DbgValueHistoryCalculator.cpp revision 288943
1//===-- llvm/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DbgValueHistoryCalculator.h"
11#include "llvm/ADT/BitVector.h"
12#include "llvm/ADT/SmallVector.h"
13#include "llvm/CodeGen/MachineBasicBlock.h"
14#include "llvm/CodeGen/MachineFunction.h"
15#include "llvm/IR/DebugInfo.h"
16#include "llvm/Support/Debug.h"
17#include "llvm/Support/raw_ostream.h"
18#include "llvm/Target/TargetRegisterInfo.h"
19#include <algorithm>
20#include <map>
21using namespace llvm;
22
23#define DEBUG_TYPE "dwarfdebug"
24
25// \brief If @MI is a DBG_VALUE with debug value described by a
26// defined register, returns the number of this register.
27// In the other case, returns 0.
28static unsigned isDescribedByReg(const MachineInstr &MI) {
29  assert(MI.isDebugValue());
30  assert(MI.getNumOperands() == 4);
31  // If location of variable is described using a register (directly or
32  // indirecltly), this register is always a first operand.
33  return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
34}
35
36void DbgValueHistoryMap::startInstrRange(InlinedVariable Var,
37                                         const MachineInstr &MI) {
38  // Instruction range should start with a DBG_VALUE instruction for the
39  // variable.
40  assert(MI.isDebugValue() && "not a DBG_VALUE");
41  auto &Ranges = VarInstrRanges[Var];
42  if (!Ranges.empty() && Ranges.back().second == nullptr &&
43      Ranges.back().first->isIdenticalTo(&MI)) {
44    DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
45                 << "\t" << Ranges.back().first << "\t" << MI << "\n");
46    return;
47  }
48  Ranges.push_back(std::make_pair(&MI, nullptr));
49}
50
51void DbgValueHistoryMap::endInstrRange(InlinedVariable Var,
52                                       const MachineInstr &MI) {
53  auto &Ranges = VarInstrRanges[Var];
54  // Verify that the current instruction range is not yet closed.
55  assert(!Ranges.empty() && Ranges.back().second == nullptr);
56  // For now, instruction ranges are not allowed to cross basic block
57  // boundaries.
58  assert(Ranges.back().first->getParent() == MI.getParent());
59  Ranges.back().second = &MI;
60}
61
62unsigned DbgValueHistoryMap::getRegisterForVar(InlinedVariable Var) const {
63  const auto &I = VarInstrRanges.find(Var);
64  if (I == VarInstrRanges.end())
65    return 0;
66  const auto &Ranges = I->second;
67  if (Ranges.empty() || Ranges.back().second != nullptr)
68    return 0;
69  return isDescribedByReg(*Ranges.back().first);
70}
71
72namespace {
73// Maps physreg numbers to the variables they describe.
74typedef DbgValueHistoryMap::InlinedVariable InlinedVariable;
75typedef std::map<unsigned, SmallVector<InlinedVariable, 1>> RegDescribedVarsMap;
76}
77
78// \brief Claim that @Var is not described by @RegNo anymore.
79static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
80                                InlinedVariable Var) {
81  const auto &I = RegVars.find(RegNo);
82  assert(RegNo != 0U && I != RegVars.end());
83  auto &VarSet = I->second;
84  const auto &VarPos = std::find(VarSet.begin(), VarSet.end(), Var);
85  assert(VarPos != VarSet.end());
86  VarSet.erase(VarPos);
87  // Don't keep empty sets in a map to keep it as small as possible.
88  if (VarSet.empty())
89    RegVars.erase(I);
90}
91
92// \brief Claim that @Var is now described by @RegNo.
93static void addRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
94                               InlinedVariable Var) {
95  assert(RegNo != 0U);
96  auto &VarSet = RegVars[RegNo];
97  assert(std::find(VarSet.begin(), VarSet.end(), Var) == VarSet.end());
98  VarSet.push_back(Var);
99}
100
101// \brief Terminate the location range for variables described by register at
102// @I by inserting @ClobberingInstr to their history.
103static void clobberRegisterUses(RegDescribedVarsMap &RegVars,
104                                RegDescribedVarsMap::iterator I,
105                                DbgValueHistoryMap &HistMap,
106                                const MachineInstr &ClobberingInstr) {
107  // Iterate over all variables described by this register and add this
108  // instruction to their history, clobbering it.
109  for (const auto &Var : I->second)
110    HistMap.endInstrRange(Var, ClobberingInstr);
111  RegVars.erase(I);
112}
113
114// \brief Terminate the location range for variables described by register
115// @RegNo by inserting @ClobberingInstr to their history.
116static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
117                                DbgValueHistoryMap &HistMap,
118                                const MachineInstr &ClobberingInstr) {
119  const auto &I = RegVars.find(RegNo);
120  if (I == RegVars.end())
121    return;
122  clobberRegisterUses(RegVars, I, HistMap, ClobberingInstr);
123}
124
125// \brief Collect all registers clobbered by @MI and apply the functor
126// @Func to their RegNo.
127// @Func should be a functor with a void(unsigned) signature. We're
128// not using std::function here for performance reasons. It has a
129// small but measurable impact. By using a functor instead of a
130// std::set& here, we can avoid the overhead of constructing
131// temporaries in calculateDbgValueHistory, which has a significant
132// performance impact.
133template<typename Callable>
134static void applyToClobberedRegisters(const MachineInstr &MI,
135                                      const TargetRegisterInfo *TRI,
136                                      Callable Func) {
137  for (const MachineOperand &MO : MI.operands()) {
138    if (!MO.isReg() || !MO.isDef() || !MO.getReg())
139      continue;
140    for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
141      Func(*AI);
142  }
143}
144
145// \brief Returns the first instruction in @MBB which corresponds to
146// the function epilogue, or nullptr if @MBB doesn't contain an epilogue.
147static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
148  auto LastMI = MBB.getLastNonDebugInstr();
149  if (LastMI == MBB.end() || !LastMI->isReturn())
150    return nullptr;
151  // Assume that epilogue starts with instruction having the same debug location
152  // as the return instruction.
153  DebugLoc LastLoc = LastMI->getDebugLoc();
154  auto Res = LastMI;
155  for (MachineBasicBlock::const_reverse_iterator I(std::next(LastMI)),
156       E = MBB.rend();
157       I != E; ++I) {
158    if (I->getDebugLoc() != LastLoc)
159      return Res;
160    Res = &*I;
161  }
162  // If all instructions have the same debug location, assume whole MBB is
163  // an epilogue.
164  return MBB.begin();
165}
166
167// \brief Collect registers that are modified in the function body (their
168// contents is changed outside of the prologue and epilogue).
169static void collectChangingRegs(const MachineFunction *MF,
170                                const TargetRegisterInfo *TRI,
171                                BitVector &Regs) {
172  for (const auto &MBB : *MF) {
173    auto FirstEpilogueInst = getFirstEpilogueInst(MBB);
174
175    for (const auto &MI : MBB) {
176      if (&MI == FirstEpilogueInst)
177        break;
178      if (!MI.getFlag(MachineInstr::FrameSetup))
179        applyToClobberedRegisters(MI, TRI, [&](unsigned r) { Regs.set(r); });
180    }
181  }
182}
183
184void llvm::calculateDbgValueHistory(const MachineFunction *MF,
185                                    const TargetRegisterInfo *TRI,
186                                    DbgValueHistoryMap &Result) {
187  BitVector ChangingRegs(TRI->getNumRegs());
188  collectChangingRegs(MF, TRI, ChangingRegs);
189
190  RegDescribedVarsMap RegVars;
191  for (const auto &MBB : *MF) {
192    for (const auto &MI : MBB) {
193      if (!MI.isDebugValue()) {
194        // Not a DBG_VALUE instruction. It may clobber registers which describe
195        // some variables.
196        applyToClobberedRegisters(MI, TRI, [&](unsigned RegNo) {
197          if (ChangingRegs.test(RegNo))
198            clobberRegisterUses(RegVars, RegNo, Result, MI);
199        });
200        continue;
201      }
202
203      assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!");
204      // Use the base variable (without any DW_OP_piece expressions)
205      // as index into History. The full variables including the
206      // piece expressions are attached to the MI.
207      const DILocalVariable *RawVar = MI.getDebugVariable();
208      assert(RawVar->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
209             "Expected inlined-at fields to agree");
210      InlinedVariable Var(RawVar, MI.getDebugLoc()->getInlinedAt());
211
212      if (unsigned PrevReg = Result.getRegisterForVar(Var))
213        dropRegDescribedVar(RegVars, PrevReg, Var);
214
215      Result.startInstrRange(Var, MI);
216
217      if (unsigned NewReg = isDescribedByReg(MI))
218        addRegDescribedVar(RegVars, NewReg, Var);
219    }
220
221    // Make sure locations for register-described variables are valid only
222    // until the end of the basic block (unless it's the last basic block, in
223    // which case let their liveness run off to the end of the function).
224    if (!MBB.empty() && &MBB != &MF->back()) {
225      for (auto I = RegVars.begin(), E = RegVars.end(); I != E;) {
226        auto CurElem = I++; // CurElem can be erased below.
227        if (ChangingRegs.test(CurElem->first))
228          clobberRegisterUses(RegVars, CurElem, Result, MBB.back());
229      }
230    }
231  }
232}
233