1193323Sed//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2218893Sdim//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7218893Sdim//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file defines the target-independent interfaces which should be
11193323Sed// implemented by each target which is using a TableGen based code generator.
12193323Sed//
13193323Sed//===----------------------------------------------------------------------===//
14193323Sed
15193323Sed// Include all information about LLVM intrinsics.
16249423Sdiminclude "llvm/IR/Intrinsics.td"
17193323Sed
18193323Sed//===----------------------------------------------------------------------===//
19193323Sed// Register file description - These classes are used to fill in the target
20193323Sed// description classes.
21193323Sed
22193323Sedclass RegisterClass; // Forward def
23193323Sed
24208599Srdivacky// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25261991Sdimclass SubRegIndex<int size, int offset = 0> {
26208599Srdivacky  string Namespace = "";
27234353Sdim
28261991Sdim  // Size - Size (in bits) of the sub-registers represented by this index.
29261991Sdim  int Size = size;
30261991Sdim
31261991Sdim  // Offset - Offset of the first bit that is part of this sub-register index.
32261991Sdim  // Set it to -1 if the same index is used to represent sub-registers that can
33261991Sdim  // be at different offsets (for example when using an index to access an
34261991Sdim  // element in a register tuple).
35261991Sdim  int Offset = offset;
36261991Sdim
37234353Sdim  // ComposedOf - A list of two SubRegIndex instances, [A, B].
38234353Sdim  // This indicates that this SubRegIndex is the result of composing A and B.
39261991Sdim  // See ComposedSubRegIndex.
40261991Sdim  list<SubRegIndex> ComposedOf = [];
41239462Sdim
42239462Sdim  // CoveringSubRegIndices - A list of two or more sub-register indexes that
43239462Sdim  // cover this sub-register.
44239462Sdim  //
45239462Sdim  // This field should normally be left blank as TableGen can infer it.
46239462Sdim  //
47239462Sdim  // TableGen automatically detects sub-registers that straddle the registers
48239462Sdim  // in the SubRegs field of a Register definition. For example:
49239462Sdim  //
50239462Sdim  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
51239462Sdim  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
52239462Sdim  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
53239462Sdim  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
54239462Sdim  //
55239462Sdim  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
56239462Sdim  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
57239462Sdim  // CoveringSubRegIndices = [dsub_1, dsub_2].
58239462Sdim  list<SubRegIndex> CoveringSubRegIndices = [];
59208599Srdivacky}
60208599Srdivacky
61261991Sdim// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
62261991Sdim// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
63261991Sdimclass ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
64261991Sdim  : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
65261991Sdim                        !if(!eq(B.Offset, -1), -1,
66261991Sdim                            !add(A.Offset, B.Offset)))> {
67261991Sdim  // See SubRegIndex.
68261991Sdim  let ComposedOf = [A, B];
69261991Sdim}
70261991Sdim
71224145Sdim// RegAltNameIndex - The alternate name set to use for register operands of
72224145Sdim// this register class when printing.
73224145Sdimclass RegAltNameIndex {
74224145Sdim  string Namespace = "";
75224145Sdim}
76224145Sdimdef NoRegAltName : RegAltNameIndex;
77224145Sdim
78193323Sed// Register - You should define one instance of this class for each register
79193323Sed// in the target machine.  String n will become the "name" of the register.
80224145Sdimclass Register<string n, list<string> altNames = []> {
81193323Sed  string Namespace = "";
82193323Sed  string AsmName = n;
83224145Sdim  list<string> AltNames = altNames;
84193323Sed
85193323Sed  // Aliases - A list of registers that this register overlaps with.  A read or
86193323Sed  // modification of this register can potentially read or modify the aliased
87193323Sed  // registers.
88193323Sed  list<Register> Aliases = [];
89218893Sdim
90193323Sed  // SubRegs - A list of registers that are parts of this register. Note these
91193323Sed  // are "immediate" sub-registers and the registers within the list do not
92193323Sed  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
93193323Sed  // not [AX, AH, AL].
94193323Sed  list<Register> SubRegs = [];
95193323Sed
96208599Srdivacky  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
97208599Srdivacky  // to address it. Sub-sub-register indices are automatically inherited from
98208599Srdivacky  // SubRegs.
99208599Srdivacky  list<SubRegIndex> SubRegIndices = [];
100208599Srdivacky
101224145Sdim  // RegAltNameIndices - The alternate name indices which are valid for this
102224145Sdim  // register.
103224145Sdim  list<RegAltNameIndex> RegAltNameIndices = [];
104224145Sdim
105193323Sed  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
106193323Sed  // These values can be determined by locating the <target>.h file in the
107193323Sed  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
108193323Sed  // order of these names correspond to the enumeration used by gcc.  A value of
109193323Sed  // -1 indicates that the gcc number is undefined and -2 that register number
110193323Sed  // is invalid for this mode/flavour.
111193323Sed  list<int> DwarfNumbers = [];
112221345Sdim
113221345Sdim  // CostPerUse - Additional cost of instructions using this register compared
114221345Sdim  // to other registers in its class. The register allocator will try to
115221345Sdim  // minimize the number of instructions using a register with a CostPerUse.
116234353Sdim  // This is used by the x86-64 and ARM Thumb targets where some registers
117221345Sdim  // require larger instruction encodings.
118221345Sdim  int CostPerUse = 0;
119234353Sdim
120234353Sdim  // CoveredBySubRegs - When this bit is set, the value of this register is
121234353Sdim  // completely determined by the value of its sub-registers.  For example, the
122234353Sdim  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
123234353Sdim  // covered by its sub-register AX.
124234353Sdim  bit CoveredBySubRegs = 0;
125239462Sdim
126239462Sdim  // HWEncoding - The target specific hardware encoding for this register.
127239462Sdim  bits<16> HWEncoding = 0;
128193323Sed}
129193323Sed
130193323Sed// RegisterWithSubRegs - This can be used to define instances of Register which
131193323Sed// need to specify sub-registers.
132193323Sed// List "subregs" specifies which registers are sub-registers to this one. This
133193323Sed// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
134218893Sdim// This allows the code generator to be careful not to put two values with
135193323Sed// overlapping live ranges into registers which alias.
136193323Sedclass RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
137193323Sed  let SubRegs = subregs;
138193323Sed}
139193323Sed
140239462Sdim// DAGOperand - An empty base class that unifies RegisterClass's and other forms
141239462Sdim// of Operand's that are legal as type qualifiers in DAG patterns.  This should
142239462Sdim// only ever be used for defining multiclasses that are polymorphic over both
143239462Sdim// RegisterClass's and other Operand's.
144239462Sdimclass DAGOperand { }
145239462Sdim
146193323Sed// RegisterClass - Now that all of the registers are defined, and aliases
147193323Sed// between registers are defined, specify which registers belong to which
148193323Sed// register classes.  This also defines the default allocation order of
149193323Sed// registers by register allocators.
150193323Sed//
151193323Sedclass RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
152239462Sdim                    dag regList, RegAltNameIndex idx = NoRegAltName>
153239462Sdim  : DAGOperand {
154193323Sed  string Namespace = namespace;
155193323Sed
156193323Sed  // RegType - Specify the list ValueType of the registers in this register
157193323Sed  // class.  Note that all registers in a register class must have the same
158218893Sdim  // ValueTypes.  This is a list because some targets permit storing different
159193323Sed  // types in same register, for example vector values with 128-bit total size,
160193323Sed  // but different count/size of items, like SSE on x86.
161193323Sed  //
162193323Sed  list<ValueType> RegTypes = regTypes;
163193323Sed
164193323Sed  // Size - Specify the spill size in bits of the registers.  A default value of
165193323Sed  // zero lets tablgen pick an appropriate size.
166193323Sed  int Size = 0;
167193323Sed
168193323Sed  // Alignment - Specify the alignment required of the registers when they are
169193323Sed  // stored or loaded to memory.
170193323Sed  //
171193323Sed  int Alignment = alignment;
172193323Sed
173193323Sed  // CopyCost - This value is used to specify the cost of copying a value
174193323Sed  // between two registers in this register class. The default value is one
175193323Sed  // meaning it takes a single instruction to perform the copying. A negative
176193323Sed  // value means copying is extremely expensive or impossible.
177193323Sed  int CopyCost = 1;
178193323Sed
179193323Sed  // MemberList - Specify which registers are in this class.  If the
180193323Sed  // allocation_order_* method are not specified, this also defines the order of
181193323Sed  // allocation used by the register allocator.
182193323Sed  //
183224145Sdim  dag MemberList = regList;
184218893Sdim
185224145Sdim  // AltNameIndex - The alternate register name to use when printing operands
186224145Sdim  // of this register class. Every register in the register class must have
187224145Sdim  // a valid alternate name for the given index.
188224145Sdim  RegAltNameIndex altNameIndex = idx;
189224145Sdim
190223017Sdim  // isAllocatable - Specify that the register class can be used for virtual
191223017Sdim  // registers and register allocation.  Some register classes are only used to
192223017Sdim  // model instruction operand constraints, and should have isAllocatable = 0.
193223017Sdim  bit isAllocatable = 1;
194223017Sdim
195224145Sdim  // AltOrders - List of alternative allocation orders. The default order is
196224145Sdim  // MemberList itself, and that is good enough for most targets since the
197224145Sdim  // register allocators automatically remove reserved registers and move
198224145Sdim  // callee-saved registers to the end.
199224145Sdim  list<dag> AltOrders = [];
200224145Sdim
201224145Sdim  // AltOrderSelect - The body of a function that selects the allocation order
202224145Sdim  // to use in a given machine function. The code will be inserted in a
203224145Sdim  // function like this:
204224145Sdim  //
205224145Sdim  //   static inline unsigned f(const MachineFunction &MF) { ... }
206224145Sdim  //
207224145Sdim  // The function should return 0 to select the default order defined by
208224145Sdim  // MemberList, 1 to select the first AltOrders entry and so on.
209224145Sdim  code AltOrderSelect = [{}];
210288943Sdim
211288943Sdim  // Specify allocation priority for register allocators using a greedy
212288943Sdim  // heuristic. Classes with higher priority values are assigned first. This is
213288943Sdim  // useful as it is sometimes beneficial to assign registers to highly
214288943Sdim  // constrained classes first. The value has to be in the range [0,63].
215288943Sdim  int AllocationPriority = 0;
216193323Sed}
217193323Sed
218224145Sdim// The memberList in a RegisterClass is a dag of set operations. TableGen
219224145Sdim// evaluates these set operations and expand them into register lists. These
220224145Sdim// are the most common operation, see test/TableGen/SetTheory.td for more
221224145Sdim// examples of what is possible:
222224145Sdim//
223224145Sdim// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
224224145Sdim// register class, or a sub-expression. This is also the way to simply list
225224145Sdim// registers.
226224145Sdim//
227224145Sdim// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
228224145Sdim//
229224145Sdim// (and GPR, CSR) - Set intersection. All registers from the first set that are
230224145Sdim// also in the second set.
231224145Sdim//
232224145Sdim// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
233239462Sdim// numbered registers.  Takes an optional 4th operand which is a stride to use
234239462Sdim// when generating the sequence.
235224145Sdim//
236224145Sdim// (shl GPR, 4) - Remove the first N elements.
237224145Sdim//
238224145Sdim// (trunc GPR, 4) - Truncate after the first N elements.
239224145Sdim//
240224145Sdim// (rotl GPR, 1) - Rotate N places to the left.
241224145Sdim//
242224145Sdim// (rotr GPR, 1) - Rotate N places to the right.
243224145Sdim//
244224145Sdim// (decimate GPR, 2) - Pick every N'th element, starting with the first.
245224145Sdim//
246234353Sdim// (interleave A, B, ...) - Interleave the elements from each argument list.
247234353Sdim//
248224145Sdim// All of these operators work on ordered sets, not lists. That means
249224145Sdim// duplicates are removed from sub-expressions.
250193323Sed
251224145Sdim// Set operators. The rest is defined in TargetSelectionDAG.td.
252224145Sdimdef sequence;
253224145Sdimdef decimate;
254234353Sdimdef interleave;
255224145Sdim
256224145Sdim// RegisterTuples - Automatically generate super-registers by forming tuples of
257224145Sdim// sub-registers. This is useful for modeling register sequence constraints
258224145Sdim// with pseudo-registers that are larger than the architectural registers.
259224145Sdim//
260224145Sdim// The sub-register lists are zipped together:
261224145Sdim//
262224145Sdim//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
263224145Sdim//
264224145Sdim// Generates the same registers as:
265224145Sdim//
266224145Sdim//   let SubRegIndices = [sube, subo] in {
267224145Sdim//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
268224145Sdim//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
269224145Sdim//   }
270224145Sdim//
271224145Sdim// The generated pseudo-registers inherit super-classes and fields from their
272224145Sdim// first sub-register. Most fields from the Register class are inferred, and
273224145Sdim// the AsmName and Dwarf numbers are cleared.
274224145Sdim//
275224145Sdim// RegisterTuples instances can be used in other set operations to form
276224145Sdim// register classes and so on. This is the only way of using the generated
277224145Sdim// registers.
278224145Sdimclass RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
279224145Sdim  // SubRegs - N lists of registers to be zipped up. Super-registers are
280224145Sdim  // synthesized from the first element of each SubRegs list, the second
281224145Sdim  // element and so on.
282224145Sdim  list<dag> SubRegs = Regs;
283224145Sdim
284224145Sdim  // SubRegIndices - N SubRegIndex instances. This provides the names of the
285224145Sdim  // sub-registers in the synthesized super-registers.
286224145Sdim  list<SubRegIndex> SubRegIndices = Indices;
287224145Sdim}
288224145Sdim
289224145Sdim
290193323Sed//===----------------------------------------------------------------------===//
291193323Sed// DwarfRegNum - This class provides a mapping of the llvm register enumeration
292193323Sed// to the register numbering used by gcc and gdb.  These values are used by a
293206274Srdivacky// debug information writer to describe where values may be located during
294206274Srdivacky// execution.
295193323Sedclass DwarfRegNum<list<int> Numbers> {
296193323Sed  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
297193323Sed  // These values can be determined by locating the <target>.h file in the
298193323Sed  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
299193323Sed  // order of these names correspond to the enumeration used by gcc.  A value of
300218893Sdim  // -1 indicates that the gcc number is undefined and -2 that register number
301218893Sdim  // is invalid for this mode/flavour.
302193323Sed  list<int> DwarfNumbers = Numbers;
303193323Sed}
304193323Sed
305223017Sdim// DwarfRegAlias - This class declares that a given register uses the same dwarf
306223017Sdim// numbers as another one. This is useful for making it clear that the two
307223017Sdim// registers do have the same number. It also lets us build a mapping
308223017Sdim// from dwarf register number to llvm register.
309223017Sdimclass DwarfRegAlias<Register reg> {
310223017Sdim      Register DwarfAlias = reg;
311223017Sdim}
312223017Sdim
313193323Sed//===----------------------------------------------------------------------===//
314193323Sed// Pull in the common support for scheduling
315193323Sed//
316193323Sedinclude "llvm/Target/TargetSchedule.td"
317193323Sed
318193323Sedclass Predicate; // Forward def
319193323Sed
320193323Sed//===----------------------------------------------------------------------===//
321193323Sed// Instruction set description - These classes correspond to the C++ classes in
322193323Sed// the Target/TargetInstrInfo.h file.
323193323Sed//
324193323Sedclass Instruction {
325193323Sed  string Namespace = "";
326193323Sed
327193323Sed  dag OutOperandList;       // An dag containing the MI def operand list.
328193323Sed  dag InOperandList;        // An dag containing the MI use operand list.
329193323Sed  string AsmString = "";    // The .s format to print the instruction with.
330193323Sed
331193323Sed  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
332193323Sed  // otherwise, uninitialized.
333193323Sed  list<dag> Pattern;
334193323Sed
335193323Sed  // The follow state will eventually be inferred automatically from the
336193323Sed  // instruction pattern.
337193323Sed
338193323Sed  list<Register> Uses = []; // Default to using no non-operand registers
339193323Sed  list<Register> Defs = []; // Default to modifying no non-operand registers
340193323Sed
341193323Sed  // Predicates - List of predicates which will be turned into isel matching
342193323Sed  // code.
343193323Sed  list<Predicate> Predicates = [];
344193323Sed
345224145Sdim  // Size - Size of encoded instruction, or zero if the size cannot be determined
346224145Sdim  // from the opcode.
347224145Sdim  int Size = 0;
348224145Sdim
349226633Sdim  // DecoderNamespace - The "namespace" in which this instruction exists, on
350226633Sdim  // targets like ARM which multiple ISA namespaces exist.
351226633Sdim  string DecoderNamespace = "";
352226633Sdim
353224145Sdim  // Code size, for instruction selection.
354224145Sdim  // FIXME: What does this actually mean?
355193323Sed  int CodeSize = 0;
356193323Sed
357193323Sed  // Added complexity passed onto matching pattern.
358193323Sed  int AddedComplexity  = 0;
359193323Sed
360193323Sed  // These bits capture information about the high-level semantics of the
361193323Sed  // instruction.
362193323Sed  bit isReturn     = 0;     // Is this instruction a return instruction?
363193323Sed  bit isBranch     = 0;     // Is this instruction a branch instruction?
364193323Sed  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
365212904Sdim  bit isCompare    = 0;     // Is this instruction a comparison instruction?
366218893Sdim  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
367221345Sdim  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
368239462Sdim  bit isSelect     = 0;     // Is this instruction a select instruction?
369193323Sed  bit isBarrier    = 0;     // Can control flow fall through this instruction?
370193323Sed  bit isCall       = 0;     // Is this instruction a call instruction?
371193323Sed  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
372243830Sdim  bit mayLoad      = ?;     // Is it possible for this inst to read memory?
373243830Sdim  bit mayStore     = ?;     // Is it possible for this inst to write memory?
374193323Sed  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
375193323Sed  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
376193323Sed  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
377193323Sed  bit isReMaterializable = 0; // Is this instruction re-materializable?
378193323Sed  bit isPredicable = 0;     // Is this instruction predicable?
379193323Sed  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
380198892Srdivacky  bit usesCustomInserter = 0; // Pseudo instr needing special help.
381226633Sdim  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
382193323Sed  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
383193323Sed  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
384288943Sdim  bit isConvergent = 0;     // Is this instruction convergent?
385193323Sed  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
386198090Srdivacky  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
387198090Srdivacky  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
388280031Sdim  bit isRegSequence = 0;    // Is this instruction a kind of reg sequence?
389280031Sdim                            // If so, make sure to override
390280031Sdim                            // TargetInstrInfo::getRegSequenceLikeInputs.
391224145Sdim  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
392224145Sdim                            // If so, won't have encoding information for
393224145Sdim                            // the [MC]CodeEmitter stuff.
394280031Sdim  bit isExtractSubreg = 0;  // Is this instruction a kind of extract subreg?
395280031Sdim                             // If so, make sure to override
396280031Sdim                             // TargetInstrInfo::getExtractSubregLikeInputs.
397280031Sdim  bit isInsertSubreg = 0;   // Is this instruction a kind of insert subreg?
398280031Sdim                            // If so, make sure to override
399280031Sdim                            // TargetInstrInfo::getInsertSubregLikeInputs.
400193323Sed
401193323Sed  // Side effect flags - When set, the flags have these meanings:
402193323Sed  //
403193323Sed  //  hasSideEffects - The instruction has side effects that are not
404193323Sed  //    captured by any operands of the instruction or other flags.
405193323Sed  //
406243830Sdim  bit hasSideEffects = ?;
407193323Sed
408198090Srdivacky  // Is this instruction a "real" instruction (with a distinct machine
409198090Srdivacky  // encoding), or is it a pseudo instruction used for codegen modeling
410198090Srdivacky  // purposes.
411224145Sdim  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
412224145Sdim  // instructions can (and often do) still have encoding information
413224145Sdim  // associated with them. Once we've migrated all of them over to true
414224145Sdim  // pseudo-instructions that are lowered to real instructions prior to
415224145Sdim  // the printer/emitter, we can remove this attribute and just use isPseudo.
416234353Sdim  //
417234353Sdim  // The intended use is:
418234353Sdim  // isPseudo: Does not have encoding information and should be expanded,
419234353Sdim  //   at the latest, during lowering to MCInst.
420234353Sdim  //
421234353Sdim  // isCodeGenOnly: Does have encoding information and can go through to the
422234353Sdim  //   CodeEmitter unchanged, but duplicates a canonical instruction
423234353Sdim  //   definition's encoding and should be ignored when constructing the
424234353Sdim  //   assembler match tables.
425198090Srdivacky  bit isCodeGenOnly = 0;
426198090Srdivacky
427208599Srdivacky  // Is this instruction a pseudo instruction for use by the assembler parser.
428208599Srdivacky  bit isAsmParserOnly = 0;
429208599Srdivacky
430193323Sed  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
431193323Sed
432249423Sdim  // Scheduling information from TargetSchedule.td.
433249423Sdim  list<SchedReadWrite> SchedRW;
434249423Sdim
435193323Sed  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
436206274Srdivacky
437193323Sed  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
438193323Sed  /// be encoded into the output machineinstr.
439193323Sed  string DisableEncoding = "";
440206274Srdivacky
441218893Sdim  string PostEncoderMethod = "";
442218893Sdim  string DecoderMethod = "";
443218893Sdim
444296417Sdim  // Is the instruction decoder method able to completely determine if the
445296417Sdim  // given instruction is valid or not. If the TableGen definition of the
446296417Sdim  // instruction specifies bitpattern A??B where A and B are static bits, the
447296417Sdim  // hasCompleteDecoder flag says whether the decoder method fully handles the
448296417Sdim  // ?? space, i.e. if it is a final arbiter for the instruction validity.
449296417Sdim  // If not then the decoder attempts to continue decoding when the decoder
450296417Sdim  // method fails.
451296417Sdim  //
452296417Sdim  // This allows to handle situations where the encoding is not fully
453296417Sdim  // orthogonal. Example:
454296417Sdim  // * InstA with bitpattern 0b0000????,
455296417Sdim  // * InstB with bitpattern 0b000000?? but the associated decoder method
456296417Sdim  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
457296417Sdim  //
458296417Sdim  // The decoder tries to decode a bitpattern that matches both InstA and
459296417Sdim  // InstB bitpatterns first as InstB (because it is the most specific
460296417Sdim  // encoding). In the default case (hasCompleteDecoder = 1), when
461296417Sdim  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
462296417Sdim  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
463296417Sdim  // DecodeInstB() is not able to determine if all possible values of ?? are
464296417Sdim  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
465296417Sdim  // decode the bitpattern as InstA too.
466296417Sdim  bit hasCompleteDecoder = 1;
467296417Sdim
468206274Srdivacky  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
469210299Sed  bits<64> TSFlags = 0;
470218893Sdim
471218893Sdim  ///@name Assembler Parser Support
472218893Sdim  ///@{
473218893Sdim
474218893Sdim  string AsmMatchConverter = "";
475218893Sdim
476239462Sdim  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
477239462Sdim  /// two-operand matcher inst-alias for a three operand instruction.
478239462Sdim  /// For example, the arm instruction "add r3, r3, r5" can be written
479239462Sdim  /// as "add r3, r5". The constraint is of the same form as a tied-operand
480239462Sdim  /// constraint. For example, "$Rn = $Rd".
481239462Sdim  string TwoOperandAliasConstraint = "";
482239462Sdim
483218893Sdim  ///@}
484261991Sdim
485261991Sdim  /// UseNamedOperandTable - If set, the operand indices of this instruction
486261991Sdim  /// can be queried via the getNamedOperandIdx() function which is generated
487261991Sdim  /// by TableGen.
488261991Sdim  bit UseNamedOperandTable = 0;
489193323Sed}
490193323Sed
491224145Sdim/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
492224145Sdim/// Which instruction it expands to and how the operands map from the
493224145Sdim/// pseudo.
494224145Sdimclass PseudoInstExpansion<dag Result> {
495224145Sdim  dag ResultInst = Result;     // The instruction to generate.
496224145Sdim  bit isPseudo = 1;
497224145Sdim}
498224145Sdim
499193323Sed/// Predicates - These are extra conditionals which are turned into instruction
500193323Sed/// selector matching code. Currently each predicate is just a string.
501193323Sedclass Predicate<string cond> {
502193323Sed  string CondString = cond;
503218893Sdim
504218893Sdim  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
505218893Sdim  /// matcher, this is true.  Targets should set this by inheriting their
506218893Sdim  /// feature from the AssemblerPredicate class in addition to Predicate.
507218893Sdim  bit AssemblerMatcherPredicate = 0;
508224145Sdim
509224145Sdim  /// AssemblerCondString - Name of the subtarget feature being tested used
510224145Sdim  /// as alternative condition string used for assembler matcher.
511224145Sdim  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
512224145Sdim  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
513224145Sdim  /// It can also list multiple features separated by ",".
514224145Sdim  /// e.g. "ModeThumb,FeatureThumb2" is translated to
515224145Sdim  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
516224145Sdim  string AssemblerCondString = "";
517239462Sdim
518239462Sdim  /// PredicateName - User-level name to use for the predicate. Mainly for use
519239462Sdim  /// in diagnostics such as missing feature errors in the asm matcher.
520239462Sdim  string PredicateName = "";
521193323Sed}
522193323Sed
523193323Sed/// NoHonorSignDependentRounding - This predicate is true if support for
524193323Sed/// sign-dependent-rounding is not enabled.
525193323Seddef NoHonorSignDependentRounding
526234353Sdim : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
527193323Sed
528193323Sedclass Requires<list<Predicate> preds> {
529193323Sed  list<Predicate> Predicates = preds;
530193323Sed}
531193323Sed
532218893Sdim/// ops definition - This is just a simple marker used to identify the operand
533218893Sdim/// list for an instruction. outs and ins are identical both syntactically and
534288943Sdim/// semantically; they are used to define def operands and use operands to
535193323Sed/// improve readibility. This should be used like this:
536193323Sed///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
537193323Seddef ops;
538193323Seddef outs;
539193323Seddef ins;
540193323Sed
541193323Sed/// variable_ops definition - Mark this instruction as taking a variable number
542193323Sed/// of operands.
543193323Seddef variable_ops;
544193323Sed
545198090Srdivacky
546198090Srdivacky/// PointerLikeRegClass - Values that are designed to have pointer width are
547198090Srdivacky/// derived from this.  TableGen treats the register class as having a symbolic
548198090Srdivacky/// type that it doesn't know, and resolves the actual regclass to use by using
549198090Srdivacky/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
550198090Srdivackyclass PointerLikeRegClass<int Kind> {
551198090Srdivacky  int RegClassKind = Kind;
552198090Srdivacky}
553198090Srdivacky
554198090Srdivacky
555193323Sed/// ptr_rc definition - Mark this operand as being a pointer value whose
556193323Sed/// register class is resolved dynamically via a callback to TargetInstrInfo.
557193323Sed/// FIXME: We should probably change this to a class which contain a list of
558193323Sed/// flags. But currently we have but one flag.
559198090Srdivackydef ptr_rc : PointerLikeRegClass<0>;
560193323Sed
561193323Sed/// unknown definition - Mark this operand as being of unknown type, causing
562193323Sed/// it to be resolved by inference in the context it is used.
563243830Sdimclass unknown_class;
564243830Sdimdef unknown : unknown_class;
565193323Sed
566198090Srdivacky/// AsmOperandClass - Representation for the kinds of operands which the target
567198090Srdivacky/// specific parser can create and the assembly matcher may need to distinguish.
568198090Srdivacky///
569198090Srdivacky/// Operand classes are used to define the order in which instructions are
570198090Srdivacky/// matched, to ensure that the instruction which gets matched for any
571198090Srdivacky/// particular list of operands is deterministic.
572198090Srdivacky///
573198090Srdivacky/// The target specific parser must be able to classify a parsed operand into a
574198090Srdivacky/// unique class which does not partially overlap with any other classes. It can
575198090Srdivacky/// match a subset of some other class, in which case the super class field
576198090Srdivacky/// should be defined.
577198090Srdivackyclass AsmOperandClass {
578198090Srdivacky  /// The name to use for this class, which should be usable as an enum value.
579198090Srdivacky  string Name = ?;
580198090Srdivacky
581208599Srdivacky  /// The super classes of this operand.
582208599Srdivacky  list<AsmOperandClass> SuperClasses = [];
583198090Srdivacky
584198090Srdivacky  /// The name of the method on the target specific operand to call to test
585198090Srdivacky  /// whether the operand is an instance of this class. If not set, this will
586198090Srdivacky  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
587198090Srdivacky  /// signature should be:
588198090Srdivacky  ///   bool isFoo() const;
589198090Srdivacky  string PredicateMethod = ?;
590198090Srdivacky
591198090Srdivacky  /// The name of the method on the target specific operand to call to add the
592198090Srdivacky  /// target specific operand to an MCInst. If not set, this will default to
593198090Srdivacky  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
594198090Srdivacky  /// signature should be:
595198090Srdivacky  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
596198090Srdivacky  string RenderMethod = ?;
597218893Sdim
598218893Sdim  /// The name of the method on the target specific operand to call to custom
599218893Sdim  /// handle the operand parsing. This is useful when the operands do not relate
600218893Sdim  /// to immediates or registers and are very instruction specific (as flags to
601218893Sdim  /// set in a processor register, coprocessor number, ...).
602218893Sdim  string ParserMethod = ?;
603239462Sdim
604239462Sdim  // The diagnostic type to present when referencing this operand in a
605239462Sdim  // match failure error message. By default, use a generic "invalid operand"
606239462Sdim  // diagnostic. The target AsmParser maps these codes to text.
607239462Sdim  string DiagnosticType = "";
608198090Srdivacky}
609198090Srdivacky
610198090Srdivackydef ImmAsmOperand : AsmOperandClass {
611198090Srdivacky  let Name = "Imm";
612198090Srdivacky}
613218893Sdim
614193323Sed/// Operand Types - These provide the built-in operand types that may be used
615193323Sed/// by a target.  Targets can optionally provide their own operand types as
616193323Sed/// needed, though this should not be needed for RISC targets.
617239462Sdimclass Operand<ValueType ty> : DAGOperand {
618193323Sed  ValueType Type = ty;
619193323Sed  string PrintMethod = "printOperand";
620218893Sdim  string EncoderMethod = "";
621218893Sdim  string DecoderMethod = "";
622296417Sdim  bit hasCompleteDecoder = 1;
623296417Sdim  string OperandNamespace = "MCOI";
624224145Sdim  string OperandType = "OPERAND_UNKNOWN";
625193323Sed  dag MIOperandInfo = (ops);
626198090Srdivacky
627276479Sdim  // MCOperandPredicate - Optionally, a code fragment operating on
628276479Sdim  // const MCOperand &MCOp, and returning a bool, to indicate if
629276479Sdim  // the value of MCOp is valid for the specific subclass of Operand
630276479Sdim  code MCOperandPredicate;
631276479Sdim
632198090Srdivacky  // ParserMatchClass - The "match class" that operands of this type fit
633198090Srdivacky  // in. Match classes are used to define the order in which instructions are
634198090Srdivacky  // match, to ensure that which instructions gets matched is deterministic.
635198090Srdivacky  //
636208599Srdivacky  // The target specific parser must be able to classify an parsed operand into
637208599Srdivacky  // a unique class, which does not partially overlap with any other classes. It
638208599Srdivacky  // can match a subset of some other class, in which case the AsmOperandClass
639208599Srdivacky  // should declare the other operand as one of its super classes.
640198090Srdivacky  AsmOperandClass ParserMatchClass = ImmAsmOperand;
641193323Sed}
642193323Sed
643239462Sdimclass RegisterOperand<RegisterClass regclass, string pm = "printOperand">
644239462Sdim  : DAGOperand {
645224145Sdim  // RegClass - The register class of the operand.
646224145Sdim  RegisterClass RegClass = regclass;
647224145Sdim  // PrintMethod - The target method to call to print register operands of
648224145Sdim  // this type. The method normally will just use an alt-name index to look
649224145Sdim  // up the name to print. Default to the generic printOperand().
650224145Sdim  string PrintMethod = pm;
651224145Sdim  // ParserMatchClass - The "match class" that operands of this type fit
652224145Sdim  // in. Match classes are used to define the order in which instructions are
653224145Sdim  // match, to ensure that which instructions gets matched is deterministic.
654224145Sdim  //
655224145Sdim  // The target specific parser must be able to classify an parsed operand into
656224145Sdim  // a unique class, which does not partially overlap with any other classes. It
657224145Sdim  // can match a subset of some other class, in which case the AsmOperandClass
658224145Sdim  // should declare the other operand as one of its super classes.
659224145Sdim  AsmOperandClass ParserMatchClass;
660280031Sdim
661280031Sdim  string OperandNamespace = "MCOI";
662280031Sdim  string OperandType = "OPERAND_REGISTER";
663224145Sdim}
664224145Sdim
665224145Sdimlet OperandType = "OPERAND_IMMEDIATE" in {
666193323Seddef i1imm  : Operand<i1>;
667193323Seddef i8imm  : Operand<i8>;
668193323Seddef i16imm : Operand<i16>;
669193323Seddef i32imm : Operand<i32>;
670193323Seddef i64imm : Operand<i64>;
671193323Sed
672193323Seddef f32imm : Operand<f32>;
673193323Seddef f64imm : Operand<f64>;
674224145Sdim}
675193323Sed
676193323Sed/// zero_reg definition - Special node to stand for the zero register.
677193323Sed///
678193323Seddef zero_reg;
679193323Sed
680261991Sdim/// All operands which the MC layer classifies as predicates should inherit from
681261991Sdim/// this class in some manner. This is already handled for the most commonly
682261991Sdim/// used PredicateOperand, but may be useful in other circumstances.
683261991Sdimclass PredicateOp;
684261991Sdim
685243830Sdim/// OperandWithDefaultOps - This Operand class can be used as the parent class
686243830Sdim/// for an Operand that needs to be initialized with a default value if
687243830Sdim/// no value is supplied in a pattern.  This class can be used to simplify the
688243830Sdim/// pattern definitions for instructions that have target specific flags
689243830Sdim/// encoded as immediate operands.
690243830Sdimclass OperandWithDefaultOps<ValueType ty, dag defaultops>
691243830Sdim  : Operand<ty> {
692243830Sdim  dag DefaultOps = defaultops;
693243830Sdim}
694243830Sdim
695193323Sed/// PredicateOperand - This can be used to define a predicate operand for an
696193323Sed/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
697193323Sed/// AlwaysVal specifies the value of this predicate when set to "always
698193323Sed/// execute".
699193323Sedclass PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
700261991Sdim  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
701193323Sed  let MIOperandInfo = OpTypes;
702193323Sed}
703193323Sed
704193323Sed/// OptionalDefOperand - This is used to define a optional definition operand
705198090Srdivacky/// for an instruction. DefaultOps is the register the operand represents if
706198090Srdivacky/// none is supplied, e.g. zero_reg.
707193323Sedclass OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
708243830Sdim  : OperandWithDefaultOps<ty, defaultops> {
709193323Sed  let MIOperandInfo = OpTypes;
710193323Sed}
711193323Sed
712193323Sed
713193323Sed// InstrInfo - This class should only be instantiated once to provide parameters
714203954Srdivacky// which are global to the target machine.
715193323Sed//
716193323Sedclass InstrInfo {
717193323Sed  // Target can specify its instructions in either big or little-endian formats.
718193323Sed  // For instance, while both Sparc and PowerPC are big-endian platforms, the
719193323Sed  // Sparc manual specifies its instructions in the format [31..0] (big), while
720193323Sed  // PowerPC specifies them using the format [0..31] (little).
721193323Sed  bit isLittleEndianEncoding = 0;
722243830Sdim
723243830Sdim  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
724243830Sdim  // by default, and TableGen will infer their value from the instruction
725243830Sdim  // pattern when possible.
726243830Sdim  //
727243830Sdim  // Normally, TableGen will issue an error it it can't infer the value of a
728243830Sdim  // property that hasn't been set explicitly. When guessInstructionProperties
729243830Sdim  // is set, it will guess a safe value instead.
730243830Sdim  //
731243830Sdim  // This option is a temporary migration help. It will go away.
732243830Sdim  bit guessInstructionProperties = 1;
733276479Sdim
734276479Sdim  // TableGen's instruction encoder generator has support for matching operands
735276479Sdim  // to bit-field variables both by name and by position. While matching by
736276479Sdim  // name is preferred, this is currently not possible for complex operands,
737276479Sdim  // and some targets still reply on the positional encoding rules. When
738276479Sdim  // generating a decoder for such targets, the positional encoding rules must
739276479Sdim  // be used by the decoder generator as well.
740276479Sdim  //
741276479Sdim  // This option is temporary; it will go away once the TableGen decoder
742276479Sdim  // generator has better support for complex operands and targets have
743276479Sdim  // migrated away from using positionally encoded operands.
744276479Sdim  bit decodePositionallyEncodedOperands = 0;
745276479Sdim
746276479Sdim  // When set, this indicates that there will be no overlap between those
747276479Sdim  // operands that are matched by ordering (positional operands) and those
748276479Sdim  // matched by name.
749276479Sdim  //
750276479Sdim  // This option is temporary; it will go away once the TableGen decoder
751276479Sdim  // generator has better support for complex operands and targets have
752276479Sdim  // migrated away from using positionally encoded operands.
753276479Sdim  bit noNamedPositionallyEncodedOperands = 0;
754193323Sed}
755193323Sed
756198090Srdivacky// Standard Pseudo Instructions.
757210299Sed// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
758210299Sed// Only these instructions are allowed in the TargetOpcode namespace.
759226633Sdimlet isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
760193323Seddef PHI : Instruction {
761205407Srdivacky  let OutOperandList = (outs);
762205407Srdivacky  let InOperandList = (ins variable_ops);
763193323Sed  let AsmString = "PHINODE";
764193323Sed}
765193323Seddef INLINEASM : Instruction {
766205407Srdivacky  let OutOperandList = (outs);
767205407Srdivacky  let InOperandList = (ins variable_ops);
768193323Sed  let AsmString = "";
769280031Sdim  let hasSideEffects = 0;  // Note side effect is encoded in an operand.
770193323Sed}
771276479Sdimdef CFI_INSTRUCTION : Instruction {
772205407Srdivacky  let OutOperandList = (outs);
773205407Srdivacky  let InOperandList = (ins i32imm:$id);
774193323Sed  let AsmString = "";
775193323Sed  let hasCtrlDep = 1;
776199481Srdivacky  let isNotDuplicable = 1;
777193323Sed}
778193323Seddef EH_LABEL : Instruction {
779205407Srdivacky  let OutOperandList = (outs);
780205407Srdivacky  let InOperandList = (ins i32imm:$id);
781193323Sed  let AsmString = "";
782193323Sed  let hasCtrlDep = 1;
783199481Srdivacky  let isNotDuplicable = 1;
784193323Sed}
785193323Seddef GC_LABEL : Instruction {
786205407Srdivacky  let OutOperandList = (outs);
787205407Srdivacky  let InOperandList = (ins i32imm:$id);
788193323Sed  let AsmString = "";
789193323Sed  let hasCtrlDep = 1;
790199481Srdivacky  let isNotDuplicable = 1;
791193323Sed}
792198090Srdivackydef KILL : Instruction {
793205407Srdivacky  let OutOperandList = (outs);
794205407Srdivacky  let InOperandList = (ins variable_ops);
795193323Sed  let AsmString = "";
796280031Sdim  let hasSideEffects = 0;
797193323Sed}
798193323Seddef EXTRACT_SUBREG : Instruction {
799205407Srdivacky  let OutOperandList = (outs unknown:$dst);
800205407Srdivacky  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
801193323Sed  let AsmString = "";
802280031Sdim  let hasSideEffects = 0;
803193323Sed}
804193323Seddef INSERT_SUBREG : Instruction {
805205407Srdivacky  let OutOperandList = (outs unknown:$dst);
806205407Srdivacky  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
807193323Sed  let AsmString = "";
808280031Sdim  let hasSideEffects = 0;
809193323Sed  let Constraints = "$supersrc = $dst";
810193323Sed}
811193323Seddef IMPLICIT_DEF : Instruction {
812205407Srdivacky  let OutOperandList = (outs unknown:$dst);
813205407Srdivacky  let InOperandList = (ins);
814193323Sed  let AsmString = "";
815280031Sdim  let hasSideEffects = 0;
816193323Sed  let isReMaterializable = 1;
817193323Sed  let isAsCheapAsAMove = 1;
818193323Sed}
819193323Seddef SUBREG_TO_REG : Instruction {
820205407Srdivacky  let OutOperandList = (outs unknown:$dst);
821205407Srdivacky  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
822193323Sed  let AsmString = "";
823280031Sdim  let hasSideEffects = 0;
824193323Sed}
825193323Seddef COPY_TO_REGCLASS : Instruction {
826205407Srdivacky  let OutOperandList = (outs unknown:$dst);
827205407Srdivacky  let InOperandList = (ins unknown:$src, i32imm:$regclass);
828193323Sed  let AsmString = "";
829280031Sdim  let hasSideEffects = 0;
830193323Sed  let isAsCheapAsAMove = 1;
831193323Sed}
832203954Srdivackydef DBG_VALUE : Instruction {
833205407Srdivacky  let OutOperandList = (outs);
834205407Srdivacky  let InOperandList = (ins variable_ops);
835203954Srdivacky  let AsmString = "DBG_VALUE";
836280031Sdim  let hasSideEffects = 0;
837198090Srdivacky}
838207618Srdivackydef REG_SEQUENCE : Instruction {
839207618Srdivacky  let OutOperandList = (outs unknown:$dst);
840280031Sdim  let InOperandList = (ins unknown:$supersrc, variable_ops);
841207618Srdivacky  let AsmString = "";
842280031Sdim  let hasSideEffects = 0;
843207618Srdivacky  let isAsCheapAsAMove = 1;
844202375Srdivacky}
845210299Seddef COPY : Instruction {
846210299Sed  let OutOperandList = (outs unknown:$dst);
847210299Sed  let InOperandList = (ins unknown:$src);
848210299Sed  let AsmString = "";
849280031Sdim  let hasSideEffects = 0;
850210299Sed  let isAsCheapAsAMove = 1;
851207618Srdivacky}
852234353Sdimdef BUNDLE : Instruction {
853234353Sdim  let OutOperandList = (outs);
854234353Sdim  let InOperandList = (ins variable_ops);
855234353Sdim  let AsmString = "BUNDLE";
856210299Sed}
857243830Sdimdef LIFETIME_START : Instruction {
858243830Sdim  let OutOperandList = (outs);
859243830Sdim  let InOperandList = (ins i32imm:$id);
860243830Sdim  let AsmString = "LIFETIME_START";
861280031Sdim  let hasSideEffects = 0;
862234353Sdim}
863243830Sdimdef LIFETIME_END : Instruction {
864243830Sdim  let OutOperandList = (outs);
865243830Sdim  let InOperandList = (ins i32imm:$id);
866243830Sdim  let AsmString = "LIFETIME_END";
867280031Sdim  let hasSideEffects = 0;
868243830Sdim}
869261991Sdimdef STACKMAP : Instruction {
870261991Sdim  let OutOperandList = (outs);
871276479Sdim  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
872261991Sdim  let isCall = 1;
873261991Sdim  let mayLoad = 1;
874276479Sdim  let usesCustomInserter = 1;
875243830Sdim}
876261991Sdimdef PATCHPOINT : Instruction {
877261991Sdim  let OutOperandList = (outs unknown:$dst);
878276479Sdim  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
879261991Sdim                       i32imm:$nargs, i32imm:$cc, variable_ops);
880261991Sdim  let isCall = 1;
881261991Sdim  let mayLoad = 1;
882276479Sdim  let usesCustomInserter = 1;
883261991Sdim}
884280031Sdimdef STATEPOINT : Instruction {
885280031Sdim  let OutOperandList = (outs);
886280031Sdim  let InOperandList = (ins variable_ops);
887280031Sdim  let usesCustomInserter = 1;
888280031Sdim  let mayLoad = 1;
889280031Sdim  let mayStore = 1;
890280031Sdim  let hasSideEffects = 1;
891280031Sdim  let isCall = 1;
892261991Sdim}
893280031Sdimdef LOAD_STACK_GUARD : Instruction {
894280031Sdim  let OutOperandList = (outs ptr_rc:$dst);
895280031Sdim  let InOperandList = (ins);
896280031Sdim  let mayLoad = 1;
897280031Sdim  bit isReMaterializable = 1;
898280031Sdim  let hasSideEffects = 0;
899280031Sdim  bit isPseudo = 1;
900280031Sdim}
901288943Sdimdef LOCAL_ESCAPE : Instruction {
902280031Sdim  // This instruction is really just a label. It has to be part of the chain so
903280031Sdim  // that it doesn't get dropped from the DAG, but it produces nothing and has
904280031Sdim  // no side effects.
905280031Sdim  let OutOperandList = (outs);
906280031Sdim  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
907280031Sdim  let hasSideEffects = 0;
908280031Sdim  let hasCtrlDep = 1;
909280031Sdim}
910288943Sdimdef FAULTING_LOAD_OP : Instruction {
911288943Sdim  let OutOperandList = (outs unknown:$dst);
912288943Sdim  let InOperandList = (ins variable_ops);
913288943Sdim  let usesCustomInserter = 1;
914288943Sdim  let mayLoad = 1;
915280031Sdim}
916288943Sdim}
917193323Sed
918193323Sed//===----------------------------------------------------------------------===//
919207618Srdivacky// AsmParser - This class can be implemented by targets that wish to implement
920198090Srdivacky// .s file parsing.
921198090Srdivacky//
922207618Srdivacky// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
923198090Srdivacky// syntax on X86 for example).
924198090Srdivacky//
925198090Srdivackyclass AsmParser {
926198090Srdivacky  // AsmParserClassName - This specifies the suffix to use for the asmparser
927198090Srdivacky  // class.  Generated AsmParser classes are always prefixed with the target
928198090Srdivacky  // name.
929198090Srdivacky  string AsmParserClassName  = "AsmParser";
930205407Srdivacky
931218893Sdim  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
932218893Sdim  // function of the AsmParser class to call on every matched instruction.
933218893Sdim  // This can be used to perform target specific instruction post-processing.
934205407Srdivacky  string AsmParserInstCleanup  = "";
935243830Sdim
936251662Sdim  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
937251662Sdim  // written register name matcher
938243830Sdim  bit ShouldEmitMatchRegisterName = 1;
939261991Sdim
940296417Sdim  // HasMnemonicFirst - Set to false if target instructions don't always
941296417Sdim  // start with a mnemonic as the first token.
942296417Sdim  bit HasMnemonicFirst = 1;
943234353Sdim}
944234353Sdimdef DefaultAsmParser : AsmParser;
945207618Srdivacky
946234353Sdim//===----------------------------------------------------------------------===//
947239462Sdim// AsmParserVariant - Subtargets can have multiple different assembly parsers
948234353Sdim// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
949234353Sdim// implemented by targets to describe such variants.
950234353Sdim//
951234353Sdimclass AsmParserVariant {
952198090Srdivacky  // Variant - AsmParsers can be of multiple different variants.  Variants are
953207618Srdivacky  // used to support targets that need to parser multiple formats for the
954198090Srdivacky  // assembly language.
955198090Srdivacky  int Variant = 0;
956198090Srdivacky
957251662Sdim  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
958251662Sdim  string Name = "";
959251662Sdim
960198090Srdivacky  // CommentDelimiter - If given, the delimiter string used to recognize
961198090Srdivacky  // comments which are hard coded in the .td assembler strings for individual
962198090Srdivacky  // instructions.
963198090Srdivacky  string CommentDelimiter = "";
964198090Srdivacky
965198090Srdivacky  // RegisterPrefix - If given, the token prefix which indicates a register
966198090Srdivacky  // token. This is used by the matcher to automatically recognize hard coded
967198090Srdivacky  // register tokens as constrained registers, instead of tokens, for the
968198090Srdivacky  // purposes of matching.
969198090Srdivacky  string RegisterPrefix = "";
970296417Sdim
971296417Sdim  // TokenizingCharacters - Characters that are standalone tokens
972296417Sdim  string TokenizingCharacters = "[]*!";
973296417Sdim
974296417Sdim  // SeparatorCharacters - Characters that are not tokens
975296417Sdim  string SeparatorCharacters = " \t,";
976296417Sdim
977296417Sdim  // BreakCharacters - Characters that start new identifiers
978296417Sdim  string BreakCharacters = "";
979198090Srdivacky}
980234353Sdimdef DefaultAsmParserVariant : AsmParserVariant;
981198090Srdivacky
982218893Sdim/// AssemblerPredicate - This is a Predicate that can be used when the assembler
983218893Sdim/// matches instructions and aliases.
984239462Sdimclass AssemblerPredicate<string cond, string name = ""> {
985218893Sdim  bit AssemblerMatcherPredicate = 1;
986224145Sdim  string AssemblerCondString = cond;
987239462Sdim  string PredicateName = name;
988218893Sdim}
989198090Srdivacky
990234353Sdim/// TokenAlias - This class allows targets to define assembler token
991234353Sdim/// operand aliases. That is, a token literal operand which is equivalent
992234353Sdim/// to another, canonical, token literal. For example, ARM allows:
993234353Sdim///   vmov.u32 s4, #0  -> vmov.i32, #0
994234353Sdim/// 'u32' is a more specific designator for the 32-bit integer type specifier
995234353Sdim/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
996234353Sdim///   def : TokenAlias<".u32", ".i32">;
997234353Sdim///
998234353Sdim/// This works by marking the match class of 'From' as a subclass of the
999234353Sdim/// match class of 'To'.
1000234353Sdimclass TokenAlias<string From, string To> {
1001234353Sdim  string FromToken = From;
1002234353Sdim  string ToToken = To;
1003234353Sdim}
1004218893Sdim
1005218893Sdim/// MnemonicAlias - This class allows targets to define assembler mnemonic
1006218893Sdim/// aliases.  This should be used when all forms of one mnemonic are accepted
1007218893Sdim/// with a different mnemonic.  For example, X86 allows:
1008218893Sdim///   sal %al, 1    -> shl %al, 1
1009218893Sdim///   sal %ax, %cl  -> shl %ax, %cl
1010218893Sdim///   sal %eax, %cl -> shl %eax, %cl
1011218893Sdim/// etc.  Though "sal" is accepted with many forms, all of them are directly
1012218893Sdim/// translated to a shl, so it can be handled with (in the case of X86, it
1013218893Sdim/// actually has one for each suffix as well):
1014218893Sdim///   def : MnemonicAlias<"sal", "shl">;
1015218893Sdim///
1016218893Sdim/// Mnemonic aliases are mapped before any other translation in the match phase,
1017218893Sdim/// and do allow Requires predicates, e.g.:
1018218893Sdim///
1019218893Sdim///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1020218893Sdim///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1021218893Sdim///
1022251662Sdim/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1023251662Sdim///
1024251662Sdim///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1025251662Sdim///
1026251662Sdim/// If no variant (e.g., "att" or "intel") is specified then the alias is
1027251662Sdim/// applied unconditionally.
1028251662Sdimclass MnemonicAlias<string From, string To, string VariantName = ""> {
1029218893Sdim  string FromMnemonic = From;
1030218893Sdim  string ToMnemonic = To;
1031251662Sdim  string AsmVariantName = VariantName;
1032218893Sdim
1033218893Sdim  // Predicates - Predicates that must be true for this remapping to happen.
1034218893Sdim  list<Predicate> Predicates = [];
1035218893Sdim}
1036218893Sdim
1037218893Sdim/// InstAlias - This defines an alternate assembly syntax that is allowed to
1038218893Sdim/// match an instruction that has a different (more canonical) assembly
1039218893Sdim/// representation.
1040276479Sdimclass InstAlias<string Asm, dag Result, int Emit = 1> {
1041218893Sdim  string AsmString = Asm;      // The .s format to match the instruction with.
1042218893Sdim  dag ResultInst = Result;     // The MCInst to generate.
1043218893Sdim
1044276479Sdim  // This determines which order the InstPrinter detects aliases for
1045276479Sdim  // printing. A larger value makes the alias more likely to be
1046276479Sdim  // emitted. The Instruction's own definition is notionally 0.5, so 0
1047276479Sdim  // disables printing and 1 enables it if there are no conflicting aliases.
1048276479Sdim  int EmitPriority = Emit;
1049276479Sdim
1050218893Sdim  // Predicates - Predicates that must be true for this to match.
1051218893Sdim  list<Predicate> Predicates = [];
1052288943Sdim
1053288943Sdim  // If the instruction specified in Result has defined an AsmMatchConverter
1054288943Sdim  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1055288943Sdim  // function when converting the OperandVector into an MCInst instead of the
1056288943Sdim  // function that is generated by the dag Result.
1057288943Sdim  // Setting this to 0 will cause the alias to ignore the Result instruction's
1058288943Sdim  // defined AsmMatchConverter and instead use the function generated by the
1059288943Sdim  // dag Result.
1060288943Sdim  bit UseInstAsmMatchConverter = 1;
1061218893Sdim}
1062218893Sdim
1063198090Srdivacky//===----------------------------------------------------------------------===//
1064193323Sed// AsmWriter - This class can be implemented by targets that need to customize
1065193323Sed// the format of the .s file writer.
1066193323Sed//
1067193323Sed// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1068193323Sed// on X86 for example).
1069193323Sed//
1070193323Sedclass AsmWriter {
1071193323Sed  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1072193323Sed  // class.  Generated AsmWriter classes are always prefixed with the target
1073193323Sed  // name.
1074276479Sdim  string AsmWriterClassName  = "InstPrinter";
1075193323Sed
1076288943Sdim  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1077288943Sdim  // the various print methods.
1078288943Sdim  // FIXME: Remove after all ports are updated.
1079288943Sdim  int PassSubtarget = 0;
1080288943Sdim
1081193323Sed  // Variant - AsmWriters can be of multiple different variants.  Variants are
1082193323Sed  // used to support targets that need to emit assembly code in ways that are
1083193323Sed  // mostly the same for different targets, but have minor differences in
1084193323Sed  // syntax.  If the asmstring contains {|} characters in them, this integer
1085193323Sed  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1086193323Sed  // == 1, will expand to "y".
1087193323Sed  int Variant = 0;
1088193323Sed}
1089193323Seddef DefaultAsmWriter : AsmWriter;
1090193323Sed
1091193323Sed
1092193323Sed//===----------------------------------------------------------------------===//
1093193323Sed// Target - This class contains the "global" target information
1094193323Sed//
1095193323Sedclass Target {
1096193323Sed  // InstructionSet - Instruction set description for this target.
1097193323Sed  InstrInfo InstructionSet;
1098193323Sed
1099198090Srdivacky  // AssemblyParsers - The AsmParser instances available for this target.
1100198090Srdivacky  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1101198090Srdivacky
1102239462Sdim  /// AssemblyParserVariants - The AsmParserVariant instances available for
1103234353Sdim  /// this target.
1104234353Sdim  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1105234353Sdim
1106193323Sed  // AssemblyWriters - The AsmWriter instances available for this target.
1107193323Sed  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1108193323Sed}
1109193323Sed
1110193323Sed//===----------------------------------------------------------------------===//
1111193323Sed// SubtargetFeature - A characteristic of the chip set.
1112193323Sed//
1113193323Sedclass SubtargetFeature<string n, string a,  string v, string d,
1114193323Sed                       list<SubtargetFeature> i = []> {
1115193323Sed  // Name - Feature name.  Used by command line (-mattr=) to determine the
1116193323Sed  // appropriate target chip.
1117193323Sed  //
1118193323Sed  string Name = n;
1119218893Sdim
1120193323Sed  // Attribute - Attribute to be set by feature.
1121193323Sed  //
1122193323Sed  string Attribute = a;
1123218893Sdim
1124193323Sed  // Value - Value the attribute to be set to by feature.
1125193323Sed  //
1126193323Sed  string Value = v;
1127218893Sdim
1128193323Sed  // Desc - Feature description.  Used by command line (-mattr=) to display help
1129193323Sed  // information.
1130193323Sed  //
1131193323Sed  string Desc = d;
1132193323Sed
1133193323Sed  // Implies - Features that this feature implies are present. If one of those
1134193323Sed  // features isn't set, then this one shouldn't be set either.
1135193323Sed  //
1136193323Sed  list<SubtargetFeature> Implies = i;
1137193323Sed}
1138193323Sed
1139261991Sdim/// Specifies a Subtarget feature that this instruction is deprecated on.
1140261991Sdimclass Deprecated<SubtargetFeature dep> {
1141261991Sdim  SubtargetFeature DeprecatedFeatureMask = dep;
1142261991Sdim}
1143261991Sdim
1144261991Sdim/// A custom predicate used to determine if an instruction is
1145261991Sdim/// deprecated or not.
1146261991Sdimclass ComplexDeprecationPredicate<string dep> {
1147261991Sdim  string ComplexDeprecationPredicate = dep;
1148261991Sdim}
1149261991Sdim
1150193323Sed//===----------------------------------------------------------------------===//
1151193323Sed// Processor chip sets - These values represent each of the chip sets supported
1152193323Sed// by the scheduler.  Each Processor definition requires corresponding
1153193323Sed// instruction itineraries.
1154193323Sed//
1155193323Sedclass Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1156193323Sed  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1157193323Sed  // appropriate target chip.
1158193323Sed  //
1159193323Sed  string Name = n;
1160218893Sdim
1161239462Sdim  // SchedModel - The machine model for scheduling and instruction cost.
1162239462Sdim  //
1163239462Sdim  SchedMachineModel SchedModel = NoSchedModel;
1164239462Sdim
1165193323Sed  // ProcItin - The scheduling information for the target processor.
1166193323Sed  //
1167193323Sed  ProcessorItineraries ProcItin = pi;
1168218893Sdim
1169218893Sdim  // Features - list of
1170193323Sed  list<SubtargetFeature> Features = f;
1171193323Sed}
1172193323Sed
1173239462Sdim// ProcessorModel allows subtargets to specify the more general
1174239462Sdim// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1175239462Sdim// gradually move to this newer form.
1176243830Sdim//
1177243830Sdim// Although this class always passes NoItineraries to the Processor
1178243830Sdim// class, the SchedMachineModel may still define valid Itineraries.
1179239462Sdimclass ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1180239462Sdim  : Processor<n, NoItineraries, f> {
1181239462Sdim  let SchedModel = m;
1182239462Sdim}
1183239462Sdim
1184193323Sed//===----------------------------------------------------------------------===//
1185243830Sdim// InstrMapping - This class is used to create mapping tables to relate
1186243830Sdim// instructions with each other based on the values specified in RowFields,
1187243830Sdim// ColFields, KeyCol and ValueCols.
1188243830Sdim//
1189243830Sdimclass InstrMapping {
1190243830Sdim  // FilterClass - Used to limit search space only to the instructions that
1191243830Sdim  // define the relationship modeled by this InstrMapping record.
1192243830Sdim  string FilterClass;
1193243830Sdim
1194243830Sdim  // RowFields - List of fields/attributes that should be same for all the
1195243830Sdim  // instructions in a row of the relation table. Think of this as a set of
1196243830Sdim  // properties shared by all the instructions related by this relationship
1197243830Sdim  // model and is used to categorize instructions into subgroups. For instance,
1198243830Sdim  // if we want to define a relation that maps 'Add' instruction to its
1199243830Sdim  // predicated forms, we can define RowFields like this:
1200243830Sdim  //
1201243830Sdim  // let RowFields = BaseOp
1202243830Sdim  // All add instruction predicated/non-predicated will have to set their BaseOp
1203243830Sdim  // to the same value.
1204243830Sdim  //
1205243830Sdim  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1206243830Sdim  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1207243830Sdim  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1208243830Sdim  list<string> RowFields = [];
1209243830Sdim
1210243830Sdim  // List of fields/attributes that are same for all the instructions
1211243830Sdim  // in a column of the relation table.
1212243830Sdim  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1213243830Sdim  // based on the 'predSense' values. All the instruction in a specific
1214243830Sdim  // column have the same value and it is fixed for the column according
1215243830Sdim  // to the values set in 'ValueCols'.
1216243830Sdim  list<string> ColFields = [];
1217243830Sdim
1218243830Sdim  // Values for the fields/attributes listed in 'ColFields'.
1219243830Sdim  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1220243830Sdim  // that models this relation) should be non-predicated.
1221243830Sdim  // In the example above, 'Add' is the key instruction.
1222243830Sdim  list<string> KeyCol = [];
1223243830Sdim
1224243830Sdim  // List of values for the fields/attributes listed in 'ColFields', one for
1225243830Sdim  // each column in the relation table.
1226243830Sdim  //
1227243830Sdim  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1228243830Sdim  // table. First column requires all the instructions to have predSense
1229243830Sdim  // set to 'true' and second column requires it to be 'false'.
1230243830Sdim  list<list<string> > ValueCols = [];
1231243830Sdim}
1232243830Sdim
1233243830Sdim//===----------------------------------------------------------------------===//
1234193323Sed// Pull in the common support for calling conventions.
1235193323Sed//
1236193323Sedinclude "llvm/Target/TargetCallingConv.td"
1237193323Sed
1238193323Sed//===----------------------------------------------------------------------===//
1239193323Sed// Pull in the common support for DAG isel generation.
1240193323Sed//
1241193323Sedinclude "llvm/Target/TargetSelectionDAG.td"
1242