1181155Sdas//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2181155Sdas//
3181155Sdas//                     The LLVM Compiler Infrastructure
4181155Sdas//
5181155Sdas// This file is distributed under the University of Illinois Open Source
6181155Sdas// License. See LICENSE.TXT for details.
7181155Sdas//
8181155Sdas//===----------------------------------------------------------------------===//
9181155Sdas//
10181155Sdas// This file describes the target machine instruction set to the code generator.
11181155Sdas//
12181155Sdas//===----------------------------------------------------------------------===//
13181155Sdas
14181155Sdas#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15181155Sdas#define LLVM_TARGET_TARGETINSTRINFO_H
16181155Sdas
17181155Sdas#include "llvm/ADT/DenseMap.h"
18181155Sdas#include "llvm/ADT/SmallSet.h"
19181155Sdas#include "llvm/CodeGen/MachineCombinerPattern.h"
20181155Sdas#include "llvm/CodeGen/MachineFunction.h"
21181155Sdas#include "llvm/MC/MCInstrInfo.h"
22181155Sdas#include "llvm/Support/BranchProbability.h"
23181155Sdas#include "llvm/Target/TargetRegisterInfo.h"
24181155Sdas
25181155Sdasnamespace llvm {
26181155Sdas
27181155Sdasclass InstrItineraryData;
28181155Sdasclass LiveVariables;
29181155Sdasclass MCAsmInfo;
30181155Sdasclass MachineMemOperand;
31181155Sdasclass MachineRegisterInfo;
32181155Sdasclass MDNode;
33181155Sdasclass MCInst;
34181155Sdasstruct MCSchedModel;
35181155Sdasclass MCSymbolRefExpr;
36181155Sdasclass SDNode;
37181155Sdasclass ScheduleHazardRecognizer;
38181155Sdasclass SelectionDAG;
39181155Sdasclass ScheduleDAG;
40181155Sdasclass TargetRegisterClass;
41181155Sdasclass TargetRegisterInfo;
42181155Sdasclass TargetSubtargetInfo;
43181155Sdasclass TargetSchedModel;
44181155Sdasclass DFAPacketizer;
45181155Sdas
46181155Sdastemplate<class T> class SmallVectorImpl;
47181155Sdas
48181155Sdas
49181155Sdas//---------------------------------------------------------------------------
50181155Sdas///
51181155Sdas/// TargetInstrInfo - Interface to description of machine instruction set
52181155Sdas///
53181155Sdasclass TargetInstrInfo : public MCInstrInfo {
54181155Sdas  TargetInstrInfo(const TargetInstrInfo &) = delete;
55181155Sdas  void operator=(const TargetInstrInfo &) = delete;
56181155Sdaspublic:
57181155Sdas  TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
58181155Sdas                  unsigned CatchRetOpcode = ~0u)
59181155Sdas      : CallFrameSetupOpcode(CFSetupOpcode),
60181155Sdas        CallFrameDestroyOpcode(CFDestroyOpcode),
61181155Sdas        CatchRetOpcode(CatchRetOpcode) {}
62181155Sdas
63181155Sdas  virtual ~TargetInstrInfo();
64181155Sdas
65181155Sdas  static bool isGenericOpcode(unsigned Opc) {
66181155Sdas    return Opc <= TargetOpcode::GENERIC_OP_END;
67181155Sdas  }
68181155Sdas
69181155Sdas  /// Given a machine instruction descriptor, returns the register
70181155Sdas  /// class constraint for OpNum, or NULL.
71181155Sdas  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
72181155Sdas                                         unsigned OpNum,
73181155Sdas                                         const TargetRegisterInfo *TRI,
74181155Sdas                                         const MachineFunction &MF) const;
75181155Sdas
76181155Sdas  /// Return true if the instruction is trivially rematerializable, meaning it
77181155Sdas  /// has no side effects and requires no operands that aren't always available.
78181155Sdas  /// This means the only allowed uses are constants and unallocatable physical
79181155Sdas  /// registers so that the instructions result is independent of the place
80181155Sdas  /// in the function.
81181155Sdas  bool isTriviallyReMaterializable(const MachineInstr *MI,
82181155Sdas                                   AliasAnalysis *AA = nullptr) const {
83181155Sdas    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
84181155Sdas           (MI->getDesc().isRematerializable() &&
85181155Sdas            (isReallyTriviallyReMaterializable(MI, AA) ||
86181155Sdas             isReallyTriviallyReMaterializableGeneric(MI, AA)));
87181155Sdas  }
88181155Sdas
89181155Sdasprotected:
90181155Sdas  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
91181155Sdas  /// set, this hook lets the target specify whether the instruction is actually
92181155Sdas  /// trivially rematerializable, taking into consideration its operands. This
93181155Sdas  /// predicate must return false if the instruction has any side effects other
94181155Sdas  /// than producing a value, or if it requres any address registers that are
95181155Sdas  /// not always available.
96181155Sdas  /// Requirements must be check as stated in isTriviallyReMaterializable() .
97181155Sdas  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
98181155Sdas                                                 AliasAnalysis *AA) const {
99181155Sdas    return false;
100181155Sdas  }
101181155Sdas
102181155Sdas  /// This method commutes the operands of the given machine instruction MI.
103  /// The operands to be commuted are specified by their indices OpIdx1 and
104  /// OpIdx2.
105  ///
106  /// If a target has any instructions that are commutable but require
107  /// converting to different instructions or making non-trivial changes
108  /// to commute them, this method can be overloaded to do that.
109  /// The default implementation simply swaps the commutable operands.
110  ///
111  /// If NewMI is false, MI is modified in place and returned; otherwise, a
112  /// new machine instruction is created and returned.
113  ///
114  /// Do not call this method for a non-commutable instruction.
115  /// Even though the instruction is commutable, the method may still
116  /// fail to commute the operands, null pointer is returned in such cases.
117  virtual MachineInstr *commuteInstructionImpl(MachineInstr *MI,
118                                               bool NewMI,
119                                               unsigned OpIdx1,
120                                               unsigned OpIdx2) const;
121
122  /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
123  /// operand indices to (ResultIdx1, ResultIdx2).
124  /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
125  /// predefined to some indices or be undefined (designated by the special
126  /// value 'CommuteAnyOperandIndex').
127  /// The predefined result indices cannot be re-defined.
128  /// The function returns true iff after the result pair redefinition
129  /// the fixed result pair is equal to or equivalent to the source pair of
130  /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
131  /// the pairs (x,y) and (y,x) are equivalent.
132  static bool fixCommutedOpIndices(unsigned &ResultIdx1,
133                                   unsigned &ResultIdx2,
134                                   unsigned CommutableOpIdx1,
135                                   unsigned CommutableOpIdx2);
136
137private:
138  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
139  /// set and the target hook isReallyTriviallyReMaterializable returns false,
140  /// this function does target-independent tests to determine if the
141  /// instruction is really trivially rematerializable.
142  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
143                                                AliasAnalysis *AA) const;
144
145public:
146  /// These methods return the opcode of the frame setup/destroy instructions
147  /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
148  /// order to abstract away the difference between operating with a frame
149  /// pointer and operating without, through the use of these two instructions.
150  ///
151  unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
152  unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
153
154  unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
155
156  /// Returns the actual stack pointer adjustment made by an instruction
157  /// as part of a call sequence. By default, only call frame setup/destroy
158  /// instructions adjust the stack, but targets may want to override this
159  /// to enable more fine-grained adjustment, or adjust by a different value.
160  virtual int getSPAdjust(const MachineInstr *MI) const;
161
162  /// Return true if the instruction is a "coalescable" extension instruction.
163  /// That is, it's like a copy where it's legal for the source to overlap the
164  /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
165  /// expected the pre-extension value is available as a subreg of the result
166  /// register. This also returns the sub-register index in SubIdx.
167  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
168                                     unsigned &SrcReg, unsigned &DstReg,
169                                     unsigned &SubIdx) const {
170    return false;
171  }
172
173  /// If the specified machine instruction is a direct
174  /// load from a stack slot, return the virtual or physical register number of
175  /// the destination along with the FrameIndex of the loaded stack slot.  If
176  /// not, return 0.  This predicate must return 0 if the instruction has
177  /// any side effects other than loading from the stack slot.
178  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
179                                       int &FrameIndex) const {
180    return 0;
181  }
182
183  /// Check for post-frame ptr elimination stack locations as well.
184  /// This uses a heuristic so it isn't reliable for correctness.
185  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
186                                             int &FrameIndex) const {
187    return 0;
188  }
189
190  /// If the specified machine instruction has a load from a stack slot,
191  /// return true along with the FrameIndex of the loaded stack slot and the
192  /// machine mem operand containing the reference.
193  /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
194  /// any instructions that loads from the stack.  This is just a hint, as some
195  /// cases may be missed.
196  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
197                                    const MachineMemOperand *&MMO,
198                                    int &FrameIndex) const;
199
200  /// If the specified machine instruction is a direct
201  /// store to a stack slot, return the virtual or physical register number of
202  /// the source reg along with the FrameIndex of the loaded stack slot.  If
203  /// not, return 0.  This predicate must return 0 if the instruction has
204  /// any side effects other than storing to the stack slot.
205  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
206                                      int &FrameIndex) const {
207    return 0;
208  }
209
210  /// Check for post-frame ptr elimination stack locations as well.
211  /// This uses a heuristic, so it isn't reliable for correctness.
212  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
213                                            int &FrameIndex) const {
214    return 0;
215  }
216
217  /// If the specified machine instruction has a store to a stack slot,
218  /// return true along with the FrameIndex of the loaded stack slot and the
219  /// machine mem operand containing the reference.
220  /// If not, return false.  Unlike isStoreToStackSlot,
221  /// this returns true for any instructions that stores to the
222  /// stack.  This is just a hint, as some cases may be missed.
223  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
224                                   const MachineMemOperand *&MMO,
225                                   int &FrameIndex) const;
226
227  /// Return true if the specified machine instruction
228  /// is a copy of one stack slot to another and has no other effect.
229  /// Provide the identity of the two frame indices.
230  virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
231                               int &SrcFrameIndex) const {
232    return false;
233  }
234
235  /// Compute the size in bytes and offset within a stack slot of a spilled
236  /// register or subregister.
237  ///
238  /// \param [out] Size in bytes of the spilled value.
239  /// \param [out] Offset in bytes within the stack slot.
240  /// \returns true if both Size and Offset are successfully computed.
241  ///
242  /// Not all subregisters have computable spill slots. For example,
243  /// subregisters registers may not be byte-sized, and a pair of discontiguous
244  /// subregisters has no single offset.
245  ///
246  /// Targets with nontrivial bigendian implementations may need to override
247  /// this, particularly to support spilled vector registers.
248  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
249                                 unsigned &Size, unsigned &Offset,
250                                 const MachineFunction &MF) const;
251
252  /// Return true if the instruction is as cheap as a move instruction.
253  ///
254  /// Targets for different archs need to override this, and different
255  /// micro-architectures can also be finely tuned inside.
256  virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
257    return MI->isAsCheapAsAMove();
258  }
259
260  /// Re-issue the specified 'original' instruction at the
261  /// specific location targeting a new destination register.
262  /// The register in Orig->getOperand(0).getReg() will be substituted by
263  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
264  /// SubIdx.
265  virtual void reMaterialize(MachineBasicBlock &MBB,
266                             MachineBasicBlock::iterator MI,
267                             unsigned DestReg, unsigned SubIdx,
268                             const MachineInstr *Orig,
269                             const TargetRegisterInfo &TRI) const;
270
271  /// Create a duplicate of the Orig instruction in MF. This is like
272  /// MachineFunction::CloneMachineInstr(), but the target may update operands
273  /// that are required to be unique.
274  ///
275  /// The instruction must be duplicable as indicated by isNotDuplicable().
276  virtual MachineInstr *duplicate(MachineInstr *Orig,
277                                  MachineFunction &MF) const;
278
279  /// This method must be implemented by targets that
280  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
281  /// may be able to convert a two-address instruction into one or more true
282  /// three-address instructions on demand.  This allows the X86 target (for
283  /// example) to convert ADD and SHL instructions into LEA instructions if they
284  /// would require register copies due to two-addressness.
285  ///
286  /// This method returns a null pointer if the transformation cannot be
287  /// performed, otherwise it returns the last new instruction.
288  ///
289  virtual MachineInstr *
290  convertToThreeAddress(MachineFunction::iterator &MFI,
291                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
292    return nullptr;
293  }
294
295  // This constant can be used as an input value of operand index passed to
296  // the method findCommutedOpIndices() to tell the method that the
297  // corresponding operand index is not pre-defined and that the method
298  // can pick any commutable operand.
299  static const unsigned CommuteAnyOperandIndex = ~0U;
300
301  /// This method commutes the operands of the given machine instruction MI.
302  ///
303  /// The operands to be commuted are specified by their indices OpIdx1 and
304  /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
305  /// 'CommuteAnyOperandIndex', which means that the method is free to choose
306  /// any arbitrarily chosen commutable operand. If both arguments are set to
307  /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
308  /// operands; then commutes them if such operands could be found.
309  ///
310  /// If NewMI is false, MI is modified in place and returned; otherwise, a
311  /// new machine instruction is created and returned.
312  ///
313  /// Do not call this method for a non-commutable instruction or
314  /// for non-commuable operands.
315  /// Even though the instruction is commutable, the method may still
316  /// fail to commute the operands, null pointer is returned in such cases.
317  MachineInstr *
318  commuteInstruction(MachineInstr *MI,
319                     bool NewMI = false,
320                     unsigned OpIdx1 = CommuteAnyOperandIndex,
321                     unsigned OpIdx2 = CommuteAnyOperandIndex) const;
322
323  /// Returns true iff the routine could find two commutable operands in the
324  /// given machine instruction.
325  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
326  /// If any of the INPUT values is set to the special value
327  /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
328  /// operand, then returns its index in the corresponding argument.
329  /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
330  /// looks for 2 commutable operands.
331  /// If INPUT values refer to some operands of MI, then the method simply
332  /// returns true if the corresponding operands are commutable and returns
333  /// false otherwise.
334  ///
335  /// For example, calling this method this way:
336  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
337  ///     findCommutedOpIndices(MI, Op1, Op2);
338  /// can be interpreted as a query asking to find an operand that would be
339  /// commutable with the operand#1.
340  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
341                                     unsigned &SrcOpIdx2) const;
342
343  /// A pair composed of a register and a sub-register index.
344  /// Used to give some type checking when modeling Reg:SubReg.
345  struct RegSubRegPair {
346    unsigned Reg;
347    unsigned SubReg;
348    RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
349        : Reg(Reg), SubReg(SubReg) {}
350  };
351  /// A pair composed of a pair of a register and a sub-register index,
352  /// and another sub-register index.
353  /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
354  struct RegSubRegPairAndIdx : RegSubRegPair {
355    unsigned SubIdx;
356    RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
357                        unsigned SubIdx = 0)
358        : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
359  };
360
361  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
362  /// and \p DefIdx.
363  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
364  /// the list is modeled as <Reg:SubReg, SubIdx>.
365  /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
366  /// two elements:
367  /// - vreg1:sub1, sub0
368  /// - vreg2<:0>, sub1
369  ///
370  /// \returns true if it is possible to build such an input sequence
371  /// with the pair \p MI, \p DefIdx. False otherwise.
372  ///
373  /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
374  ///
375  /// \note The generic implementation does not provide any support for
376  /// MI.isRegSequenceLike(). In other words, one has to override
377  /// getRegSequenceLikeInputs for target specific instructions.
378  bool
379  getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
380                       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
381
382  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
383  /// and \p DefIdx.
384  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
385  /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
386  /// - vreg1:sub1, sub0
387  ///
388  /// \returns true if it is possible to build such an input sequence
389  /// with the pair \p MI, \p DefIdx. False otherwise.
390  ///
391  /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
392  ///
393  /// \note The generic implementation does not provide any support for
394  /// MI.isExtractSubregLike(). In other words, one has to override
395  /// getExtractSubregLikeInputs for target specific instructions.
396  bool
397  getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
398                         RegSubRegPairAndIdx &InputReg) const;
399
400  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
401  /// and \p DefIdx.
402  /// \p [out] BaseReg and \p [out] InsertedReg contain
403  /// the equivalent inputs of INSERT_SUBREG.
404  /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
405  /// - BaseReg: vreg0:sub0
406  /// - InsertedReg: vreg1:sub1, sub3
407  ///
408  /// \returns true if it is possible to build such an input sequence
409  /// with the pair \p MI, \p DefIdx. False otherwise.
410  ///
411  /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
412  ///
413  /// \note The generic implementation does not provide any support for
414  /// MI.isInsertSubregLike(). In other words, one has to override
415  /// getInsertSubregLikeInputs for target specific instructions.
416  bool
417  getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
418                        RegSubRegPair &BaseReg,
419                        RegSubRegPairAndIdx &InsertedReg) const;
420
421
422  /// Return true if two machine instructions would produce identical values.
423  /// By default, this is only true when the two instructions
424  /// are deemed identical except for defs. If this function is called when the
425  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
426  /// aggressive checks.
427  virtual bool produceSameValue(const MachineInstr *MI0,
428                                const MachineInstr *MI1,
429                                const MachineRegisterInfo *MRI = nullptr) const;
430
431  /// Analyze the branching code at the end of MBB, returning
432  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
433  /// implemented for a target).  Upon success, this returns false and returns
434  /// with the following information in various cases:
435  ///
436  /// 1. If this block ends with no branches (it just falls through to its succ)
437  ///    just return false, leaving TBB/FBB null.
438  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
439  ///    the destination block.
440  /// 3. If this block ends with a conditional branch and it falls through to a
441  ///    successor block, it sets TBB to be the branch destination block and a
442  ///    list of operands that evaluate the condition. These operands can be
443  ///    passed to other TargetInstrInfo methods to create new branches.
444  /// 4. If this block ends with a conditional branch followed by an
445  ///    unconditional branch, it returns the 'true' destination in TBB, the
446  ///    'false' destination in FBB, and a list of operands that evaluate the
447  ///    condition.  These operands can be passed to other TargetInstrInfo
448  ///    methods to create new branches.
449  ///
450  /// Note that RemoveBranch and InsertBranch must be implemented to support
451  /// cases where this method returns success.
452  ///
453  /// If AllowModify is true, then this routine is allowed to modify the basic
454  /// block (e.g. delete instructions after the unconditional branch).
455  ///
456  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
457                             MachineBasicBlock *&FBB,
458                             SmallVectorImpl<MachineOperand> &Cond,
459                             bool AllowModify = false) const {
460    return true;
461  }
462
463  /// Represents a predicate at the MachineFunction level.  The control flow a
464  /// MachineBranchPredicate represents is:
465  ///
466  ///  Reg <def>= LHS `Predicate` RHS         == ConditionDef
467  ///  if Reg then goto TrueDest else goto FalseDest
468  ///
469  struct MachineBranchPredicate {
470    enum ComparePredicate {
471      PRED_EQ,     // True if two values are equal
472      PRED_NE,     // True if two values are not equal
473      PRED_INVALID // Sentinel value
474    };
475
476    ComparePredicate Predicate;
477    MachineOperand LHS;
478    MachineOperand RHS;
479    MachineBasicBlock *TrueDest;
480    MachineBasicBlock *FalseDest;
481    MachineInstr *ConditionDef;
482
483    /// SingleUseCondition is true if ConditionDef is dead except for the
484    /// branch(es) at the end of the basic block.
485    ///
486    bool SingleUseCondition;
487
488    explicit MachineBranchPredicate()
489        : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
490          RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
491          FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
492    }
493  };
494
495  /// Analyze the branching code at the end of MBB and parse it into the
496  /// MachineBranchPredicate structure if possible.  Returns false on success
497  /// and true on failure.
498  ///
499  /// If AllowModify is true, then this routine is allowed to modify the basic
500  /// block (e.g. delete instructions after the unconditional branch).
501  ///
502  virtual bool AnalyzeBranchPredicate(MachineBasicBlock &MBB,
503                                      MachineBranchPredicate &MBP,
504                                      bool AllowModify = false) const {
505    return true;
506  }
507
508  /// Remove the branching code at the end of the specific MBB.
509  /// This is only invoked in cases where AnalyzeBranch returns success. It
510  /// returns the number of instructions that were removed.
511  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
512    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
513  }
514
515  /// Insert branch code into the end of the specified MachineBasicBlock.
516  /// The operands to this method are the same as those
517  /// returned by AnalyzeBranch.  This is only invoked in cases where
518  /// AnalyzeBranch returns success. It returns the number of instructions
519  /// inserted.
520  ///
521  /// It is also invoked by tail merging to add unconditional branches in
522  /// cases where AnalyzeBranch doesn't apply because there was no original
523  /// branch to analyze.  At least this much must be implemented, else tail
524  /// merging needs to be disabled.
525  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
526                                MachineBasicBlock *FBB,
527                                ArrayRef<MachineOperand> Cond,
528                                DebugLoc DL) const {
529    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
530  }
531
532  /// Delete the instruction OldInst and everything after it, replacing it with
533  /// an unconditional branch to NewDest. This is used by the tail merging pass.
534  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
535                                       MachineBasicBlock *NewDest) const;
536
537  /// Get an instruction that performs an unconditional branch to the given
538  /// symbol.
539  virtual void
540  getUnconditionalBranch(MCInst &MI,
541                         const MCSymbolRefExpr *BranchTarget) const {
542    llvm_unreachable("Target didn't implement "
543                     "TargetInstrInfo::getUnconditionalBranch!");
544  }
545
546  /// Get a machine trap instruction.
547  virtual void getTrap(MCInst &MI) const {
548    llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
549  }
550
551  /// Get a number of bytes that suffices to hold
552  /// either the instruction returned by getUnconditionalBranch or the
553  /// instruction returned by getTrap. This only makes sense because
554  /// getUnconditionalBranch returns a single, specific instruction. This
555  /// information is needed by the jumptable construction code, since it must
556  /// decide how many bytes to use for a jumptable entry so it can generate the
557  /// right mask.
558  ///
559  /// Note that if the jumptable instruction requires alignment, then that
560  /// alignment should be factored into this required bound so that the
561  /// resulting bound gives the right alignment for the instruction.
562  virtual unsigned getJumpInstrTableEntryBound() const {
563    // This method gets called by LLVMTargetMachine always, so it can't fail
564    // just because there happens to be no implementation for this target.
565    // Any code that tries to use a jumptable annotation without defining
566    // getUnconditionalBranch on the appropriate Target will fail anyway, and
567    // the value returned here won't matter in that case.
568    return 0;
569  }
570
571  /// Return true if it's legal to split the given basic
572  /// block at the specified instruction (i.e. instruction would be the start
573  /// of a new basic block).
574  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
575                                   MachineBasicBlock::iterator MBBI) const {
576    return true;
577  }
578
579  /// Return true if it's profitable to predicate
580  /// instructions with accumulated instruction latency of "NumCycles"
581  /// of the specified basic block, where the probability of the instructions
582  /// being executed is given by Probability, and Confidence is a measure
583  /// of our confidence that it will be properly predicted.
584  virtual
585  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
586                           unsigned ExtraPredCycles,
587                           BranchProbability Probability) const {
588    return false;
589  }
590
591  /// Second variant of isProfitableToIfCvt. This one
592  /// checks for the case where two basic blocks from true and false path
593  /// of a if-then-else (diamond) are predicated on mutally exclusive
594  /// predicates, where the probability of the true path being taken is given
595  /// by Probability, and Confidence is a measure of our confidence that it
596  /// will be properly predicted.
597  virtual bool
598  isProfitableToIfCvt(MachineBasicBlock &TMBB,
599                      unsigned NumTCycles, unsigned ExtraTCycles,
600                      MachineBasicBlock &FMBB,
601                      unsigned NumFCycles, unsigned ExtraFCycles,
602                      BranchProbability Probability) const {
603    return false;
604  }
605
606  /// Return true if it's profitable for if-converter to duplicate instructions
607  /// of specified accumulated instruction latencies in the specified MBB to
608  /// enable if-conversion.
609  /// The probability of the instructions being executed is given by
610  /// Probability, and Confidence is a measure of our confidence that it
611  /// will be properly predicted.
612  virtual bool
613  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
614                            BranchProbability Probability) const {
615    return false;
616  }
617
618  /// Return true if it's profitable to unpredicate
619  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
620  /// exclusive predicates.
621  /// e.g.
622  ///   subeq  r0, r1, #1
623  ///   addne  r0, r1, #1
624  /// =>
625  ///   sub    r0, r1, #1
626  ///   addne  r0, r1, #1
627  ///
628  /// This may be profitable is conditional instructions are always executed.
629  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
630                                         MachineBasicBlock &FMBB) const {
631    return false;
632  }
633
634  /// Return true if it is possible to insert a select
635  /// instruction that chooses between TrueReg and FalseReg based on the
636  /// condition code in Cond.
637  ///
638  /// When successful, also return the latency in cycles from TrueReg,
639  /// FalseReg, and Cond to the destination register. In most cases, a select
640  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
641  ///
642  /// Some x86 implementations have 2-cycle cmov instructions.
643  ///
644  /// @param MBB         Block where select instruction would be inserted.
645  /// @param Cond        Condition returned by AnalyzeBranch.
646  /// @param TrueReg     Virtual register to select when Cond is true.
647  /// @param FalseReg    Virtual register to select when Cond is false.
648  /// @param CondCycles  Latency from Cond+Branch to select output.
649  /// @param TrueCycles  Latency from TrueReg to select output.
650  /// @param FalseCycles Latency from FalseReg to select output.
651  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
652                               ArrayRef<MachineOperand> Cond,
653                               unsigned TrueReg, unsigned FalseReg,
654                               int &CondCycles,
655                               int &TrueCycles, int &FalseCycles) const {
656    return false;
657  }
658
659  /// Insert a select instruction into MBB before I that will copy TrueReg to
660  /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
661  ///
662  /// This function can only be called after canInsertSelect() returned true.
663  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
664  /// that the same flags or registers required by Cond are available at the
665  /// insertion point.
666  ///
667  /// @param MBB      Block where select instruction should be inserted.
668  /// @param I        Insertion point.
669  /// @param DL       Source location for debugging.
670  /// @param DstReg   Virtual register to be defined by select instruction.
671  /// @param Cond     Condition as computed by AnalyzeBranch.
672  /// @param TrueReg  Virtual register to copy when Cond is true.
673  /// @param FalseReg Virtual register to copy when Cons is false.
674  virtual void insertSelect(MachineBasicBlock &MBB,
675                            MachineBasicBlock::iterator I, DebugLoc DL,
676                            unsigned DstReg, ArrayRef<MachineOperand> Cond,
677                            unsigned TrueReg, unsigned FalseReg) const {
678    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
679  }
680
681  /// Analyze the given select instruction, returning true if
682  /// it cannot be understood. It is assumed that MI->isSelect() is true.
683  ///
684  /// When successful, return the controlling condition and the operands that
685  /// determine the true and false result values.
686  ///
687  ///   Result = SELECT Cond, TrueOp, FalseOp
688  ///
689  /// Some targets can optimize select instructions, for example by predicating
690  /// the instruction defining one of the operands. Such targets should set
691  /// Optimizable.
692  ///
693  /// @param         MI Select instruction to analyze.
694  /// @param Cond    Condition controlling the select.
695  /// @param TrueOp  Operand number of the value selected when Cond is true.
696  /// @param FalseOp Operand number of the value selected when Cond is false.
697  /// @param Optimizable Returned as true if MI is optimizable.
698  /// @returns False on success.
699  virtual bool analyzeSelect(const MachineInstr *MI,
700                             SmallVectorImpl<MachineOperand> &Cond,
701                             unsigned &TrueOp, unsigned &FalseOp,
702                             bool &Optimizable) const {
703    assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
704    return true;
705  }
706
707  /// Given a select instruction that was understood by
708  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
709  /// merging it with one of its operands. Returns NULL on failure.
710  ///
711  /// When successful, returns the new select instruction. The client is
712  /// responsible for deleting MI.
713  ///
714  /// If both sides of the select can be optimized, PreferFalse is used to pick
715  /// a side.
716  ///
717  /// @param MI          Optimizable select instruction.
718  /// @param NewMIs     Set that record all MIs in the basic block up to \p
719  /// MI. Has to be updated with any newly created MI or deleted ones.
720  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
721  /// @returns Optimized instruction or NULL.
722  virtual MachineInstr *optimizeSelect(MachineInstr *MI,
723                                       SmallPtrSetImpl<MachineInstr *> &NewMIs,
724                                       bool PreferFalse = false) const {
725    // This function must be implemented if Optimizable is ever set.
726    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
727  }
728
729  /// Emit instructions to copy a pair of physical registers.
730  ///
731  /// This function should support copies within any legal register class as
732  /// well as any cross-class copies created during instruction selection.
733  ///
734  /// The source and destination registers may overlap, which may require a
735  /// careful implementation when multiple copy instructions are required for
736  /// large registers. See for example the ARM target.
737  virtual void copyPhysReg(MachineBasicBlock &MBB,
738                           MachineBasicBlock::iterator MI, DebugLoc DL,
739                           unsigned DestReg, unsigned SrcReg,
740                           bool KillSrc) const {
741    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
742  }
743
744  /// Store the specified register of the given register class to the specified
745  /// stack frame index. The store instruction is to be added to the given
746  /// machine basic block before the specified machine instruction. If isKill
747  /// is true, the register operand is the last use and must be marked kill.
748  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
749                                   MachineBasicBlock::iterator MI,
750                                   unsigned SrcReg, bool isKill, int FrameIndex,
751                                   const TargetRegisterClass *RC,
752                                   const TargetRegisterInfo *TRI) const {
753    llvm_unreachable("Target didn't implement "
754                     "TargetInstrInfo::storeRegToStackSlot!");
755  }
756
757  /// Load the specified register of the given register class from the specified
758  /// stack frame index. The load instruction is to be added to the given
759  /// machine basic block before the specified machine instruction.
760  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
761                                    MachineBasicBlock::iterator MI,
762                                    unsigned DestReg, int FrameIndex,
763                                    const TargetRegisterClass *RC,
764                                    const TargetRegisterInfo *TRI) const {
765    llvm_unreachable("Target didn't implement "
766                     "TargetInstrInfo::loadRegFromStackSlot!");
767  }
768
769  /// This function is called for all pseudo instructions
770  /// that remain after register allocation. Many pseudo instructions are
771  /// created to help register allocation. This is the place to convert them
772  /// into real instructions. The target can edit MI in place, or it can insert
773  /// new instructions and erase MI. The function should return true if
774  /// anything was changed.
775  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
776    return false;
777  }
778
779  /// Attempt to fold a load or store of the specified stack
780  /// slot into the specified machine instruction for the specified operand(s).
781  /// If this is possible, a new instruction is returned with the specified
782  /// operand folded, otherwise NULL is returned.
783  /// The new instruction is inserted before MI, and the client is responsible
784  /// for removing the old instruction.
785  MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
786                                  ArrayRef<unsigned> Ops, int FrameIndex) const;
787
788  /// Same as the previous version except it allows folding of any load and
789  /// store from / to any address, not just from a specific stack slot.
790  MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
791                                  ArrayRef<unsigned> Ops,
792                                  MachineInstr *LoadMI) const;
793
794  /// Return true when there is potentially a faster code sequence
795  /// for an instruction chain ending in \p Root. All potential patterns are
796  /// returned in the \p Pattern vector. Pattern should be sorted in priority
797  /// order since the pattern evaluator stops checking as soon as it finds a
798  /// faster sequence.
799  /// \param Root - Instruction that could be combined with one of its operands
800  /// \param Patterns - Vector of possible combination patterns
801  virtual bool getMachineCombinerPatterns(
802      MachineInstr &Root,
803      SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
804
805  /// Return true if the input \P Inst is part of a chain of dependent ops
806  /// that are suitable for reassociation, otherwise return false.
807  /// If the instruction's operands must be commuted to have a previous
808  /// instruction of the same type define the first source operand, \P Commuted
809  /// will be set to true.
810  bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
811
812  /// Return true when \P Inst is both associative and commutative.
813  virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
814    return false;
815  }
816
817  /// Return true when \P Inst has reassociable operands in the same \P MBB.
818  virtual bool hasReassociableOperands(const MachineInstr &Inst,
819                                       const MachineBasicBlock *MBB) const;
820
821  /// Return true when \P Inst has reassociable sibling.
822  bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
823
824  /// When getMachineCombinerPatterns() finds patterns, this function generates
825  /// the instructions that could replace the original code sequence. The client
826  /// has to decide whether the actual replacement is beneficial or not.
827  /// \param Root - Instruction that could be combined with one of its operands
828  /// \param Pattern - Combination pattern for Root
829  /// \param InsInstrs - Vector of new instructions that implement P
830  /// \param DelInstrs - Old instructions, including Root, that could be
831  /// replaced by InsInstr
832  /// \param InstrIdxForVirtReg - map of virtual register to instruction in
833  /// InsInstr that defines it
834  virtual void genAlternativeCodeSequence(
835      MachineInstr &Root, MachineCombinerPattern Pattern,
836      SmallVectorImpl<MachineInstr *> &InsInstrs,
837      SmallVectorImpl<MachineInstr *> &DelInstrs,
838      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
839
840  /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
841  /// reduce critical path length.
842  void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
843                      MachineCombinerPattern Pattern,
844                      SmallVectorImpl<MachineInstr *> &InsInstrs,
845                      SmallVectorImpl<MachineInstr *> &DelInstrs,
846                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
847
848  /// This is an architecture-specific helper function of reassociateOps.
849  /// Set special operand attributes for new instructions after reassociation.
850  virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
851                                     MachineInstr &NewMI1,
852                                     MachineInstr &NewMI2) const {
853    return;
854  };
855
856  /// Return true when a target supports MachineCombiner.
857  virtual bool useMachineCombiner() const { return false; }
858
859protected:
860  /// Target-dependent implementation for foldMemoryOperand.
861  /// Target-independent code in foldMemoryOperand will
862  /// take care of adding a MachineMemOperand to the newly created instruction.
863  /// The instruction and any auxiliary instructions necessary will be inserted
864  /// at InsertPt.
865  virtual MachineInstr *foldMemoryOperandImpl(
866      MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
867      MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
868    return nullptr;
869  }
870
871  /// Target-dependent implementation for foldMemoryOperand.
872  /// Target-independent code in foldMemoryOperand will
873  /// take care of adding a MachineMemOperand to the newly created instruction.
874  /// The instruction and any auxiliary instructions necessary will be inserted
875  /// at InsertPt.
876  virtual MachineInstr *foldMemoryOperandImpl(
877      MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
878      MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
879    return nullptr;
880  }
881
882  /// \brief Target-dependent implementation of getRegSequenceInputs.
883  ///
884  /// \returns true if it is possible to build the equivalent
885  /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
886  ///
887  /// \pre MI.isRegSequenceLike().
888  ///
889  /// \see TargetInstrInfo::getRegSequenceInputs.
890  virtual bool getRegSequenceLikeInputs(
891      const MachineInstr &MI, unsigned DefIdx,
892      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
893    return false;
894  }
895
896  /// \brief Target-dependent implementation of getExtractSubregInputs.
897  ///
898  /// \returns true if it is possible to build the equivalent
899  /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
900  ///
901  /// \pre MI.isExtractSubregLike().
902  ///
903  /// \see TargetInstrInfo::getExtractSubregInputs.
904  virtual bool getExtractSubregLikeInputs(
905      const MachineInstr &MI, unsigned DefIdx,
906      RegSubRegPairAndIdx &InputReg) const {
907    return false;
908  }
909
910  /// \brief Target-dependent implementation of getInsertSubregInputs.
911  ///
912  /// \returns true if it is possible to build the equivalent
913  /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
914  ///
915  /// \pre MI.isInsertSubregLike().
916  ///
917  /// \see TargetInstrInfo::getInsertSubregInputs.
918  virtual bool
919  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
920                            RegSubRegPair &BaseReg,
921                            RegSubRegPairAndIdx &InsertedReg) const {
922    return false;
923  }
924
925public:
926  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
927  /// a store or a load and a store into two or more instruction. If this is
928  /// possible, returns true as well as the new instructions by reference.
929  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
930                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
931                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
932    return false;
933  }
934
935  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
936                                   SmallVectorImpl<SDNode*> &NewNodes) const {
937    return false;
938  }
939
940  /// Returns the opcode of the would be new
941  /// instruction after load / store are unfolded from an instruction of the
942  /// specified opcode. It returns zero if the specified unfolding is not
943  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
944  /// index of the operand which will hold the register holding the loaded
945  /// value.
946  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
947                                      bool UnfoldLoad, bool UnfoldStore,
948                                      unsigned *LoadRegIndex = nullptr) const {
949    return 0;
950  }
951
952  /// This is used by the pre-regalloc scheduler to determine if two loads are
953  /// loading from the same base address. It should only return true if the base
954  /// pointers are the same and the only differences between the two addresses
955  /// are the offset. It also returns the offsets by reference.
956  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
957                                    int64_t &Offset1, int64_t &Offset2) const {
958    return false;
959  }
960
961  /// This is a used by the pre-regalloc scheduler to determine (in conjunction
962  /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
963  /// On some targets if two loads are loading from
964  /// addresses in the same cache line, it's better if they are scheduled
965  /// together. This function takes two integers that represent the load offsets
966  /// from the common base address. It returns true if it decides it's desirable
967  /// to schedule the two loads together. "NumLoads" is the number of loads that
968  /// have already been scheduled after Load1.
969  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
970                                       int64_t Offset1, int64_t Offset2,
971                                       unsigned NumLoads) const {
972    return false;
973  }
974
975  /// Get the base register and byte offset of an instruction that reads/writes
976  /// memory.
977  virtual bool getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg,
978                                     unsigned &Offset,
979                                     const TargetRegisterInfo *TRI) const {
980    return false;
981  }
982
983  virtual bool enableClusterLoads() const { return false; }
984
985  virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
986                                  MachineInstr *SecondLdSt,
987                                  unsigned NumLoads) const {
988    return false;
989  }
990
991  /// Can this target fuse the given instructions if they are scheduled
992  /// adjacent.
993  virtual bool shouldScheduleAdjacent(MachineInstr* First,
994                                      MachineInstr *Second) const {
995    return false;
996  }
997
998  /// Reverses the branch condition of the specified condition list,
999  /// returning false on success and true if it cannot be reversed.
1000  virtual
1001  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1002    return true;
1003  }
1004
1005  /// Insert a noop into the instruction stream at the specified point.
1006  virtual void insertNoop(MachineBasicBlock &MBB,
1007                          MachineBasicBlock::iterator MI) const;
1008
1009
1010  /// Return the noop instruction to use for a noop.
1011  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
1012
1013
1014  /// Returns true if the instruction is already predicated.
1015  virtual bool isPredicated(const MachineInstr *MI) const {
1016    return false;
1017  }
1018
1019  /// Returns true if the instruction is a
1020  /// terminator instruction that has not been predicated.
1021  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
1022
1023  /// Convert the instruction into a predicated instruction.
1024  /// It returns true if the operation was successful.
1025  virtual
1026  bool PredicateInstruction(MachineInstr *MI,
1027                            ArrayRef<MachineOperand> Pred) const;
1028
1029  /// Returns true if the first specified predicate
1030  /// subsumes the second, e.g. GE subsumes GT.
1031  virtual
1032  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1033                         ArrayRef<MachineOperand> Pred2) const {
1034    return false;
1035  }
1036
1037  /// If the specified instruction defines any predicate
1038  /// or condition code register(s) used for predication, returns true as well
1039  /// as the definition predicate(s) by reference.
1040  virtual bool DefinesPredicate(MachineInstr *MI,
1041                                std::vector<MachineOperand> &Pred) const {
1042    return false;
1043  }
1044
1045  /// Return true if the specified instruction can be predicated.
1046  /// By default, this returns true for every instruction with a
1047  /// PredicateOperand.
1048  virtual bool isPredicable(MachineInstr *MI) const {
1049    return MI->getDesc().isPredicable();
1050  }
1051
1052  /// Return true if it's safe to move a machine
1053  /// instruction that defines the specified register class.
1054  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1055    return true;
1056  }
1057
1058  /// Test if the given instruction should be considered a scheduling boundary.
1059  /// This primarily includes labels and terminators.
1060  virtual bool isSchedulingBoundary(const MachineInstr *MI,
1061                                    const MachineBasicBlock *MBB,
1062                                    const MachineFunction &MF) const;
1063
1064  /// Measure the specified inline asm to determine an approximation of its
1065  /// length.
1066  virtual unsigned getInlineAsmLength(const char *Str,
1067                                      const MCAsmInfo &MAI) const;
1068
1069  /// Allocate and return a hazard recognizer to use for this target when
1070  /// scheduling the machine instructions before register allocation.
1071  virtual ScheduleHazardRecognizer*
1072  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1073                               const ScheduleDAG *DAG) const;
1074
1075  /// Allocate and return a hazard recognizer to use for this target when
1076  /// scheduling the machine instructions before register allocation.
1077  virtual ScheduleHazardRecognizer*
1078  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
1079                                 const ScheduleDAG *DAG) const;
1080
1081  /// Allocate and return a hazard recognizer to use for this target when
1082  /// scheduling the machine instructions after register allocation.
1083  virtual ScheduleHazardRecognizer*
1084  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
1085                                     const ScheduleDAG *DAG) const;
1086
1087  /// Provide a global flag for disabling the PreRA hazard recognizer that
1088  /// targets may choose to honor.
1089  bool usePreRAHazardRecognizer() const;
1090
1091  /// For a comparison instruction, return the source registers
1092  /// in SrcReg and SrcReg2 if having two register operands, and the value it
1093  /// compares against in CmpValue. Return true if the comparison instruction
1094  /// can be analyzed.
1095  virtual bool analyzeCompare(const MachineInstr *MI,
1096                              unsigned &SrcReg, unsigned &SrcReg2,
1097                              int &Mask, int &Value) const {
1098    return false;
1099  }
1100
1101  /// See if the comparison instruction can be converted
1102  /// into something more efficient. E.g., on ARM most instructions can set the
1103  /// flags register, obviating the need for a separate CMP.
1104  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
1105                                    unsigned SrcReg, unsigned SrcReg2,
1106                                    int Mask, int Value,
1107                                    const MachineRegisterInfo *MRI) const {
1108    return false;
1109  }
1110  virtual bool optimizeCondBranch(MachineInstr *MI) const { return false; }
1111
1112  /// Try to remove the load by folding it to a register operand at the use.
1113  /// We fold the load instructions if and only if the
1114  /// def and use are in the same BB. We only look at one load and see
1115  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1116  /// defined by the load we are trying to fold. DefMI returns the machine
1117  /// instruction that defines FoldAsLoadDefReg, and the function returns
1118  /// the machine instruction generated due to folding.
1119  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
1120                        const MachineRegisterInfo *MRI,
1121                        unsigned &FoldAsLoadDefReg,
1122                        MachineInstr *&DefMI) const {
1123    return nullptr;
1124  }
1125
1126  /// 'Reg' is known to be defined by a move immediate instruction,
1127  /// try to fold the immediate into the use instruction.
1128  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1129  /// then the caller may assume that DefMI has been erased from its parent
1130  /// block. The caller may assume that it will not be erased by this
1131  /// function otherwise.
1132  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1133                             unsigned Reg, MachineRegisterInfo *MRI) const {
1134    return false;
1135  }
1136
1137  /// Return the number of u-operations the given machine
1138  /// instruction will be decoded to on the target cpu. The itinerary's
1139  /// IssueWidth is the number of microops that can be dispatched each
1140  /// cycle. An instruction with zero microops takes no dispatch resources.
1141  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1142                                  const MachineInstr *MI) const;
1143
1144  /// Return true for pseudo instructions that don't consume any
1145  /// machine resources in their current form. These are common cases that the
1146  /// scheduler should consider free, rather than conservatively handling them
1147  /// as instructions with no itinerary.
1148  bool isZeroCost(unsigned Opcode) const {
1149    return Opcode <= TargetOpcode::COPY;
1150  }
1151
1152  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1153                                SDNode *DefNode, unsigned DefIdx,
1154                                SDNode *UseNode, unsigned UseIdx) const;
1155
1156  /// Compute and return the use operand latency of a given pair of def and use.
1157  /// In most cases, the static scheduling itinerary was enough to determine the
1158  /// operand latency. But it may not be possible for instructions with variable
1159  /// number of defs / uses.
1160  ///
1161  /// This is a raw interface to the itinerary that may be directly overridden
1162  /// by a target. Use computeOperandLatency to get the best estimate of
1163  /// latency.
1164  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1165                                const MachineInstr *DefMI, unsigned DefIdx,
1166                                const MachineInstr *UseMI,
1167                                unsigned UseIdx) const;
1168
1169  /// Compute and return the latency of the given data
1170  /// dependent def and use when the operand indices are already known.
1171  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
1172                                 const MachineInstr *DefMI, unsigned DefIdx,
1173                                 const MachineInstr *UseMI, unsigned UseIdx)
1174    const;
1175
1176  /// Compute the instruction latency of a given instruction.
1177  /// If the instruction has higher cost when predicated, it's returned via
1178  /// PredCost.
1179  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1180                                   const MachineInstr *MI,
1181                                   unsigned *PredCost = nullptr) const;
1182
1183  virtual unsigned getPredicationCost(const MachineInstr *MI) const;
1184
1185  virtual int getInstrLatency(const InstrItineraryData *ItinData,
1186                              SDNode *Node) const;
1187
1188  /// Return the default expected latency for a def based on it's opcode.
1189  unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1190                             const MachineInstr *DefMI) const;
1191
1192  int computeDefOperandLatency(const InstrItineraryData *ItinData,
1193                               const MachineInstr *DefMI) const;
1194
1195  /// Return true if this opcode has high latency to its result.
1196  virtual bool isHighLatencyDef(int opc) const { return false; }
1197
1198  /// Compute operand latency between a def of 'Reg'
1199  /// and a use in the current loop. Return true if the target considered
1200  /// it 'high'. This is used by optimization passes such as machine LICM to
1201  /// determine whether it makes sense to hoist an instruction out even in a
1202  /// high register pressure situation.
1203  virtual
1204  bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1205                             const MachineRegisterInfo *MRI,
1206                             const MachineInstr *DefMI, unsigned DefIdx,
1207                             const MachineInstr *UseMI, unsigned UseIdx) const {
1208    return false;
1209  }
1210
1211  /// Compute operand latency of a def of 'Reg'. Return true
1212  /// if the target considered it 'low'.
1213  virtual
1214  bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1215                        const MachineInstr *DefMI, unsigned DefIdx) const;
1216
1217  /// Perform target-specific instruction verification.
1218  virtual
1219  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
1220    return true;
1221  }
1222
1223  /// Return the current execution domain and bit mask of
1224  /// possible domains for instruction.
1225  ///
1226  /// Some micro-architectures have multiple execution domains, and multiple
1227  /// opcodes that perform the same operation in different domains.  For
1228  /// example, the x86 architecture provides the por, orps, and orpd
1229  /// instructions that all do the same thing.  There is a latency penalty if a
1230  /// register is written in one domain and read in another.
1231  ///
1232  /// This function returns a pair (domain, mask) containing the execution
1233  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1234  /// function can be used to change the opcode to one of the domains in the
1235  /// bit mask.  Instructions whose execution domain can't be changed should
1236  /// return a 0 mask.
1237  ///
1238  /// The execution domain numbers don't have any special meaning except domain
1239  /// 0 is used for instructions that are not associated with any interesting
1240  /// execution domain.
1241  ///
1242  virtual std::pair<uint16_t, uint16_t>
1243  getExecutionDomain(const MachineInstr *MI) const {
1244    return std::make_pair(0, 0);
1245  }
1246
1247  /// Change the opcode of MI to execute in Domain.
1248  ///
1249  /// The bit (1 << Domain) must be set in the mask returned from
1250  /// getExecutionDomain(MI).
1251  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
1252
1253
1254  /// Returns the preferred minimum clearance
1255  /// before an instruction with an unwanted partial register update.
1256  ///
1257  /// Some instructions only write part of a register, and implicitly need to
1258  /// read the other parts of the register.  This may cause unwanted stalls
1259  /// preventing otherwise unrelated instructions from executing in parallel in
1260  /// an out-of-order CPU.
1261  ///
1262  /// For example, the x86 instruction cvtsi2ss writes its result to bits
1263  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1264  /// the instruction needs to wait for the old value of the register to become
1265  /// available:
1266  ///
1267  ///   addps %xmm1, %xmm0
1268  ///   movaps %xmm0, (%rax)
1269  ///   cvtsi2ss %rbx, %xmm0
1270  ///
1271  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1272  /// instruction before it can issue, even though the high bits of %xmm0
1273  /// probably aren't needed.
1274  ///
1275  /// This hook returns the preferred clearance before MI, measured in
1276  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1277  /// instructions before MI.  It should only return a positive value for
1278  /// unwanted dependencies.  If the old bits of the defined register have
1279  /// useful values, or if MI is determined to otherwise read the dependency,
1280  /// the hook should return 0.
1281  ///
1282  /// The unwanted dependency may be handled by:
1283  ///
1284  /// 1. Allocating the same register for an MI def and use.  That makes the
1285  ///    unwanted dependency identical to a required dependency.
1286  ///
1287  /// 2. Allocating a register for the def that has no defs in the previous N
1288  ///    instructions.
1289  ///
1290  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1291  ///    allows the target to insert a dependency breaking instruction.
1292  ///
1293  virtual unsigned
1294  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
1295                               const TargetRegisterInfo *TRI) const {
1296    // The default implementation returns 0 for no partial register dependency.
1297    return 0;
1298  }
1299
1300  /// \brief Return the minimum clearance before an instruction that reads an
1301  /// unused register.
1302  ///
1303  /// For example, AVX instructions may copy part of a register operand into
1304  /// the unused high bits of the destination register.
1305  ///
1306  /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
1307  ///
1308  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1309  /// false dependence on any previous write to %xmm0.
1310  ///
1311  /// This hook works similarly to getPartialRegUpdateClearance, except that it
1312  /// does not take an operand index. Instead sets \p OpNum to the index of the
1313  /// unused register.
1314  virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
1315                                        const TargetRegisterInfo *TRI) const {
1316    // The default implementation returns 0 for no undef register dependency.
1317    return 0;
1318  }
1319
1320  /// Insert a dependency-breaking instruction
1321  /// before MI to eliminate an unwanted dependency on OpNum.
1322  ///
1323  /// If it wasn't possible to avoid a def in the last N instructions before MI
1324  /// (see getPartialRegUpdateClearance), this hook will be called to break the
1325  /// unwanted dependency.
1326  ///
1327  /// On x86, an xorps instruction can be used as a dependency breaker:
1328  ///
1329  ///   addps %xmm1, %xmm0
1330  ///   movaps %xmm0, (%rax)
1331  ///   xorps %xmm0, %xmm0
1332  ///   cvtsi2ss %rbx, %xmm0
1333  ///
1334  /// An <imp-kill> operand should be added to MI if an instruction was
1335  /// inserted.  This ties the instructions together in the post-ra scheduler.
1336  ///
1337  virtual void
1338  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
1339                            const TargetRegisterInfo *TRI) const {}
1340
1341  /// Create machine specific model for scheduling.
1342  virtual DFAPacketizer *
1343  CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1344    return nullptr;
1345  }
1346
1347  // Sometimes, it is possible for the target
1348  // to tell, even without aliasing information, that two MIs access different
1349  // memory addresses. This function returns true if two MIs access different
1350  // memory addresses and false otherwise.
1351  virtual bool
1352  areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
1353                                  AliasAnalysis *AA = nullptr) const {
1354    assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
1355           "MIa must load from or modify a memory location");
1356    assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
1357           "MIb must load from or modify a memory location");
1358    return false;
1359  }
1360
1361  /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
1362  /// which is a heuristic used for CSE'ing phys reg defs.
1363  virtual unsigned getMachineCSELookAheadLimit () const {
1364    // The default lookahead is small to prevent unprofitable quadratic
1365    // behavior.
1366    return 5;
1367  }
1368
1369  /// Return an array that contains the ids of the target indices (used for the
1370  /// TargetIndex machine operand) and their names.
1371  ///
1372  /// MIR Serialization is able to serialize only the target indices that are
1373  /// defined by this method.
1374  virtual ArrayRef<std::pair<int, const char *>>
1375  getSerializableTargetIndices() const {
1376    return None;
1377  }
1378
1379  /// Decompose the machine operand's target flags into two values - the direct
1380  /// target flag value and any of bit flags that are applied.
1381  virtual std::pair<unsigned, unsigned>
1382  decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1383    return std::make_pair(0u, 0u);
1384  }
1385
1386  /// Return an array that contains the direct target flag values and their
1387  /// names.
1388  ///
1389  /// MIR Serialization is able to serialize only the target flags that are
1390  /// defined by this method.
1391  virtual ArrayRef<std::pair<unsigned, const char *>>
1392  getSerializableDirectMachineOperandTargetFlags() const {
1393    return None;
1394  }
1395
1396  /// Return an array that contains the bitmask target flag values and their
1397  /// names.
1398  ///
1399  /// MIR Serialization is able to serialize only the target flags that are
1400  /// defined by this method.
1401  virtual ArrayRef<std::pair<unsigned, const char *>>
1402  getSerializableBitmaskMachineOperandTargetFlags() const {
1403    return None;
1404  }
1405
1406private:
1407  unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1408  unsigned CatchRetOpcode;
1409};
1410
1411/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1412template<>
1413struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1414  typedef DenseMapInfo<unsigned> RegInfo;
1415
1416  static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1417    return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1418                         RegInfo::getEmptyKey());
1419  }
1420  static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1421    return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1422                         RegInfo::getTombstoneKey());
1423  }
1424  /// \brief Reuse getHashValue implementation from
1425  /// std::pair<unsigned, unsigned>.
1426  static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1427    std::pair<unsigned, unsigned> PairVal =
1428        std::make_pair(Val.Reg, Val.SubReg);
1429    return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1430  }
1431  static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1432                      const TargetInstrInfo::RegSubRegPair &RHS) {
1433    return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1434           RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1435  }
1436};
1437
1438} // End llvm namespace
1439
1440#endif
1441