1 = extractelement <16 x i32> %Src, i32 1
1537// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1538// store i32 % Elt1, i32* % Ptr1, align 4
1539// br label %else2
1540//   . . .
1541static void ScalarizeMaskedScatter(CallInst *CI) {
1542  Value *Src = CI->getArgOperand(0);
1543  Value *Ptrs = CI->getArgOperand(1);
1544  Value *Alignment = CI->getArgOperand(2);
1545  Value *Mask = CI->getArgOperand(3);
1546
1547  assert(isa<VectorType>(Src->getType()) &&
1548         "Unexpected data type in masked scatter intrinsic");
1549  assert(isa<VectorType>(Ptrs->getType()) &&
1550         isa<PointerType>(Ptrs->getType()->getVectorElementType()) &&
1551         "Vector of pointers is expected in masked scatter intrinsic");
1552
1553  IRBuilder<> Builder(CI->getContext());
1554  Instruction *InsertPt = CI;
1555  BasicBlock *IfBlock = CI->getParent();
1556  Builder.SetInsertPoint(InsertPt);
1557  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1558
1559  unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1560  unsigned VectorWidth = Src->getType()->getVectorNumElements();
1561
1562  // Shorten the way if the mask is a vector of constants.
1563  bool IsConstMask = isa<ConstantVector>(Mask);
1564
1565  if (IsConstMask) {
1566    for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1567      if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1568        continue;
1569      Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
1570                                                   "Elt" + Twine(Idx));
1571      Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1572                                                "Ptr" + Twine(Idx));
1573      Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
1574    }
1575    CI->eraseFromParent();
1576    return;
1577  }
1578  for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1579    // Fill the "else" block, created in the previous iteration
1580    //
1581    //  % Mask1 = extractelement <16 x i1> % Mask, i32 Idx
1582    //  % ToStore = icmp eq i1 % Mask1, true
1583    //  br i1 % ToStore, label %cond.store, label %else
1584    //
1585    Value *Predicate = Builder.CreateExtractElement(Mask,
1586                                                    Builder.getInt32(Idx),
1587                                                    "Mask" + Twine(Idx));
1588    Value *Cmp =
1589       Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1590                          ConstantInt::get(Predicate->getType(), 1),
1591                          "ToStore" + Twine(Idx));
1592
1593    // Create "cond" block
1594    //
1595    //  % Elt1 = extractelement <16 x i32> %Src, i32 1
1596    //  % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1597    //  %store i32 % Elt1, i32* % Ptr1
1598    //
1599    BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1600    Builder.SetInsertPoint(InsertPt);
1601
1602    Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
1603                                                 "Elt" + Twine(Idx));
1604    Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1605                                              "Ptr" + Twine(Idx));
1606    Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
1607
1608    // Create "else" block, fill it in the next iteration
1609    BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1610    Builder.SetInsertPoint(InsertPt);
1611    Instruction *OldBr = IfBlock->getTerminator();
1612    BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1613    OldBr->eraseFromParent();
1614    IfBlock = NewIfBlock;
1615  }
1616  CI->eraseFromParent();
1617}
1618
1619/// If counting leading or trailing zeros is an expensive operation and a zero
1620/// input is defined, add a check for zero to avoid calling the intrinsic.
1621///
1622/// We want to transform:
1623///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1624///
1625/// into:
1626///   entry:
1627///     %cmpz = icmp eq i64 %A, 0
1628///     br i1 %cmpz, label %cond.end, label %cond.false
1629///   cond.false:
1630///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1631///     br label %cond.end
1632///   cond.end:
1633///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1634///
1635/// If the transform is performed, return true and set ModifiedDT to true.
1636static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1637                                  const TargetLowering *TLI,
1638                                  const DataLayout *DL,
1639                                  bool &ModifiedDT) {
1640  if (!TLI || !DL)
1641    return false;
1642
1643  // If a zero input is undefined, it doesn't make sense to despeculate that.
1644  if (match(CountZeros->getOperand(1), m_One()))
1645    return false;
1646
1647  // If it's cheap to speculate, there's nothing to do.
1648  auto IntrinsicID = CountZeros->getIntrinsicID();
1649  if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1650      (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1651    return false;
1652
1653  // Only handle legal scalar cases. Anything else requires too much work.
1654  Type *Ty = CountZeros->getType();
1655  unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1656  if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize())
1657    return false;
1658
1659  // The intrinsic will be sunk behind a compare against zero and branch.
1660  BasicBlock *StartBlock = CountZeros->getParent();
1661  BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1662
1663  // Create another block after the count zero intrinsic. A PHI will be added
1664  // in this block to select the result of the intrinsic or the bit-width
1665  // constant if the input to the intrinsic is zero.
1666  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1667  BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1668
1669  // Set up a builder to create a compare, conditional branch, and PHI.
1670  IRBuilder<> Builder(CountZeros->getContext());
1671  Builder.SetInsertPoint(StartBlock->getTerminator());
1672  Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1673
1674  // Replace the unconditional branch that was created by the first split with
1675  // a compare against zero and a conditional branch.
1676  Value *Zero = Constant::getNullValue(Ty);
1677  Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1678  Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1679  StartBlock->getTerminator()->eraseFromParent();
1680
1681  // Create a PHI in the end block to select either the output of the intrinsic
1682  // or the bit width of the operand.
1683  Builder.SetInsertPoint(&EndBlock->front());
1684  PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1685  CountZeros->replaceAllUsesWith(PN);
1686  Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1687  PN->addIncoming(BitWidth, StartBlock);
1688  PN->addIncoming(CountZeros, CallBlock);
1689
1690  // We are explicitly handling the zero case, so we can set the intrinsic's
1691  // undefined zero argument to 'true'. This will also prevent reprocessing the
1692  // intrinsic; we only despeculate when a zero input is defined.
1693  CountZeros->setArgOperand(1, Builder.getTrue());
1694  ModifiedDT = true;
1695  return true;
1696}
1697
1698bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
1699  BasicBlock *BB = CI->getParent();
1700
1701  // Lower inline assembly if we can.
1702  // If we found an inline asm expession, and if the target knows how to
1703  // lower it to normal LLVM code, do so now.
1704  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1705    if (TLI->ExpandInlineAsm(CI)) {
1706      // Avoid invalidating the iterator.
1707      CurInstIterator = BB->begin();
1708      // Avoid processing instructions out of order, which could cause
1709      // reuse before a value is defined.
1710      SunkAddrs.clear();
1711      return true;
1712    }
1713    // Sink address computing for memory operands into the block.
1714    if (optimizeInlineAsmInst(CI))
1715      return true;
1716  }
1717
1718  // Align the pointer arguments to this call if the target thinks it's a good
1719  // idea
1720  unsigned MinSize, PrefAlign;
1721  if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1722    for (auto &Arg : CI->arg_operands()) {
1723      // We want to align both objects whose address is used directly and
1724      // objects whose address is used in casts and GEPs, though it only makes
1725      // sense for GEPs if the offset is a multiple of the desired alignment and
1726      // if size - offset meets the size threshold.
1727      if (!Arg->getType()->isPointerTy())
1728        continue;
1729      APInt Offset(DL->getPointerSizeInBits(
1730                       cast<PointerType>(Arg->getType())->getAddressSpace()),
1731                   0);
1732      Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1733      uint64_t Offset2 = Offset.getLimitedValue();
1734      if ((Offset2 & (PrefAlign-1)) != 0)
1735        continue;
1736      AllocaInst *AI;
1737      if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1738          DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1739        AI->setAlignment(PrefAlign);
1740      // Global variables can only be aligned if they are defined in this
1741      // object (i.e. they are uniquely initialized in this object), and
1742      // over-aligning global variables that have an explicit section is
1743      // forbidden.
1744      GlobalVariable *GV;
1745      if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1746          GV->getAlignment() < PrefAlign &&
1747          DL->getTypeAllocSize(GV->getType()->getElementType()) >=
1748              MinSize + Offset2)
1749        GV->setAlignment(PrefAlign);
1750    }
1751    // If this is a memcpy (or similar) then we may be able to improve the
1752    // alignment
1753    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1754      unsigned Align = getKnownAlignment(MI->getDest(), *DL);
1755      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
1756        Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
1757      if (Align > MI->getAlignment())
1758        MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
1759    }
1760  }
1761
1762  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1763  if (II) {
1764    switch (II->getIntrinsicID()) {
1765    default: break;
1766    case Intrinsic::objectsize: {
1767      // Lower all uses of llvm.objectsize.*
1768      bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
1769      Type *ReturnTy = CI->getType();
1770      Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
1771
1772      // Substituting this can cause recursive simplifications, which can
1773      // invalidate our iterator.  Use a WeakVH to hold onto it in case this
1774      // happens.
1775      WeakVH IterHandle(&*CurInstIterator);
1776
1777      replaceAndRecursivelySimplify(CI, RetVal,
1778                                    TLInfo, nullptr);
1779
1780      // If the iterator instruction was recursively deleted, start over at the
1781      // start of the block.
1782      if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
1783        CurInstIterator = BB->begin();
1784        SunkAddrs.clear();
1785      }
1786      return true;
1787    }
1788    case Intrinsic::masked_load: {
1789      // Scalarize unsupported vector masked load
1790      if (!TTI->isLegalMaskedLoad(CI->getType())) {
1791        ScalarizeMaskedLoad(CI);
1792        ModifiedDT = true;
1793        return true;
1794      }
1795      return false;
1796    }
1797    case Intrinsic::masked_store: {
1798      if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) {
1799        ScalarizeMaskedStore(CI);
1800        ModifiedDT = true;
1801        return true;
1802      }
1803      return false;
1804    }
1805    case Intrinsic::masked_gather: {
1806      if (!TTI->isLegalMaskedGather(CI->getType())) {
1807        ScalarizeMaskedGather(CI);
1808        ModifiedDT = true;
1809        return true;
1810      }
1811      return false;
1812    }
1813    case Intrinsic::masked_scatter: {
1814      if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) {
1815        ScalarizeMaskedScatter(CI);
1816        ModifiedDT = true;
1817        return true;
1818      }
1819      return false;
1820    }
1821    case Intrinsic::aarch64_stlxr:
1822    case Intrinsic::aarch64_stxr: {
1823      ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1824      if (!ExtVal || !ExtVal->hasOneUse() ||
1825          ExtVal->getParent() == CI->getParent())
1826        return false;
1827      // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1828      ExtVal->moveBefore(CI);
1829      // Mark this instruction as "inserted by CGP", so that other
1830      // optimizations don't touch it.
1831      InsertedInsts.insert(ExtVal);
1832      return true;
1833    }
1834    case Intrinsic::invariant_group_barrier:
1835      II->replaceAllUsesWith(II->getArgOperand(0));
1836      II->eraseFromParent();
1837      return true;
1838
1839    case Intrinsic::cttz:
1840    case Intrinsic::ctlz:
1841      // If counting zeros is expensive, try to avoid it.
1842      return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1843    }
1844
1845    if (TLI) {
1846      // Unknown address space.
1847      // TODO: Target hook to pick which address space the intrinsic cares
1848      // about?
1849      unsigned AddrSpace = ~0u;
1850      SmallVector<Value*, 2> PtrOps;
1851      Type *AccessTy;
1852      if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
1853        while (!PtrOps.empty())
1854          if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
1855            return true;
1856    }
1857  }
1858
1859  // From here on out we're working with named functions.
1860  if (!CI->getCalledFunction()) return false;
1861
1862  // Lower all default uses of _chk calls.  This is very similar
1863  // to what InstCombineCalls does, but here we are only lowering calls
1864  // to fortified library functions (e.g. __memcpy_chk) that have the default
1865  // "don't know" as the objectsize.  Anything else should be left alone.
1866  FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1867  if (Value *V = Simplifier.optimizeCall(CI)) {
1868    CI->replaceAllUsesWith(V);
1869    CI->eraseFromParent();
1870    return true;
1871  }
1872  return false;
1873}
1874
1875/// Look for opportunities to duplicate return instructions to the predecessor
1876/// to enable tail call optimizations. The case it is currently looking for is:
1877/// @code
1878/// bb0:
1879///   %tmp0 = tail call i32 @f0()
1880///   br label %return
1881/// bb1:
1882///   %tmp1 = tail call i32 @f1()
1883///   br label %return
1884/// bb2:
1885///   %tmp2 = tail call i32 @f2()
1886///   br label %return
1887/// return:
1888///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1889///   ret i32 %retval
1890/// @endcode
1891///
1892/// =>
1893///
1894/// @code
1895/// bb0:
1896///   %tmp0 = tail call i32 @f0()
1897///   ret i32 %tmp0
1898/// bb1:
1899///   %tmp1 = tail call i32 @f1()
1900///   ret i32 %tmp1
1901/// bb2:
1902///   %tmp2 = tail call i32 @f2()
1903///   ret i32 %tmp2
1904/// @endcode
1905bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1906  if (!TLI)
1907    return false;
1908
1909  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
1910  if (!RI)
1911    return false;
1912
1913  PHINode *PN = nullptr;
1914  BitCastInst *BCI = nullptr;
1915  Value *V = RI->getReturnValue();
1916  if (V) {
1917    BCI = dyn_cast<BitCastInst>(V);
1918    if (BCI)
1919      V = BCI->getOperand(0);
1920
1921    PN = dyn_cast<PHINode>(V);
1922    if (!PN)
1923      return false;
1924  }
1925
1926  if (PN && PN->getParent() != BB)
1927    return false;
1928
1929  // It's not safe to eliminate the sign / zero extension of the return value.
1930  // See llvm::isInTailCallPosition().
1931  const Function *F = BB->getParent();
1932  AttributeSet CallerAttrs = F->getAttributes();
1933  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
1934      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1935    return false;
1936
1937  // Make sure there are no instructions between the PHI and return, or that the
1938  // return is the first instruction in the block.
1939  if (PN) {
1940    BasicBlock::iterator BI = BB->begin();
1941    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1942    if (&*BI == BCI)
1943      // Also skip over the bitcast.
1944      ++BI;
1945    if (&*BI != RI)
1946      return false;
1947  } else {
1948    BasicBlock::iterator BI = BB->begin();
1949    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1950    if (&*BI != RI)
1951      return false;
1952  }
1953
1954  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1955  /// call.
1956  SmallVector<CallInst*, 4> TailCalls;
1957  if (PN) {
1958    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1959      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1960      // Make sure the phi value is indeed produced by the tail call.
1961      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1962          TLI->mayBeEmittedAsTailCall(CI))
1963        TailCalls.push_back(CI);
1964    }
1965  } else {
1966    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1967    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1968      if (!VisitedBBs.insert(*PI).second)
1969        continue;
1970
1971      BasicBlock::InstListType &InstList = (*PI)->getInstList();
1972      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1973      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1974      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1975      if (RI == RE)
1976        continue;
1977
1978      CallInst *CI = dyn_cast<CallInst>(&*RI);
1979      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
1980        TailCalls.push_back(CI);
1981    }
1982  }
1983
1984  bool Changed = false;
1985  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1986    CallInst *CI = TailCalls[i];
1987    CallSite CS(CI);
1988
1989    // Conservatively require the attributes of the call to match those of the
1990    // return. Ignore noalias because it doesn't affect the call sequence.
1991    AttributeSet CalleeAttrs = CS.getAttributes();
1992    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1993          removeAttribute(Attribute::NoAlias) !=
1994        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1995          removeAttribute(Attribute::NoAlias))
1996      continue;
1997
1998    // Make sure the call instruction is followed by an unconditional branch to
1999    // the return block.
2000    BasicBlock *CallBB = CI->getParent();
2001    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2002    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2003      continue;
2004
2005    // Duplicate the return into CallBB.
2006    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
2007    ModifiedDT = Changed = true;
2008    ++NumRetsDup;
2009  }
2010
2011  // If we eliminated all predecessors of the block, delete the block now.
2012  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2013    BB->eraseFromParent();
2014
2015  return Changed;
2016}
2017
2018//===----------------------------------------------------------------------===//
2019// Memory Optimization
2020//===----------------------------------------------------------------------===//
2021
2022namespace {
2023
2024/// This is an extended version of TargetLowering::AddrMode
2025/// which holds actual Value*'s for register values.
2026struct ExtAddrMode : public TargetLowering::AddrMode {
2027  Value *BaseReg;
2028  Value *ScaledReg;
2029  ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
2030  void print(raw_ostream &OS) const;
2031  void dump() const;
2032
2033  bool operator==(const ExtAddrMode& O) const {
2034    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
2035           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
2036           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
2037  }
2038};
2039
2040#ifndef NDEBUG
2041static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2042  AM.print(OS);
2043  return OS;
2044}
2045#endif
2046
2047void ExtAddrMode::print(raw_ostream &OS) const {
2048  bool NeedPlus = false;
2049  OS << "[";
2050  if (BaseGV) {
2051    OS << (NeedPlus ? " + " : "")
2052       << "GV:";
2053    BaseGV->printAsOperand(OS, /*PrintType=*/false);
2054    NeedPlus = true;
2055  }
2056
2057  if (BaseOffs) {
2058    OS << (NeedPlus ? " + " : "")
2059       << BaseOffs;
2060    NeedPlus = true;
2061  }
2062
2063  if (BaseReg) {
2064    OS << (NeedPlus ? " + " : "")
2065       << "Base:";
2066    BaseReg->printAsOperand(OS, /*PrintType=*/false);
2067    NeedPlus = true;
2068  }
2069  if (Scale) {
2070    OS << (NeedPlus ? " + " : "")
2071       << Scale << "*";
2072    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2073  }
2074
2075  OS << ']';
2076}
2077
2078#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2079void ExtAddrMode::dump() const {
2080  print(dbgs());
2081  dbgs() << '\n';
2082}
2083#endif
2084
2085/// \brief This class provides transaction based operation on the IR.
2086/// Every change made through this class is recorded in the internal state and
2087/// can be undone (rollback) until commit is called.
2088class TypePromotionTransaction {
2089
2090  /// \brief This represents the common interface of the individual transaction.
2091  /// Each class implements the logic for doing one specific modification on
2092  /// the IR via the TypePromotionTransaction.
2093  class TypePromotionAction {
2094  protected:
2095    /// The Instruction modified.
2096    Instruction *Inst;
2097
2098  public:
2099    /// \brief Constructor of the action.
2100    /// The constructor performs the related action on the IR.
2101    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2102
2103    virtual ~TypePromotionAction() {}
2104
2105    /// \brief Undo the modification done by this action.
2106    /// When this method is called, the IR must be in the same state as it was
2107    /// before this action was applied.
2108    /// \pre Undoing the action works if and only if the IR is in the exact same
2109    /// state as it was directly after this action was applied.
2110    virtual void undo() = 0;
2111
2112    /// \brief Advocate every change made by this action.
2113    /// When the results on the IR of the action are to be kept, it is important
2114    /// to call this function, otherwise hidden information may be kept forever.
2115    virtual void commit() {
2116      // Nothing to be done, this action is not doing anything.
2117    }
2118  };
2119
2120  /// \brief Utility to remember the position of an instruction.
2121  class InsertionHandler {
2122    /// Position of an instruction.
2123    /// Either an instruction:
2124    /// - Is the first in a basic block: BB is used.
2125    /// - Has a previous instructon: PrevInst is used.
2126    union {
2127      Instruction *PrevInst;
2128      BasicBlock *BB;
2129    } Point;
2130    /// Remember whether or not the instruction had a previous instruction.
2131    bool HasPrevInstruction;
2132
2133  public:
2134    /// \brief Record the position of \p Inst.
2135    InsertionHandler(Instruction *Inst) {
2136      BasicBlock::iterator It = Inst->getIterator();
2137      HasPrevInstruction = (It != (Inst->getParent()->begin()));
2138      if (HasPrevInstruction)
2139        Point.PrevInst = &*--It;
2140      else
2141        Point.BB = Inst->getParent();
2142    }
2143
2144    /// \brief Insert \p Inst at the recorded position.
2145    void insert(Instruction *Inst) {
2146      if (HasPrevInstruction) {
2147        if (Inst->getParent())
2148          Inst->removeFromParent();
2149        Inst->insertAfter(Point.PrevInst);
2150      } else {
2151        Instruction *Position = &*Point.BB->getFirstInsertionPt();
2152        if (Inst->getParent())
2153          Inst->moveBefore(Position);
2154        else
2155          Inst->insertBefore(Position);
2156      }
2157    }
2158  };
2159
2160  /// \brief Move an instruction before another.
2161  class InstructionMoveBefore : public TypePromotionAction {
2162    /// Original position of the instruction.
2163    InsertionHandler Position;
2164
2165  public:
2166    /// \brief Move \p Inst before \p Before.
2167    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2168        : TypePromotionAction(Inst), Position(Inst) {
2169      DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2170      Inst->moveBefore(Before);
2171    }
2172
2173    /// \brief Move the instruction back to its original position.
2174    void undo() override {
2175      DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2176      Position.insert(Inst);
2177    }
2178  };
2179
2180  /// \brief Set the operand of an instruction with a new value.
2181  class OperandSetter : public TypePromotionAction {
2182    /// Original operand of the instruction.
2183    Value *Origin;
2184    /// Index of the modified instruction.
2185    unsigned Idx;
2186
2187  public:
2188    /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2189    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2190        : TypePromotionAction(Inst), Idx(Idx) {
2191      DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2192                   << "for:" << *Inst << "\n"
2193                   << "with:" << *NewVal << "\n");
2194      Origin = Inst->getOperand(Idx);
2195      Inst->setOperand(Idx, NewVal);
2196    }
2197
2198    /// \brief Restore the original value of the instruction.
2199    void undo() override {
2200      DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2201                   << "for: " << *Inst << "\n"
2202                   << "with: " << *Origin << "\n");
2203      Inst->setOperand(Idx, Origin);
2204    }
2205  };
2206
2207  /// \brief Hide the operands of an instruction.
2208  /// Do as if this instruction was not using any of its operands.
2209  class OperandsHider : public TypePromotionAction {
2210    /// The list of original operands.
2211    SmallVector<Value *, 4> OriginalValues;
2212
2213  public:
2214    /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2215    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2216      DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2217      unsigned NumOpnds = Inst->getNumOperands();
2218      OriginalValues.reserve(NumOpnds);
2219      for (unsigned It = 0; It < NumOpnds; ++It) {
2220        // Save the current operand.
2221        Value *Val = Inst->getOperand(It);
2222        OriginalValues.push_back(Val);
2223        // Set a dummy one.
2224        // We could use OperandSetter here, but that would imply an overhead
2225        // that we are not willing to pay.
2226        Inst->setOperand(It, UndefValue::get(Val->getType()));
2227      }
2228    }
2229
2230    /// \brief Restore the original list of uses.
2231    void undo() override {
2232      DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2233      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2234        Inst->setOperand(It, OriginalValues[It]);
2235    }
2236  };
2237
2238  /// \brief Build a truncate instruction.
2239  class TruncBuilder : public TypePromotionAction {
2240    Value *Val;
2241  public:
2242    /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2243    /// result.
2244    /// trunc Opnd to Ty.
2245    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2246      IRBuilder<> Builder(Opnd);
2247      Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2248      DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2249    }
2250
2251    /// \brief Get the built value.
2252    Value *getBuiltValue() { return Val; }
2253
2254    /// \brief Remove the built instruction.
2255    void undo() override {
2256      DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2257      if (Instruction *IVal = dyn_cast<Instruction>(Val))
2258        IVal->eraseFromParent();
2259    }
2260  };
2261
2262  /// \brief Build a sign extension instruction.
2263  class SExtBuilder : public TypePromotionAction {
2264    Value *Val;
2265  public:
2266    /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2267    /// result.
2268    /// sext Opnd to Ty.
2269    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2270        : TypePromotionAction(InsertPt) {
2271      IRBuilder<> Builder(InsertPt);
2272      Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2273      DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2274    }
2275
2276    /// \brief Get the built value.
2277    Value *getBuiltValue() { return Val; }
2278
2279    /// \brief Remove the built instruction.
2280    void undo() override {
2281      DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2282      if (Instruction *IVal = dyn_cast<Instruction>(Val))
2283        IVal->eraseFromParent();
2284    }
2285  };
2286
2287  /// \brief Build a zero extension instruction.
2288  class ZExtBuilder : public TypePromotionAction {
2289    Value *Val;
2290  public:
2291    /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
2292    /// result.
2293    /// zext Opnd to Ty.
2294    ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2295        : TypePromotionAction(InsertPt) {
2296      IRBuilder<> Builder(InsertPt);
2297      Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2298      DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2299    }
2300
2301    /// \brief Get the built value.
2302    Value *getBuiltValue() { return Val; }
2303
2304    /// \brief Remove the built instruction.
2305    void undo() override {
2306      DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2307      if (Instruction *IVal = dyn_cast<Instruction>(Val))
2308        IVal->eraseFromParent();
2309    }
2310  };
2311
2312  /// \brief Mutate an instruction to another type.
2313  class TypeMutator : public TypePromotionAction {
2314    /// Record the original type.
2315    Type *OrigTy;
2316
2317  public:
2318    /// \brief Mutate the type of \p Inst into \p NewTy.
2319    TypeMutator(Instruction *Inst, Type *NewTy)
2320        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2321      DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2322                   << "\n");
2323      Inst->mutateType(NewTy);
2324    }
2325
2326    /// \brief Mutate the instruction back to its original type.
2327    void undo() override {
2328      DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2329                   << "\n");
2330      Inst->mutateType(OrigTy);
2331    }
2332  };
2333
2334  /// \brief Replace the uses of an instruction by another instruction.
2335  class UsesReplacer : public TypePromotionAction {
2336    /// Helper structure to keep track of the replaced uses.
2337    struct InstructionAndIdx {
2338      /// The instruction using the instruction.
2339      Instruction *Inst;
2340      /// The index where this instruction is used for Inst.
2341      unsigned Idx;
2342      InstructionAndIdx(Instruction *Inst, unsigned Idx)
2343          : Inst(Inst), Idx(Idx) {}
2344    };
2345
2346    /// Keep track of the original uses (pair Instruction, Index).
2347    SmallVector<InstructionAndIdx, 4> OriginalUses;
2348    typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
2349
2350  public:
2351    /// \brief Replace all the use of \p Inst by \p New.
2352    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2353      DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2354                   << "\n");
2355      // Record the original uses.
2356      for (Use &U : Inst->uses()) {
2357        Instruction *UserI = cast<Instruction>(U.getUser());
2358        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2359      }
2360      // Now, we can replace the uses.
2361      Inst->replaceAllUsesWith(New);
2362    }
2363
2364    /// \brief Reassign the original uses of Inst to Inst.
2365    void undo() override {
2366      DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2367      for (use_iterator UseIt = OriginalUses.begin(),
2368                        EndIt = OriginalUses.end();
2369           UseIt != EndIt; ++UseIt) {
2370        UseIt->Inst->setOperand(UseIt->Idx, Inst);
2371      }
2372    }
2373  };
2374
2375  /// \brief Remove an instruction from the IR.
2376  class InstructionRemover : public TypePromotionAction {
2377    /// Original position of the instruction.
2378    InsertionHandler Inserter;
2379    /// Helper structure to hide all the link to the instruction. In other
2380    /// words, this helps to do as if the instruction was removed.
2381    OperandsHider Hider;
2382    /// Keep track of the uses replaced, if any.
2383    UsesReplacer *Replacer;
2384
2385  public:
2386    /// \brief Remove all reference of \p Inst and optinally replace all its
2387    /// uses with New.
2388    /// \pre If !Inst->use_empty(), then New != nullptr
2389    InstructionRemover(Instruction *Inst, Value *New = nullptr)
2390        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2391          Replacer(nullptr) {
2392      if (New)
2393        Replacer = new UsesReplacer(Inst, New);
2394      DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2395      Inst->removeFromParent();
2396    }
2397
2398    ~InstructionRemover() override { delete Replacer; }
2399
2400    /// \brief Really remove the instruction.
2401    void commit() override { delete Inst; }
2402
2403    /// \brief Resurrect the instruction and reassign it to the proper uses if
2404    /// new value was provided when build this action.
2405    void undo() override {
2406      DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2407      Inserter.insert(Inst);
2408      if (Replacer)
2409        Replacer->undo();
2410      Hider.undo();
2411    }
2412  };
2413
2414public:
2415  /// Restoration point.
2416  /// The restoration point is a pointer to an action instead of an iterator
2417  /// because the iterator may be invalidated but not the pointer.
2418  typedef const TypePromotionAction *ConstRestorationPt;
2419  /// Advocate every changes made in that transaction.
2420  void commit();
2421  /// Undo all the changes made after the given point.
2422  void rollback(ConstRestorationPt Point);
2423  /// Get the current restoration point.
2424  ConstRestorationPt getRestorationPoint() const;
2425
2426  /// \name API for IR modification with state keeping to support rollback.
2427  /// @{
2428  /// Same as Instruction::setOperand.
2429  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2430  /// Same as Instruction::eraseFromParent.
2431  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2432  /// Same as Value::replaceAllUsesWith.
2433  void replaceAllUsesWith(Instruction *Inst, Value *New);
2434  /// Same as Value::mutateType.
2435  void mutateType(Instruction *Inst, Type *NewTy);
2436  /// Same as IRBuilder::createTrunc.
2437  Value *createTrunc(Instruction *Opnd, Type *Ty);
2438  /// Same as IRBuilder::createSExt.
2439  Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2440  /// Same as IRBuilder::createZExt.
2441  Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2442  /// Same as Instruction::moveBefore.
2443  void moveBefore(Instruction *Inst, Instruction *Before);
2444  /// @}
2445
2446private:
2447  /// The ordered list of actions made so far.
2448  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2449  typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
2450};
2451
2452void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2453                                          Value *NewVal) {
2454  Actions.push_back(
2455      make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
2456}
2457
2458void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2459                                                Value *NewVal) {
2460  Actions.push_back(
2461      make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
2462}
2463
2464void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2465                                                  Value *New) {
2466  Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2467}
2468
2469void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2470  Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2471}
2472
2473Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2474                                             Type *Ty) {
2475  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2476  Value *Val = Ptr->getBuiltValue();
2477  Actions.push_back(std::move(Ptr));
2478  return Val;
2479}
2480
2481Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2482                                            Value *Opnd, Type *Ty) {
2483  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2484  Value *Val = Ptr->getBuiltValue();
2485  Actions.push_back(std::move(Ptr));
2486  return Val;
2487}
2488
2489Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2490                                            Value *Opnd, Type *Ty) {
2491  std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2492  Value *Val = Ptr->getBuiltValue();
2493  Actions.push_back(std::move(Ptr));
2494  return Val;
2495}
2496
2497void TypePromotionTransaction::moveBefore(Instruction *Inst,
2498                                          Instruction *Before) {
2499  Actions.push_back(
2500      make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
2501}
2502
2503TypePromotionTransaction::ConstRestorationPt
2504TypePromotionTransaction::getRestorationPoint() const {
2505  return !Actions.empty() ? Actions.back().get() : nullptr;
2506}
2507
2508void TypePromotionTransaction::commit() {
2509  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2510       ++It)
2511    (*It)->commit();
2512  Actions.clear();
2513}
2514
2515void TypePromotionTransaction::rollback(
2516    TypePromotionTransaction::ConstRestorationPt Point) {
2517  while (!Actions.empty() && Point != Actions.back().get()) {
2518    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2519    Curr->undo();
2520  }
2521}
2522
2523/// \brief A helper class for matching addressing modes.
2524///
2525/// This encapsulates the logic for matching the target-legal addressing modes.
2526class AddressingModeMatcher {
2527  SmallVectorImpl<Instruction*> &AddrModeInsts;
2528  const TargetMachine &TM;
2529  const TargetLowering &TLI;
2530  const DataLayout &DL;
2531
2532  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2533  /// the memory instruction that we're computing this address for.
2534  Type *AccessTy;
2535  unsigned AddrSpace;
2536  Instruction *MemoryInst;
2537
2538  /// This is the addressing mode that we're building up. This is
2539  /// part of the return value of this addressing mode matching stuff.
2540  ExtAddrMode &AddrMode;
2541
2542  /// The instructions inserted by other CodeGenPrepare optimizations.
2543  const SetOfInstrs &InsertedInsts;
2544  /// A map from the instructions to their type before promotion.
2545  InstrToOrigTy &PromotedInsts;
2546  /// The ongoing transaction where every action should be registered.
2547  TypePromotionTransaction &TPT;
2548
2549  /// This is set to true when we should not do profitability checks.
2550  /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2551  bool IgnoreProfitability;
2552
2553  AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
2554                        const TargetMachine &TM, Type *AT, unsigned AS,
2555                        Instruction *MI, ExtAddrMode &AM,
2556                        const SetOfInstrs &InsertedInsts,
2557                        InstrToOrigTy &PromotedInsts,
2558                        TypePromotionTransaction &TPT)
2559      : AddrModeInsts(AMI), TM(TM),
2560        TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
2561                 ->getTargetLowering()),
2562        DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2563        MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2564        PromotedInsts(PromotedInsts), TPT(TPT) {
2565    IgnoreProfitability = false;
2566  }
2567public:
2568
2569  /// Find the maximal addressing mode that a load/store of V can fold,
2570  /// give an access type of AccessTy.  This returns a list of involved
2571  /// instructions in AddrModeInsts.
2572  /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2573  /// optimizations.
2574  /// \p PromotedInsts maps the instructions to their type before promotion.
2575  /// \p The ongoing transaction where every action should be registered.
2576  static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
2577                           Instruction *MemoryInst,
2578                           SmallVectorImpl<Instruction*> &AddrModeInsts,
2579                           const TargetMachine &TM,
2580                           const SetOfInstrs &InsertedInsts,
2581                           InstrToOrigTy &PromotedInsts,
2582                           TypePromotionTransaction &TPT) {
2583    ExtAddrMode Result;
2584
2585    bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
2586                                         MemoryInst, Result, InsertedInsts,
2587                                         PromotedInsts, TPT).matchAddr(V, 0);
2588    (void)Success; assert(Success && "Couldn't select *anything*?");
2589    return Result;
2590  }
2591private:
2592  bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2593  bool matchAddr(Value *V, unsigned Depth);
2594  bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2595                          bool *MovedAway = nullptr);
2596  bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2597                                            ExtAddrMode &AMBefore,
2598                                            ExtAddrMode &AMAfter);
2599  bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2600  bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2601                             Value *PromotedOperand) const;
2602};
2603
2604/// Try adding ScaleReg*Scale to the current addressing mode.
2605/// Return true and update AddrMode if this addr mode is legal for the target,
2606/// false if not.
2607bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
2608                                             unsigned Depth) {
2609  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
2610  // mode.  Just process that directly.
2611  if (Scale == 1)
2612    return matchAddr(ScaleReg, Depth);
2613
2614  // If the scale is 0, it takes nothing to add this.
2615  if (Scale == 0)
2616    return true;
2617
2618  // If we already have a scale of this value, we can add to it, otherwise, we
2619  // need an available scale field.
2620  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
2621    return false;
2622
2623  ExtAddrMode TestAddrMode = AddrMode;
2624
2625  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
2626  // [A+B + A*7] -> [B+A*8].
2627  TestAddrMode.Scale += Scale;
2628  TestAddrMode.ScaledReg = ScaleReg;
2629
2630  // If the new address isn't legal, bail out.
2631  if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
2632    return false;
2633
2634  // It was legal, so commit it.
2635  AddrMode = TestAddrMode;
2636
2637  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
2638  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
2639  // X*Scale + C*Scale to addr mode.
2640  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
2641  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
2642      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
2643    TestAddrMode.ScaledReg = AddLHS;
2644    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
2645
2646    // If this addressing mode is legal, commit it and remember that we folded
2647    // this instruction.
2648    if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
2649      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
2650      AddrMode = TestAddrMode;
2651      return true;
2652    }
2653  }
2654
2655  // Otherwise, not (x+c)*scale, just return what we have.
2656  return true;
2657}
2658
2659/// This is a little filter, which returns true if an addressing computation
2660/// involving I might be folded into a load/store accessing it.
2661/// This doesn't need to be perfect, but needs to accept at least
2662/// the set of instructions that MatchOperationAddr can.
2663static bool MightBeFoldableInst(Instruction *I) {
2664  switch (I->getOpcode()) {
2665  case Instruction::BitCast:
2666  case Instruction::AddrSpaceCast:
2667    // Don't touch identity bitcasts.
2668    if (I->getType() == I->getOperand(0)->getType())
2669      return false;
2670    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
2671  case Instruction::PtrToInt:
2672    // PtrToInt is always a noop, as we know that the int type is pointer sized.
2673    return true;
2674  case Instruction::IntToPtr:
2675    // We know the input is intptr_t, so this is foldable.
2676    return true;
2677  case Instruction::Add:
2678    return true;
2679  case Instruction::Mul:
2680  case Instruction::Shl:
2681    // Can only handle X*C and X << C.
2682    return isa<ConstantInt>(I->getOperand(1));
2683  case Instruction::GetElementPtr:
2684    return true;
2685  default:
2686    return false;
2687  }
2688}
2689
2690/// \brief Check whether or not \p Val is a legal instruction for \p TLI.
2691/// \note \p Val is assumed to be the product of some type promotion.
2692/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
2693/// to be legal, as the non-promoted value would have had the same state.
2694static bool isPromotedInstructionLegal(const TargetLowering &TLI,
2695                                       const DataLayout &DL, Value *Val) {
2696  Instruction *PromotedInst = dyn_cast<Instruction>(Val);
2697  if (!PromotedInst)
2698    return false;
2699  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
2700  // If the ISDOpcode is undefined, it was undefined before the promotion.
2701  if (!ISDOpcode)
2702    return true;
2703  // Otherwise, check if the promoted instruction is legal or not.
2704  return TLI.isOperationLegalOrCustom(
2705      ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
2706}
2707
2708/// \brief Hepler class to perform type promotion.
2709class TypePromotionHelper {
2710  /// \brief Utility function to check whether or not a sign or zero extension
2711  /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
2712  /// either using the operands of \p Inst or promoting \p Inst.
2713  /// The type of the extension is defined by \p IsSExt.
2714  /// In other words, check if:
2715  /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
2716  /// #1 Promotion applies:
2717  /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
2718  /// #2 Operand reuses:
2719  /// ext opnd1 to ConsideredExtType.
2720  /// \p PromotedInsts maps the instructions to their type before promotion.
2721  static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
2722                            const InstrToOrigTy &PromotedInsts, bool IsSExt);
2723
2724  /// \brief Utility function to determine if \p OpIdx should be promoted when
2725  /// promoting \p Inst.
2726  static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
2727    return !(isa<SelectInst>(Inst) && OpIdx == 0);
2728  }
2729
2730  /// \brief Utility function to promote the operand of \p Ext when this
2731  /// operand is a promotable trunc or sext or zext.
2732  /// \p PromotedInsts maps the instructions to their type before promotion.
2733  /// \p CreatedInstsCost[out] contains the cost of all instructions
2734  /// created to promote the operand of Ext.
2735  /// Newly added extensions are inserted in \p Exts.
2736  /// Newly added truncates are inserted in \p Truncs.
2737  /// Should never be called directly.
2738  /// \return The promoted value which is used instead of Ext.
2739  static Value *promoteOperandForTruncAndAnyExt(
2740      Instruction *Ext, TypePromotionTransaction &TPT,
2741      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2742      SmallVectorImpl<Instruction *> *Exts,
2743      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
2744
2745  /// \brief Utility function to promote the operand of \p Ext when this
2746  /// operand is promotable and is not a supported trunc or sext.
2747  /// \p PromotedInsts maps the instructions to their type before promotion.
2748  /// \p CreatedInstsCost[out] contains the cost of all the instructions
2749  /// created to promote the operand of Ext.
2750  /// Newly added extensions are inserted in \p Exts.
2751  /// Newly added truncates are inserted in \p Truncs.
2752  /// Should never be called directly.
2753  /// \return The promoted value which is used instead of Ext.
2754  static Value *promoteOperandForOther(Instruction *Ext,
2755                                       TypePromotionTransaction &TPT,
2756                                       InstrToOrigTy &PromotedInsts,
2757                                       unsigned &CreatedInstsCost,
2758                                       SmallVectorImpl<Instruction *> *Exts,
2759                                       SmallVectorImpl<Instruction *> *Truncs,
2760                                       const TargetLowering &TLI, bool IsSExt);
2761
2762  /// \see promoteOperandForOther.
2763  static Value *signExtendOperandForOther(
2764      Instruction *Ext, TypePromotionTransaction &TPT,
2765      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2766      SmallVectorImpl<Instruction *> *Exts,
2767      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2768    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2769                                  Exts, Truncs, TLI, true);
2770  }
2771
2772  /// \see promoteOperandForOther.
2773  static Value *zeroExtendOperandForOther(
2774      Instruction *Ext, TypePromotionTransaction &TPT,
2775      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2776      SmallVectorImpl<Instruction *> *Exts,
2777      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2778    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2779                                  Exts, Truncs, TLI, false);
2780  }
2781
2782public:
2783  /// Type for the utility function that promotes the operand of Ext.
2784  typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
2785                           InstrToOrigTy &PromotedInsts,
2786                           unsigned &CreatedInstsCost,
2787                           SmallVectorImpl<Instruction *> *Exts,
2788                           SmallVectorImpl<Instruction *> *Truncs,
2789                           const TargetLowering &TLI);
2790  /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
2791  /// action to promote the operand of \p Ext instead of using Ext.
2792  /// \return NULL if no promotable action is possible with the current
2793  /// sign extension.
2794  /// \p InsertedInsts keeps track of all the instructions inserted by the
2795  /// other CodeGenPrepare optimizations. This information is important
2796  /// because we do not want to promote these instructions as CodeGenPrepare
2797  /// will reinsert them later. Thus creating an infinite loop: create/remove.
2798  /// \p PromotedInsts maps the instructions to their type before promotion.
2799  static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
2800                          const TargetLowering &TLI,
2801                          const InstrToOrigTy &PromotedInsts);
2802};
2803
2804bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
2805                                        Type *ConsideredExtType,
2806                                        const InstrToOrigTy &PromotedInsts,
2807                                        bool IsSExt) {
2808  // The promotion helper does not know how to deal with vector types yet.
2809  // To be able to fix that, we would need to fix the places where we
2810  // statically extend, e.g., constants and such.
2811  if (Inst->getType()->isVectorTy())
2812    return false;
2813
2814  // We can always get through zext.
2815  if (isa<ZExtInst>(Inst))
2816    return true;
2817
2818  // sext(sext) is ok too.
2819  if (IsSExt && isa<SExtInst>(Inst))
2820    return true;
2821
2822  // We can get through binary operator, if it is legal. In other words, the
2823  // binary operator must have a nuw or nsw flag.
2824  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
2825  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
2826      ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
2827       (IsSExt && BinOp->hasNoSignedWrap())))
2828    return true;
2829
2830  // Check if we can do the following simplification.
2831  // ext(trunc(opnd)) --> ext(opnd)
2832  if (!isa<TruncInst>(Inst))
2833    return false;
2834
2835  Value *OpndVal = Inst->getOperand(0);
2836  // Check if we can use this operand in the extension.
2837  // If the type is larger than the result type of the extension, we cannot.
2838  if (!OpndVal->getType()->isIntegerTy() ||
2839      OpndVal->getType()->getIntegerBitWidth() >
2840          ConsideredExtType->getIntegerBitWidth())
2841    return false;
2842
2843  // If the operand of the truncate is not an instruction, we will not have
2844  // any information on the dropped bits.
2845  // (Actually we could for constant but it is not worth the extra logic).
2846  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
2847  if (!Opnd)
2848    return false;
2849
2850  // Check if the source of the type is narrow enough.
2851  // I.e., check that trunc just drops extended bits of the same kind of
2852  // the extension.
2853  // #1 get the type of the operand and check the kind of the extended bits.
2854  const Type *OpndType;
2855  InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
2856  if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
2857    OpndType = It->second.getPointer();
2858  else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
2859    OpndType = Opnd->getOperand(0)->getType();
2860  else
2861    return false;
2862
2863  // #2 check that the truncate just drops extended bits.
2864  return Inst->getType()->getIntegerBitWidth() >=
2865         OpndType->getIntegerBitWidth();
2866}
2867
2868TypePromotionHelper::Action TypePromotionHelper::getAction(
2869    Instruction *Ext, const SetOfInstrs &InsertedInsts,
2870    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
2871  assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2872         "Unexpected instruction type");
2873  Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
2874  Type *ExtTy = Ext->getType();
2875  bool IsSExt = isa<SExtInst>(Ext);
2876  // If the operand of the extension is not an instruction, we cannot
2877  // get through.
2878  // If it, check we can get through.
2879  if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
2880    return nullptr;
2881
2882  // Do not promote if the operand has been added by codegenprepare.
2883  // Otherwise, it means we are undoing an optimization that is likely to be
2884  // redone, thus causing potential infinite loop.
2885  if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
2886    return nullptr;
2887
2888  // SExt or Trunc instructions.
2889  // Return the related handler.
2890  if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
2891      isa<ZExtInst>(ExtOpnd))
2892    return promoteOperandForTruncAndAnyExt;
2893
2894  // Regular instruction.
2895  // Abort early if we will have to insert non-free instructions.
2896  if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
2897    return nullptr;
2898  return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
2899}
2900
2901Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
2902    llvm::Instruction *SExt, TypePromotionTransaction &TPT,
2903    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2904    SmallVectorImpl<Instruction *> *Exts,
2905    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2906  // By construction, the operand of SExt is an instruction. Otherwise we cannot
2907  // get through it and this method should not be called.
2908  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
2909  Value *ExtVal = SExt;
2910  bool HasMergedNonFreeExt = false;
2911  if (isa<ZExtInst>(SExtOpnd)) {
2912    // Replace s|zext(zext(opnd))
2913    // => zext(opnd).
2914    HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
2915    Value *ZExt =
2916        TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
2917    TPT.replaceAllUsesWith(SExt, ZExt);
2918    TPT.eraseInstruction(SExt);
2919    ExtVal = ZExt;
2920  } else {
2921    // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
2922    // => z|sext(opnd).
2923    TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
2924  }
2925  CreatedInstsCost = 0;
2926
2927  // Remove dead code.
2928  if (SExtOpnd->use_empty())
2929    TPT.eraseInstruction(SExtOpnd);
2930
2931  // Check if the extension is still needed.
2932  Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
2933  if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
2934    if (ExtInst) {
2935      if (Exts)
2936        Exts->push_back(ExtInst);
2937      CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
2938    }
2939    return ExtVal;
2940  }
2941
2942  // At this point we have: ext ty opnd to ty.
2943  // Reassign the uses of ExtInst to the opnd and remove ExtInst.
2944  Value *NextVal = ExtInst->getOperand(0);
2945  TPT.eraseInstruction(ExtInst, NextVal);
2946  return NextVal;
2947}
2948
2949Value *TypePromotionHelper::promoteOperandForOther(
2950    Instruction *Ext, TypePromotionTransaction &TPT,
2951    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2952    SmallVectorImpl<Instruction *> *Exts,
2953    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
2954    bool IsSExt) {
2955  // By construction, the operand of Ext is an instruction. Otherwise we cannot
2956  // get through it and this method should not be called.
2957  Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
2958  CreatedInstsCost = 0;
2959  if (!ExtOpnd->hasOneUse()) {
2960    // ExtOpnd will be promoted.
2961    // All its uses, but Ext, will need to use a truncated value of the
2962    // promoted version.
2963    // Create the truncate now.
2964    Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
2965    if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
2966      ITrunc->removeFromParent();
2967      // Insert it just after the definition.
2968      ITrunc->insertAfter(ExtOpnd);
2969      if (Truncs)
2970        Truncs->push_back(ITrunc);
2971    }
2972
2973    TPT.replaceAllUsesWith(ExtOpnd, Trunc);
2974    // Restore the operand of Ext (which has been replaced by the previous call
2975    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
2976    TPT.setOperand(Ext, 0, ExtOpnd);
2977  }
2978
2979  // Get through the Instruction:
2980  // 1. Update its type.
2981  // 2. Replace the uses of Ext by Inst.
2982  // 3. Extend each operand that needs to be extended.
2983
2984  // Remember the original type of the instruction before promotion.
2985  // This is useful to know that the high bits are sign extended bits.
2986  PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
2987      ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
2988  // Step #1.
2989  TPT.mutateType(ExtOpnd, Ext->getType());
2990  // Step #2.
2991  TPT.replaceAllUsesWith(Ext, ExtOpnd);
2992  // Step #3.
2993  Instruction *ExtForOpnd = Ext;
2994
2995  DEBUG(dbgs() << "Propagate Ext to operands\n");
2996  for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
2997       ++OpIdx) {
2998    DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
2999    if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3000        !shouldExtOperand(ExtOpnd, OpIdx)) {
3001      DEBUG(dbgs() << "No need to propagate\n");
3002      continue;
3003    }
3004    // Check if we can statically extend the operand.
3005    Value *Opnd = ExtOpnd->getOperand(OpIdx);
3006    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3007      DEBUG(dbgs() << "Statically extend\n");
3008      unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3009      APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3010                            : Cst->getValue().zext(BitWidth);
3011      TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3012      continue;
3013    }
3014    // UndefValue are typed, so we have to statically sign extend them.
3015    if (isa<UndefValue>(Opnd)) {
3016      DEBUG(dbgs() << "Statically extend\n");
3017      TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3018      continue;
3019    }
3020
3021    // Otherwise we have to explicity sign extend the operand.
3022    // Check if Ext was reused to extend an operand.
3023    if (!ExtForOpnd) {
3024      // If yes, create a new one.
3025      DEBUG(dbgs() << "More operands to ext\n");
3026      Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3027        : TPT.createZExt(Ext, Opnd, Ext->getType());
3028      if (!isa<Instruction>(ValForExtOpnd)) {
3029        TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3030        continue;
3031      }
3032      ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3033    }
3034    if (Exts)
3035      Exts->push_back(ExtForOpnd);
3036    TPT.setOperand(ExtForOpnd, 0, Opnd);
3037
3038    // Move the sign extension before the insertion point.
3039    TPT.moveBefore(ExtForOpnd, ExtOpnd);
3040    TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3041    CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3042    // If more sext are required, new instructions will have to be created.
3043    ExtForOpnd = nullptr;
3044  }
3045  if (ExtForOpnd == Ext) {
3046    DEBUG(dbgs() << "Extension is useless now\n");
3047    TPT.eraseInstruction(Ext);
3048  }
3049  return ExtOpnd;
3050}
3051
3052/// Check whether or not promoting an instruction to a wider type is profitable.
3053/// \p NewCost gives the cost of extension instructions created by the
3054/// promotion.
3055/// \p OldCost gives the cost of extension instructions before the promotion
3056/// plus the number of instructions that have been
3057/// matched in the addressing mode the promotion.
3058/// \p PromotedOperand is the value that has been promoted.
3059/// \return True if the promotion is profitable, false otherwise.
3060bool AddressingModeMatcher::isPromotionProfitable(
3061    unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3062  DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3063  // The cost of the new extensions is greater than the cost of the
3064  // old extension plus what we folded.
3065  // This is not profitable.
3066  if (NewCost > OldCost)
3067    return false;
3068  if (NewCost < OldCost)
3069    return true;
3070  // The promotion is neutral but it may help folding the sign extension in
3071  // loads for instance.
3072  // Check that we did not create an illegal instruction.
3073  return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3074}
3075
3076/// Given an instruction or constant expr, see if we can fold the operation
3077/// into the addressing mode. If so, update the addressing mode and return
3078/// true, otherwise return false without modifying AddrMode.
3079/// If \p MovedAway is not NULL, it contains the information of whether or
3080/// not AddrInst has to be folded into the addressing mode on success.
3081/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3082/// because it has been moved away.
3083/// Thus AddrInst must not be added in the matched instructions.
3084/// This state can happen when AddrInst is a sext, since it may be moved away.
3085/// Therefore, AddrInst may not be valid when MovedAway is true and it must
3086/// not be referenced anymore.
3087bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3088                                               unsigned Depth,
3089                                               bool *MovedAway) {
3090  // Avoid exponential behavior on extremely deep expression trees.
3091  if (Depth >= 5) return false;
3092
3093  // By default, all matched instructions stay in place.
3094  if (MovedAway)
3095    *MovedAway = false;
3096
3097  switch (Opcode) {
3098  case Instruction::PtrToInt:
3099    // PtrToInt is always a noop, as we know that the int type is pointer sized.
3100    return matchAddr(AddrInst->getOperand(0), Depth);
3101  case Instruction::IntToPtr: {
3102    auto AS = AddrInst->getType()->getPointerAddressSpace();
3103    auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3104    // This inttoptr is a no-op if the integer type is pointer sized.
3105    if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3106      return matchAddr(AddrInst->getOperand(0), Depth);
3107    return false;
3108  }
3109  case Instruction::BitCast:
3110    // BitCast is always a noop, and we can handle it as long as it is
3111    // int->int or pointer->pointer (we don't want int<->fp or something).
3112    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3113         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3114        // Don't touch identity bitcasts.  These were probably put here by LSR,
3115        // and we don't want to mess around with them.  Assume it knows what it
3116        // is doing.
3117        AddrInst->getOperand(0)->getType() != AddrInst->getType())
3118      return matchAddr(AddrInst->getOperand(0), Depth);
3119    return false;
3120  case Instruction::AddrSpaceCast: {
3121    unsigned SrcAS
3122      = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3123    unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3124    if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3125      return matchAddr(AddrInst->getOperand(0), Depth);
3126    return false;
3127  }
3128  case Instruction::Add: {
3129    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3130    ExtAddrMode BackupAddrMode = AddrMode;
3131    unsigned OldSize = AddrModeInsts.size();
3132    // Start a transaction at this point.
3133    // The LHS may match but not the RHS.
3134    // Therefore, we need a higher level restoration point to undo partially
3135    // matched operation.
3136    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3137        TPT.getRestorationPoint();
3138
3139    if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3140        matchAddr(AddrInst->getOperand(0), Depth+1))
3141      return true;
3142
3143    // Restore the old addr mode info.
3144    AddrMode = BackupAddrMode;
3145    AddrModeInsts.resize(OldSize);
3146    TPT.rollback(LastKnownGood);
3147
3148    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3149    if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3150        matchAddr(AddrInst->getOperand(1), Depth+1))
3151      return true;
3152
3153    // Otherwise we definitely can't merge the ADD in.
3154    AddrMode = BackupAddrMode;
3155    AddrModeInsts.resize(OldSize);
3156    TPT.rollback(LastKnownGood);
3157    break;
3158  }
3159  //case Instruction::Or:
3160  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3161  //break;
3162  case Instruction::Mul:
3163  case Instruction::Shl: {
3164    // Can only handle X*C and X << C.
3165    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3166    if (!RHS)
3167      return false;
3168    int64_t Scale = RHS->getSExtValue();
3169    if (Opcode == Instruction::Shl)
3170      Scale = 1LL << Scale;
3171
3172    return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3173  }
3174  case Instruction::GetElementPtr: {
3175    // Scan the GEP.  We check it if it contains constant offsets and at most
3176    // one variable offset.
3177    int VariableOperand = -1;
3178    unsigned VariableScale = 0;
3179
3180    int64_t ConstantOffset = 0;
3181    gep_type_iterator GTI = gep_type_begin(AddrInst);
3182    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3183      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
3184        const StructLayout *SL = DL.getStructLayout(STy);
3185        unsigned Idx =
3186          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3187        ConstantOffset += SL->getElementOffset(Idx);
3188      } else {
3189        uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3190        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3191          ConstantOffset += CI->getSExtValue()*TypeSize;
3192        } else if (TypeSize) {  // Scales of zero don't do anything.
3193          // We only allow one variable index at the moment.
3194          if (VariableOperand != -1)
3195            return false;
3196
3197          // Remember the variable index.
3198          VariableOperand = i;
3199          VariableScale = TypeSize;
3200        }
3201      }
3202    }
3203
3204    // A common case is for the GEP to only do a constant offset.  In this case,
3205    // just add it to the disp field and check validity.
3206    if (VariableOperand == -1) {
3207      AddrMode.BaseOffs += ConstantOffset;
3208      if (ConstantOffset == 0 ||
3209          TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3210        // Check to see if we can fold the base pointer in too.
3211        if (matchAddr(AddrInst->getOperand(0), Depth+1))
3212          return true;
3213      }
3214      AddrMode.BaseOffs -= ConstantOffset;
3215      return false;
3216    }
3217
3218    // Save the valid addressing mode in case we can't match.
3219    ExtAddrMode BackupAddrMode = AddrMode;
3220    unsigned OldSize = AddrModeInsts.size();
3221
3222    // See if the scale and offset amount is valid for this target.
3223    AddrMode.BaseOffs += ConstantOffset;
3224
3225    // Match the base operand of the GEP.
3226    if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3227      // If it couldn't be matched, just stuff the value in a register.
3228      if (AddrMode.HasBaseReg) {
3229        AddrMode = BackupAddrMode;
3230        AddrModeInsts.resize(OldSize);
3231        return false;
3232      }
3233      AddrMode.HasBaseReg = true;
3234      AddrMode.BaseReg = AddrInst->getOperand(0);
3235    }
3236
3237    // Match the remaining variable portion of the GEP.
3238    if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3239                          Depth)) {
3240      // If it couldn't be matched, try stuffing the base into a register
3241      // instead of matching it, and retrying the match of the scale.
3242      AddrMode = BackupAddrMode;
3243      AddrModeInsts.resize(OldSize);
3244      if (AddrMode.HasBaseReg)
3245        return false;
3246      AddrMode.HasBaseReg = true;
3247      AddrMode.BaseReg = AddrInst->getOperand(0);
3248      AddrMode.BaseOffs += ConstantOffset;
3249      if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3250                            VariableScale, Depth)) {
3251        // If even that didn't work, bail.
3252        AddrMode = BackupAddrMode;
3253        AddrModeInsts.resize(OldSize);
3254        return false;
3255      }
3256    }
3257
3258    return true;
3259  }
3260  case Instruction::SExt:
3261  case Instruction::ZExt: {
3262    Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3263    if (!Ext)
3264      return false;
3265
3266    // Try to move this ext out of the way of the addressing mode.
3267    // Ask for a method for doing so.
3268    TypePromotionHelper::Action TPH =
3269        TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3270    if (!TPH)
3271      return false;
3272
3273    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3274        TPT.getRestorationPoint();
3275    unsigned CreatedInstsCost = 0;
3276    unsigned ExtCost = !TLI.isExtFree(Ext);
3277    Value *PromotedOperand =
3278        TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3279    // SExt has been moved away.
3280    // Thus either it will be rematched later in the recursive calls or it is
3281    // gone. Anyway, we must not fold it into the addressing mode at this point.
3282    // E.g.,
3283    // op = add opnd, 1
3284    // idx = ext op
3285    // addr = gep base, idx
3286    // is now:
3287    // promotedOpnd = ext opnd            <- no match here
3288    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3289    // addr = gep base, op                <- match
3290    if (MovedAway)
3291      *MovedAway = true;
3292
3293    assert(PromotedOperand &&
3294           "TypePromotionHelper should have filtered out those cases");
3295
3296    ExtAddrMode BackupAddrMode = AddrMode;
3297    unsigned OldSize = AddrModeInsts.size();
3298
3299    if (!matchAddr(PromotedOperand, Depth) ||
3300        // The total of the new cost is equal to the cost of the created
3301        // instructions.
3302        // The total of the old cost is equal to the cost of the extension plus
3303        // what we have saved in the addressing mode.
3304        !isPromotionProfitable(CreatedInstsCost,
3305                               ExtCost + (AddrModeInsts.size() - OldSize),
3306                               PromotedOperand)) {
3307      AddrMode = BackupAddrMode;
3308      AddrModeInsts.resize(OldSize);
3309      DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3310      TPT.rollback(LastKnownGood);
3311      return false;
3312    }
3313    return true;
3314  }
3315  }
3316  return false;
3317}
3318
3319/// If we can, try to add the value of 'Addr' into the current addressing mode.
3320/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3321/// unmodified. This assumes that Addr is either a pointer type or intptr_t
3322/// for the target.
3323///
3324bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3325  // Start a transaction at this point that we will rollback if the matching
3326  // fails.
3327  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3328      TPT.getRestorationPoint();
3329  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3330    // Fold in immediates if legal for the target.
3331    AddrMode.BaseOffs += CI->getSExtValue();
3332    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3333      return true;
3334    AddrMode.BaseOffs -= CI->getSExtValue();
3335  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3336    // If this is a global variable, try to fold it into the addressing mode.
3337    if (!AddrMode.BaseGV) {
3338      AddrMode.BaseGV = GV;
3339      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3340        return true;
3341      AddrMode.BaseGV = nullptr;
3342    }
3343  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3344    ExtAddrMode BackupAddrMode = AddrMode;
3345    unsigned OldSize = AddrModeInsts.size();
3346
3347    // Check to see if it is possible to fold this operation.
3348    bool MovedAway = false;
3349    if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3350      // This instruction may have been moved away. If so, there is nothing
3351      // to check here.
3352      if (MovedAway)
3353        return true;
3354      // Okay, it's possible to fold this.  Check to see if it is actually
3355      // *profitable* to do so.  We use a simple cost model to avoid increasing
3356      // register pressure too much.
3357      if (I->hasOneUse() ||
3358          isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3359        AddrModeInsts.push_back(I);
3360        return true;
3361      }
3362
3363      // It isn't profitable to do this, roll back.
3364      //cerr << "NOT FOLDING: " << *I;
3365      AddrMode = BackupAddrMode;
3366      AddrModeInsts.resize(OldSize);
3367      TPT.rollback(LastKnownGood);
3368    }
3369  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
3370    if (matchOperationAddr(CE, CE->getOpcode(), Depth))
3371      return true;
3372    TPT.rollback(LastKnownGood);
3373  } else if (isa<ConstantPointerNull>(Addr)) {
3374    // Null pointer gets folded without affecting the addressing mode.
3375    return true;
3376  }
3377
3378  // Worse case, the target should support [reg] addressing modes. :)
3379  if (!AddrMode.HasBaseReg) {
3380    AddrMode.HasBaseReg = true;
3381    AddrMode.BaseReg = Addr;
3382    // Still check for legality in case the target supports [imm] but not [i+r].
3383    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3384      return true;
3385    AddrMode.HasBaseReg = false;
3386    AddrMode.BaseReg = nullptr;
3387  }
3388
3389  // If the base register is already taken, see if we can do [r+r].
3390  if (AddrMode.Scale == 0) {
3391    AddrMode.Scale = 1;
3392    AddrMode.ScaledReg = Addr;
3393    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3394      return true;
3395    AddrMode.Scale = 0;
3396    AddrMode.ScaledReg = nullptr;
3397  }
3398  // Couldn't match.
3399  TPT.rollback(LastKnownGood);
3400  return false;
3401}
3402
3403/// Check to see if all uses of OpVal by the specified inline asm call are due
3404/// to memory operands. If so, return true, otherwise return false.
3405static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
3406                                    const TargetMachine &TM) {
3407  const Function *F = CI->getParent()->getParent();
3408  const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
3409  const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
3410  TargetLowering::AsmOperandInfoVector TargetConstraints =
3411      TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI,
3412                            ImmutableCallSite(CI));
3413  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3414    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3415
3416    // Compute the constraint code and ConstraintType to use.
3417    TLI->ComputeConstraintToUse(OpInfo, SDValue());
3418
3419    // If this asm operand is our Value*, and if it isn't an indirect memory
3420    // operand, we can't fold it!
3421    if (OpInfo.CallOperandVal == OpVal &&
3422        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
3423         !OpInfo.isIndirect))
3424      return false;
3425  }
3426
3427  return true;
3428}
3429
3430/// Recursively walk all the uses of I until we find a memory use.
3431/// If we find an obviously non-foldable instruction, return true.
3432/// Add the ultimately found memory instructions to MemoryUses.
3433static bool FindAllMemoryUses(
3434    Instruction *I,
3435    SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
3436    SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
3437  // If we already considered this instruction, we're done.
3438  if (!ConsideredInsts.insert(I).second)
3439    return false;
3440
3441  // If this is an obviously unfoldable instruction, bail out.
3442  if (!MightBeFoldableInst(I))
3443    return true;
3444
3445  // Loop over all the uses, recursively processing them.
3446  for (Use &U : I->uses()) {
3447    Instruction *UserI = cast<Instruction>(U.getUser());
3448
3449    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
3450      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
3451      continue;
3452    }
3453
3454    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
3455      unsigned opNo = U.getOperandNo();
3456      if (opNo == 0) return true; // Storing addr, not into addr.
3457      MemoryUses.push_back(std::make_pair(SI, opNo));
3458      continue;
3459    }
3460
3461    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
3462      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
3463      if (!IA) return true;
3464
3465      // If this is a memory operand, we're cool, otherwise bail out.
3466      if (!IsOperandAMemoryOperand(CI, IA, I, TM))
3467        return true;
3468      continue;
3469    }
3470
3471    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
3472      return true;
3473  }
3474
3475  return false;
3476}
3477
3478/// Return true if Val is already known to be live at the use site that we're
3479/// folding it into. If so, there is no cost to include it in the addressing
3480/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
3481/// instruction already.
3482bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
3483                                                   Value *KnownLive2) {
3484  // If Val is either of the known-live values, we know it is live!
3485  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
3486    return true;
3487
3488  // All values other than instructions and arguments (e.g. constants) are live.
3489  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
3490
3491  // If Val is a constant sized alloca in the entry block, it is live, this is
3492  // true because it is just a reference to the stack/frame pointer, which is
3493  // live for the whole function.
3494  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
3495    if (AI->isStaticAlloca())
3496      return true;
3497
3498  // Check to see if this value is already used in the memory instruction's
3499  // block.  If so, it's already live into the block at the very least, so we
3500  // can reasonably fold it.
3501  return Val->isUsedInBasicBlock(MemoryInst->getParent());
3502}
3503
3504/// It is possible for the addressing mode of the machine to fold the specified
3505/// instruction into a load or store that ultimately uses it.
3506/// However, the specified instruction has multiple uses.
3507/// Given this, it may actually increase register pressure to fold it
3508/// into the load. For example, consider this code:
3509///
3510///     X = ...
3511///     Y = X+1
3512///     use(Y)   -> nonload/store
3513///     Z = Y+1
3514///     load Z
3515///
3516/// In this case, Y has multiple uses, and can be folded into the load of Z
3517/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
3518/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
3519/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
3520/// number of computations either.
3521///
3522/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
3523/// X was live across 'load Z' for other reasons, we actually *would* want to
3524/// fold the addressing mode in the Z case.  This would make Y die earlier.
3525bool AddressingModeMatcher::
3526isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
3527                                     ExtAddrMode &AMAfter) {
3528  if (IgnoreProfitability) return true;
3529
3530  // AMBefore is the addressing mode before this instruction was folded into it,
3531  // and AMAfter is the addressing mode after the instruction was folded.  Get
3532  // the set of registers referenced by AMAfter and subtract out those
3533  // referenced by AMBefore: this is the set of values which folding in this
3534  // address extends the lifetime of.
3535  //
3536  // Note that there are only two potential values being referenced here,
3537  // BaseReg and ScaleReg (global addresses are always available, as are any
3538  // folded immediates).
3539  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
3540
3541  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
3542  // lifetime wasn't extended by adding this instruction.
3543  if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3544    BaseReg = nullptr;
3545  if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3546    ScaledReg = nullptr;
3547
3548  // If folding this instruction (and it's subexprs) didn't extend any live
3549  // ranges, we're ok with it.
3550  if (!BaseReg && !ScaledReg)
3551    return true;
3552
3553  // If all uses of this instruction are ultimately load/store/inlineasm's,
3554  // check to see if their addressing modes will include this instruction.  If
3555  // so, we can fold it into all uses, so it doesn't matter if it has multiple
3556  // uses.
3557  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
3558  SmallPtrSet<Instruction*, 16> ConsideredInsts;
3559  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
3560    return false;  // Has a non-memory, non-foldable use!
3561
3562  // Now that we know that all uses of this instruction are part of a chain of
3563  // computation involving only operations that could theoretically be folded
3564  // into a memory use, loop over each of these uses and see if they could
3565  // *actually* fold the instruction.
3566  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
3567  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
3568    Instruction *User = MemoryUses[i].first;
3569    unsigned OpNo = MemoryUses[i].second;
3570
3571    // Get the access type of this use.  If the use isn't a pointer, we don't
3572    // know what it accesses.
3573    Value *Address = User->getOperand(OpNo);
3574    PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
3575    if (!AddrTy)
3576      return false;
3577    Type *AddressAccessTy = AddrTy->getElementType();
3578    unsigned AS = AddrTy->getAddressSpace();
3579
3580    // Do a match against the root of this address, ignoring profitability. This
3581    // will tell us if the addressing mode for the memory operation will
3582    // *actually* cover the shared instruction.
3583    ExtAddrMode Result;
3584    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3585        TPT.getRestorationPoint();
3586    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS,
3587                                  MemoryInst, Result, InsertedInsts,
3588                                  PromotedInsts, TPT);
3589    Matcher.IgnoreProfitability = true;
3590    bool Success = Matcher.matchAddr(Address, 0);
3591    (void)Success; assert(Success && "Couldn't select *anything*?");
3592
3593    // The match was to check the profitability, the changes made are not
3594    // part of the original matcher. Therefore, they should be dropped
3595    // otherwise the original matcher will not present the right state.
3596    TPT.rollback(LastKnownGood);
3597
3598    // If the match didn't cover I, then it won't be shared by it.
3599    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
3600                  I) == MatchedAddrModeInsts.end())
3601      return false;
3602
3603    MatchedAddrModeInsts.clear();
3604  }
3605
3606  return true;
3607}
3608
3609} // end anonymous namespace
3610
3611/// Return true if the specified values are defined in a
3612/// different basic block than BB.
3613static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
3614  if (Instruction *I = dyn_cast<Instruction>(V))
3615    return I->getParent() != BB;
3616  return false;
3617}
3618
3619/// Load and Store Instructions often have addressing modes that can do
3620/// significant amounts of computation. As such, instruction selection will try
3621/// to get the load or store to do as much computation as possible for the
3622/// program. The problem is that isel can only see within a single block. As
3623/// such, we sink as much legal addressing mode work into the block as possible.
3624///
3625/// This method is used to optimize both load/store and inline asms with memory
3626/// operands.
3627bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
3628                                        Type *AccessTy, unsigned AddrSpace) {
3629  Value *Repl = Addr;
3630
3631  // Try to collapse single-value PHI nodes.  This is necessary to undo
3632  // unprofitable PRE transformations.
3633  SmallVector<Value*, 8> worklist;
3634  SmallPtrSet<Value*, 16> Visited;
3635  worklist.push_back(Addr);
3636
3637  // Use a worklist to iteratively look through PHI nodes, and ensure that
3638  // the addressing mode obtained from the non-PHI roots of the graph
3639  // are equivalent.
3640  Value *Consensus = nullptr;
3641  unsigned NumUsesConsensus = 0;
3642  bool IsNumUsesConsensusValid = false;
3643  SmallVector<Instruction*, 16> AddrModeInsts;
3644  ExtAddrMode AddrMode;
3645  TypePromotionTransaction TPT;
3646  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3647      TPT.getRestorationPoint();
3648  while (!worklist.empty()) {
3649    Value *V = worklist.back();
3650    worklist.pop_back();
3651
3652    // Break use-def graph loops.
3653    if (!Visited.insert(V).second) {
3654      Consensus = nullptr;
3655      break;
3656    }
3657
3658    // For a PHI node, push all of its incoming values.
3659    if (PHINode *P = dyn_cast<PHINode>(V)) {
3660      for (Value *IncValue : P->incoming_values())
3661        worklist.push_back(IncValue);
3662      continue;
3663    }
3664
3665    // For non-PHIs, determine the addressing mode being computed.
3666    SmallVector<Instruction*, 16> NewAddrModeInsts;
3667    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
3668      V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM,
3669      InsertedInsts, PromotedInsts, TPT);
3670
3671    // This check is broken into two cases with very similar code to avoid using
3672    // getNumUses() as much as possible. Some values have a lot of uses, so
3673    // calling getNumUses() unconditionally caused a significant compile-time
3674    // regression.
3675    if (!Consensus) {
3676      Consensus = V;
3677      AddrMode = NewAddrMode;
3678      AddrModeInsts = NewAddrModeInsts;
3679      continue;
3680    } else if (NewAddrMode == AddrMode) {
3681      if (!IsNumUsesConsensusValid) {
3682        NumUsesConsensus = Consensus->getNumUses();
3683        IsNumUsesConsensusValid = true;
3684      }
3685
3686      // Ensure that the obtained addressing mode is equivalent to that obtained
3687      // for all other roots of the PHI traversal.  Also, when choosing one
3688      // such root as representative, select the one with the most uses in order
3689      // to keep the cost modeling heuristics in AddressingModeMatcher
3690      // applicable.
3691      unsigned NumUses = V->getNumUses();
3692      if (NumUses > NumUsesConsensus) {
3693        Consensus = V;
3694        NumUsesConsensus = NumUses;
3695        AddrModeInsts = NewAddrModeInsts;
3696      }
3697      continue;
3698    }
3699
3700    Consensus = nullptr;
3701    break;
3702  }
3703
3704  // If the addressing mode couldn't be determined, or if multiple different
3705  // ones were determined, bail out now.
3706  if (!Consensus) {
3707    TPT.rollback(LastKnownGood);
3708    return false;
3709  }
3710  TPT.commit();
3711
3712  // Check to see if any of the instructions supersumed by this addr mode are
3713  // non-local to I's BB.
3714  bool AnyNonLocal = false;
3715  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
3716    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
3717      AnyNonLocal = true;
3718      break;
3719    }
3720  }
3721
3722  // If all the instructions matched are already in this BB, don't do anything.
3723  if (!AnyNonLocal) {
3724    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
3725    return false;
3726  }
3727
3728  // Insert this computation right after this user.  Since our caller is
3729  // scanning from the top of the BB to the bottom, reuse of the expr are
3730  // guaranteed to happen later.
3731  IRBuilder<> Builder(MemoryInst);
3732
3733  // Now that we determined the addressing expression we want to use and know
3734  // that we have to sink it into this block.  Check to see if we have already
3735  // done this for some other load/store instr in this block.  If so, reuse the
3736  // computation.
3737  Value *&SunkAddr = SunkAddrs[Addr];
3738  if (SunkAddr) {
3739    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
3740                 << *MemoryInst << "\n");
3741    if (SunkAddr->getType() != Addr->getType())
3742      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3743  } else if (AddrSinkUsingGEPs ||
3744             (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
3745              TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
3746                  ->useAA())) {
3747    // By default, we use the GEP-based method when AA is used later. This
3748    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
3749    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3750                 << *MemoryInst << "\n");
3751    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
3752    Value *ResultPtr = nullptr, *ResultIndex = nullptr;
3753
3754    // First, find the pointer.
3755    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
3756      ResultPtr = AddrMode.BaseReg;
3757      AddrMode.BaseReg = nullptr;
3758    }
3759
3760    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
3761      // We can't add more than one pointer together, nor can we scale a
3762      // pointer (both of which seem meaningless).
3763      if (ResultPtr || AddrMode.Scale != 1)
3764        return false;
3765
3766      ResultPtr = AddrMode.ScaledReg;
3767      AddrMode.Scale = 0;
3768    }
3769
3770    if (AddrMode.BaseGV) {
3771      if (ResultPtr)
3772        return false;
3773
3774      ResultPtr = AddrMode.BaseGV;
3775    }
3776
3777    // If the real base value actually came from an inttoptr, then the matcher
3778    // will look through it and provide only the integer value. In that case,
3779    // use it here.
3780    if (!ResultPtr && AddrMode.BaseReg) {
3781      ResultPtr =
3782        Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
3783      AddrMode.BaseReg = nullptr;
3784    } else if (!ResultPtr && AddrMode.Scale == 1) {
3785      ResultPtr =
3786        Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
3787      AddrMode.Scale = 0;
3788    }
3789
3790    if (!ResultPtr &&
3791        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
3792      SunkAddr = Constant::getNullValue(Addr->getType());
3793    } else if (!ResultPtr) {
3794      return false;
3795    } else {
3796      Type *I8PtrTy =
3797          Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
3798      Type *I8Ty = Builder.getInt8Ty();
3799
3800      // Start with the base register. Do this first so that subsequent address
3801      // matching finds it last, which will prevent it from trying to match it
3802      // as the scaled value in case it happens to be a mul. That would be
3803      // problematic if we've sunk a different mul for the scale, because then
3804      // we'd end up sinking both muls.
3805      if (AddrMode.BaseReg) {
3806        Value *V = AddrMode.BaseReg;
3807        if (V->getType() != IntPtrTy)
3808          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3809
3810        ResultIndex = V;
3811      }
3812
3813      // Add the scale value.
3814      if (AddrMode.Scale) {
3815        Value *V = AddrMode.ScaledReg;
3816        if (V->getType() == IntPtrTy) {
3817          // done.
3818        } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3819                   cast<IntegerType>(V->getType())->getBitWidth()) {
3820          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3821        } else {
3822          // It is only safe to sign extend the BaseReg if we know that the math
3823          // required to create it did not overflow before we extend it. Since
3824          // the original IR value was tossed in favor of a constant back when
3825          // the AddrMode was created we need to bail out gracefully if widths
3826          // do not match instead of extending it.
3827          Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
3828          if (I && (ResultIndex != AddrMode.BaseReg))
3829            I->eraseFromParent();
3830          return false;
3831        }
3832
3833        if (AddrMode.Scale != 1)
3834          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3835                                "sunkaddr");
3836        if (ResultIndex)
3837          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
3838        else
3839          ResultIndex = V;
3840      }
3841
3842      // Add in the Base Offset if present.
3843      if (AddrMode.BaseOffs) {
3844        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3845        if (ResultIndex) {
3846          // We need to add this separately from the scale above to help with
3847          // SDAG consecutive load/store merging.
3848          if (ResultPtr->getType() != I8PtrTy)
3849            ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3850          ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3851        }
3852
3853        ResultIndex = V;
3854      }
3855
3856      if (!ResultIndex) {
3857        SunkAddr = ResultPtr;
3858      } else {
3859        if (ResultPtr->getType() != I8PtrTy)
3860          ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3861        SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3862      }
3863
3864      if (SunkAddr->getType() != Addr->getType())
3865        SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3866    }
3867  } else {
3868    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3869                 << *MemoryInst << "\n");
3870    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
3871    Value *Result = nullptr;
3872
3873    // Start with the base register. Do this first so that subsequent address
3874    // matching finds it last, which will prevent it from trying to match it
3875    // as the scaled value in case it happens to be a mul. That would be
3876    // problematic if we've sunk a different mul for the scale, because then
3877    // we'd end up sinking both muls.
3878    if (AddrMode.BaseReg) {
3879      Value *V = AddrMode.BaseReg;
3880      if (V->getType()->isPointerTy())
3881        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3882      if (V->getType() != IntPtrTy)
3883        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3884      Result = V;
3885    }
3886
3887    // Add the scale value.
3888    if (AddrMode.Scale) {
3889      Value *V = AddrMode.ScaledReg;
3890      if (V->getType() == IntPtrTy) {
3891        // done.
3892      } else if (V->getType()->isPointerTy()) {
3893        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3894      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3895                 cast<IntegerType>(V->getType())->getBitWidth()) {
3896        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3897      } else {
3898        // It is only safe to sign extend the BaseReg if we know that the math
3899        // required to create it did not overflow before we extend it. Since
3900        // the original IR value was tossed in favor of a constant back when
3901        // the AddrMode was created we need to bail out gracefully if widths
3902        // do not match instead of extending it.
3903        Instruction *I = dyn_cast_or_null<Instruction>(Result);
3904        if (I && (Result != AddrMode.BaseReg))
3905          I->eraseFromParent();
3906        return false;
3907      }
3908      if (AddrMode.Scale != 1)
3909        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3910                              "sunkaddr");
3911      if (Result)
3912        Result = Builder.CreateAdd(Result, V, "sunkaddr");
3913      else
3914        Result = V;
3915    }
3916
3917    // Add in the BaseGV if present.
3918    if (AddrMode.BaseGV) {
3919      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
3920      if (Result)
3921        Result = Builder.CreateAdd(Result, V, "sunkaddr");
3922      else
3923        Result = V;
3924    }
3925
3926    // Add in the Base Offset if present.
3927    if (AddrMode.BaseOffs) {
3928      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3929      if (Result)
3930        Result = Builder.CreateAdd(Result, V, "sunkaddr");
3931      else
3932        Result = V;
3933    }
3934
3935    if (!Result)
3936      SunkAddr = Constant::getNullValue(Addr->getType());
3937    else
3938      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
3939  }
3940
3941  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
3942
3943  // If we have no uses, recursively delete the value and all dead instructions
3944  // using it.
3945  if (Repl->use_empty()) {
3946    // This can cause recursive deletion, which can invalidate our iterator.
3947    // Use a WeakVH to hold onto it in case this happens.
3948    WeakVH IterHandle(&*CurInstIterator);
3949    BasicBlock *BB = CurInstIterator->getParent();
3950
3951    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
3952
3953    if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
3954      // If the iterator instruction was recursively deleted, start over at the
3955      // start of the block.
3956      CurInstIterator = BB->begin();
3957      SunkAddrs.clear();
3958    }
3959  }
3960  ++NumMemoryInsts;
3961  return true;
3962}
3963
3964/// If there are any memory operands, use OptimizeMemoryInst to sink their
3965/// address computing into the block when possible / profitable.
3966bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
3967  bool MadeChange = false;
3968
3969  const TargetRegisterInfo *TRI =
3970      TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
3971  TargetLowering::AsmOperandInfoVector TargetConstraints =
3972      TLI->ParseConstraints(*DL, TRI, CS);
3973  unsigned ArgNo = 0;
3974  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3975    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3976
3977    // Compute the constraint code and ConstraintType to use.
3978    TLI->ComputeConstraintToUse(OpInfo, SDValue());
3979
3980    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3981        OpInfo.isIndirect) {
3982      Value *OpVal = CS->getArgOperand(ArgNo++);
3983      MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
3984    } else if (OpInfo.Type == InlineAsm::isInput)
3985      ArgNo++;
3986  }
3987
3988  return MadeChange;
3989}
3990
3991/// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
3992/// sign extensions.
3993static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
3994  assert(!Inst->use_empty() && "Input must have at least one use");
3995  const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
3996  bool IsSExt = isa<SExtInst>(FirstUser);
3997  Type *ExtTy = FirstUser->getType();
3998  for (const User *U : Inst->users()) {
3999    const Instruction *UI = cast<Instruction>(U);
4000    if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4001      return false;
4002    Type *CurTy = UI->getType();
4003    // Same input and output types: Same instruction after CSE.
4004    if (CurTy == ExtTy)
4005      continue;
4006
4007    // If IsSExt is true, we are in this situation:
4008    // a = Inst
4009    // b = sext ty1 a to ty2
4010    // c = sext ty1 a to ty3
4011    // Assuming ty2 is shorter than ty3, this could be turned into:
4012    // a = Inst
4013    // b = sext ty1 a to ty2
4014    // c = sext ty2 b to ty3
4015    // However, the last sext is not free.
4016    if (IsSExt)
4017      return false;
4018
4019    // This is a ZExt, maybe this is free to extend from one type to another.
4020    // In that case, we would not account for a different use.
4021    Type *NarrowTy;
4022    Type *LargeTy;
4023    if (ExtTy->getScalarType()->getIntegerBitWidth() >
4024        CurTy->getScalarType()->getIntegerBitWidth()) {
4025      NarrowTy = CurTy;
4026      LargeTy = ExtTy;
4027    } else {
4028      NarrowTy = ExtTy;
4029      LargeTy = CurTy;
4030    }
4031
4032    if (!TLI.isZExtFree(NarrowTy, LargeTy))
4033      return false;
4034  }
4035  // All uses are the same or can be derived from one another for free.
4036  return true;
4037}
4038
4039/// \brief Try to form ExtLd by promoting \p Exts until they reach a
4040/// load instruction.
4041/// If an ext(load) can be formed, it is returned via \p LI for the load
4042/// and \p Inst for the extension.
4043/// Otherwise LI == nullptr and Inst == nullptr.
4044/// When some promotion happened, \p TPT contains the proper state to
4045/// revert them.
4046///
4047/// \return true when promoting was necessary to expose the ext(load)
4048/// opportunity, false otherwise.
4049///
4050/// Example:
4051/// \code
4052/// %ld = load i32* %addr
4053/// %add = add nuw i32 %ld, 4
4054/// %zext = zext i32 %add to i64
4055/// \endcode
4056/// =>
4057/// \code
4058/// %ld = load i32* %addr
4059/// %zext = zext i32 %ld to i64
4060/// %add = add nuw i64 %zext, 4
4061/// \encode
4062/// Thanks to the promotion, we can match zext(load i32*) to i64.
4063bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT,
4064                                    LoadInst *&LI, Instruction *&Inst,
4065                                    const SmallVectorImpl<Instruction *> &Exts,
4066                                    unsigned CreatedInstsCost = 0) {
4067  // Iterate over all the extensions to see if one form an ext(load).
4068  for (auto I : Exts) {
4069    // Check if we directly have ext(load).
4070    if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
4071      Inst = I;
4072      // No promotion happened here.
4073      return false;
4074    }
4075    // Check whether or not we want to do any promotion.
4076    if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4077      continue;
4078    // Get the action to perform the promotion.
4079    TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
4080        I, InsertedInsts, *TLI, PromotedInsts);
4081    // Check if we can promote.
4082    if (!TPH)
4083      continue;
4084    // Save the current state.
4085    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4086        TPT.getRestorationPoint();
4087    SmallVector<Instruction *, 4> NewExts;
4088    unsigned NewCreatedInstsCost = 0;
4089    unsigned ExtCost = !TLI->isExtFree(I);
4090    // Promote.
4091    Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4092                             &NewExts, nullptr, *TLI);
4093    assert(PromotedVal &&
4094           "TypePromotionHelper should have filtered out those cases");
4095
4096    // We would be able to merge only one extension in a load.
4097    // Therefore, if we have more than 1 new extension we heuristically
4098    // cut this search path, because it means we degrade the code quality.
4099    // With exactly 2, the transformation is neutral, because we will merge
4100    // one extension but leave one. However, we optimistically keep going,
4101    // because the new extension may be removed too.
4102    long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4103    TotalCreatedInstsCost -= ExtCost;
4104    if (!StressExtLdPromotion &&
4105        (TotalCreatedInstsCost > 1 ||
4106         !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4107      // The promotion is not profitable, rollback to the previous state.
4108      TPT.rollback(LastKnownGood);
4109      continue;
4110    }
4111    // The promotion is profitable.
4112    // Check if it exposes an ext(load).
4113    (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
4114    if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4115               // If we have created a new extension, i.e., now we have two
4116               // extensions. We must make sure one of them is merged with
4117               // the load, otherwise we may degrade the code quality.
4118               (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
4119      // Promotion happened.
4120      return true;
4121    // If this does not help to expose an ext(load) then, rollback.
4122    TPT.rollback(LastKnownGood);
4123  }
4124  // None of the extension can form an ext(load).
4125  LI = nullptr;
4126  Inst = nullptr;
4127  return false;
4128}
4129
4130/// Move a zext or sext fed by a load into the same basic block as the load,
4131/// unless conditions are unfavorable. This allows SelectionDAG to fold the
4132/// extend into the load.
4133/// \p I[in/out] the extension may be modified during the process if some
4134/// promotions apply.
4135///
4136bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
4137  // Try to promote a chain of computation if it allows to form
4138  // an extended load.
4139  TypePromotionTransaction TPT;
4140  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4141    TPT.getRestorationPoint();
4142  SmallVector<Instruction *, 1> Exts;
4143  Exts.push_back(I);
4144  // Look for a load being extended.
4145  LoadInst *LI = nullptr;
4146  Instruction *OldExt = I;
4147  bool HasPromoted = extLdPromotion(TPT, LI, I, Exts);
4148  if (!LI || !I) {
4149    assert(!HasPromoted && !LI && "If we did not match any load instruction "
4150                                  "the code must remain the same");
4151    I = OldExt;
4152    return false;
4153  }
4154
4155  // If they're already in the same block, there's nothing to do.
4156  // Make the cheap checks first if we did not promote.
4157  // If we promoted, we need to check if it is indeed profitable.
4158  if (!HasPromoted && LI->getParent() == I->getParent())
4159    return false;
4160
4161  EVT VT = TLI->getValueType(*DL, I->getType());
4162  EVT LoadVT = TLI->getValueType(*DL, LI->getType());
4163
4164  // If the load has other users and the truncate is not free, this probably
4165  // isn't worthwhile.
4166  if (!LI->hasOneUse() && TLI &&
4167      (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
4168      !TLI->isTruncateFree(I->getType(), LI->getType())) {
4169    I = OldExt;
4170    TPT.rollback(LastKnownGood);
4171    return false;
4172  }
4173
4174  // Check whether the target supports casts folded into loads.
4175  unsigned LType;
4176  if (isa<ZExtInst>(I))
4177    LType = ISD::ZEXTLOAD;
4178  else {
4179    assert(isa<SExtInst>(I) && "Unexpected ext type!");
4180    LType = ISD::SEXTLOAD;
4181  }
4182  if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
4183    I = OldExt;
4184    TPT.rollback(LastKnownGood);
4185    return false;
4186  }
4187
4188  // Move the extend into the same block as the load, so that SelectionDAG
4189  // can fold it.
4190  TPT.commit();
4191  I->removeFromParent();
4192  I->insertAfter(LI);
4193  ++NumExtsMoved;
4194  return true;
4195}
4196
4197bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
4198  BasicBlock *DefBB = I->getParent();
4199
4200  // If the result of a {s|z}ext and its source are both live out, rewrite all
4201  // other uses of the source with result of extension.
4202  Value *Src = I->getOperand(0);
4203  if (Src->hasOneUse())
4204    return false;
4205
4206  // Only do this xform if truncating is free.
4207  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
4208    return false;
4209
4210  // Only safe to perform the optimization if the source is also defined in
4211  // this block.
4212  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
4213    return false;
4214
4215  bool DefIsLiveOut = false;
4216  for (User *U : I->users()) {
4217    Instruction *UI = cast<Instruction>(U);
4218
4219    // Figure out which BB this ext is used in.
4220    BasicBlock *UserBB = UI->getParent();
4221    if (UserBB == DefBB) continue;
4222    DefIsLiveOut = true;
4223    break;
4224  }
4225  if (!DefIsLiveOut)
4226    return false;
4227
4228  // Make sure none of the uses are PHI nodes.
4229  for (User *U : Src->users()) {
4230    Instruction *UI = cast<Instruction>(U);
4231    BasicBlock *UserBB = UI->getParent();
4232    if (UserBB == DefBB) continue;
4233    // Be conservative. We don't want this xform to end up introducing
4234    // reloads just before load / store instructions.
4235    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
4236      return false;
4237  }
4238
4239  // InsertedTruncs - Only insert one trunc in each block once.
4240  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
4241
4242  bool MadeChange = false;
4243  for (Use &U : Src->uses()) {
4244    Instruction *User = cast<Instruction>(U.getUser());
4245
4246    // Figure out which BB this ext is used in.
4247    BasicBlock *UserBB = User->getParent();
4248    if (UserBB == DefBB) continue;
4249
4250    // Both src and def are live in this block. Rewrite the use.
4251    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
4252
4253    if (!InsertedTrunc) {
4254      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4255      assert(InsertPt != UserBB->end());
4256      InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
4257      InsertedInsts.insert(InsertedTrunc);
4258    }
4259
4260    // Replace a use of the {s|z}ext source with a use of the result.
4261    U = InsertedTrunc;
4262    ++NumExtUses;
4263    MadeChange = true;
4264  }
4265
4266  return MadeChange;
4267}
4268
4269// Find loads whose uses only use some of the loaded value's bits.  Add an "and"
4270// just after the load if the target can fold this into one extload instruction,
4271// with the hope of eliminating some of the other later "and" instructions using
4272// the loaded value.  "and"s that are made trivially redundant by the insertion
4273// of the new "and" are removed by this function, while others (e.g. those whose
4274// path from the load goes through a phi) are left for isel to potentially
4275// remove.
4276//
4277// For example:
4278//
4279// b0:
4280//   x = load i32
4281//   ...
4282// b1:
4283//   y = and x, 0xff
4284//   z = use y
4285//
4286// becomes:
4287//
4288// b0:
4289//   x = load i32
4290//   x' = and x, 0xff
4291//   ...
4292// b1:
4293//   z = use x'
4294//
4295// whereas:
4296//
4297// b0:
4298//   x1 = load i32
4299//   ...
4300// b1:
4301//   x2 = load i32
4302//   ...
4303// b2:
4304//   x = phi x1, x2
4305//   y = and x, 0xff
4306//
4307// becomes (after a call to optimizeLoadExt for each load):
4308//
4309// b0:
4310//   x1 = load i32
4311//   x1' = and x1, 0xff
4312//   ...
4313// b1:
4314//   x2 = load i32
4315//   x2' = and x2, 0xff
4316//   ...
4317// b2:
4318//   x = phi x1', x2'
4319//   y = and x, 0xff
4320//
4321
4322bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
4323
4324  if (!Load->isSimple() ||
4325      !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
4326    return false;
4327
4328  // Skip loads we've already transformed or have no reason to transform.
4329  if (Load->hasOneUse()) {
4330    User *LoadUser = *Load->user_begin();
4331    if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() &&
4332        !dyn_cast<PHINode>(LoadUser))
4333      return false;
4334  }
4335
4336  // Look at all uses of Load, looking through phis, to determine how many bits
4337  // of the loaded value are needed.
4338  SmallVector<Instruction *, 8> WorkList;
4339  SmallPtrSet<Instruction *, 16> Visited;
4340  SmallVector<Instruction *, 8> AndsToMaybeRemove;
4341  for (auto *U : Load->users())
4342    WorkList.push_back(cast<Instruction>(U));
4343
4344  EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
4345  unsigned BitWidth = LoadResultVT.getSizeInBits();
4346  APInt DemandBits(BitWidth, 0);
4347  APInt WidestAndBits(BitWidth, 0);
4348
4349  while (!WorkList.empty()) {
4350    Instruction *I = WorkList.back();
4351    WorkList.pop_back();
4352
4353    // Break use-def graph loops.
4354    if (!Visited.insert(I).second)
4355      continue;
4356
4357    // For a PHI node, push all of its users.
4358    if (auto *Phi = dyn_cast<PHINode>(I)) {
4359      for (auto *U : Phi->users())
4360        WorkList.push_back(cast<Instruction>(U));
4361      continue;
4362    }
4363
4364    switch (I->getOpcode()) {
4365    case llvm::Instruction::And: {
4366      auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
4367      if (!AndC)
4368        return false;
4369      APInt AndBits = AndC->getValue();
4370      DemandBits |= AndBits;
4371      // Keep track of the widest and mask we see.
4372      if (AndBits.ugt(WidestAndBits))
4373        WidestAndBits = AndBits;
4374      if (AndBits == WidestAndBits && I->getOperand(0) == Load)
4375        AndsToMaybeRemove.push_back(I);
4376      break;
4377    }
4378
4379    case llvm::Instruction::Shl: {
4380      auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
4381      if (!ShlC)
4382        return false;
4383      uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
4384      auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt);
4385      DemandBits |= ShlDemandBits;
4386      break;
4387    }
4388
4389    case llvm::Instruction::Trunc: {
4390      EVT TruncVT = TLI->getValueType(*DL, I->getType());
4391      unsigned TruncBitWidth = TruncVT.getSizeInBits();
4392      auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth);
4393      DemandBits |= TruncBits;
4394      break;
4395    }
4396
4397    default:
4398      return false;
4399    }
4400  }
4401
4402  uint32_t ActiveBits = DemandBits.getActiveBits();
4403  // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
4404  // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
4405  // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
4406  // (and (load x) 1) is not matched as a single instruction, rather as a LDR
4407  // followed by an AND.
4408  // TODO: Look into removing this restriction by fixing backends to either
4409  // return false for isLoadExtLegal for i1 or have them select this pattern to
4410  // a single instruction.
4411  //
4412  // Also avoid hoisting if we didn't see any ands with the exact DemandBits
4413  // mask, since these are the only ands that will be removed by isel.
4414  if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) ||
4415      WidestAndBits != DemandBits)
4416    return false;
4417
4418  LLVMContext &Ctx = Load->getType()->getContext();
4419  Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
4420  EVT TruncVT = TLI->getValueType(*DL, TruncTy);
4421
4422  // Reject cases that won't be matched as extloads.
4423  if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
4424      !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
4425    return false;
4426
4427  IRBuilder<> Builder(Load->getNextNode());
4428  auto *NewAnd = dyn_cast<Instruction>(
4429      Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
4430
4431  // Replace all uses of load with new and (except for the use of load in the
4432  // new and itself).
4433  Load->replaceAllUsesWith(NewAnd);
4434  NewAnd->setOperand(0, Load);
4435
4436  // Remove any and instructions that are now redundant.
4437  for (auto *And : AndsToMaybeRemove)
4438    // Check that the and mask is the same as the one we decided to put on the
4439    // new and.
4440    if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
4441      And->replaceAllUsesWith(NewAnd);
4442      if (&*CurInstIterator == And)
4443        CurInstIterator = std::next(And->getIterator());
4444      And->eraseFromParent();
4445      ++NumAndUses;
4446    }
4447
4448  ++NumAndsAdded;
4449  return true;
4450}
4451
4452/// Check if V (an operand of a select instruction) is an expensive instruction
4453/// that is only used once.
4454static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
4455  auto *I = dyn_cast<Instruction>(V);
4456  // If it's safe to speculatively execute, then it should not have side
4457  // effects; therefore, it's safe to sink and possibly *not* execute.
4458  return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
4459         TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
4460}
4461
4462/// Returns true if a SelectInst should be turned into an explicit branch.
4463static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
4464                                                SelectInst *SI) {
4465  // FIXME: This should use the same heuristics as IfConversion to determine
4466  // whether a select is better represented as a branch.  This requires that
4467  // branch probability metadata is preserved for the select, which is not the
4468  // case currently.
4469
4470  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
4471
4472  // If a branch is predictable, an out-of-order CPU can avoid blocking on its
4473  // comparison condition. If the compare has more than one use, there's
4474  // probably another cmov or setcc around, so it's not worth emitting a branch.
4475  if (!Cmp || !Cmp->hasOneUse())
4476    return false;
4477
4478  Value *CmpOp0 = Cmp->getOperand(0);
4479  Value *CmpOp1 = Cmp->getOperand(1);
4480
4481  // Emit "cmov on compare with a memory operand" as a branch to avoid stalls
4482  // on a load from memory. But if the load is used more than once, do not
4483  // change the select to a branch because the load is probably needed
4484  // regardless of whether the branch is taken or not.
4485  if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
4486      (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()))
4487    return true;
4488
4489  // If either operand of the select is expensive and only needed on one side
4490  // of the select, we should form a branch.
4491  if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
4492      sinkSelectOperand(TTI, SI->getFalseValue()))
4493    return true;
4494
4495  return false;
4496}
4497
4498
4499/// If we have a SelectInst that will likely profit from branch prediction,
4500/// turn it into a branch.
4501bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
4502  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
4503
4504  // Can we convert the 'select' to CF ?
4505  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
4506    return false;
4507
4508  TargetLowering::SelectSupportKind SelectKind;
4509  if (VectorCond)
4510    SelectKind = TargetLowering::VectorMaskSelect;
4511  else if (SI->getType()->isVectorTy())
4512    SelectKind = TargetLowering::ScalarCondVectorVal;
4513  else
4514    SelectKind = TargetLowering::ScalarValSelect;
4515
4516  // Do we have efficient codegen support for this kind of 'selects' ?
4517  if (TLI->isSelectSupported(SelectKind)) {
4518    // We have efficient codegen support for the select instruction.
4519    // Check if it is profitable to keep this 'select'.
4520    if (!TLI->isPredictableSelectExpensive() ||
4521        !isFormingBranchFromSelectProfitable(TTI, SI))
4522      return false;
4523  }
4524
4525  ModifiedDT = true;
4526
4527  // Transform a sequence like this:
4528  //    start:
4529  //       %cmp = cmp uge i32 %a, %b
4530  //       %sel = select i1 %cmp, i32 %c, i32 %d
4531  //
4532  // Into:
4533  //    start:
4534  //       %cmp = cmp uge i32 %a, %b
4535  //       br i1 %cmp, label %select.true, label %select.false
4536  //    select.true:
4537  //       br label %select.end
4538  //    select.false:
4539  //       br label %select.end
4540  //    select.end:
4541  //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
4542  //
4543  // In addition, we may sink instructions that produce %c or %d from
4544  // the entry block into the destination(s) of the new branch.
4545  // If the true or false blocks do not contain a sunken instruction, that
4546  // block and its branch may be optimized away. In that case, one side of the
4547  // first branch will point directly to select.end, and the corresponding PHI
4548  // predecessor block will be the start block.
4549
4550  // First, we split the block containing the select into 2 blocks.
4551  BasicBlock *StartBlock = SI->getParent();
4552  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
4553  BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
4554
4555  // Delete the unconditional branch that was just created by the split.
4556  StartBlock->getTerminator()->eraseFromParent();
4557
4558  // These are the new basic blocks for the conditional branch.
4559  // At least one will become an actual new basic block.
4560  BasicBlock *TrueBlock = nullptr;
4561  BasicBlock *FalseBlock = nullptr;
4562
4563  // Sink expensive instructions into the conditional blocks to avoid executing
4564  // them speculatively.
4565  if (sinkSelectOperand(TTI, SI->getTrueValue())) {
4566    TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
4567                                   EndBlock->getParent(), EndBlock);
4568    auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
4569    auto *TrueInst = cast<Instruction>(SI->getTrueValue());
4570    TrueInst->moveBefore(TrueBranch);
4571  }
4572  if (sinkSelectOperand(TTI, SI->getFalseValue())) {
4573    FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
4574                                    EndBlock->getParent(), EndBlock);
4575    auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
4576    auto *FalseInst = cast<Instruction>(SI->getFalseValue());
4577    FalseInst->moveBefore(FalseBranch);
4578  }
4579
4580  // If there was nothing to sink, then arbitrarily choose the 'false' side
4581  // for a new input value to the PHI.
4582  if (TrueBlock == FalseBlock) {
4583    assert(TrueBlock == nullptr &&
4584           "Unexpected basic block transform while optimizing select");
4585
4586    FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
4587                                    EndBlock->getParent(), EndBlock);
4588    BranchInst::Create(EndBlock, FalseBlock);
4589  }
4590
4591  // Insert the real conditional branch based on the original condition.
4592  // If we did not create a new block for one of the 'true' or 'false' paths
4593  // of the condition, it means that side of the branch goes to the end block
4594  // directly and the path originates from the start block from the point of
4595  // view of the new PHI.
4596  if (TrueBlock == nullptr) {
4597    BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI);
4598    TrueBlock = StartBlock;
4599  } else if (FalseBlock == nullptr) {
4600    BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI);
4601    FalseBlock = StartBlock;
4602  } else {
4603    BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI);
4604  }
4605
4606  // The select itself is replaced with a PHI Node.
4607  PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
4608  PN->takeName(SI);
4609  PN->addIncoming(SI->getTrueValue(), TrueBlock);
4610  PN->addIncoming(SI->getFalseValue(), FalseBlock);
4611
4612  SI->replaceAllUsesWith(PN);
4613  SI->eraseFromParent();
4614
4615  // Instruct OptimizeBlock to skip to the next block.
4616  CurInstIterator = StartBlock->end();
4617  ++NumSelectsExpanded;
4618  return true;
4619}
4620
4621static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
4622  SmallVector<int, 16> Mask(SVI->getShuffleMask());
4623  int SplatElem = -1;
4624  for (unsigned i = 0; i < Mask.size(); ++i) {
4625    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
4626      return false;
4627    SplatElem = Mask[i];
4628  }
4629
4630  return true;
4631}
4632
4633/// Some targets have expensive vector shifts if the lanes aren't all the same
4634/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
4635/// it's often worth sinking a shufflevector splat down to its use so that
4636/// codegen can spot all lanes are identical.
4637bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
4638  BasicBlock *DefBB = SVI->getParent();
4639
4640  // Only do this xform if variable vector shifts are particularly expensive.
4641  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
4642    return false;
4643
4644  // We only expect better codegen by sinking a shuffle if we can recognise a
4645  // constant splat.
4646  if (!isBroadcastShuffle(SVI))
4647    return false;
4648
4649  // InsertedShuffles - Only insert a shuffle in each block once.
4650  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
4651
4652  bool MadeChange = false;
4653  for (User *U : SVI->users()) {
4654    Instruction *UI = cast<Instruction>(U);
4655
4656    // Figure out which BB this ext is used in.
4657    BasicBlock *UserBB = UI->getParent();
4658    if (UserBB == DefBB) continue;
4659
4660    // For now only apply this when the splat is used by a shift instruction.
4661    if (!UI->isShift()) continue;
4662
4663    // Everything checks out, sink the shuffle if the user's block doesn't
4664    // already have a copy.
4665    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
4666
4667    if (!InsertedShuffle) {
4668      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4669      assert(InsertPt != UserBB->end());
4670      InsertedShuffle =
4671          new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4672                                SVI->getOperand(2), "", &*InsertPt);
4673    }
4674
4675    UI->replaceUsesOfWith(SVI, InsertedShuffle);
4676    MadeChange = true;
4677  }
4678
4679  // If we removed all uses, nuke the shuffle.
4680  if (SVI->use_empty()) {
4681    SVI->eraseFromParent();
4682    MadeChange = true;
4683  }
4684
4685  return MadeChange;
4686}
4687
4688bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
4689  if (!TLI || !DL)
4690    return false;
4691
4692  Value *Cond = SI->getCondition();
4693  Type *OldType = Cond->getType();
4694  LLVMContext &Context = Cond->getContext();
4695  MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
4696  unsigned RegWidth = RegType.getSizeInBits();
4697
4698  if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
4699    return false;
4700
4701  // If the register width is greater than the type width, expand the condition
4702  // of the switch instruction and each case constant to the width of the
4703  // register. By widening the type of the switch condition, subsequent
4704  // comparisons (for case comparisons) will not need to be extended to the
4705  // preferred register width, so we will potentially eliminate N-1 extends,
4706  // where N is the number of cases in the switch.
4707  auto *NewType = Type::getIntNTy(Context, RegWidth);
4708
4709  // Zero-extend the switch condition and case constants unless the switch
4710  // condition is a function argument that is already being sign-extended.
4711  // In that case, we can avoid an unnecessary mask/extension by sign-extending
4712  // everything instead.
4713  Instruction::CastOps ExtType = Instruction::ZExt;
4714  if (auto *Arg = dyn_cast<Argument>(Cond))
4715    if (Arg->hasSExtAttr())
4716      ExtType = Instruction::SExt;
4717
4718  auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
4719  ExtInst->insertBefore(SI);
4720  SI->setCondition(ExtInst);
4721  for (SwitchInst::CaseIt Case : SI->cases()) {
4722    APInt NarrowConst = Case.getCaseValue()->getValue();
4723    APInt WideConst = (ExtType == Instruction::ZExt) ?
4724                      NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
4725    Case.setValue(ConstantInt::get(Context, WideConst));
4726  }
4727
4728  return true;
4729}
4730
4731namespace {
4732/// \brief Helper class to promote a scalar operation to a vector one.
4733/// This class is used to move downward extractelement transition.
4734/// E.g.,
4735/// a = vector_op <2 x i32>
4736/// b = extractelement <2 x i32> a, i32 0
4737/// c = scalar_op b
4738/// store c
4739///
4740/// =>
4741/// a = vector_op <2 x i32>
4742/// c = vector_op a (equivalent to scalar_op on the related lane)
4743/// * d = extractelement <2 x i32> c, i32 0
4744/// * store d
4745/// Assuming both extractelement and store can be combine, we get rid of the
4746/// transition.
4747class VectorPromoteHelper {
4748  /// DataLayout associated with the current module.
4749  const DataLayout &DL;
4750
4751  /// Used to perform some checks on the legality of vector operations.
4752  const TargetLowering &TLI;
4753
4754  /// Used to estimated the cost of the promoted chain.
4755  const TargetTransformInfo &TTI;
4756
4757  /// The transition being moved downwards.
4758  Instruction *Transition;
4759  /// The sequence of instructions to be promoted.
4760  SmallVector<Instruction *, 4> InstsToBePromoted;
4761  /// Cost of combining a store and an extract.
4762  unsigned StoreExtractCombineCost;
4763  /// Instruction that will be combined with the transition.
4764  Instruction *CombineInst;
4765
4766  /// \brief The instruction that represents the current end of the transition.
4767  /// Since we are faking the promotion until we reach the end of the chain
4768  /// of computation, we need a way to get the current end of the transition.
4769  Instruction *getEndOfTransition() const {
4770    if (InstsToBePromoted.empty())
4771      return Transition;
4772    return InstsToBePromoted.back();
4773  }
4774
4775  /// \brief Return the index of the original value in the transition.
4776  /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
4777  /// c, is at index 0.
4778  unsigned getTransitionOriginalValueIdx() const {
4779    assert(isa<ExtractElementInst>(Transition) &&
4780           "Other kind of transitions are not supported yet");
4781    return 0;
4782  }
4783
4784  /// \brief Return the index of the index in the transition.
4785  /// E.g., for "extractelement <2 x i32> c, i32 0" the index
4786  /// is at index 1.
4787  unsigned getTransitionIdx() const {
4788    assert(isa<ExtractElementInst>(Transition) &&
4789           "Other kind of transitions are not supported yet");
4790    return 1;
4791  }
4792
4793  /// \brief Get the type of the transition.
4794  /// This is the type of the original value.
4795  /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
4796  /// transition is <2 x i32>.
4797  Type *getTransitionType() const {
4798    return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
4799  }
4800
4801  /// \brief Promote \p ToBePromoted by moving \p Def downward through.
4802  /// I.e., we have the following sequence:
4803  /// Def = Transition <ty1> a to <ty2>
4804  /// b = ToBePromoted <ty2> Def, ...
4805  /// =>
4806  /// b = ToBePromoted <ty1> a, ...
4807  /// Def = Transition <ty1> ToBePromoted to <ty2>
4808  void promoteImpl(Instruction *ToBePromoted);
4809
4810  /// \brief Check whether or not it is profitable to promote all the
4811  /// instructions enqueued to be promoted.
4812  bool isProfitableToPromote() {
4813    Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
4814    unsigned Index = isa<ConstantInt>(ValIdx)
4815                         ? cast<ConstantInt>(ValIdx)->getZExtValue()
4816                         : -1;
4817    Type *PromotedType = getTransitionType();
4818
4819    StoreInst *ST = cast<StoreInst>(CombineInst);
4820    unsigned AS = ST->getPointerAddressSpace();
4821    unsigned Align = ST->getAlignment();
4822    // Check if this store is supported.
4823    if (!TLI.allowsMisalignedMemoryAccesses(
4824            TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
4825            Align)) {
4826      // If this is not supported, there is no way we can combine
4827      // the extract with the store.
4828      return false;
4829    }
4830
4831    // The scalar chain of computation has to pay for the transition
4832    // scalar to vector.
4833    // The vector chain has to account for the combining cost.
4834    uint64_t ScalarCost =
4835        TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
4836    uint64_t VectorCost = StoreExtractCombineCost;
4837    for (const auto &Inst : InstsToBePromoted) {
4838      // Compute the cost.
4839      // By construction, all instructions being promoted are arithmetic ones.
4840      // Moreover, one argument is a constant that can be viewed as a splat
4841      // constant.
4842      Value *Arg0 = Inst->getOperand(0);
4843      bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
4844                            isa<ConstantFP>(Arg0);
4845      TargetTransformInfo::OperandValueKind Arg0OVK =
4846          IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4847                         : TargetTransformInfo::OK_AnyValue;
4848      TargetTransformInfo::OperandValueKind Arg1OVK =
4849          !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4850                          : TargetTransformInfo::OK_AnyValue;
4851      ScalarCost += TTI.getArithmeticInstrCost(
4852          Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
4853      VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
4854                                               Arg0OVK, Arg1OVK);
4855    }
4856    DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
4857                 << ScalarCost << "\nVector: " << VectorCost << '\n');
4858    return ScalarCost > VectorCost;
4859  }
4860
4861  /// \brief Generate a constant vector with \p Val with the same
4862  /// number of elements as the transition.
4863  /// \p UseSplat defines whether or not \p Val should be replicated
4864  /// across the whole vector.
4865  /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
4866  /// otherwise we generate a vector with as many undef as possible:
4867  /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
4868  /// used at the index of the extract.
4869  Value *getConstantVector(Constant *Val, bool UseSplat) const {
4870    unsigned ExtractIdx = UINT_MAX;
4871    if (!UseSplat) {
4872      // If we cannot determine where the constant must be, we have to
4873      // use a splat constant.
4874      Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
4875      if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
4876        ExtractIdx = CstVal->getSExtValue();
4877      else
4878        UseSplat = true;
4879    }
4880
4881    unsigned End = getTransitionType()->getVectorNumElements();
4882    if (UseSplat)
4883      return ConstantVector::getSplat(End, Val);
4884
4885    SmallVector<Constant *, 4> ConstVec;
4886    UndefValue *UndefVal = UndefValue::get(Val->getType());
4887    for (unsigned Idx = 0; Idx != End; ++Idx) {
4888      if (Idx == ExtractIdx)
4889        ConstVec.push_back(Val);
4890      else
4891        ConstVec.push_back(UndefVal);
4892    }
4893    return ConstantVector::get(ConstVec);
4894  }
4895
4896  /// \brief Check if promoting to a vector type an operand at \p OperandIdx
4897  /// in \p Use can trigger undefined behavior.
4898  static bool canCauseUndefinedBehavior(const Instruction *Use,
4899                                        unsigned OperandIdx) {
4900    // This is not safe to introduce undef when the operand is on
4901    // the right hand side of a division-like instruction.
4902    if (OperandIdx != 1)
4903      return false;
4904    switch (Use->getOpcode()) {
4905    default:
4906      return false;
4907    case Instruction::SDiv:
4908    case Instruction::UDiv:
4909    case Instruction::SRem:
4910    case Instruction::URem:
4911      return true;
4912    case Instruction::FDiv:
4913    case Instruction::FRem:
4914      return !Use->hasNoNaNs();
4915    }
4916    llvm_unreachable(nullptr);
4917  }
4918
4919public:
4920  VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
4921                      const TargetTransformInfo &TTI, Instruction *Transition,
4922                      unsigned CombineCost)
4923      : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
4924        StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
4925    assert(Transition && "Do not know how to promote null");
4926  }
4927
4928  /// \brief Check if we can promote \p ToBePromoted to \p Type.
4929  bool canPromote(const Instruction *ToBePromoted) const {
4930    // We could support CastInst too.
4931    return isa<BinaryOperator>(ToBePromoted);
4932  }
4933
4934  /// \brief Check if it is profitable to promote \p ToBePromoted
4935  /// by moving downward the transition through.
4936  bool shouldPromote(const Instruction *ToBePromoted) const {
4937    // Promote only if all the operands can be statically expanded.
4938    // Indeed, we do not want to introduce any new kind of transitions.
4939    for (const Use &U : ToBePromoted->operands()) {
4940      const Value *Val = U.get();
4941      if (Val == getEndOfTransition()) {
4942        // If the use is a division and the transition is on the rhs,
4943        // we cannot promote the operation, otherwise we may create a
4944        // division by zero.
4945        if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
4946          return false;
4947        continue;
4948      }
4949      if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
4950          !isa<ConstantFP>(Val))
4951        return false;
4952    }
4953    // Check that the resulting operation is legal.
4954    int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
4955    if (!ISDOpcode)
4956      return false;
4957    return StressStoreExtract ||
4958           TLI.isOperationLegalOrCustom(
4959               ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
4960  }
4961
4962  /// \brief Check whether or not \p Use can be combined
4963  /// with the transition.
4964  /// I.e., is it possible to do Use(Transition) => AnotherUse?
4965  bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
4966
4967  /// \brief Record \p ToBePromoted as part of the chain to be promoted.
4968  void enqueueForPromotion(Instruction *ToBePromoted) {
4969    InstsToBePromoted.push_back(ToBePromoted);
4970  }
4971
4972  /// \brief Set the instruction that will be combined with the transition.
4973  void recordCombineInstruction(Instruction *ToBeCombined) {
4974    assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
4975    CombineInst = ToBeCombined;
4976  }
4977
4978  /// \brief Promote all the instructions enqueued for promotion if it is
4979  /// is profitable.
4980  /// \return True if the promotion happened, false otherwise.
4981  bool promote() {
4982    // Check if there is something to promote.
4983    // Right now, if we do not have anything to combine with,
4984    // we assume the promotion is not profitable.
4985    if (InstsToBePromoted.empty() || !CombineInst)
4986      return false;
4987
4988    // Check cost.
4989    if (!StressStoreExtract && !isProfitableToPromote())
4990      return false;
4991
4992    // Promote.
4993    for (auto &ToBePromoted : InstsToBePromoted)
4994      promoteImpl(ToBePromoted);
4995    InstsToBePromoted.clear();
4996    return true;
4997  }
4998};
4999} // End of anonymous namespace.
5000
5001void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
5002  // At this point, we know that all the operands of ToBePromoted but Def
5003  // can be statically promoted.
5004  // For Def, we need to use its parameter in ToBePromoted:
5005  // b = ToBePromoted ty1 a
5006  // Def = Transition ty1 b to ty2
5007  // Move the transition down.
5008  // 1. Replace all uses of the promoted operation by the transition.
5009  // = ... b => = ... Def.
5010  assert(ToBePromoted->getType() == Transition->getType() &&
5011         "The type of the result of the transition does not match "
5012         "the final type");
5013  ToBePromoted->replaceAllUsesWith(Transition);
5014  // 2. Update the type of the uses.
5015  // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
5016  Type *TransitionTy = getTransitionType();
5017  ToBePromoted->mutateType(TransitionTy);
5018  // 3. Update all the operands of the promoted operation with promoted
5019  // operands.
5020  // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
5021  for (Use &U : ToBePromoted->operands()) {
5022    Value *Val = U.get();
5023    Value *NewVal = nullptr;
5024    if (Val == Transition)
5025      NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
5026    else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
5027             isa<ConstantFP>(Val)) {
5028      // Use a splat constant if it is not safe to use undef.
5029      NewVal = getConstantVector(
5030          cast<Constant>(Val),
5031          isa<UndefValue>(Val) ||
5032              canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
5033    } else
5034      llvm_unreachable("Did you modified shouldPromote and forgot to update "
5035                       "this?");
5036    ToBePromoted->setOperand(U.getOperandNo(), NewVal);
5037  }
5038  Transition->removeFromParent();
5039  Transition->insertAfter(ToBePromoted);
5040  Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
5041}
5042
5043/// Some targets can do store(extractelement) with one instruction.
5044/// Try to push the extractelement towards the stores when the target
5045/// has this feature and this is profitable.
5046bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
5047  unsigned CombineCost = UINT_MAX;
5048  if (DisableStoreExtract || !TLI ||
5049      (!StressStoreExtract &&
5050       !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
5051                                       Inst->getOperand(1), CombineCost)))
5052    return false;
5053
5054  // At this point we know that Inst is a vector to scalar transition.
5055  // Try to move it down the def-use chain, until:
5056  // - We can combine the transition with its single use
5057  //   => we got rid of the transition.
5058  // - We escape the current basic block
5059  //   => we would need to check that we are moving it at a cheaper place and
5060  //      we do not do that for now.
5061  BasicBlock *Parent = Inst->getParent();
5062  DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
5063  VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
5064  // If the transition has more than one use, assume this is not going to be
5065  // beneficial.
5066  while (Inst->hasOneUse()) {
5067    Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
5068    DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
5069
5070    if (ToBePromoted->getParent() != Parent) {
5071      DEBUG(dbgs() << "Instruction to promote is in a different block ("
5072                   << ToBePromoted->getParent()->getName()
5073                   << ") than the transition (" << Parent->getName() << ").\n");
5074      return false;
5075    }
5076
5077    if (VPH.canCombine(ToBePromoted)) {
5078      DEBUG(dbgs() << "Assume " << *Inst << '\n'
5079                   << "will be combined with: " << *ToBePromoted << '\n');
5080      VPH.recordCombineInstruction(ToBePromoted);
5081      bool Changed = VPH.promote();
5082      NumStoreExtractExposed += Changed;
5083      return Changed;
5084    }
5085
5086    DEBUG(dbgs() << "Try promoting.\n");
5087    if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
5088      return false;
5089
5090    DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
5091
5092    VPH.enqueueForPromotion(ToBePromoted);
5093    Inst = ToBePromoted;
5094  }
5095  return false;
5096}
5097
5098bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
5099  // Bail out if we inserted the instruction to prevent optimizations from
5100  // stepping on each other's toes.
5101  if (InsertedInsts.count(I))
5102    return false;
5103
5104  if (PHINode *P = dyn_cast<PHINode>(I)) {
5105    // It is possible for very late stage optimizations (such as SimplifyCFG)
5106    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
5107    // trivial PHI, go ahead and zap it here.
5108    if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) {
5109      P->replaceAllUsesWith(V);
5110      P->eraseFromParent();
5111      ++NumPHIsElim;
5112      return true;
5113    }
5114    return false;
5115  }
5116
5117  if (CastInst *CI = dyn_cast<CastInst>(I)) {
5118    // If the source of the cast is a constant, then this should have
5119    // already been constant folded.  The only reason NOT to constant fold
5120    // it is if something (e.g. LSR) was careful to place the constant
5121    // evaluation in a block other than then one that uses it (e.g. to hoist
5122    // the address of globals out of a loop).  If this is the case, we don't
5123    // want to forward-subst the cast.
5124    if (isa<Constant>(CI->getOperand(0)))
5125      return false;
5126
5127    if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
5128      return true;
5129
5130    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
5131      /// Sink a zext or sext into its user blocks if the target type doesn't
5132      /// fit in one register
5133      if (TLI &&
5134          TLI->getTypeAction(CI->getContext(),
5135                             TLI->getValueType(*DL, CI->getType())) ==
5136              TargetLowering::TypeExpandInteger) {
5137        return SinkCast(CI);
5138      } else {
5139        bool MadeChange = moveExtToFormExtLoad(I);
5140        return MadeChange | optimizeExtUses(I);
5141      }
5142    }
5143    return false;
5144  }
5145
5146  if (CmpInst *CI = dyn_cast<CmpInst>(I))
5147    if (!TLI || !TLI->hasMultipleConditionRegisters())
5148      return OptimizeCmpExpression(CI);
5149
5150  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5151    stripInvariantGroupMetadata(*LI);
5152    if (TLI) {
5153      bool Modified = optimizeLoadExt(LI);
5154      unsigned AS = LI->getPointerAddressSpace();
5155      Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
5156      return Modified;
5157    }
5158    return false;
5159  }
5160
5161  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
5162    stripInvariantGroupMetadata(*SI);
5163    if (TLI) {
5164      unsigned AS = SI->getPointerAddressSpace();
5165      return optimizeMemoryInst(I, SI->getOperand(1),
5166                                SI->getOperand(0)->getType(), AS);
5167    }
5168    return false;
5169  }
5170
5171  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
5172
5173  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
5174                BinOp->getOpcode() == Instruction::LShr)) {
5175    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
5176    if (TLI && CI && TLI->hasExtractBitsInsn())
5177      return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
5178
5179    return false;
5180  }
5181
5182  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
5183    if (GEPI->hasAllZeroIndices()) {
5184      /// The GEP operand must be a pointer, so must its result -> BitCast
5185      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
5186                                        GEPI->getName(), GEPI);
5187      GEPI->replaceAllUsesWith(NC);
5188      GEPI->eraseFromParent();
5189      ++NumGEPsElim;
5190      optimizeInst(NC, ModifiedDT);
5191      return true;
5192    }
5193    return false;
5194  }
5195
5196  if (CallInst *CI = dyn_cast<CallInst>(I))
5197    return optimizeCallInst(CI, ModifiedDT);
5198
5199  if (SelectInst *SI = dyn_cast<SelectInst>(I))
5200    return optimizeSelectInst(SI);
5201
5202  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
5203    return optimizeShuffleVectorInst(SVI);
5204
5205  if (auto *Switch = dyn_cast<SwitchInst>(I))
5206    return optimizeSwitchInst(Switch);
5207
5208  if (isa<ExtractElementInst>(I))
5209    return optimizeExtractElementInst(I);
5210
5211  return false;
5212}
5213
5214/// Given an OR instruction, check to see if this is a bitreverse
5215/// idiom. If so, insert the new intrinsic and return true.
5216static bool makeBitReverse(Instruction &I, const DataLayout &DL,
5217                           const TargetLowering &TLI) {
5218  if (!I.getType()->isIntegerTy() ||
5219      !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
5220                                    TLI.getValueType(DL, I.getType(), true)))
5221    return false;
5222
5223  SmallVector<Instruction*, 4> Insts;
5224  if (!recognizeBitReverseOrBSwapIdiom(&I, false, true, Insts))
5225    return false;
5226  Instruction *LastInst = Insts.back();
5227  I.replaceAllUsesWith(LastInst);
5228  RecursivelyDeleteTriviallyDeadInstructions(&I);
5229  return true;
5230}
5231
5232// In this pass we look for GEP and cast instructions that are used
5233// across basic blocks and rewrite them to improve basic-block-at-a-time
5234// selection.
5235bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
5236  SunkAddrs.clear();
5237  bool MadeChange = false;
5238
5239  CurInstIterator = BB.begin();
5240  while (CurInstIterator != BB.end()) {
5241    MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
5242    if (ModifiedDT)
5243      return true;
5244  }
5245
5246  bool MadeBitReverse = true;
5247  while (TLI && MadeBitReverse) {
5248    MadeBitReverse = false;
5249    for (auto &I : reverse(BB)) {
5250      if (makeBitReverse(I, *DL, *TLI)) {
5251        MadeBitReverse = MadeChange = true;
5252        break;
5253      }
5254    }
5255  }
5256  MadeChange |= dupRetToEnableTailCallOpts(&BB);
5257
5258  return MadeChange;
5259}
5260
5261// llvm.dbg.value is far away from the value then iSel may not be able
5262// handle it properly. iSel will drop llvm.dbg.value if it can not
5263// find a node corresponding to the value.
5264bool CodeGenPrepare::placeDbgValues(Function &F) {
5265  bool MadeChange = false;
5266  for (BasicBlock &BB : F) {
5267    Instruction *PrevNonDbgInst = nullptr;
5268    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
5269      Instruction *Insn = &*BI++;
5270      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
5271      // Leave dbg.values that refer to an alloca alone. These
5272      // instrinsics describe the address of a variable (= the alloca)
5273      // being taken.  They should not be moved next to the alloca
5274      // (and to the beginning of the scope), but rather stay close to
5275      // where said address is used.
5276      if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
5277        PrevNonDbgInst = Insn;
5278        continue;
5279      }
5280
5281      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
5282      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
5283        // If VI is a phi in a block with an EHPad terminator, we can't insert
5284        // after it.
5285        if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
5286          continue;
5287        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
5288        DVI->removeFromParent();
5289        if (isa<PHINode>(VI))
5290          DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
5291        else
5292          DVI->insertAfter(VI);
5293        MadeChange = true;
5294        ++NumDbgValueMoved;
5295      }
5296    }
5297  }
5298  return MadeChange;
5299}
5300
5301// If there is a sequence that branches based on comparing a single bit
5302// against zero that can be combined into a single instruction, and the
5303// target supports folding these into a single instruction, sink the
5304// mask and compare into the branch uses. Do this before OptimizeBlock ->
5305// OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
5306// searched for.
5307bool CodeGenPrepare::sinkAndCmp(Function &F) {
5308  if (!EnableAndCmpSinking)
5309    return false;
5310  if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
5311    return false;
5312  bool MadeChange = false;
5313  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
5314    BasicBlock *BB = &*I++;
5315
5316    // Does this BB end with the following?
5317    //   %andVal = and %val, #single-bit-set
5318    //   %icmpVal = icmp %andResult, 0
5319    //   br i1 %cmpVal label %dest1, label %dest2"
5320    BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
5321    if (!Brcc || !Brcc->isConditional())
5322      continue;
5323    ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
5324    if (!Cmp || Cmp->getParent() != BB)
5325      continue;
5326    ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
5327    if (!Zero || !Zero->isZero())
5328      continue;
5329    Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
5330    if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
5331      continue;
5332    ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
5333    if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
5334      continue;
5335    DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
5336
5337    // Push the "and; icmp" for any users that are conditional branches.
5338    // Since there can only be one branch use per BB, we don't need to keep
5339    // track of which BBs we insert into.
5340    for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
5341         UI != E; ) {
5342      Use &TheUse = *UI;
5343      // Find brcc use.
5344      BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
5345      ++UI;
5346      if (!BrccUser || !BrccUser->isConditional())
5347        continue;
5348      BasicBlock *UserBB = BrccUser->getParent();
5349      if (UserBB == BB) continue;
5350      DEBUG(dbgs() << "found Brcc use\n");
5351
5352      // Sink the "and; icmp" to use.
5353      MadeChange = true;
5354      BinaryOperator *NewAnd =
5355        BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
5356                                  BrccUser);
5357      CmpInst *NewCmp =
5358        CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
5359                        "", BrccUser);
5360      TheUse = NewCmp;
5361      ++NumAndCmpsMoved;
5362      DEBUG(BrccUser->getParent()->dump());
5363    }
5364  }
5365  return MadeChange;
5366}
5367
5368/// \brief Retrieve the probabilities of a conditional branch. Returns true on
5369/// success, or returns false if no or invalid metadata was found.
5370static bool extractBranchMetadata(BranchInst *BI,
5371                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
5372  assert(BI->isConditional() &&
5373         "Looking for probabilities on unconditional branch?");
5374  auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
5375  if (!ProfileData || ProfileData->getNumOperands() != 3)
5376    return false;
5377
5378  const auto *CITrue =
5379      mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
5380  const auto *CIFalse =
5381      mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
5382  if (!CITrue || !CIFalse)
5383    return false;
5384
5385  ProbTrue = CITrue->getValue().getZExtValue();
5386  ProbFalse = CIFalse->getValue().getZExtValue();
5387
5388  return true;
5389}
5390
5391/// \brief Scale down both weights to fit into uint32_t.
5392static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
5393  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
5394  uint32_t Scale = (NewMax / UINT32_MAX) + 1;
5395  NewTrue = NewTrue / Scale;
5396  NewFalse = NewFalse / Scale;
5397}
5398
5399/// \brief Some targets prefer to split a conditional branch like:
5400/// \code
5401///   %0 = icmp ne i32 %a, 0
5402///   %1 = icmp ne i32 %b, 0
5403///   %or.cond = or i1 %0, %1
5404///   br i1 %or.cond, label %TrueBB, label %FalseBB
5405/// \endcode
5406/// into multiple branch instructions like:
5407/// \code
5408///   bb1:
5409///     %0 = icmp ne i32 %a, 0
5410///     br i1 %0, label %TrueBB, label %bb2
5411///   bb2:
5412///     %1 = icmp ne i32 %b, 0
5413///     br i1 %1, label %TrueBB, label %FalseBB
5414/// \endcode
5415/// This usually allows instruction selection to do even further optimizations
5416/// and combine the compare with the branch instruction. Currently this is
5417/// applied for targets which have "cheap" jump instructions.
5418///
5419/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
5420///
5421bool CodeGenPrepare::splitBranchCondition(Function &F) {
5422  if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
5423    return false;
5424
5425  bool MadeChange = false;
5426  for (auto &BB : F) {
5427    // Does this BB end with the following?
5428    //   %cond1 = icmp|fcmp|binary instruction ...
5429    //   %cond2 = icmp|fcmp|binary instruction ...
5430    //   %cond.or = or|and i1 %cond1, cond2
5431    //   br i1 %cond.or label %dest1, label %dest2"
5432    BinaryOperator *LogicOp;
5433    BasicBlock *TBB, *FBB;
5434    if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
5435      continue;
5436
5437    auto *Br1 = cast<BranchInst>(BB.getTerminator());
5438    if (Br1->getMetadata(LLVMContext::MD_unpredictable))
5439      continue;
5440
5441    unsigned Opc;
5442    Value *Cond1, *Cond2;
5443    if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
5444                             m_OneUse(m_Value(Cond2)))))
5445      Opc = Instruction::And;
5446    else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
5447                                 m_OneUse(m_Value(Cond2)))))
5448      Opc = Instruction::Or;
5449    else
5450      continue;
5451
5452    if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
5453        !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
5454      continue;
5455
5456    DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
5457
5458    // Create a new BB.
5459    auto *InsertBefore = std::next(Function::iterator(BB))
5460        .getNodePtrUnchecked();
5461    auto TmpBB = BasicBlock::Create(BB.getContext(),
5462                                    BB.getName() + ".cond.split",
5463                                    BB.getParent(), InsertBefore);
5464
5465    // Update original basic block by using the first condition directly by the
5466    // branch instruction and removing the no longer needed and/or instruction.
5467    Br1->setCondition(Cond1);
5468    LogicOp->eraseFromParent();
5469
5470    // Depending on the conditon we have to either replace the true or the false
5471    // successor of the original branch instruction.
5472    if (Opc == Instruction::And)
5473      Br1->setSuccessor(0, TmpBB);
5474    else
5475      Br1->setSuccessor(1, TmpBB);
5476
5477    // Fill in the new basic block.
5478    auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
5479    if (auto *I = dyn_cast<Instruction>(Cond2)) {
5480      I->removeFromParent();
5481      I->insertBefore(Br2);
5482    }
5483
5484    // Update PHI nodes in both successors. The original BB needs to be
5485    // replaced in one succesor's PHI nodes, because the branch comes now from
5486    // the newly generated BB (NewBB). In the other successor we need to add one
5487    // incoming edge to the PHI nodes, because both branch instructions target
5488    // now the same successor. Depending on the original branch condition
5489    // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
5490    // we perfrom the correct update for the PHI nodes.
5491    // This doesn't change the successor order of the just created branch
5492    // instruction (or any other instruction).
5493    if (Opc == Instruction::Or)
5494      std::swap(TBB, FBB);
5495
5496    // Replace the old BB with the new BB.
5497    for (auto &I : *TBB) {
5498      PHINode *PN = dyn_cast<PHINode>(&I);
5499      if (!PN)
5500        break;
5501      int i;
5502      while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
5503        PN->setIncomingBlock(i, TmpBB);
5504    }
5505
5506    // Add another incoming edge form the new BB.
5507    for (auto &I : *FBB) {
5508      PHINode *PN = dyn_cast<PHINode>(&I);
5509      if (!PN)
5510        break;
5511      auto *Val = PN->getIncomingValueForBlock(&BB);
5512      PN->addIncoming(Val, TmpBB);
5513    }
5514
5515    // Update the branch weights (from SelectionDAGBuilder::
5516    // FindMergedConditions).
5517    if (Opc == Instruction::Or) {
5518      // Codegen X | Y as:
5519      // BB1:
5520      //   jmp_if_X TBB
5521      //   jmp TmpBB
5522      // TmpBB:
5523      //   jmp_if_Y TBB
5524      //   jmp FBB
5525      //
5526
5527      // We have flexibility in setting Prob for BB1 and Prob for NewBB.
5528      // The requirement is that
5529      //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
5530      //     = TrueProb for orignal BB.
5531      // Assuming the orignal weights are A and B, one choice is to set BB1's
5532      // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
5533      // assumes that
5534      //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
5535      // Another choice is to assume TrueProb for BB1 equals to TrueProb for
5536      // TmpBB, but the math is more complicated.
5537      uint64_t TrueWeight, FalseWeight;
5538      if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
5539        uint64_t NewTrueWeight = TrueWeight;
5540        uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
5541        scaleWeights(NewTrueWeight, NewFalseWeight);
5542        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
5543                         .createBranchWeights(TrueWeight, FalseWeight));
5544
5545        NewTrueWeight = TrueWeight;
5546        NewFalseWeight = 2 * FalseWeight;
5547        scaleWeights(NewTrueWeight, NewFalseWeight);
5548        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
5549                         .createBranchWeights(TrueWeight, FalseWeight));
5550      }
5551    } else {
5552      // Codegen X & Y as:
5553      // BB1:
5554      //   jmp_if_X TmpBB
5555      //   jmp FBB
5556      // TmpBB:
5557      //   jmp_if_Y TBB
5558      //   jmp FBB
5559      //
5560      //  This requires creation of TmpBB after CurBB.
5561
5562      // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
5563      // The requirement is that
5564      //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
5565      //     = FalseProb for orignal BB.
5566      // Assuming the orignal weights are A and B, one choice is to set BB1's
5567      // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
5568      // assumes that
5569      //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
5570      uint64_t TrueWeight, FalseWeight;
5571      if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
5572        uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
5573        uint64_t NewFalseWeight = FalseWeight;
5574        scaleWeights(NewTrueWeight, NewFalseWeight);
5575        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
5576                         .createBranchWeights(TrueWeight, FalseWeight));
5577
5578        NewTrueWeight = 2 * TrueWeight;
5579        NewFalseWeight = FalseWeight;
5580        scaleWeights(NewTrueWeight, NewFalseWeight);
5581        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
5582                         .createBranchWeights(TrueWeight, FalseWeight));
5583      }
5584    }
5585
5586    // Note: No point in getting fancy here, since the DT info is never
5587    // available to CodeGenPrepare.
5588    ModifiedDT = true;
5589
5590    MadeChange = true;
5591
5592    DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
5593          TmpBB->dump());
5594  }
5595  return MadeChange;
5596}
5597
5598void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) {
5599  if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group))
5600    I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID());
5601}
5602