CFLAliasAnalysis.cpp revision 280031
167760Smsmith//===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
269459Smsmith//
367760Smsmith//                     The LLVM Compiler Infrastructure
467760Smsmith//
567760Smsmith// This file is distributed under the University of Illinois Open Source
667760Smsmith// License. See LICENSE.TXT for details.
767760Smsmith//
867760Smsmith//===----------------------------------------------------------------------===//
967760Smsmith//
1067760Smsmith// This file implements a CFL-based context-insensitive alias analysis
1167760Smsmith// algorithm. It does not depend on types. The algorithm is a mixture of the one
1267760Smsmith// described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
1367760Smsmith// Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
1467760Smsmith// Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
1567760Smsmith// papers, we build a graph of the uses of a variable, where each node is a
1667760Smsmith// memory location, and each edge is an action that happened on that memory
1767760Smsmith// location.  The "actions" can be one of Dereference, Reference, Assign, or
1867760Smsmith// Assign.
1967760Smsmith//
2067760Smsmith// Two variables are considered as aliasing iff you can reach one value's node
2167760Smsmith// from the other value's node and the language formed by concatenating all of
2267760Smsmith// the edge labels (actions) conforms to a context-free grammar.
2367760Smsmith//
2467760Smsmith// Because this algorithm requires a graph search on each query, we execute the
2567760Smsmith// algorithm outlined in "Fast algorithms..." (mentioned above)
2667760Smsmith// in order to transform the graph into sets of variables that may alias in
2767760Smsmith// ~nlogn time (n = number of variables.), which makes queries take constant
2867760Smsmith// time.
2967760Smsmith//===----------------------------------------------------------------------===//
3067760Smsmith
3167760Smsmith#include "StratifiedSets.h"
3267760Smsmith#include "llvm/ADT/BitVector.h"
3367760Smsmith#include "llvm/ADT/DenseMap.h"
3467760Smsmith#include "llvm/ADT/None.h"
3567760Smsmith#include "llvm/ADT/Optional.h"
3667760Smsmith#include "llvm/Analysis/AliasAnalysis.h"
3767760Smsmith#include "llvm/Analysis/Passes.h"
3867760Smsmith#include "llvm/IR/Constants.h"
3967760Smsmith#include "llvm/IR/Function.h"
4067760Smsmith#include "llvm/IR/InstVisitor.h"
4167760Smsmith#include "llvm/IR/Instructions.h"
4269776Smsmith#include "llvm/IR/ValueHandle.h"
4367760Smsmith#include "llvm/Pass.h"
4467760Smsmith#include "llvm/Support/Allocator.h"
4567760Smsmith#include "llvm/Support/Compiler.h"
4667760Smsmith#include "llvm/Support/ErrorHandling.h"
4767760Smsmith#include <algorithm>
4867760Smsmith#include <cassert>
4967760Smsmith#include <forward_list>
5067760Smsmith#include <tuple>
5167760Smsmith
5267760Smsmithusing namespace llvm;
5367760Smsmith
5467760Smsmith// Try to go from a Value* to a Function*. Never returns nullptr.
5567760Smsmithstatic Optional<Function *> parentFunctionOfValue(Value *);
5667760Smsmith
5767760Smsmith// Returns possible functions called by the Inst* into the given
5867760Smsmith// SmallVectorImpl. Returns true if targets found, false otherwise.
5967760Smsmith// This is templated because InvokeInst/CallInst give us the same
6067760Smsmith// set of functions that we care about, and I don't like repeating
6167760Smsmith// myself.
6267760Smsmithtemplate <typename Inst>
6367760Smsmithstatic bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
6467760Smsmith
6567760Smsmith// Some instructions need to have their users tracked. Instructions like
6667760Smsmith// `add` require you to get the users of the Instruction* itself, other
6767760Smsmith// instructions like `store` require you to get the users of the first
6869459Smsmith// operand. This function gets the "proper" value to track for each
6967760Smsmith// type of instruction we support.
7067760Smsmithstatic Optional<Value *> getTargetValue(Instruction *);
7167760Smsmith
7267760Smsmith// There are certain instructions (i.e. FenceInst, etc.) that we ignore.
7367760Smsmith// This notes that we should ignore those.
7467760Smsmithstatic bool hasUsefulEdges(Instruction *);
7567760Smsmith
7667760Smsmithconst StratifiedIndex StratifiedLink::SetSentinel =
7767760Smsmith  std::numeric_limits<StratifiedIndex>::max();
7867760Smsmith
7967760Smsmithnamespace {
8067760Smsmith// StratifiedInfo Attribute things.
8167760Smsmithtypedef unsigned StratifiedAttr;
8280071SmsmithLLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
8380071SmsmithLLVM_CONSTEXPR unsigned AttrAllIndex = 0;
8480071SmsmithLLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
8580071SmsmithLLVM_CONSTEXPR unsigned AttrFirstArgIndex = 2;
8680071SmsmithLLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
8780071SmsmithLLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
8880071Smsmith
8967760SmsmithLLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
9067760SmsmithLLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
9167760Smsmith
9267760Smsmith// \brief StratifiedSets call for knowledge of "direction", so this is how we
9367760Smsmith// represent that locally.
9467760Smsmithenum class Level { Same, Above, Below };
9567760Smsmith
9667760Smsmith// \brief Edges can be one of four "weights" -- each weight must have an inverse
9767760Smsmith// weight (Assign has Assign; Reference has Dereference).
9867760Smsmithenum class EdgeType {
9967760Smsmith  // The weight assigned when assigning from or to a value. For example, in:
10067760Smsmith  // %b = getelementptr %a, 0
10167760Smsmith  // ...The relationships are %b assign %a, and %a assign %b. This used to be
10267760Smsmith  // two edges, but having a distinction bought us nothing.
10367760Smsmith  Assign,
10467760Smsmith
10580071Smsmith  // The edge used when we have an edge going from some handle to a Value.
10680071Smsmith  // Examples of this include:
10780071Smsmith  // %b = load %a              (%b Dereference %a)
10880071Smsmith  // %b = extractelement %a, 0 (%a Dereference %b)
10980071Smsmith  Dereference,
11069459Smsmith
11169459Smsmith  // The edge used when our edge goes from a value to a handle that may have
11269459Smsmith  // contained it at some point. Examples:
11380071Smsmith  // %b = load %a              (%a Reference %b)
11480071Smsmith  // %b = extractelement %a, 0 (%b Reference %a)
11569459Smsmith  Reference
11669459Smsmith};
11780071Smsmith
11880071Smsmith// \brief Encodes the notion of a "use"
11980071Smsmithstruct Edge {
12069459Smsmith  // \brief Which value the edge is coming from
12180071Smsmith  Value *From;
12280071Smsmith
12369459Smsmith  // \brief Which value the edge is pointing to
12480071Smsmith  Value *To;
12580071Smsmith
12669459Smsmith  // \brief Edge weight
12780071Smsmith  EdgeType Weight;
12880071Smsmith
12980071Smsmith  // \brief Whether we aliased any external values along the way that may be
13080071Smsmith  // invisible to the analysis (i.e. landingpad for exceptions, calls for
13180071Smsmith  // interprocedural analysis, etc.)
13269459Smsmith  StratifiedAttrs AdditionalAttrs;
13369459Smsmith
13480071Smsmith  Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
13569459Smsmith      : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
13680071Smsmith};
13769459Smsmith
13869459Smsmith// \brief Information we have about a function and would like to keep around
13980071Smsmithstruct FunctionInfo {
14080071Smsmith  StratifiedSets<Value *> Sets;
14180071Smsmith  // Lots of functions have < 4 returns. Adjust as necessary.
14287036Smsmith  SmallVector<Value *, 4> ReturnedValues;
14380071Smsmith
14469459Smsmith  FunctionInfo(StratifiedSets<Value *> &&S,
14569459Smsmith               SmallVector<Value *, 4> &&RV)
14669459Smsmith    : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
14780071Smsmith};
14880071Smsmith
14969459Smsmithstruct CFLAliasAnalysis;
15069459Smsmith
15180071Smsmithstruct FunctionHandle : public CallbackVH {
15280071Smsmith  FunctionHandle(Function *Fn, CFLAliasAnalysis *CFLAA)
15369459Smsmith      : CallbackVH(Fn), CFLAA(CFLAA) {
15469459Smsmith    assert(Fn != nullptr);
15580071Smsmith    assert(CFLAA != nullptr);
15669459Smsmith  }
15769459Smsmith
15880071Smsmith  virtual ~FunctionHandle() {}
15980071Smsmith
16069459Smsmith  void deleted() override { removeSelfFromCache(); }
16180071Smsmith  void allUsesReplacedWith(Value *) override { removeSelfFromCache(); }
16280071Smsmith
16380071Smsmithprivate:
16480071Smsmith  CFLAliasAnalysis *CFLAA;
16580071Smsmith
16669459Smsmith  void removeSelfFromCache();
16769459Smsmith};
16880071Smsmith
16969459Smsmithstruct CFLAliasAnalysis : public ImmutablePass, public AliasAnalysis {
17080071Smsmithprivate:
17169459Smsmith  /// \brief Cached mapping of Functions to their StratifiedSets.
172  /// If a function's sets are currently being built, it is marked
173  /// in the cache as an Optional without a value. This way, if we
174  /// have any kind of recursion, it is discernable from a function
175  /// that simply has empty sets.
176  DenseMap<Function *, Optional<FunctionInfo>> Cache;
177  std::forward_list<FunctionHandle> Handles;
178
179public:
180  static char ID;
181
182  CFLAliasAnalysis() : ImmutablePass(ID) {
183    initializeCFLAliasAnalysisPass(*PassRegistry::getPassRegistry());
184  }
185
186  virtual ~CFLAliasAnalysis() {}
187
188  void getAnalysisUsage(AnalysisUsage &AU) const override {
189    AliasAnalysis::getAnalysisUsage(AU);
190  }
191
192  void *getAdjustedAnalysisPointer(const void *ID) override {
193    if (ID == &AliasAnalysis::ID)
194      return (AliasAnalysis *)this;
195    return this;
196  }
197
198  /// \brief Inserts the given Function into the cache.
199  void scan(Function *Fn);
200
201  void evict(Function *Fn) { Cache.erase(Fn); }
202
203  /// \brief Ensures that the given function is available in the cache.
204  /// Returns the appropriate entry from the cache.
205  const Optional<FunctionInfo> &ensureCached(Function *Fn) {
206    auto Iter = Cache.find(Fn);
207    if (Iter == Cache.end()) {
208      scan(Fn);
209      Iter = Cache.find(Fn);
210      assert(Iter != Cache.end());
211      assert(Iter->second.hasValue());
212    }
213    return Iter->second;
214  }
215
216  AliasResult query(const Location &LocA, const Location &LocB);
217
218  AliasResult alias(const Location &LocA, const Location &LocB) override {
219    if (LocA.Ptr == LocB.Ptr) {
220      if (LocA.Size == LocB.Size) {
221        return MustAlias;
222      } else {
223        return PartialAlias;
224      }
225    }
226
227    // Comparisons between global variables and other constants should be
228    // handled by BasicAA.
229    if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) {
230      return MayAlias;
231    }
232
233    return query(LocA, LocB);
234  }
235
236  void initializePass() override { InitializeAliasAnalysis(this); }
237};
238
239void FunctionHandle::removeSelfFromCache() {
240  assert(CFLAA != nullptr);
241  auto *Val = getValPtr();
242  CFLAA->evict(cast<Function>(Val));
243  setValPtr(nullptr);
244}
245
246// \brief Gets the edges our graph should have, based on an Instruction*
247class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
248  CFLAliasAnalysis &AA;
249  SmallVectorImpl<Edge> &Output;
250
251public:
252  GetEdgesVisitor(CFLAliasAnalysis &AA, SmallVectorImpl<Edge> &Output)
253      : AA(AA), Output(Output) {}
254
255  void visitInstruction(Instruction &) {
256    llvm_unreachable("Unsupported instruction encountered");
257  }
258
259  void visitCastInst(CastInst &Inst) {
260    Output.push_back(Edge(&Inst, Inst.getOperand(0), EdgeType::Assign,
261                          AttrNone));
262  }
263
264  void visitBinaryOperator(BinaryOperator &Inst) {
265    auto *Op1 = Inst.getOperand(0);
266    auto *Op2 = Inst.getOperand(1);
267    Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
268    Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
269  }
270
271  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
272    auto *Ptr = Inst.getPointerOperand();
273    auto *Val = Inst.getNewValOperand();
274    Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
275  }
276
277  void visitAtomicRMWInst(AtomicRMWInst &Inst) {
278    auto *Ptr = Inst.getPointerOperand();
279    auto *Val = Inst.getValOperand();
280    Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
281  }
282
283  void visitPHINode(PHINode &Inst) {
284    for (unsigned I = 0, E = Inst.getNumIncomingValues(); I != E; ++I) {
285      Value *Val = Inst.getIncomingValue(I);
286      Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
287    }
288  }
289
290  void visitGetElementPtrInst(GetElementPtrInst &Inst) {
291    auto *Op = Inst.getPointerOperand();
292    Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
293    for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
294      Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
295  }
296
297  void visitSelectInst(SelectInst &Inst) {
298    auto *Condition = Inst.getCondition();
299    Output.push_back(Edge(&Inst, Condition, EdgeType::Assign, AttrNone));
300    auto *TrueVal = Inst.getTrueValue();
301    Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
302    auto *FalseVal = Inst.getFalseValue();
303    Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
304  }
305
306  void visitAllocaInst(AllocaInst &) {}
307
308  void visitLoadInst(LoadInst &Inst) {
309    auto *Ptr = Inst.getPointerOperand();
310    auto *Val = &Inst;
311    Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
312  }
313
314  void visitStoreInst(StoreInst &Inst) {
315    auto *Ptr = Inst.getPointerOperand();
316    auto *Val = Inst.getValueOperand();
317    Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
318  }
319
320  void visitVAArgInst(VAArgInst &Inst) {
321    // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
322    // two things:
323    //  1. Loads a value from *((T*)*Ptr).
324    //  2. Increments (stores to) *Ptr by some target-specific amount.
325    // For now, we'll handle this like a landingpad instruction (by placing the
326    // result in its own group, and having that group alias externals).
327    auto *Val = &Inst;
328    Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
329  }
330
331  static bool isFunctionExternal(Function *Fn) {
332    return Fn->isDeclaration() || !Fn->hasLocalLinkage();
333  }
334
335  // Gets whether the sets at Index1 above, below, or equal to the sets at
336  // Index2. Returns None if they are not in the same set chain.
337  static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
338                                          StratifiedIndex Index1,
339                                          StratifiedIndex Index2) {
340    if (Index1 == Index2)
341      return Level::Same;
342
343    const auto *Current = &Sets.getLink(Index1);
344    while (Current->hasBelow()) {
345      if (Current->Below == Index2)
346        return Level::Below;
347      Current = &Sets.getLink(Current->Below);
348    }
349
350    Current = &Sets.getLink(Index1);
351    while (Current->hasAbove()) {
352      if (Current->Above == Index2)
353        return Level::Above;
354      Current = &Sets.getLink(Current->Above);
355    }
356
357    return NoneType();
358  }
359
360  bool
361  tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
362                             Value *FuncValue,
363                             const iterator_range<User::op_iterator> &Args) {
364    const unsigned ExpectedMaxArgs = 8;
365    const unsigned MaxSupportedArgs = 50;
366    assert(Fns.size() > 0);
367
368    // I put this here to give us an upper bound on time taken by IPA. Is it
369    // really (realistically) needed? Keep in mind that we do have an n^2 algo.
370    if (std::distance(Args.begin(), Args.end()) > (int) MaxSupportedArgs)
371      return false;
372
373    // Exit early if we'll fail anyway
374    for (auto *Fn : Fns) {
375      if (isFunctionExternal(Fn) || Fn->isVarArg())
376        return false;
377      auto &MaybeInfo = AA.ensureCached(Fn);
378      if (!MaybeInfo.hasValue())
379        return false;
380    }
381
382    SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
383    SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
384    for (auto *Fn : Fns) {
385      auto &Info = *AA.ensureCached(Fn);
386      auto &Sets = Info.Sets;
387      auto &RetVals = Info.ReturnedValues;
388
389      Parameters.clear();
390      for (auto &Param : Fn->args()) {
391        auto MaybeInfo = Sets.find(&Param);
392        // Did a new parameter somehow get added to the function/slip by?
393        if (!MaybeInfo.hasValue())
394          return false;
395        Parameters.push_back(*MaybeInfo);
396      }
397
398      // Adding an edge from argument -> return value for each parameter that
399      // may alias the return value
400      for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
401        auto &ParamInfo = Parameters[I];
402        auto &ArgVal = Arguments[I];
403        bool AddEdge = false;
404        StratifiedAttrs Externals;
405        for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
406          auto MaybeInfo = Sets.find(RetVals[X]);
407          if (!MaybeInfo.hasValue())
408            return false;
409
410          auto &RetInfo = *MaybeInfo;
411          auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
412          auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
413          auto MaybeRelation =
414              getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
415          if (MaybeRelation.hasValue()) {
416            AddEdge = true;
417            Externals |= RetAttrs | ParamAttrs;
418          }
419        }
420        if (AddEdge)
421          Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
422                            StratifiedAttrs().flip()));
423      }
424
425      if (Parameters.size() != Arguments.size())
426        return false;
427
428      // Adding edges between arguments for arguments that may end up aliasing
429      // each other. This is necessary for functions such as
430      // void foo(int** a, int** b) { *a = *b; }
431      // (Technically, the proper sets for this would be those below
432      // Arguments[I] and Arguments[X], but our algorithm will produce
433      // extremely similar, and equally correct, results either way)
434      for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
435        auto &MainVal = Arguments[I];
436        auto &MainInfo = Parameters[I];
437        auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
438        for (unsigned X = I + 1; X != E; ++X) {
439          auto &SubInfo = Parameters[X];
440          auto &SubVal = Arguments[X];
441          auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
442          auto MaybeRelation =
443              getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
444
445          if (!MaybeRelation.hasValue())
446            continue;
447
448          auto NewAttrs = SubAttrs | MainAttrs;
449          Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
450        }
451      }
452    }
453    return true;
454  }
455
456  template <typename InstT> void visitCallLikeInst(InstT &Inst) {
457    SmallVector<Function *, 4> Targets;
458    if (getPossibleTargets(&Inst, Targets)) {
459      if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
460        return;
461      // Cleanup from interprocedural analysis
462      Output.clear();
463    }
464
465    for (Value *V : Inst.arg_operands())
466      Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
467  }
468
469  void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
470
471  void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
472
473  // Because vectors/aggregates are immutable and unaddressable,
474  // there's nothing we can do to coax a value out of them, other
475  // than calling Extract{Element,Value}. We can effectively treat
476  // them as pointers to arbitrary memory locations we can store in
477  // and load from.
478  void visitExtractElementInst(ExtractElementInst &Inst) {
479    auto *Ptr = Inst.getVectorOperand();
480    auto *Val = &Inst;
481    Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
482  }
483
484  void visitInsertElementInst(InsertElementInst &Inst) {
485    auto *Vec = Inst.getOperand(0);
486    auto *Val = Inst.getOperand(1);
487    Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
488    Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
489  }
490
491  void visitLandingPadInst(LandingPadInst &Inst) {
492    // Exceptions come from "nowhere", from our analysis' perspective.
493    // So we place the instruction its own group, noting that said group may
494    // alias externals
495    Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
496  }
497
498  void visitInsertValueInst(InsertValueInst &Inst) {
499    auto *Agg = Inst.getOperand(0);
500    auto *Val = Inst.getOperand(1);
501    Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
502    Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
503  }
504
505  void visitExtractValueInst(ExtractValueInst &Inst) {
506    auto *Ptr = Inst.getAggregateOperand();
507    Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
508  }
509
510  void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
511    auto *From1 = Inst.getOperand(0);
512    auto *From2 = Inst.getOperand(1);
513    Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
514    Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
515  }
516};
517
518// For a given instruction, we need to know which Value* to get the
519// users of in order to build our graph. In some cases (i.e. add),
520// we simply need the Instruction*. In other cases (i.e. store),
521// finding the users of the Instruction* is useless; we need to find
522// the users of the first operand. This handles determining which
523// value to follow for us.
524//
525// Note: we *need* to keep this in sync with GetEdgesVisitor. Add
526// something to GetEdgesVisitor, add it here -- remove something from
527// GetEdgesVisitor, remove it here.
528class GetTargetValueVisitor
529    : public InstVisitor<GetTargetValueVisitor, Value *> {
530public:
531  Value *visitInstruction(Instruction &Inst) { return &Inst; }
532
533  Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
534
535  Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
536    return Inst.getPointerOperand();
537  }
538
539  Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
540    return Inst.getPointerOperand();
541  }
542
543  Value *visitInsertElementInst(InsertElementInst &Inst) {
544    return Inst.getOperand(0);
545  }
546
547  Value *visitInsertValueInst(InsertValueInst &Inst) {
548    return Inst.getAggregateOperand();
549  }
550};
551
552// Set building requires a weighted bidirectional graph.
553template <typename EdgeTypeT> class WeightedBidirectionalGraph {
554public:
555  typedef std::size_t Node;
556
557private:
558  const static Node StartNode = Node(0);
559
560  struct Edge {
561    EdgeTypeT Weight;
562    Node Other;
563
564    Edge(const EdgeTypeT &W, const Node &N)
565      : Weight(W), Other(N) {}
566
567    bool operator==(const Edge &E) const {
568      return Weight == E.Weight && Other == E.Other;
569    }
570
571    bool operator!=(const Edge &E) const { return !operator==(E); }
572  };
573
574  struct NodeImpl {
575    std::vector<Edge> Edges;
576  };
577
578  std::vector<NodeImpl> NodeImpls;
579
580  bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
581
582  const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
583  NodeImpl &getNode(Node N) { return NodeImpls[N]; }
584
585public:
586  // ----- Various Edge iterators for the graph ----- //
587
588  // \brief Iterator for edges. Because this graph is bidirected, we don't
589  // allow modificaiton of the edges using this iterator. Additionally, the
590  // iterator becomes invalid if you add edges to or from the node you're
591  // getting the edges of.
592  struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
593                                             std::tuple<EdgeTypeT, Node *>> {
594    EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
595        : Current(Iter) {}
596
597    EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
598
599    EdgeIterator &operator++() {
600      ++Current;
601      return *this;
602    }
603
604    EdgeIterator operator++(int) {
605      EdgeIterator Copy(Current);
606      operator++();
607      return Copy;
608    }
609
610    std::tuple<EdgeTypeT, Node> &operator*() {
611      Store = std::make_tuple(Current->Weight, Current->Other);
612      return Store;
613    }
614
615    bool operator==(const EdgeIterator &Other) const {
616      return Current == Other.Current;
617    }
618
619    bool operator!=(const EdgeIterator &Other) const {
620      return !operator==(Other);
621    }
622
623  private:
624    typename std::vector<Edge>::const_iterator Current;
625    std::tuple<EdgeTypeT, Node> Store;
626  };
627
628  // Wrapper for EdgeIterator with begin()/end() calls.
629  struct EdgeIterable {
630    EdgeIterable(const std::vector<Edge> &Edges)
631        : BeginIter(Edges.begin()), EndIter(Edges.end()) {}
632
633    EdgeIterator begin() { return EdgeIterator(BeginIter); }
634
635    EdgeIterator end() { return EdgeIterator(EndIter); }
636
637  private:
638    typename std::vector<Edge>::const_iterator BeginIter;
639    typename std::vector<Edge>::const_iterator EndIter;
640  };
641
642  // ----- Actual graph-related things ----- //
643
644  WeightedBidirectionalGraph() {}
645
646  WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
647      : NodeImpls(std::move(Other.NodeImpls)) {}
648
649  WeightedBidirectionalGraph<EdgeTypeT> &
650  operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
651    NodeImpls = std::move(Other.NodeImpls);
652    return *this;
653  }
654
655  Node addNode() {
656    auto Index = NodeImpls.size();
657    auto NewNode = Node(Index);
658    NodeImpls.push_back(NodeImpl());
659    return NewNode;
660  }
661
662  void addEdge(Node From, Node To, const EdgeTypeT &Weight,
663               const EdgeTypeT &ReverseWeight) {
664    assert(inbounds(From));
665    assert(inbounds(To));
666    auto &FromNode = getNode(From);
667    auto &ToNode = getNode(To);
668    FromNode.Edges.push_back(Edge(Weight, To));
669    ToNode.Edges.push_back(Edge(ReverseWeight, From));
670  }
671
672  EdgeIterable edgesFor(const Node &N) const {
673    const auto &Node = getNode(N);
674    return EdgeIterable(Node.Edges);
675  }
676
677  bool empty() const { return NodeImpls.empty(); }
678  std::size_t size() const { return NodeImpls.size(); }
679
680  // \brief Gets an arbitrary node in the graph as a starting point for
681  // traversal.
682  Node getEntryNode() {
683    assert(inbounds(StartNode));
684    return StartNode;
685  }
686};
687
688typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
689typedef DenseMap<Value *, GraphT::Node> NodeMapT;
690}
691
692// -- Setting up/registering CFLAA pass -- //
693char CFLAliasAnalysis::ID = 0;
694
695INITIALIZE_AG_PASS(CFLAliasAnalysis, AliasAnalysis, "cfl-aa",
696                   "CFL-Based AA implementation", false, true, false)
697
698ImmutablePass *llvm::createCFLAliasAnalysisPass() {
699  return new CFLAliasAnalysis();
700}
701
702//===----------------------------------------------------------------------===//
703// Function declarations that require types defined in the namespace above
704//===----------------------------------------------------------------------===//
705
706// Given an argument number, returns the appropriate Attr index to set.
707static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);
708
709// Given a Value, potentially return which AttrIndex it maps to.
710static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
711
712// Gets the inverse of a given EdgeType.
713static EdgeType flipWeight(EdgeType);
714
715// Gets edges of the given Instruction*, writing them to the SmallVector*.
716static void argsToEdges(CFLAliasAnalysis &, Instruction *,
717                        SmallVectorImpl<Edge> &);
718
719// Gets the "Level" that one should travel in StratifiedSets
720// given an EdgeType.
721static Level directionOfEdgeType(EdgeType);
722
723// Builds the graph needed for constructing the StratifiedSets for the
724// given function
725static void buildGraphFrom(CFLAliasAnalysis &, Function *,
726                           SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
727
728// Builds the graph + StratifiedSets for a function.
729static FunctionInfo buildSetsFrom(CFLAliasAnalysis &, Function *);
730
731static Optional<Function *> parentFunctionOfValue(Value *Val) {
732  if (auto *Inst = dyn_cast<Instruction>(Val)) {
733    auto *Bb = Inst->getParent();
734    return Bb->getParent();
735  }
736
737  if (auto *Arg = dyn_cast<Argument>(Val))
738    return Arg->getParent();
739  return NoneType();
740}
741
742template <typename Inst>
743static bool getPossibleTargets(Inst *Call,
744                               SmallVectorImpl<Function *> &Output) {
745  if (auto *Fn = Call->getCalledFunction()) {
746    Output.push_back(Fn);
747    return true;
748  }
749
750  // TODO: If the call is indirect, we might be able to enumerate all potential
751  // targets of the call and return them, rather than just failing.
752  return false;
753}
754
755static Optional<Value *> getTargetValue(Instruction *Inst) {
756  GetTargetValueVisitor V;
757  return V.visit(Inst);
758}
759
760static bool hasUsefulEdges(Instruction *Inst) {
761  bool IsNonInvokeTerminator =
762      isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
763  return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
764}
765
766static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
767  if (isa<GlobalValue>(Val))
768    return AttrGlobalIndex;
769
770  if (auto *Arg = dyn_cast<Argument>(Val))
771    if (!Arg->hasNoAliasAttr())
772      return argNumberToAttrIndex(Arg->getArgNo());
773  return NoneType();
774}
775
776static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
777  if (ArgNum > AttrMaxNumArgs)
778    return AttrAllIndex;
779  return ArgNum + AttrFirstArgIndex;
780}
781
782static EdgeType flipWeight(EdgeType Initial) {
783  switch (Initial) {
784  case EdgeType::Assign:
785    return EdgeType::Assign;
786  case EdgeType::Dereference:
787    return EdgeType::Reference;
788  case EdgeType::Reference:
789    return EdgeType::Dereference;
790  }
791  llvm_unreachable("Incomplete coverage of EdgeType enum");
792}
793
794static void argsToEdges(CFLAliasAnalysis &Analysis, Instruction *Inst,
795                        SmallVectorImpl<Edge> &Output) {
796  GetEdgesVisitor v(Analysis, Output);
797  v.visit(Inst);
798}
799
800static Level directionOfEdgeType(EdgeType Weight) {
801  switch (Weight) {
802  case EdgeType::Reference:
803    return Level::Above;
804  case EdgeType::Dereference:
805    return Level::Below;
806  case EdgeType::Assign:
807    return Level::Same;
808  }
809  llvm_unreachable("Incomplete switch coverage");
810}
811
812// Aside: We may remove graph construction entirely, because it doesn't really
813// buy us much that we don't already have. I'd like to add interprocedural
814// analysis prior to this however, in case that somehow requires the graph
815// produced by this for efficient execution
816static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn,
817                           SmallVectorImpl<Value *> &ReturnedValues,
818                           NodeMapT &Map, GraphT &Graph) {
819  const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
820    auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
821    auto &Iter = Pair.first;
822    if (Pair.second) {
823      auto NewNode = Graph.addNode();
824      Iter->second = NewNode;
825    }
826    return Iter->second;
827  };
828
829  SmallVector<Edge, 8> Edges;
830  for (auto &Bb : Fn->getBasicBlockList()) {
831    for (auto &Inst : Bb.getInstList()) {
832      // We don't want the edges of most "return" instructions, but we *do* want
833      // to know what can be returned.
834      if (auto *Ret = dyn_cast<ReturnInst>(&Inst))
835        ReturnedValues.push_back(Ret);
836
837      if (!hasUsefulEdges(&Inst))
838        continue;
839
840      Edges.clear();
841      argsToEdges(Analysis, &Inst, Edges);
842
843      // In the case of an unused alloca (or similar), edges may be empty. Note
844      // that it exists so we can potentially answer NoAlias.
845      if (Edges.empty()) {
846        auto MaybeVal = getTargetValue(&Inst);
847        assert(MaybeVal.hasValue());
848        auto *Target = *MaybeVal;
849        findOrInsertNode(Target);
850        continue;
851      }
852
853      for (const Edge &E : Edges) {
854        auto To = findOrInsertNode(E.To);
855        auto From = findOrInsertNode(E.From);
856        auto FlippedWeight = flipWeight(E.Weight);
857        auto Attrs = E.AdditionalAttrs;
858        Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
859                                std::make_pair(FlippedWeight, Attrs));
860      }
861    }
862  }
863}
864
865static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
866  NodeMapT Map;
867  GraphT Graph;
868  SmallVector<Value *, 4> ReturnedValues;
869
870  buildGraphFrom(Analysis, Fn, ReturnedValues, Map, Graph);
871
872  DenseMap<GraphT::Node, Value *> NodeValueMap;
873  NodeValueMap.resize(Map.size());
874  for (const auto &Pair : Map)
875    NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
876
877  const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
878    auto ValIter = NodeValueMap.find(Node);
879    assert(ValIter != NodeValueMap.end());
880    return ValIter->second;
881  };
882
883  StratifiedSetsBuilder<Value *> Builder;
884
885  SmallVector<GraphT::Node, 16> Worklist;
886  for (auto &Pair : Map) {
887    Worklist.clear();
888
889    auto *Value = Pair.first;
890    Builder.add(Value);
891    auto InitialNode = Pair.second;
892    Worklist.push_back(InitialNode);
893    while (!Worklist.empty()) {
894      auto Node = Worklist.pop_back_val();
895      auto *CurValue = findValueOrDie(Node);
896      if (isa<Constant>(CurValue) && !isa<GlobalValue>(CurValue))
897        continue;
898
899      for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
900        auto Weight = std::get<0>(EdgeTuple);
901        auto Label = Weight.first;
902        auto &OtherNode = std::get<1>(EdgeTuple);
903        auto *OtherValue = findValueOrDie(OtherNode);
904
905        if (isa<Constant>(OtherValue) && !isa<GlobalValue>(OtherValue))
906          continue;
907
908        bool Added;
909        switch (directionOfEdgeType(Label)) {
910        case Level::Above:
911          Added = Builder.addAbove(CurValue, OtherValue);
912          break;
913        case Level::Below:
914          Added = Builder.addBelow(CurValue, OtherValue);
915          break;
916        case Level::Same:
917          Added = Builder.addWith(CurValue, OtherValue);
918          break;
919        }
920
921        if (Added) {
922          auto Aliasing = Weight.second;
923          if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
924            Aliasing.set(*MaybeCurIndex);
925          if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
926            Aliasing.set(*MaybeOtherIndex);
927          Builder.noteAttributes(CurValue, Aliasing);
928          Builder.noteAttributes(OtherValue, Aliasing);
929          Worklist.push_back(OtherNode);
930        }
931      }
932    }
933  }
934
935  // There are times when we end up with parameters not in our graph (i.e. if
936  // it's only used as the condition of a branch). Other bits of code depend on
937  // things that were present during construction being present in the graph.
938  // So, we add all present arguments here.
939  for (auto &Arg : Fn->args()) {
940    Builder.add(&Arg);
941  }
942
943  return FunctionInfo(Builder.build(), std::move(ReturnedValues));
944}
945
946void CFLAliasAnalysis::scan(Function *Fn) {
947  auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
948  (void)InsertPair;
949  assert(InsertPair.second &&
950         "Trying to scan a function that has already been cached");
951
952  FunctionInfo Info(buildSetsFrom(*this, Fn));
953  Cache[Fn] = std::move(Info);
954  Handles.push_front(FunctionHandle(Fn, this));
955}
956
957AliasAnalysis::AliasResult
958CFLAliasAnalysis::query(const AliasAnalysis::Location &LocA,
959                        const AliasAnalysis::Location &LocB) {
960  auto *ValA = const_cast<Value *>(LocA.Ptr);
961  auto *ValB = const_cast<Value *>(LocB.Ptr);
962
963  Function *Fn = nullptr;
964  auto MaybeFnA = parentFunctionOfValue(ValA);
965  auto MaybeFnB = parentFunctionOfValue(ValB);
966  if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
967    llvm_unreachable("Don't know how to extract the parent function "
968                     "from values A or B");
969  }
970
971  if (MaybeFnA.hasValue()) {
972    Fn = *MaybeFnA;
973    assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
974           "Interprocedural queries not supported");
975  } else {
976    Fn = *MaybeFnB;
977  }
978
979  assert(Fn != nullptr);
980  auto &MaybeInfo = ensureCached(Fn);
981  assert(MaybeInfo.hasValue());
982
983  auto &Sets = MaybeInfo->Sets;
984  auto MaybeA = Sets.find(ValA);
985  if (!MaybeA.hasValue())
986    return AliasAnalysis::MayAlias;
987
988  auto MaybeB = Sets.find(ValB);
989  if (!MaybeB.hasValue())
990    return AliasAnalysis::MayAlias;
991
992  auto SetA = *MaybeA;
993  auto SetB = *MaybeB;
994
995  if (SetA.Index == SetB.Index)
996    return AliasAnalysis::PartialAlias;
997
998  auto AttrsA = Sets.getLink(SetA.Index).Attrs;
999  auto AttrsB = Sets.getLink(SetB.Index).Attrs;
1000  // Stratified set attributes are used as markets to signify whether a member
1001  // of a StratifiedSet (or a member of a set above the current set) has
1002  // interacted with either arguments or globals. "Interacted with" meaning
1003  // its value may be different depending on the value of an argument or
1004  // global. The thought behind this is that, because arguments and globals
1005  // may alias each other, if AttrsA and AttrsB have touched args/globals,
1006  // we must conservatively say that they alias. However, if at least one of
1007  // the sets has no values that could legally be altered by changing the value
1008  // of an argument or global, then we don't have to be as conservative.
1009  if (AttrsA.any() && AttrsB.any())
1010    return AliasAnalysis::MayAlias;
1011
1012  return AliasAnalysis::NoAlias;
1013}
1014