haifa-sched.c revision 132718
1/* Instruction scheduling pass.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5   and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 2, or (at your option) any later
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING.  If not, write to the Free
21Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2202111-1307, USA.  */
23
24/* Instruction scheduling pass.  This file, along with sched-deps.c,
25   contains the generic parts.  The actual entry point is found for
26   the normal instruction scheduling pass is found in sched-rgn.c.
27
28   We compute insn priorities based on data dependencies.  Flow
29   analysis only creates a fraction of the data-dependencies we must
30   observe: namely, only those dependencies which the combiner can be
31   expected to use.  For this pass, we must therefore create the
32   remaining dependencies we need to observe: register dependencies,
33   memory dependencies, dependencies to keep function calls in order,
34   and the dependence between a conditional branch and the setting of
35   condition codes are all dealt with here.
36
37   The scheduler first traverses the data flow graph, starting with
38   the last instruction, and proceeding to the first, assigning values
39   to insn_priority as it goes.  This sorts the instructions
40   topologically by data dependence.
41
42   Once priorities have been established, we order the insns using
43   list scheduling.  This works as follows: starting with a list of
44   all the ready insns, and sorted according to priority number, we
45   schedule the insn from the end of the list by placing its
46   predecessors in the list according to their priority order.  We
47   consider this insn scheduled by setting the pointer to the "end" of
48   the list to point to the previous insn.  When an insn has no
49   predecessors, we either queue it until sufficient time has elapsed
50   or add it to the ready list.  As the instructions are scheduled or
51   when stalls are introduced, the queue advances and dumps insns into
52   the ready list.  When all insns down to the lowest priority have
53   been scheduled, the critical path of the basic block has been made
54   as short as possible.  The remaining insns are then scheduled in
55   remaining slots.
56
57   Function unit conflicts are resolved during forward list scheduling
58   by tracking the time when each insn is committed to the schedule
59   and from that, the time the function units it uses must be free.
60   As insns on the ready list are considered for scheduling, those
61   that would result in a blockage of the already committed insns are
62   queued until no blockage will result.
63
64   The following list shows the order in which we want to break ties
65   among insns in the ready list:
66
67   1.  choose insn with the longest path to end of bb, ties
68   broken by
69   2.  choose insn with least contribution to register pressure,
70   ties broken by
71   3.  prefer in-block upon interblock motion, ties broken by
72   4.  prefer useful upon speculative motion, ties broken by
73   5.  choose insn with largest control flow probability, ties
74   broken by
75   6.  choose insn with the least dependences upon the previously
76   scheduled insn, or finally
77   7   choose the insn which has the most insns dependent on it.
78   8.  choose insn with lowest UID.
79
80   Memory references complicate matters.  Only if we can be certain
81   that memory references are not part of the data dependency graph
82   (via true, anti, or output dependence), can we move operations past
83   memory references.  To first approximation, reads can be done
84   independently, while writes introduce dependencies.  Better
85   approximations will yield fewer dependencies.
86
87   Before reload, an extended analysis of interblock data dependences
88   is required for interblock scheduling.  This is performed in
89   compute_block_backward_dependences ().
90
91   Dependencies set up by memory references are treated in exactly the
92   same way as other dependencies, by using LOG_LINKS backward
93   dependences.  LOG_LINKS are translated into INSN_DEPEND forward
94   dependences for the purpose of forward list scheduling.
95
96   Having optimized the critical path, we may have also unduly
97   extended the lifetimes of some registers.  If an operation requires
98   that constants be loaded into registers, it is certainly desirable
99   to load those constants as early as necessary, but no earlier.
100   I.e., it will not do to load up a bunch of registers at the
101   beginning of a basic block only to use them at the end, if they
102   could be loaded later, since this may result in excessive register
103   utilization.
104
105   Note that since branches are never in basic blocks, but only end
106   basic blocks, this pass will not move branches.  But that is ok,
107   since we can use GNU's delayed branch scheduling pass to take care
108   of this case.
109
110   Also note that no further optimizations based on algebraic
111   identities are performed, so this pass would be a good one to
112   perform instruction splitting, such as breaking up a multiply
113   instruction into shifts and adds where that is profitable.
114
115   Given the memory aliasing analysis that this pass should perform,
116   it should be possible to remove redundant stores to memory, and to
117   load values from registers instead of hitting memory.
118
119   Before reload, speculative insns are moved only if a 'proof' exists
120   that no exception will be caused by this, and if no live registers
121   exist that inhibit the motion (live registers constraints are not
122   represented by data dependence edges).
123
124   This pass must update information that subsequent passes expect to
125   be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
126   reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.
127
128   The information in the line number notes is carefully retained by
129   this pass.  Notes that refer to the starting and ending of
130   exception regions are also carefully retained by this pass.  All
131   other NOTE insns are grouped in their same relative order at the
132   beginning of basic blocks and regions that have been scheduled.  */
133
134#include "config.h"
135#include "system.h"
136#include "coretypes.h"
137#include "tm.h"
138#include "toplev.h"
139#include "rtl.h"
140#include "tm_p.h"
141#include "hard-reg-set.h"
142#include "basic-block.h"
143#include "regs.h"
144#include "function.h"
145#include "flags.h"
146#include "insn-config.h"
147#include "insn-attr.h"
148#include "except.h"
149#include "toplev.h"
150#include "recog.h"
151#include "sched-int.h"
152#include "target.h"
153
154#ifdef INSN_SCHEDULING
155
156/* issue_rate is the number of insns that can be scheduled in the same
157   machine cycle.  It can be defined in the config/mach/mach.h file,
158   otherwise we set it to 1.  */
159
160static int issue_rate;
161
162/* If the following variable value is nonzero, the scheduler inserts
163   bubbles (nop insns).  The value of variable affects on scheduler
164   behavior only if automaton pipeline interface with multipass
165   scheduling is used and hook dfa_bubble is defined.  */
166int insert_schedule_bubbles_p = 0;
167
168/* sched-verbose controls the amount of debugging output the
169   scheduler prints.  It is controlled by -fsched-verbose=N:
170   N>0 and no -DSR : the output is directed to stderr.
171   N>=10 will direct the printouts to stderr (regardless of -dSR).
172   N=1: same as -dSR.
173   N=2: bb's probabilities, detailed ready list info, unit/insn info.
174   N=3: rtl at abort point, control-flow, regions info.
175   N=5: dependences info.  */
176
177static int sched_verbose_param = 0;
178int sched_verbose = 0;
179
180/* Debugging file.  All printouts are sent to dump, which is always set,
181   either to stderr, or to the dump listing file (-dRS).  */
182FILE *sched_dump = 0;
183
184/* Highest uid before scheduling.  */
185static int old_max_uid;
186
187/* fix_sched_param() is called from toplev.c upon detection
188   of the -fsched-verbose=N option.  */
189
190void
191fix_sched_param (const char *param, const char *val)
192{
193  if (!strcmp (param, "verbose"))
194    sched_verbose_param = atoi (val);
195  else
196    warning ("fix_sched_param: unknown param: %s", param);
197}
198
199struct haifa_insn_data *h_i_d;
200
201#define LINE_NOTE(INSN)		(h_i_d[INSN_UID (INSN)].line_note)
202#define INSN_TICK(INSN)		(h_i_d[INSN_UID (INSN)].tick)
203
204/* Vector indexed by basic block number giving the starting line-number
205   for each basic block.  */
206static rtx *line_note_head;
207
208/* List of important notes we must keep around.  This is a pointer to the
209   last element in the list.  */
210static rtx note_list;
211
212/* Queues, etc.  */
213
214/* An instruction is ready to be scheduled when all insns preceding it
215   have already been scheduled.  It is important to ensure that all
216   insns which use its result will not be executed until its result
217   has been computed.  An insn is maintained in one of four structures:
218
219   (P) the "Pending" set of insns which cannot be scheduled until
220   their dependencies have been satisfied.
221   (Q) the "Queued" set of insns that can be scheduled when sufficient
222   time has passed.
223   (R) the "Ready" list of unscheduled, uncommitted insns.
224   (S) the "Scheduled" list of insns.
225
226   Initially, all insns are either "Pending" or "Ready" depending on
227   whether their dependencies are satisfied.
228
229   Insns move from the "Ready" list to the "Scheduled" list as they
230   are committed to the schedule.  As this occurs, the insns in the
231   "Pending" list have their dependencies satisfied and move to either
232   the "Ready" list or the "Queued" set depending on whether
233   sufficient time has passed to make them ready.  As time passes,
234   insns move from the "Queued" set to the "Ready" list.  Insns may
235   move from the "Ready" list to the "Queued" set if they are blocked
236   due to a function unit conflict.
237
238   The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
239   insns, i.e., those that are ready, queued, and pending.
240   The "Queued" set (Q) is implemented by the variable `insn_queue'.
241   The "Ready" list (R) is implemented by the variables `ready' and
242   `n_ready'.
243   The "Scheduled" list (S) is the new insn chain built by this pass.
244
245   The transition (R->S) is implemented in the scheduling loop in
246   `schedule_block' when the best insn to schedule is chosen.
247   The transition (R->Q) is implemented in `queue_insn' when an
248   insn is found to have a function unit conflict with the already
249   committed insns.
250   The transitions (P->R and P->Q) are implemented in `schedule_insn' as
251   insns move from the ready list to the scheduled list.
252   The transition (Q->R) is implemented in 'queue_to_insn' as time
253   passes or stalls are introduced.  */
254
255/* Implement a circular buffer to delay instructions until sufficient
256   time has passed.  For the old pipeline description interface,
257   INSN_QUEUE_SIZE is a power of two larger than MAX_BLOCKAGE and
258   MAX_READY_COST computed by genattr.c.  For the new pipeline
259   description interface, MAX_INSN_QUEUE_INDEX is a power of two minus
260   one which is larger than maximal time of instruction execution
261   computed by genattr.c on the base maximal time of functional unit
262   reservations and geting a result.  This is the longest time an
263   insn may be queued.  */
264
265#define MAX_INSN_QUEUE_INDEX max_insn_queue_index_macro_value
266
267static rtx *insn_queue;
268static int q_ptr = 0;
269static int q_size = 0;
270#define NEXT_Q(X) (((X)+1) & MAX_INSN_QUEUE_INDEX)
271#define NEXT_Q_AFTER(X, C) (((X)+C) & MAX_INSN_QUEUE_INDEX)
272
273/* The following variable defines value for macro
274   MAX_INSN_QUEUE_INDEX.  */
275static int max_insn_queue_index_macro_value;
276
277/* The following variable value refers for all current and future
278   reservations of the processor units.  */
279state_t curr_state;
280
281/* The following variable value is size of memory representing all
282   current and future reservations of the processor units.  It is used
283   only by DFA based scheduler.  */
284static size_t dfa_state_size;
285
286/* The following array is used to find the best insn from ready when
287   the automaton pipeline interface is used.  */
288static char *ready_try;
289
290/* Describe the ready list of the scheduler.
291   VEC holds space enough for all insns in the current region.  VECLEN
292   says how many exactly.
293   FIRST is the index of the element with the highest priority; i.e. the
294   last one in the ready list, since elements are ordered by ascending
295   priority.
296   N_READY determines how many insns are on the ready list.  */
297
298struct ready_list
299{
300  rtx *vec;
301  int veclen;
302  int first;
303  int n_ready;
304};
305
306static int may_trap_exp (rtx, int);
307
308/* Nonzero iff the address is comprised from at most 1 register.  */
309#define CONST_BASED_ADDRESS_P(x)			\
310  (GET_CODE (x) == REG					\
311   || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS	\
312	|| (GET_CODE (x) == LO_SUM))			\
313       && (CONSTANT_P (XEXP (x, 0))			\
314	   || CONSTANT_P (XEXP (x, 1)))))
315
316/* Returns a class that insn with GET_DEST(insn)=x may belong to,
317   as found by analyzing insn's expression.  */
318
319static int
320may_trap_exp (rtx x, int is_store)
321{
322  enum rtx_code code;
323
324  if (x == 0)
325    return TRAP_FREE;
326  code = GET_CODE (x);
327  if (is_store)
328    {
329      if (code == MEM && may_trap_p (x))
330	return TRAP_RISKY;
331      else
332	return TRAP_FREE;
333    }
334  if (code == MEM)
335    {
336      /* The insn uses memory:  a volatile load.  */
337      if (MEM_VOLATILE_P (x))
338	return IRISKY;
339      /* An exception-free load.  */
340      if (!may_trap_p (x))
341	return IFREE;
342      /* A load with 1 base register, to be further checked.  */
343      if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
344	return PFREE_CANDIDATE;
345      /* No info on the load, to be further checked.  */
346      return PRISKY_CANDIDATE;
347    }
348  else
349    {
350      const char *fmt;
351      int i, insn_class = TRAP_FREE;
352
353      /* Neither store nor load, check if it may cause a trap.  */
354      if (may_trap_p (x))
355	return TRAP_RISKY;
356      /* Recursive step: walk the insn...  */
357      fmt = GET_RTX_FORMAT (code);
358      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
359	{
360	  if (fmt[i] == 'e')
361	    {
362	      int tmp_class = may_trap_exp (XEXP (x, i), is_store);
363	      insn_class = WORST_CLASS (insn_class, tmp_class);
364	    }
365	  else if (fmt[i] == 'E')
366	    {
367	      int j;
368	      for (j = 0; j < XVECLEN (x, i); j++)
369		{
370		  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
371		  insn_class = WORST_CLASS (insn_class, tmp_class);
372		  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
373		    break;
374		}
375	    }
376	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
377	    break;
378	}
379      return insn_class;
380    }
381}
382
383/* Classifies insn for the purpose of verifying that it can be
384   moved speculatively, by examining it's patterns, returning:
385   TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
386   TRAP_FREE: non-load insn.
387   IFREE: load from a globally safe location.
388   IRISKY: volatile load.
389   PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
390   being either PFREE or PRISKY.  */
391
392int
393haifa_classify_insn (rtx insn)
394{
395  rtx pat = PATTERN (insn);
396  int tmp_class = TRAP_FREE;
397  int insn_class = TRAP_FREE;
398  enum rtx_code code;
399
400  if (GET_CODE (pat) == PARALLEL)
401    {
402      int i, len = XVECLEN (pat, 0);
403
404      for (i = len - 1; i >= 0; i--)
405	{
406	  code = GET_CODE (XVECEXP (pat, 0, i));
407	  switch (code)
408	    {
409	    case CLOBBER:
410	      /* Test if it is a 'store'.  */
411	      tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
412	      break;
413	    case SET:
414	      /* Test if it is a store.  */
415	      tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
416	      if (tmp_class == TRAP_RISKY)
417		break;
418	      /* Test if it is a load.  */
419	      tmp_class
420		= WORST_CLASS (tmp_class,
421			       may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)),
422					     0));
423	      break;
424	    case COND_EXEC:
425	    case TRAP_IF:
426	      tmp_class = TRAP_RISKY;
427	      break;
428	    default:
429	      ;
430	    }
431	  insn_class = WORST_CLASS (insn_class, tmp_class);
432	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
433	    break;
434	}
435    }
436  else
437    {
438      code = GET_CODE (pat);
439      switch (code)
440	{
441	case CLOBBER:
442	  /* Test if it is a 'store'.  */
443	  tmp_class = may_trap_exp (XEXP (pat, 0), 1);
444	  break;
445	case SET:
446	  /* Test if it is a store.  */
447	  tmp_class = may_trap_exp (SET_DEST (pat), 1);
448	  if (tmp_class == TRAP_RISKY)
449	    break;
450	  /* Test if it is a load.  */
451	  tmp_class =
452	    WORST_CLASS (tmp_class,
453			 may_trap_exp (SET_SRC (pat), 0));
454	  break;
455	case COND_EXEC:
456	case TRAP_IF:
457	  tmp_class = TRAP_RISKY;
458	  break;
459	default:;
460	}
461      insn_class = tmp_class;
462    }
463
464  return insn_class;
465}
466
467/* Forward declarations.  */
468
469/* The scheduler using only DFA description should never use the
470   following five functions:  */
471static unsigned int blockage_range (int, rtx);
472static void clear_units (void);
473static void schedule_unit (int, rtx, int);
474static int actual_hazard (int, rtx, int, int);
475static int potential_hazard (int, rtx, int);
476
477static int priority (rtx);
478static int rank_for_schedule (const void *, const void *);
479static void swap_sort (rtx *, int);
480static void queue_insn (rtx, int);
481static int schedule_insn (rtx, struct ready_list *, int);
482static int find_set_reg_weight (rtx);
483static void find_insn_reg_weight (int);
484static void adjust_priority (rtx);
485static void advance_one_cycle (void);
486
487/* Notes handling mechanism:
488   =========================
489   Generally, NOTES are saved before scheduling and restored after scheduling.
490   The scheduler distinguishes between three types of notes:
491
492   (1) LINE_NUMBER notes, generated and used for debugging.  Here,
493   before scheduling a region, a pointer to the LINE_NUMBER note is
494   added to the insn following it (in save_line_notes()), and the note
495   is removed (in rm_line_notes() and unlink_line_notes()).  After
496   scheduling the region, this pointer is used for regeneration of
497   the LINE_NUMBER note (in restore_line_notes()).
498
499   (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
500   Before scheduling a region, a pointer to the note is added to the insn
501   that follows or precedes it.  (This happens as part of the data dependence
502   computation).  After scheduling an insn, the pointer contained in it is
503   used for regenerating the corresponding note (in reemit_notes).
504
505   (3) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
506   these notes are put in a list (in rm_other_notes() and
507   unlink_other_notes ()).  After scheduling the block, these notes are
508   inserted at the beginning of the block (in schedule_block()).  */
509
510static rtx unlink_other_notes (rtx, rtx);
511static rtx unlink_line_notes (rtx, rtx);
512static rtx reemit_notes (rtx, rtx);
513
514static rtx *ready_lastpos (struct ready_list *);
515static void ready_sort (struct ready_list *);
516static rtx ready_remove_first (struct ready_list *);
517
518static void queue_to_ready (struct ready_list *);
519static int early_queue_to_ready (state_t, struct ready_list *);
520
521static void debug_ready_list (struct ready_list *);
522
523static rtx move_insn1 (rtx, rtx);
524static rtx move_insn (rtx, rtx);
525
526/* The following functions are used to implement multi-pass scheduling
527   on the first cycle.  It is used only for DFA based scheduler.  */
528static rtx ready_element (struct ready_list *, int);
529static rtx ready_remove (struct ready_list *, int);
530static int max_issue (struct ready_list *, int *);
531
532static rtx choose_ready (struct ready_list *);
533
534#endif /* INSN_SCHEDULING */
535
536/* Point to state used for the current scheduling pass.  */
537struct sched_info *current_sched_info;
538
539#ifndef INSN_SCHEDULING
540void
541schedule_insns (FILE *dump_file ATTRIBUTE_UNUSED)
542{
543}
544#else
545
546/* Pointer to the last instruction scheduled.  Used by rank_for_schedule,
547   so that insns independent of the last scheduled insn will be preferred
548   over dependent instructions.  */
549
550static rtx last_scheduled_insn;
551
552/* Compute the function units used by INSN.  This caches the value
553   returned by function_units_used.  A function unit is encoded as the
554   unit number if the value is non-negative and the complement of a
555   mask if the value is negative.  A function unit index is the
556   non-negative encoding.  The scheduler using only DFA description
557   should never use the following function.  */
558
559HAIFA_INLINE int
560insn_unit (rtx insn)
561{
562  int unit = INSN_UNIT (insn);
563
564  if (unit == 0)
565    {
566      recog_memoized (insn);
567
568      /* A USE insn, or something else we don't need to understand.
569         We can't pass these directly to function_units_used because it will
570         trigger a fatal error for unrecognizable insns.  */
571      if (INSN_CODE (insn) < 0)
572	unit = -1;
573      else
574	{
575	  unit = function_units_used (insn);
576	  /* Increment non-negative values so we can cache zero.  */
577	  if (unit >= 0)
578	    unit++;
579	}
580      /* We only cache 16 bits of the result, so if the value is out of
581         range, don't cache it.  */
582      if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
583	  || unit >= 0
584	  || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
585	INSN_UNIT (insn) = unit;
586    }
587  return (unit > 0 ? unit - 1 : unit);
588}
589
590/* Compute the blockage range for executing INSN on UNIT.  This caches
591   the value returned by the blockage_range_function for the unit.
592   These values are encoded in an int where the upper half gives the
593   minimum value and the lower half gives the maximum value.  The
594   scheduler using only DFA description should never use the following
595   function.  */
596
597HAIFA_INLINE static unsigned int
598blockage_range (int unit, rtx insn)
599{
600  unsigned int blockage = INSN_BLOCKAGE (insn);
601  unsigned int range;
602
603  if ((int) UNIT_BLOCKED (blockage) != unit + 1)
604    {
605      range = function_units[unit].blockage_range_function (insn);
606      /* We only cache the blockage range for one unit and then only if
607         the values fit.  */
608      if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
609	INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
610    }
611  else
612    range = BLOCKAGE_RANGE (blockage);
613
614  return range;
615}
616
617/* A vector indexed by function unit instance giving the last insn to
618   use the unit.  The value of the function unit instance index for
619   unit U instance I is (U + I * FUNCTION_UNITS_SIZE).  The scheduler
620   using only DFA description should never use the following variable.  */
621#if FUNCTION_UNITS_SIZE
622static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
623#else
624static rtx unit_last_insn[1];
625#endif
626
627/* A vector indexed by function unit instance giving the minimum time
628   when the unit will unblock based on the maximum blockage cost.  The
629   scheduler using only DFA description should never use the following
630   variable.  */
631#if FUNCTION_UNITS_SIZE
632static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
633#else
634static int unit_tick[1];
635#endif
636
637/* A vector indexed by function unit number giving the number of insns
638   that remain to use the unit.  The scheduler using only DFA
639   description should never use the following variable.  */
640#if FUNCTION_UNITS_SIZE
641static int unit_n_insns[FUNCTION_UNITS_SIZE];
642#else
643static int unit_n_insns[1];
644#endif
645
646/* Access the unit_last_insn array.  Used by the visualization code.
647   The scheduler using only DFA description should never use the
648   following function.  */
649
650rtx
651get_unit_last_insn (int instance)
652{
653  return unit_last_insn[instance];
654}
655
656/* Reset the function unit state to the null state.  */
657
658static void
659clear_units (void)
660{
661  memset (unit_last_insn, 0, sizeof (unit_last_insn));
662  memset (unit_tick, 0, sizeof (unit_tick));
663  memset (unit_n_insns, 0, sizeof (unit_n_insns));
664}
665
666/* Return the issue-delay of an insn.  The scheduler using only DFA
667   description should never use the following function.  */
668
669HAIFA_INLINE int
670insn_issue_delay (rtx insn)
671{
672  int i, delay = 0;
673  int unit = insn_unit (insn);
674
675  /* Efficiency note: in fact, we are working 'hard' to compute a
676     value that was available in md file, and is not available in
677     function_units[] structure.  It would be nice to have this
678     value there, too.  */
679  if (unit >= 0)
680    {
681      if (function_units[unit].blockage_range_function &&
682	  function_units[unit].blockage_function)
683	delay = function_units[unit].blockage_function (insn, insn);
684    }
685  else
686    for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
687      if ((unit & 1) != 0 && function_units[i].blockage_range_function
688	  && function_units[i].blockage_function)
689	delay = MAX (delay, function_units[i].blockage_function (insn, insn));
690
691  return delay;
692}
693
694/* Return the actual hazard cost of executing INSN on the unit UNIT,
695   instance INSTANCE at time CLOCK if the previous actual hazard cost
696   was COST.  The scheduler using only DFA description should never
697   use the following function.  */
698
699HAIFA_INLINE int
700actual_hazard_this_instance (int unit, int instance, rtx insn, int clock, int cost)
701{
702  int tick = unit_tick[instance]; /* Issue time of the last issued insn.  */
703
704  if (tick - clock > cost)
705    {
706      /* The scheduler is operating forward, so unit's last insn is the
707         executing insn and INSN is the candidate insn.  We want a
708         more exact measure of the blockage if we execute INSN at CLOCK
709         given when we committed the execution of the unit's last insn.
710
711         The blockage value is given by either the unit's max blockage
712         constant, blockage range function, or blockage function.  Use
713         the most exact form for the given unit.  */
714
715      if (function_units[unit].blockage_range_function)
716	{
717	  if (function_units[unit].blockage_function)
718	    tick += (function_units[unit].blockage_function
719		     (unit_last_insn[instance], insn)
720		     - function_units[unit].max_blockage);
721	  else
722	    tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
723		     - function_units[unit].max_blockage);
724	}
725      if (tick - clock > cost)
726	cost = tick - clock;
727    }
728  return cost;
729}
730
731/* Record INSN as having begun execution on the units encoded by UNIT
732   at time CLOCK.  The scheduler using only DFA description should
733   never use the following function.  */
734
735static void
736schedule_unit (int unit, rtx insn, int clock)
737{
738  int i;
739
740  if (unit >= 0)
741    {
742      int instance = unit;
743#if MAX_MULTIPLICITY > 1
744      /* Find the first free instance of the function unit and use that
745         one.  We assume that one is free.  */
746      for (i = function_units[unit].multiplicity - 1; i > 0; i--)
747	{
748	  if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
749	    break;
750	  instance += FUNCTION_UNITS_SIZE;
751	}
752#endif
753      unit_last_insn[instance] = insn;
754      unit_tick[instance] = (clock + function_units[unit].max_blockage);
755    }
756  else
757    for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
758      if ((unit & 1) != 0)
759	schedule_unit (i, insn, clock);
760}
761
762/* Return the actual hazard cost of executing INSN on the units
763   encoded by UNIT at time CLOCK if the previous actual hazard cost
764   was COST.  The scheduler using only DFA description should never
765   use the following function.  */
766
767static int
768actual_hazard (int unit, rtx insn, int clock, int cost)
769{
770  int i;
771
772  if (unit >= 0)
773    {
774      /* Find the instance of the function unit with the minimum hazard.  */
775      int instance = unit;
776      int best_cost = actual_hazard_this_instance (unit, instance, insn,
777						   clock, cost);
778#if MAX_MULTIPLICITY > 1
779      int this_cost;
780
781      if (best_cost > cost)
782	{
783	  for (i = function_units[unit].multiplicity - 1; i > 0; i--)
784	    {
785	      instance += FUNCTION_UNITS_SIZE;
786	      this_cost = actual_hazard_this_instance (unit, instance, insn,
787						       clock, cost);
788	      if (this_cost < best_cost)
789		{
790		  best_cost = this_cost;
791		  if (this_cost <= cost)
792		    break;
793		}
794	    }
795	}
796#endif
797      cost = MAX (cost, best_cost);
798    }
799  else
800    for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
801      if ((unit & 1) != 0)
802	cost = actual_hazard (i, insn, clock, cost);
803
804  return cost;
805}
806
807/* Return the potential hazard cost of executing an instruction on the
808   units encoded by UNIT if the previous potential hazard cost was
809   COST.  An insn with a large blockage time is chosen in preference
810   to one with a smaller time; an insn that uses a unit that is more
811   likely to be used is chosen in preference to one with a unit that
812   is less used.  We are trying to minimize a subsequent actual
813   hazard.  The scheduler using only DFA description should never use
814   the following function.  */
815
816HAIFA_INLINE static int
817potential_hazard (int unit, rtx insn, int cost)
818{
819  int i, ncost;
820  unsigned int minb, maxb;
821
822  if (unit >= 0)
823    {
824      minb = maxb = function_units[unit].max_blockage;
825      if (maxb > 1)
826	{
827	  if (function_units[unit].blockage_range_function)
828	    {
829	      maxb = minb = blockage_range (unit, insn);
830	      maxb = MAX_BLOCKAGE_COST (maxb);
831	      minb = MIN_BLOCKAGE_COST (minb);
832	    }
833
834	  if (maxb > 1)
835	    {
836	      /* Make the number of instructions left dominate.  Make the
837	         minimum delay dominate the maximum delay.  If all these
838	         are the same, use the unit number to add an arbitrary
839	         ordering.  Other terms can be added.  */
840	      ncost = minb * 0x40 + maxb;
841	      ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
842	      if (ncost > cost)
843		cost = ncost;
844	    }
845	}
846    }
847  else
848    for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
849      if ((unit & 1) != 0)
850	cost = potential_hazard (i, insn, cost);
851
852  return cost;
853}
854
855/* Compute cost of executing INSN given the dependence LINK on the insn USED.
856   This is the number of cycles between instruction issue and
857   instruction results.  */
858
859HAIFA_INLINE int
860insn_cost (rtx insn, rtx link, rtx used)
861{
862  int cost = INSN_COST (insn);
863
864  if (cost < 0)
865    {
866      /* A USE insn, or something else we don't need to
867	 understand.  We can't pass these directly to
868	 result_ready_cost or insn_default_latency because it will
869	 trigger a fatal error for unrecognizable insns.  */
870      if (recog_memoized (insn) < 0)
871	{
872	  INSN_COST (insn) = 0;
873	  return 0;
874	}
875      else
876	{
877	  if (targetm.sched.use_dfa_pipeline_interface
878	      && (*targetm.sched.use_dfa_pipeline_interface) ())
879	    cost = insn_default_latency (insn);
880	  else
881	    cost = result_ready_cost (insn);
882
883	  if (cost < 0)
884	    cost = 0;
885
886	  INSN_COST (insn) = cost;
887	}
888    }
889
890  /* In this case estimate cost without caring how insn is used.  */
891  if (link == 0 || used == 0)
892    return cost;
893
894  /* A USE insn should never require the value used to be computed.
895     This allows the computation of a function's result and parameter
896     values to overlap the return and call.  */
897  if (recog_memoized (used) < 0)
898    cost = 0;
899  else
900    {
901      if (targetm.sched.use_dfa_pipeline_interface
902	  && (*targetm.sched.use_dfa_pipeline_interface) ())
903	{
904	  if (INSN_CODE (insn) >= 0)
905	    {
906	      if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
907		cost = 0;
908	      else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
909		{
910		  cost = (insn_default_latency (insn)
911			  - insn_default_latency (used));
912		  if (cost <= 0)
913		    cost = 1;
914		}
915	      else if (bypass_p (insn))
916		cost = insn_latency (insn, used);
917	    }
918	}
919
920      if (targetm.sched.adjust_cost)
921	cost = (*targetm.sched.adjust_cost) (used, link, insn, cost);
922
923      if (cost < 0)
924	cost = 0;
925    }
926
927  return cost;
928}
929
930/* Compute the priority number for INSN.  */
931
932static int
933priority (rtx insn)
934{
935  rtx link;
936
937  if (! INSN_P (insn))
938    return 0;
939
940  if (! INSN_PRIORITY_KNOWN (insn))
941    {
942      int this_priority = 0;
943
944      if (INSN_DEPEND (insn) == 0)
945	this_priority = insn_cost (insn, 0, 0);
946      else
947	{
948	  for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
949	    {
950	      rtx next;
951	      int next_priority;
952
953	      if (RTX_INTEGRATED_P (link))
954		continue;
955
956	      next = XEXP (link, 0);
957
958	      /* Critical path is meaningful in block boundaries only.  */
959	      if (! (*current_sched_info->contributes_to_priority) (next, insn))
960		continue;
961
962	      next_priority = insn_cost (insn, link, next) + priority (next);
963	      if (next_priority > this_priority)
964		this_priority = next_priority;
965	    }
966	}
967      INSN_PRIORITY (insn) = this_priority;
968      INSN_PRIORITY_KNOWN (insn) = 1;
969    }
970
971  return INSN_PRIORITY (insn);
972}
973
974/* Macros and functions for keeping the priority queue sorted, and
975   dealing with queuing and dequeuing of instructions.  */
976
977#define SCHED_SORT(READY, N_READY)                                   \
978do { if ((N_READY) == 2)				             \
979       swap_sort (READY, N_READY);			             \
980     else if ((N_READY) > 2)                                         \
981         qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); }  \
982while (0)
983
984/* Returns a positive value if x is preferred; returns a negative value if
985   y is preferred.  Should never return 0, since that will make the sort
986   unstable.  */
987
988static int
989rank_for_schedule (const void *x, const void *y)
990{
991  rtx tmp = *(const rtx *) y;
992  rtx tmp2 = *(const rtx *) x;
993  rtx link;
994  int tmp_class, tmp2_class, depend_count1, depend_count2;
995  int val, priority_val, weight_val, info_val;
996
997  /* The insn in a schedule group should be issued the first.  */
998  if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
999    return SCHED_GROUP_P (tmp2) ? 1 : -1;
1000
1001  /* Prefer insn with higher priority.  */
1002  priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1003
1004  if (priority_val)
1005    return priority_val;
1006
1007  /* Prefer an insn with smaller contribution to registers-pressure.  */
1008  if (!reload_completed &&
1009      (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
1010    return weight_val;
1011
1012  info_val = (*current_sched_info->rank) (tmp, tmp2);
1013  if (info_val)
1014    return info_val;
1015
1016  /* Compare insns based on their relation to the last-scheduled-insn.  */
1017  if (last_scheduled_insn)
1018    {
1019      /* Classify the instructions into three classes:
1020         1) Data dependent on last schedule insn.
1021         2) Anti/Output dependent on last scheduled insn.
1022         3) Independent of last scheduled insn, or has latency of one.
1023         Choose the insn from the highest numbered class if different.  */
1024      link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
1025      if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
1026	tmp_class = 3;
1027      else if (REG_NOTE_KIND (link) == 0)	/* Data dependence.  */
1028	tmp_class = 1;
1029      else
1030	tmp_class = 2;
1031
1032      link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
1033      if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
1034	tmp2_class = 3;
1035      else if (REG_NOTE_KIND (link) == 0)	/* Data dependence.  */
1036	tmp2_class = 1;
1037      else
1038	tmp2_class = 2;
1039
1040      if ((val = tmp2_class - tmp_class))
1041	return val;
1042    }
1043
1044  /* Prefer the insn which has more later insns that depend on it.
1045     This gives the scheduler more freedom when scheduling later
1046     instructions at the expense of added register pressure.  */
1047  depend_count1 = 0;
1048  for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
1049    depend_count1++;
1050
1051  depend_count2 = 0;
1052  for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
1053    depend_count2++;
1054
1055  val = depend_count2 - depend_count1;
1056  if (val)
1057    return val;
1058
1059  /* If insns are equally good, sort by INSN_LUID (original insn order),
1060     so that we make the sort stable.  This minimizes instruction movement,
1061     thus minimizing sched's effect on debugging and cross-jumping.  */
1062  return INSN_LUID (tmp) - INSN_LUID (tmp2);
1063}
1064
1065/* Resort the array A in which only element at index N may be out of order.  */
1066
1067HAIFA_INLINE static void
1068swap_sort (rtx *a, int n)
1069{
1070  rtx insn = a[n - 1];
1071  int i = n - 2;
1072
1073  while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1074    {
1075      a[i + 1] = a[i];
1076      i -= 1;
1077    }
1078  a[i + 1] = insn;
1079}
1080
1081/* Add INSN to the insn queue so that it can be executed at least
1082   N_CYCLES after the currently executing insn.  Preserve insns
1083   chain for debugging purposes.  */
1084
1085HAIFA_INLINE static void
1086queue_insn (rtx insn, int n_cycles)
1087{
1088  int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1089  rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1090  insn_queue[next_q] = link;
1091  q_size += 1;
1092
1093  if (sched_verbose >= 2)
1094    {
1095      fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1096	       (*current_sched_info->print_insn) (insn, 0));
1097
1098      fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
1099    }
1100}
1101
1102/* Return a pointer to the bottom of the ready list, i.e. the insn
1103   with the lowest priority.  */
1104
1105HAIFA_INLINE static rtx *
1106ready_lastpos (struct ready_list *ready)
1107{
1108  if (ready->n_ready == 0)
1109    abort ();
1110  return ready->vec + ready->first - ready->n_ready + 1;
1111}
1112
1113/* Add an element INSN to the ready list so that it ends up with the lowest
1114   priority.  */
1115
1116HAIFA_INLINE void
1117ready_add (struct ready_list *ready, rtx insn)
1118{
1119  if (ready->first == ready->n_ready)
1120    {
1121      memmove (ready->vec + ready->veclen - ready->n_ready,
1122	       ready_lastpos (ready),
1123	       ready->n_ready * sizeof (rtx));
1124      ready->first = ready->veclen - 1;
1125    }
1126  ready->vec[ready->first - ready->n_ready] = insn;
1127  ready->n_ready++;
1128}
1129
1130/* Remove the element with the highest priority from the ready list and
1131   return it.  */
1132
1133HAIFA_INLINE static rtx
1134ready_remove_first (struct ready_list *ready)
1135{
1136  rtx t;
1137  if (ready->n_ready == 0)
1138    abort ();
1139  t = ready->vec[ready->first--];
1140  ready->n_ready--;
1141  /* If the queue becomes empty, reset it.  */
1142  if (ready->n_ready == 0)
1143    ready->first = ready->veclen - 1;
1144  return t;
1145}
1146
1147/* The following code implements multi-pass scheduling for the first
1148   cycle.  In other words, we will try to choose ready insn which
1149   permits to start maximum number of insns on the same cycle.  */
1150
1151/* Return a pointer to the element INDEX from the ready.  INDEX for
1152   insn with the highest priority is 0, and the lowest priority has
1153   N_READY - 1.  */
1154
1155HAIFA_INLINE static rtx
1156ready_element (struct ready_list *ready, int index)
1157{
1158#ifdef ENABLE_CHECKING
1159  if (ready->n_ready == 0 || index >= ready->n_ready)
1160    abort ();
1161#endif
1162  return ready->vec[ready->first - index];
1163}
1164
1165/* Remove the element INDEX from the ready list and return it.  INDEX
1166   for insn with the highest priority is 0, and the lowest priority
1167   has N_READY - 1.  */
1168
1169HAIFA_INLINE static rtx
1170ready_remove (struct ready_list *ready, int index)
1171{
1172  rtx t;
1173  int i;
1174
1175  if (index == 0)
1176    return ready_remove_first (ready);
1177  if (ready->n_ready == 0 || index >= ready->n_ready)
1178    abort ();
1179  t = ready->vec[ready->first - index];
1180  ready->n_ready--;
1181  for (i = index; i < ready->n_ready; i++)
1182    ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1183  return t;
1184}
1185
1186
1187/* Sort the ready list READY by ascending priority, using the SCHED_SORT
1188   macro.  */
1189
1190HAIFA_INLINE static void
1191ready_sort (struct ready_list *ready)
1192{
1193  rtx *first = ready_lastpos (ready);
1194  SCHED_SORT (first, ready->n_ready);
1195}
1196
1197/* PREV is an insn that is ready to execute.  Adjust its priority if that
1198   will help shorten or lengthen register lifetimes as appropriate.  Also
1199   provide a hook for the target to tweek itself.  */
1200
1201HAIFA_INLINE static void
1202adjust_priority (rtx prev)
1203{
1204  /* ??? There used to be code here to try and estimate how an insn
1205     affected register lifetimes, but it did it by looking at REG_DEAD
1206     notes, which we removed in schedule_region.  Nor did it try to
1207     take into account register pressure or anything useful like that.
1208
1209     Revisit when we have a machine model to work with and not before.  */
1210
1211  if (targetm.sched.adjust_priority)
1212    INSN_PRIORITY (prev) =
1213      (*targetm.sched.adjust_priority) (prev, INSN_PRIORITY (prev));
1214}
1215
1216/* Advance time on one cycle.  */
1217HAIFA_INLINE static void
1218advance_one_cycle (void)
1219{
1220  if (targetm.sched.use_dfa_pipeline_interface
1221      && (*targetm.sched.use_dfa_pipeline_interface) ())
1222    {
1223      if (targetm.sched.dfa_pre_cycle_insn)
1224	state_transition (curr_state,
1225			  (*targetm.sched.dfa_pre_cycle_insn) ());
1226
1227      state_transition (curr_state, NULL);
1228
1229      if (targetm.sched.dfa_post_cycle_insn)
1230	state_transition (curr_state,
1231			  (*targetm.sched.dfa_post_cycle_insn) ());
1232    }
1233}
1234
1235/* Clock at which the previous instruction was issued.  */
1236static int last_clock_var;
1237
1238/* INSN is the "currently executing insn".  Launch each insn which was
1239   waiting on INSN.  READY is the ready list which contains the insns
1240   that are ready to fire.  CLOCK is the current cycle.  The function
1241   returns necessary cycle advance after issuing the insn (it is not
1242   zero for insns in a schedule group).  */
1243
1244static int
1245schedule_insn (rtx insn, struct ready_list *ready, int clock)
1246{
1247  rtx link;
1248  int advance = 0;
1249  int unit = 0;
1250  int premature_issue = 0;
1251
1252  if (!targetm.sched.use_dfa_pipeline_interface
1253      || !(*targetm.sched.use_dfa_pipeline_interface) ())
1254    unit = insn_unit (insn);
1255
1256  if (targetm.sched.use_dfa_pipeline_interface
1257      && (*targetm.sched.use_dfa_pipeline_interface) ()
1258      && sched_verbose >= 1)
1259    {
1260      char buf[2048];
1261
1262      print_insn (buf, insn, 0);
1263      buf[40] = 0;
1264      fprintf (sched_dump, ";;\t%3i--> %-40s:", clock, buf);
1265
1266      if (recog_memoized (insn) < 0)
1267	fprintf (sched_dump, "nothing");
1268      else
1269	print_reservation (sched_dump, insn);
1270      fputc ('\n', sched_dump);
1271    }
1272  else if (sched_verbose >= 2)
1273    {
1274      fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
1275	       INSN_UID (insn));
1276      insn_print_units (insn);
1277      fputc ('\n', sched_dump);
1278    }
1279
1280  if (!targetm.sched.use_dfa_pipeline_interface
1281      || !(*targetm.sched.use_dfa_pipeline_interface) ())
1282    {
1283      if (sched_verbose && unit == -1)
1284	visualize_no_unit (insn);
1285
1286
1287      if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
1288	schedule_unit (unit, insn, clock);
1289
1290      if (INSN_DEPEND (insn) == 0)
1291	return 0;
1292    }
1293
1294  if (INSN_TICK (insn) > clock)
1295    {
1296      /* 'insn' has been prematurely moved from the queue to the
1297	 ready list.  */
1298      premature_issue = INSN_TICK (insn) - clock;
1299    }
1300
1301  for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
1302    {
1303      rtx next = XEXP (link, 0);
1304      int cost = insn_cost (insn, link, next);
1305
1306      INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost + premature_issue);
1307
1308      if ((INSN_DEP_COUNT (next) -= 1) == 0)
1309	{
1310	  int effective_cost = INSN_TICK (next) - clock;
1311
1312	  if (! (*current_sched_info->new_ready) (next))
1313	    continue;
1314
1315	  if (sched_verbose >= 2)
1316	    {
1317	      fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
1318		       (*current_sched_info->print_insn) (next, 0));
1319
1320	      if (effective_cost < 1)
1321		fprintf (sched_dump, "into ready\n");
1322	      else
1323		fprintf (sched_dump, "into queue with cost=%d\n",
1324			 effective_cost);
1325	    }
1326
1327	  /* Adjust the priority of NEXT and either put it on the ready
1328	     list or queue it.  */
1329	  adjust_priority (next);
1330	  if (effective_cost < 1)
1331	    ready_add (ready, next);
1332	  else
1333	    {
1334	      queue_insn (next, effective_cost);
1335
1336	      if (SCHED_GROUP_P (next) && advance < effective_cost)
1337		advance = effective_cost;
1338	    }
1339	}
1340    }
1341
1342  /* Annotate the instruction with issue information -- TImode
1343     indicates that the instruction is expected not to be able
1344     to issue on the same cycle as the previous insn.  A machine
1345     may use this information to decide how the instruction should
1346     be aligned.  */
1347  if (issue_rate > 1
1348      && GET_CODE (PATTERN (insn)) != USE
1349      && GET_CODE (PATTERN (insn)) != CLOBBER)
1350    {
1351      if (reload_completed)
1352	PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
1353      last_clock_var = clock;
1354    }
1355  return advance;
1356}
1357
1358/* Functions for handling of notes.  */
1359
1360/* Delete notes beginning with INSN and put them in the chain
1361   of notes ended by NOTE_LIST.
1362   Returns the insn following the notes.  */
1363
1364static rtx
1365unlink_other_notes (rtx insn, rtx tail)
1366{
1367  rtx prev = PREV_INSN (insn);
1368
1369  while (insn != tail && GET_CODE (insn) == NOTE)
1370    {
1371      rtx next = NEXT_INSN (insn);
1372      /* Delete the note from its current position.  */
1373      if (prev)
1374	NEXT_INSN (prev) = next;
1375      if (next)
1376	PREV_INSN (next) = prev;
1377
1378      /* See sched_analyze to see how these are handled.  */
1379      if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
1380	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
1381	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
1382	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1383	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1384	{
1385	  /* Insert the note at the end of the notes list.  */
1386	  PREV_INSN (insn) = note_list;
1387	  if (note_list)
1388	    NEXT_INSN (note_list) = insn;
1389	  note_list = insn;
1390	}
1391
1392      insn = next;
1393    }
1394  return insn;
1395}
1396
1397/* Delete line notes beginning with INSN. Record line-number notes so
1398   they can be reused.  Returns the insn following the notes.  */
1399
1400static rtx
1401unlink_line_notes (rtx insn, rtx tail)
1402{
1403  rtx prev = PREV_INSN (insn);
1404
1405  while (insn != tail && GET_CODE (insn) == NOTE)
1406    {
1407      rtx next = NEXT_INSN (insn);
1408
1409      if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1410	{
1411	  /* Delete the note from its current position.  */
1412	  if (prev)
1413	    NEXT_INSN (prev) = next;
1414	  if (next)
1415	    PREV_INSN (next) = prev;
1416
1417	  /* Record line-number notes so they can be reused.  */
1418	  LINE_NOTE (insn) = insn;
1419	}
1420      else
1421	prev = insn;
1422
1423      insn = next;
1424    }
1425  return insn;
1426}
1427
1428/* Return the head and tail pointers of BB.  */
1429
1430void
1431get_block_head_tail (int b, rtx *headp, rtx *tailp)
1432{
1433  /* HEAD and TAIL delimit the basic block being scheduled.  */
1434  rtx head = BB_HEAD (BASIC_BLOCK (b));
1435  rtx tail = BB_END (BASIC_BLOCK (b));
1436
1437  /* Don't include any notes or labels at the beginning of the
1438     basic block, or notes at the ends of basic blocks.  */
1439  while (head != tail)
1440    {
1441      if (GET_CODE (head) == NOTE)
1442	head = NEXT_INSN (head);
1443      else if (GET_CODE (tail) == NOTE)
1444	tail = PREV_INSN (tail);
1445      else if (GET_CODE (head) == CODE_LABEL)
1446	head = NEXT_INSN (head);
1447      else
1448	break;
1449    }
1450
1451  *headp = head;
1452  *tailp = tail;
1453}
1454
1455/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ].  */
1456
1457int
1458no_real_insns_p (rtx head, rtx tail)
1459{
1460  while (head != NEXT_INSN (tail))
1461    {
1462      if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
1463	return 0;
1464      head = NEXT_INSN (head);
1465    }
1466  return 1;
1467}
1468
1469/* Delete line notes from one block. Save them so they can be later restored
1470   (in restore_line_notes).  HEAD and TAIL are the boundaries of the
1471   block in which notes should be processed.  */
1472
1473void
1474rm_line_notes (rtx head, rtx tail)
1475{
1476  rtx next_tail;
1477  rtx insn;
1478
1479  next_tail = NEXT_INSN (tail);
1480  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1481    {
1482      rtx prev;
1483
1484      /* Farm out notes, and maybe save them in NOTE_LIST.
1485         This is needed to keep the debugger from
1486         getting completely deranged.  */
1487      if (GET_CODE (insn) == NOTE)
1488	{
1489	  prev = insn;
1490	  insn = unlink_line_notes (insn, next_tail);
1491
1492	  if (prev == tail)
1493	    abort ();
1494	  if (prev == head)
1495	    abort ();
1496	  if (insn == next_tail)
1497	    abort ();
1498	}
1499    }
1500}
1501
1502/* Save line number notes for each insn in block B.  HEAD and TAIL are
1503   the boundaries of the block in which notes should be processed.  */
1504
1505void
1506save_line_notes (int b, rtx head, rtx tail)
1507{
1508  rtx next_tail;
1509
1510  /* We must use the true line number for the first insn in the block
1511     that was computed and saved at the start of this pass.  We can't
1512     use the current line number, because scheduling of the previous
1513     block may have changed the current line number.  */
1514
1515  rtx line = line_note_head[b];
1516  rtx insn;
1517
1518  next_tail = NEXT_INSN (tail);
1519
1520  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1521    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1522      line = insn;
1523    else
1524      LINE_NOTE (insn) = line;
1525}
1526
1527/* After a block was scheduled, insert line notes into the insns list.
1528   HEAD and TAIL are the boundaries of the block in which notes should
1529   be processed.  */
1530
1531void
1532restore_line_notes (rtx head, rtx tail)
1533{
1534  rtx line, note, prev, new;
1535  int added_notes = 0;
1536  rtx next_tail, insn;
1537
1538  head = head;
1539  next_tail = NEXT_INSN (tail);
1540
1541  /* Determine the current line-number.  We want to know the current
1542     line number of the first insn of the block here, in case it is
1543     different from the true line number that was saved earlier.  If
1544     different, then we need a line number note before the first insn
1545     of this block.  If it happens to be the same, then we don't want to
1546     emit another line number note here.  */
1547  for (line = head; line; line = PREV_INSN (line))
1548    if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1549      break;
1550
1551  /* Walk the insns keeping track of the current line-number and inserting
1552     the line-number notes as needed.  */
1553  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1554    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1555      line = insn;
1556  /* This used to emit line number notes before every non-deleted note.
1557     However, this confuses a debugger, because line notes not separated
1558     by real instructions all end up at the same address.  I can find no
1559     use for line number notes before other notes, so none are emitted.  */
1560    else if (GET_CODE (insn) != NOTE
1561	     && INSN_UID (insn) < old_max_uid
1562	     && (note = LINE_NOTE (insn)) != 0
1563	     && note != line
1564	     && (line == 0
1565		 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1566		 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
1567      {
1568	line = note;
1569	prev = PREV_INSN (insn);
1570	if (LINE_NOTE (note))
1571	  {
1572	    /* Re-use the original line-number note.  */
1573	    LINE_NOTE (note) = 0;
1574	    PREV_INSN (note) = prev;
1575	    NEXT_INSN (prev) = note;
1576	    PREV_INSN (insn) = note;
1577	    NEXT_INSN (note) = insn;
1578	  }
1579	else
1580	  {
1581	    added_notes++;
1582	    new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1583	    NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1584	    RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
1585	  }
1586      }
1587  if (sched_verbose && added_notes)
1588    fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
1589}
1590
1591/* After scheduling the function, delete redundant line notes from the
1592   insns list.  */
1593
1594void
1595rm_redundant_line_notes (void)
1596{
1597  rtx line = 0;
1598  rtx insn = get_insns ();
1599  int active_insn = 0;
1600  int notes = 0;
1601
1602  /* Walk the insns deleting redundant line-number notes.  Many of these
1603     are already present.  The remainder tend to occur at basic
1604     block boundaries.  */
1605  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1606    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1607      {
1608	/* If there are no active insns following, INSN is redundant.  */
1609	if (active_insn == 0)
1610	  {
1611	    notes++;
1612	    NOTE_SOURCE_FILE (insn) = 0;
1613	    NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1614	  }
1615	/* If the line number is unchanged, LINE is redundant.  */
1616	else if (line
1617		 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1618		 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
1619	  {
1620	    notes++;
1621	    NOTE_SOURCE_FILE (line) = 0;
1622	    NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
1623	    line = insn;
1624	  }
1625	else
1626	  line = insn;
1627	active_insn = 0;
1628      }
1629    else if (!((GET_CODE (insn) == NOTE
1630		&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1631	       || (GET_CODE (insn) == INSN
1632		   && (GET_CODE (PATTERN (insn)) == USE
1633		       || GET_CODE (PATTERN (insn)) == CLOBBER))))
1634      active_insn++;
1635
1636  if (sched_verbose && notes)
1637    fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
1638}
1639
1640/* Delete notes between HEAD and TAIL and put them in the chain
1641   of notes ended by NOTE_LIST.  */
1642
1643void
1644rm_other_notes (rtx head, rtx tail)
1645{
1646  rtx next_tail;
1647  rtx insn;
1648
1649  note_list = 0;
1650  if (head == tail && (! INSN_P (head)))
1651    return;
1652
1653  next_tail = NEXT_INSN (tail);
1654  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1655    {
1656      rtx prev;
1657
1658      /* Farm out notes, and maybe save them in NOTE_LIST.
1659         This is needed to keep the debugger from
1660         getting completely deranged.  */
1661      if (GET_CODE (insn) == NOTE)
1662	{
1663	  prev = insn;
1664
1665	  insn = unlink_other_notes (insn, next_tail);
1666
1667	  if (prev == tail)
1668	    abort ();
1669	  if (prev == head)
1670	    abort ();
1671	  if (insn == next_tail)
1672	    abort ();
1673	}
1674    }
1675}
1676
1677/* Functions for computation of registers live/usage info.  */
1678
1679/* This function looks for a new register being defined.
1680   If the destination register is already used by the source,
1681   a new register is not needed.  */
1682
1683static int
1684find_set_reg_weight (rtx x)
1685{
1686  if (GET_CODE (x) == CLOBBER
1687      && register_operand (SET_DEST (x), VOIDmode))
1688    return 1;
1689  if (GET_CODE (x) == SET
1690      && register_operand (SET_DEST (x), VOIDmode))
1691    {
1692      if (GET_CODE (SET_DEST (x)) == REG)
1693	{
1694	  if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
1695	    return 1;
1696	  else
1697	    return 0;
1698	}
1699      return 1;
1700    }
1701  return 0;
1702}
1703
1704/* Calculate INSN_REG_WEIGHT for all insns of a block.  */
1705
1706static void
1707find_insn_reg_weight (int b)
1708{
1709  rtx insn, next_tail, head, tail;
1710
1711  get_block_head_tail (b, &head, &tail);
1712  next_tail = NEXT_INSN (tail);
1713
1714  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1715    {
1716      int reg_weight = 0;
1717      rtx x;
1718
1719      /* Handle register life information.  */
1720      if (! INSN_P (insn))
1721	continue;
1722
1723      /* Increment weight for each register born here.  */
1724      x = PATTERN (insn);
1725      reg_weight += find_set_reg_weight (x);
1726      if (GET_CODE (x) == PARALLEL)
1727	{
1728	  int j;
1729	  for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1730	    {
1731	      x = XVECEXP (PATTERN (insn), 0, j);
1732	      reg_weight += find_set_reg_weight (x);
1733	    }
1734	}
1735      /* Decrement weight for each register that dies here.  */
1736      for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1737	{
1738	  if (REG_NOTE_KIND (x) == REG_DEAD
1739	      || REG_NOTE_KIND (x) == REG_UNUSED)
1740	    reg_weight--;
1741	}
1742
1743      INSN_REG_WEIGHT (insn) = reg_weight;
1744    }
1745}
1746
1747/* Scheduling clock, modified in schedule_block() and queue_to_ready ().  */
1748static int clock_var;
1749
1750/* Move insns that became ready to fire from queue to ready list.  */
1751
1752static void
1753queue_to_ready (struct ready_list *ready)
1754{
1755  rtx insn;
1756  rtx link;
1757
1758  q_ptr = NEXT_Q (q_ptr);
1759
1760  /* Add all pending insns that can be scheduled without stalls to the
1761     ready list.  */
1762  for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1763    {
1764      insn = XEXP (link, 0);
1765      q_size -= 1;
1766
1767      if (sched_verbose >= 2)
1768	fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1769		 (*current_sched_info->print_insn) (insn, 0));
1770
1771      ready_add (ready, insn);
1772      if (sched_verbose >= 2)
1773	fprintf (sched_dump, "moving to ready without stalls\n");
1774    }
1775  insn_queue[q_ptr] = 0;
1776
1777  /* If there are no ready insns, stall until one is ready and add all
1778     of the pending insns at that point to the ready list.  */
1779  if (ready->n_ready == 0)
1780    {
1781      int stalls;
1782
1783      for (stalls = 1; stalls <= MAX_INSN_QUEUE_INDEX; stalls++)
1784	{
1785	  if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1786	    {
1787	      for (; link; link = XEXP (link, 1))
1788		{
1789		  insn = XEXP (link, 0);
1790		  q_size -= 1;
1791
1792		  if (sched_verbose >= 2)
1793		    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1794			     (*current_sched_info->print_insn) (insn, 0));
1795
1796		  ready_add (ready, insn);
1797		  if (sched_verbose >= 2)
1798		    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1799		}
1800	      insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
1801
1802	      advance_one_cycle ();
1803
1804	      break;
1805	    }
1806
1807	  advance_one_cycle ();
1808	}
1809
1810      if ((!targetm.sched.use_dfa_pipeline_interface
1811	   || !(*targetm.sched.use_dfa_pipeline_interface) ())
1812	  && sched_verbose && stalls)
1813	visualize_stall_cycles (stalls);
1814
1815      q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1816      clock_var += stalls;
1817    }
1818}
1819
1820/* Used by early_queue_to_ready.  Determines whether it is "ok" to
1821   prematurely move INSN from the queue to the ready list.  Currently,
1822   if a target defines the hook 'is_costly_dependence', this function
1823   uses the hook to check whether there exist any dependences which are
1824   considered costly by the target, between INSN and other insns that
1825   have already been scheduled.  Dependences are checked up to Y cycles
1826   back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
1827   controlling this value.
1828   (Other considerations could be taken into account instead (or in
1829   addition) depending on user flags and target hooks.  */
1830
1831static bool
1832ok_for_early_queue_removal (rtx insn)
1833{
1834  int n_cycles;
1835  rtx prev_insn = last_scheduled_insn;
1836
1837  if (targetm.sched.is_costly_dependence)
1838    {
1839      for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
1840	{
1841	  for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
1842	    {
1843	      rtx dep_link = 0;
1844	      int dep_cost;
1845
1846	      if (GET_CODE (prev_insn) != NOTE)
1847		{
1848		  dep_link = find_insn_list (insn, INSN_DEPEND (prev_insn));
1849		  if (dep_link)
1850		    {
1851		      dep_cost = insn_cost (prev_insn, dep_link, insn) ;
1852		      if (targetm.sched.is_costly_dependence (prev_insn, insn,
1853				dep_link, dep_cost,
1854				flag_sched_stalled_insns_dep - n_cycles))
1855			return false;
1856		    }
1857		}
1858
1859	      if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
1860		break;
1861	    }
1862
1863	  if (!prev_insn)
1864	    break;
1865	  prev_insn = PREV_INSN (prev_insn);
1866	}
1867    }
1868
1869  return true;
1870}
1871
1872
1873/* Remove insns from the queue, before they become "ready" with respect
1874   to FU latency considerations.  */
1875
1876static int
1877early_queue_to_ready (state_t state, struct ready_list *ready)
1878{
1879  rtx insn;
1880  rtx link;
1881  rtx next_link;
1882  rtx prev_link;
1883  bool move_to_ready;
1884  int cost;
1885  state_t temp_state = alloca (dfa_state_size);
1886  int stalls;
1887  int insns_removed = 0;
1888
1889  /*
1890     Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
1891     function:
1892
1893     X == 0: There is no limit on how many queued insns can be removed
1894             prematurely.  (flag_sched_stalled_insns = -1).
1895
1896     X >= 1: Only X queued insns can be removed prematurely in each
1897	     invocation.  (flag_sched_stalled_insns = X).
1898
1899     Otherwise: Early queue removal is disabled.
1900         (flag_sched_stalled_insns = 0)
1901  */
1902
1903  if (! flag_sched_stalled_insns)
1904    return 0;
1905
1906  for (stalls = 0; stalls <= MAX_INSN_QUEUE_INDEX; stalls++)
1907    {
1908      if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1909	{
1910	  if (sched_verbose > 6)
1911	    fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
1912
1913	  prev_link = 0;
1914	  while (link)
1915	    {
1916	      next_link = XEXP (link, 1);
1917	      insn = XEXP (link, 0);
1918	      if (insn && sched_verbose > 6)
1919		print_rtl_single (sched_dump, insn);
1920
1921	      memcpy (temp_state, state, dfa_state_size);
1922	      if (recog_memoized (insn) < 0)
1923		/* non-negative to indicate that it's not ready
1924		   to avoid infinite Q->R->Q->R... */
1925		cost = 0;
1926	      else
1927		cost = state_transition (temp_state, insn);
1928
1929	      if (sched_verbose >= 6)
1930		fprintf (sched_dump, "transition cost = %d\n", cost);
1931
1932	      move_to_ready = false;
1933	      if (cost < 0)
1934		{
1935		  move_to_ready = ok_for_early_queue_removal (insn);
1936		  if (move_to_ready == true)
1937		    {
1938		      /* move from Q to R */
1939		      q_size -= 1;
1940		      ready_add (ready, insn);
1941
1942		      if (prev_link)
1943			XEXP (prev_link, 1) = next_link;
1944		      else
1945			insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
1946
1947		      free_INSN_LIST_node (link);
1948
1949		      if (sched_verbose >= 2)
1950			fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
1951				 (*current_sched_info->print_insn) (insn, 0));
1952
1953		      insns_removed++;
1954		      if (insns_removed == flag_sched_stalled_insns)
1955			/* remove only one insn from Q at a time */
1956			return insns_removed;
1957		    }
1958		}
1959
1960	      if (move_to_ready == false)
1961		prev_link = link;
1962
1963	      link = next_link;
1964	    } /* while link */
1965	} /* if link */
1966
1967    } /* for stalls.. */
1968
1969  return insns_removed;
1970}
1971
1972
1973/* Print the ready list for debugging purposes.  Callable from debugger.  */
1974
1975static void
1976debug_ready_list (struct ready_list *ready)
1977{
1978  rtx *p;
1979  int i;
1980
1981  if (ready->n_ready == 0)
1982    {
1983      fprintf (sched_dump, "\n");
1984      return;
1985    }
1986
1987  p = ready_lastpos (ready);
1988  for (i = 0; i < ready->n_ready; i++)
1989    fprintf (sched_dump, "  %s", (*current_sched_info->print_insn) (p[i], 0));
1990  fprintf (sched_dump, "\n");
1991}
1992
1993/* move_insn1: Remove INSN from insn chain, and link it after LAST insn.  */
1994
1995static rtx
1996move_insn1 (rtx insn, rtx last)
1997{
1998  NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1999  PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2000
2001  NEXT_INSN (insn) = NEXT_INSN (last);
2002  PREV_INSN (NEXT_INSN (last)) = insn;
2003
2004  NEXT_INSN (last) = insn;
2005  PREV_INSN (insn) = last;
2006
2007  return insn;
2008}
2009
2010/* Search INSN for REG_SAVE_NOTE note pairs for
2011   NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
2012   NOTEs.  The REG_SAVE_NOTE note following first one is contains the
2013   saved value for NOTE_BLOCK_NUMBER which is useful for
2014   NOTE_INSN_EH_REGION_{BEG,END} NOTEs.  LAST is the last instruction
2015   output by the instruction scheduler.  Return the new value of LAST.  */
2016
2017static rtx
2018reemit_notes (rtx insn, rtx last)
2019{
2020  rtx note, retval;
2021
2022  retval = last;
2023  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2024    {
2025      if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2026	{
2027	  enum insn_note note_type = INTVAL (XEXP (note, 0));
2028
2029	  last = emit_note_before (note_type, last);
2030	  remove_note (insn, note);
2031	  note = XEXP (note, 1);
2032	  if (note_type == NOTE_INSN_EH_REGION_BEG
2033	      || note_type == NOTE_INSN_EH_REGION_END)
2034	    NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
2035	  remove_note (insn, note);
2036	}
2037    }
2038  return retval;
2039}
2040
2041/* Move INSN.  Reemit notes if needed.
2042
2043   Return the last insn emitted by the scheduler, which is the
2044   return value from the first call to reemit_notes.  */
2045
2046static rtx
2047move_insn (rtx insn, rtx last)
2048{
2049  rtx retval = NULL;
2050
2051  move_insn1 (insn, last);
2052
2053  /* If this is the first call to reemit_notes, then record
2054     its return value.  */
2055  if (retval == NULL_RTX)
2056    retval = reemit_notes (insn, insn);
2057  else
2058    reemit_notes (insn, insn);
2059
2060  SCHED_GROUP_P (insn) = 0;
2061
2062  return retval;
2063}
2064
2065/* The following structure describe an entry of the stack of choices.  */
2066struct choice_entry
2067{
2068  /* Ordinal number of the issued insn in the ready queue.  */
2069  int index;
2070  /* The number of the rest insns whose issues we should try.  */
2071  int rest;
2072  /* The number of issued essential insns.  */
2073  int n;
2074  /* State after issuing the insn.  */
2075  state_t state;
2076};
2077
2078/* The following array is used to implement a stack of choices used in
2079   function max_issue.  */
2080static struct choice_entry *choice_stack;
2081
2082/* The following variable value is number of essential insns issued on
2083   the current cycle.  An insn is essential one if it changes the
2084   processors state.  */
2085static int cycle_issued_insns;
2086
2087/* The following variable value is maximal number of tries of issuing
2088   insns for the first cycle multipass insn scheduling.  We define
2089   this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
2090   need this constraint if all real insns (with non-negative codes)
2091   had reservations because in this case the algorithm complexity is
2092   O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
2093   might be incomplete and such insn might occur.  For such
2094   descriptions, the complexity of algorithm (without the constraint)
2095   could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
2096static int max_lookahead_tries;
2097
2098/* The following value is value of hook
2099   `first_cycle_multipass_dfa_lookahead' at the last call of
2100   `max_issue'.  */
2101static int cached_first_cycle_multipass_dfa_lookahead = 0;
2102
2103/* The following value is value of `issue_rate' at the last call of
2104   `sched_init'.  */
2105static int cached_issue_rate = 0;
2106
2107/* The following function returns maximal (or close to maximal) number
2108   of insns which can be issued on the same cycle and one of which
2109   insns is insns with the best rank (the first insn in READY).  To
2110   make this function tries different samples of ready insns.  READY
2111   is current queue `ready'.  Global array READY_TRY reflects what
2112   insns are already issued in this try.  INDEX will contain index
2113   of the best insn in READY.  The following function is used only for
2114   first cycle multipass scheduling.  */
2115static int
2116max_issue (struct ready_list *ready, int *index)
2117{
2118  int n, i, all, n_ready, best, delay, tries_num;
2119  struct choice_entry *top;
2120  rtx insn;
2121
2122  best = 0;
2123  memcpy (choice_stack->state, curr_state, dfa_state_size);
2124  top = choice_stack;
2125  top->rest = cached_first_cycle_multipass_dfa_lookahead;
2126  top->n = 0;
2127  n_ready = ready->n_ready;
2128  for (all = i = 0; i < n_ready; i++)
2129    if (!ready_try [i])
2130      all++;
2131  i = 0;
2132  tries_num = 0;
2133  for (;;)
2134    {
2135      if (top->rest == 0 || i >= n_ready)
2136	{
2137	  if (top == choice_stack)
2138	    break;
2139	  if (best < top - choice_stack && ready_try [0])
2140	    {
2141	      best = top - choice_stack;
2142	      *index = choice_stack [1].index;
2143	      if (top->n == issue_rate - cycle_issued_insns || best == all)
2144		break;
2145	    }
2146	  i = top->index;
2147	  ready_try [i] = 0;
2148	  top--;
2149	  memcpy (curr_state, top->state, dfa_state_size);
2150	}
2151      else if (!ready_try [i])
2152	{
2153	  tries_num++;
2154	  if (tries_num > max_lookahead_tries)
2155	    break;
2156	  insn = ready_element (ready, i);
2157	  delay = state_transition (curr_state, insn);
2158	  if (delay < 0)
2159	    {
2160	      if (state_dead_lock_p (curr_state))
2161		top->rest = 0;
2162	      else
2163		top->rest--;
2164	      n = top->n;
2165	      if (memcmp (top->state, curr_state, dfa_state_size) != 0)
2166		n++;
2167	      top++;
2168	      top->rest = cached_first_cycle_multipass_dfa_lookahead;
2169	      top->index = i;
2170	      top->n = n;
2171	      memcpy (top->state, curr_state, dfa_state_size);
2172	      ready_try [i] = 1;
2173	      i = -1;
2174	    }
2175	}
2176      i++;
2177    }
2178  while (top != choice_stack)
2179    {
2180      ready_try [top->index] = 0;
2181      top--;
2182    }
2183  memcpy (curr_state, choice_stack->state, dfa_state_size);
2184  return best;
2185}
2186
2187/* The following function chooses insn from READY and modifies
2188   *N_READY and READY.  The following function is used only for first
2189   cycle multipass scheduling.  */
2190
2191static rtx
2192choose_ready (struct ready_list *ready)
2193{
2194  int lookahead = 0;
2195
2196  if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2197    lookahead = (*targetm.sched.first_cycle_multipass_dfa_lookahead) ();
2198  if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0)))
2199    return ready_remove_first (ready);
2200  else
2201    {
2202      /* Try to choose the better insn.  */
2203      int index = 0, i;
2204      rtx insn;
2205
2206      if (cached_first_cycle_multipass_dfa_lookahead != lookahead)
2207	{
2208	  cached_first_cycle_multipass_dfa_lookahead = lookahead;
2209	  max_lookahead_tries = 100;
2210	  for (i = 0; i < issue_rate; i++)
2211	    max_lookahead_tries *= lookahead;
2212	}
2213      insn = ready_element (ready, 0);
2214      if (INSN_CODE (insn) < 0)
2215	return ready_remove_first (ready);
2216      for (i = 1; i < ready->n_ready; i++)
2217	{
2218	  insn = ready_element (ready, i);
2219	  ready_try [i]
2220	    = (INSN_CODE (insn) < 0
2221	       || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2222		   && !(*targetm.sched.first_cycle_multipass_dfa_lookahead_guard) (insn)));
2223	}
2224      if (max_issue (ready, &index) == 0)
2225	return ready_remove_first (ready);
2226      else
2227	return ready_remove (ready, index);
2228    }
2229}
2230
2231/* Called from backends from targetm.sched.reorder to emit stuff into
2232   the instruction stream.  */
2233
2234rtx
2235sched_emit_insn (rtx pat)
2236{
2237  rtx insn = emit_insn_after (pat, last_scheduled_insn);
2238  last_scheduled_insn = insn;
2239  return insn;
2240}
2241
2242/* Use forward list scheduling to rearrange insns of block B in region RGN,
2243   possibly bringing insns from subsequent blocks in the same region.  */
2244
2245void
2246schedule_block (int b, int rgn_n_insns)
2247{
2248  struct ready_list ready;
2249  int i, first_cycle_insn_p;
2250  int can_issue_more;
2251  state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
2252  int sort_p, advance, start_clock_var;
2253
2254  /* Head/tail info for this block.  */
2255  rtx prev_head = current_sched_info->prev_head;
2256  rtx next_tail = current_sched_info->next_tail;
2257  rtx head = NEXT_INSN (prev_head);
2258  rtx tail = PREV_INSN (next_tail);
2259
2260  /* We used to have code to avoid getting parameters moved from hard
2261     argument registers into pseudos.
2262
2263     However, it was removed when it proved to be of marginal benefit
2264     and caused problems because schedule_block and compute_forward_dependences
2265     had different notions of what the "head" insn was.  */
2266
2267  if (head == tail && (! INSN_P (head)))
2268    abort ();
2269
2270  /* Debug info.  */
2271  if (sched_verbose)
2272    {
2273      fprintf (sched_dump, ";;   ======================================================\n");
2274      fprintf (sched_dump,
2275	       ";;   -- basic block %d from %d to %d -- %s reload\n",
2276	       b, INSN_UID (head), INSN_UID (tail),
2277	       (reload_completed ? "after" : "before"));
2278      fprintf (sched_dump, ";;   ======================================================\n");
2279      fprintf (sched_dump, "\n");
2280
2281      visualize_alloc ();
2282      init_block_visualization ();
2283    }
2284
2285  if (targetm.sched.use_dfa_pipeline_interface
2286      && (*targetm.sched.use_dfa_pipeline_interface) ())
2287    state_reset (curr_state);
2288  else
2289    clear_units ();
2290
2291  /* Allocate the ready list.  */
2292  ready.veclen = rgn_n_insns + 1 + issue_rate;
2293  ready.first = ready.veclen - 1;
2294  ready.vec = xmalloc (ready.veclen * sizeof (rtx));
2295  ready.n_ready = 0;
2296
2297  if (targetm.sched.use_dfa_pipeline_interface
2298      && (*targetm.sched.use_dfa_pipeline_interface) ())
2299    {
2300      /* It is used for first cycle multipass scheduling.  */
2301      temp_state = alloca (dfa_state_size);
2302      ready_try = xcalloc ((rgn_n_insns + 1), sizeof (char));
2303      choice_stack = xmalloc ((rgn_n_insns + 1)
2304			      * sizeof (struct choice_entry));
2305      for (i = 0; i <= rgn_n_insns; i++)
2306	choice_stack[i].state = xmalloc (dfa_state_size);
2307    }
2308
2309  (*current_sched_info->init_ready_list) (&ready);
2310
2311  if (targetm.sched.md_init)
2312    (*targetm.sched.md_init) (sched_dump, sched_verbose, ready.veclen);
2313
2314  /* We start inserting insns after PREV_HEAD.  */
2315  last_scheduled_insn = prev_head;
2316
2317  /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
2318     queue.  */
2319  q_ptr = 0;
2320  q_size = 0;
2321
2322  if (!targetm.sched.use_dfa_pipeline_interface
2323      || !(*targetm.sched.use_dfa_pipeline_interface) ())
2324    max_insn_queue_index_macro_value = INSN_QUEUE_SIZE - 1;
2325  else
2326    max_insn_queue_index_macro_value = max_insn_queue_index;
2327
2328  insn_queue = alloca ((MAX_INSN_QUEUE_INDEX + 1) * sizeof (rtx));
2329  memset (insn_queue, 0, (MAX_INSN_QUEUE_INDEX + 1) * sizeof (rtx));
2330  last_clock_var = -1;
2331
2332  /* Start just before the beginning of time.  */
2333  clock_var = -1;
2334  advance = 0;
2335
2336  sort_p = TRUE;
2337  /* Loop until all the insns in BB are scheduled.  */
2338  while ((*current_sched_info->schedule_more_p) ())
2339    {
2340      do
2341	{
2342	  start_clock_var = clock_var;
2343
2344	  clock_var++;
2345
2346	  advance_one_cycle ();
2347
2348	  /* Add to the ready list all pending insns that can be issued now.
2349	     If there are no ready insns, increment clock until one
2350	     is ready and add all pending insns at that point to the ready
2351	     list.  */
2352	  queue_to_ready (&ready);
2353
2354	  if (ready.n_ready == 0)
2355	    abort ();
2356
2357	  if (sched_verbose >= 2)
2358	    {
2359	      fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:  ");
2360	      debug_ready_list (&ready);
2361	    }
2362	  advance -= clock_var - start_clock_var;
2363	}
2364      while (advance > 0);
2365
2366      if (sort_p)
2367	{
2368	  /* Sort the ready list based on priority.  */
2369	  ready_sort (&ready);
2370
2371	  if (sched_verbose >= 2)
2372	    {
2373	      fprintf (sched_dump, ";;\t\tReady list after ready_sort:  ");
2374	      debug_ready_list (&ready);
2375	    }
2376	}
2377
2378      /* Allow the target to reorder the list, typically for
2379	 better instruction bundling.  */
2380      if (sort_p && targetm.sched.reorder
2381	  && (ready.n_ready == 0
2382	      || !SCHED_GROUP_P (ready_element (&ready, 0))))
2383	can_issue_more =
2384	  (*targetm.sched.reorder) (sched_dump, sched_verbose,
2385				    ready_lastpos (&ready),
2386				    &ready.n_ready, clock_var);
2387      else
2388	can_issue_more = issue_rate;
2389
2390      first_cycle_insn_p = 1;
2391      cycle_issued_insns = 0;
2392      for (;;)
2393	{
2394	  rtx insn;
2395	  int cost;
2396	  bool asm_p = false;
2397
2398	  if (sched_verbose >= 2)
2399	    {
2400	      fprintf (sched_dump, ";;\tReady list (t =%3d):  ",
2401		       clock_var);
2402	      debug_ready_list (&ready);
2403	    }
2404
2405	  if (!targetm.sched.use_dfa_pipeline_interface
2406	      || !(*targetm.sched.use_dfa_pipeline_interface) ())
2407	    {
2408	      if (ready.n_ready == 0 || !can_issue_more
2409		  || !(*current_sched_info->schedule_more_p) ())
2410		break;
2411	      insn = ready_remove_first (&ready);
2412	      cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
2413	    }
2414	  else
2415	    {
2416	      if (ready.n_ready == 0
2417		  && can_issue_more
2418		  && reload_completed)
2419		{
2420		  /* Allow scheduling insns directly from the queue in case
2421		     there's nothing better to do (ready list is empty) but
2422		     there are still vacant dispatch slots in the current cycle.  */
2423		  if (sched_verbose >= 6)
2424		    fprintf(sched_dump,";;\t\tSecond chance\n");
2425		  memcpy (temp_state, curr_state, dfa_state_size);
2426		  if (early_queue_to_ready (temp_state, &ready))
2427		    ready_sort (&ready);
2428		}
2429
2430	      if (ready.n_ready == 0 || !can_issue_more
2431		  || state_dead_lock_p (curr_state)
2432		  || !(*current_sched_info->schedule_more_p) ())
2433		break;
2434
2435	      /* Select and remove the insn from the ready list.  */
2436	      if (sort_p)
2437		insn = choose_ready (&ready);
2438	      else
2439		insn = ready_remove_first (&ready);
2440
2441	      if (targetm.sched.dfa_new_cycle
2442		  && (*targetm.sched.dfa_new_cycle) (sched_dump, sched_verbose,
2443						     insn, last_clock_var,
2444						     clock_var, &sort_p))
2445		{
2446		  ready_add (&ready, insn);
2447		  break;
2448		}
2449
2450	      sort_p = TRUE;
2451	      memcpy (temp_state, curr_state, dfa_state_size);
2452	      if (recog_memoized (insn) < 0)
2453		{
2454		  asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
2455			   || asm_noperands (PATTERN (insn)) >= 0);
2456		  if (!first_cycle_insn_p && asm_p)
2457		    /* This is asm insn which is tryed to be issued on the
2458		       cycle not first.  Issue it on the next cycle.  */
2459		    cost = 1;
2460		  else
2461		    /* A USE insn, or something else we don't need to
2462		       understand.  We can't pass these directly to
2463		       state_transition because it will trigger a
2464		       fatal error for unrecognizable insns.  */
2465		    cost = 0;
2466		}
2467	      else
2468		{
2469		  cost = state_transition (temp_state, insn);
2470
2471		  if (targetm.sched.first_cycle_multipass_dfa_lookahead
2472		      && targetm.sched.dfa_bubble)
2473		    {
2474		      if (cost == 0)
2475			{
2476			  int j;
2477			  rtx bubble;
2478
2479			  for (j = 0;
2480			       (bubble = (*targetm.sched.dfa_bubble) (j))
2481				 != NULL_RTX;
2482			       j++)
2483			    {
2484			      memcpy (temp_state, curr_state, dfa_state_size);
2485
2486			      if (state_transition (temp_state, bubble) < 0
2487				  && state_transition (temp_state, insn) < 0)
2488				break;
2489			    }
2490
2491			  if (bubble != NULL_RTX)
2492			    {
2493			      if (insert_schedule_bubbles_p)
2494				{
2495				  rtx copy;
2496
2497				  copy = copy_rtx (PATTERN (bubble));
2498				  emit_insn_after (copy, last_scheduled_insn);
2499				  last_scheduled_insn
2500				    = NEXT_INSN (last_scheduled_insn);
2501				  INSN_CODE (last_scheduled_insn)
2502				    = INSN_CODE (bubble);
2503
2504				  /* Annotate the same for the first insns
2505				     scheduling by using mode.  */
2506				  PUT_MODE (last_scheduled_insn,
2507					    (clock_var > last_clock_var
2508					     ? clock_var - last_clock_var
2509					     : VOIDmode));
2510				  last_clock_var = clock_var;
2511
2512				  if (sched_verbose >= 2)
2513				    {
2514				      fprintf (sched_dump,
2515					       ";;\t\t--> scheduling bubble insn <<<%d>>>:reservation ",
2516					       INSN_UID (last_scheduled_insn));
2517
2518				      if (recog_memoized (last_scheduled_insn)
2519					  < 0)
2520					fprintf (sched_dump, "nothing");
2521				      else
2522					print_reservation
2523					  (sched_dump, last_scheduled_insn);
2524
2525				      fprintf (sched_dump, "\n");
2526				    }
2527				}
2528			      cost = -1;
2529			    }
2530			}
2531		    }
2532
2533		  if (cost < 0)
2534		    cost = 0;
2535		  else if (cost == 0)
2536		    cost = 1;
2537		}
2538	    }
2539
2540
2541	  if (cost >= 1)
2542	    {
2543	      queue_insn (insn, cost);
2544	      continue;
2545	    }
2546
2547	  if (! (*current_sched_info->can_schedule_ready_p) (insn))
2548	    goto next;
2549
2550	  last_scheduled_insn = move_insn (insn, last_scheduled_insn);
2551
2552	  if (targetm.sched.use_dfa_pipeline_interface
2553	      && (*targetm.sched.use_dfa_pipeline_interface) ())
2554	    {
2555	      if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
2556		cycle_issued_insns++;
2557	      memcpy (curr_state, temp_state, dfa_state_size);
2558	    }
2559
2560	  if (targetm.sched.variable_issue)
2561	    can_issue_more =
2562	      (*targetm.sched.variable_issue) (sched_dump, sched_verbose,
2563					       insn, can_issue_more);
2564	  /* A naked CLOBBER or USE generates no instruction, so do
2565	     not count them against the issue rate.  */
2566	  else if (GET_CODE (PATTERN (insn)) != USE
2567		   && GET_CODE (PATTERN (insn)) != CLOBBER)
2568	    can_issue_more--;
2569
2570	  advance = schedule_insn (insn, &ready, clock_var);
2571
2572	  /* After issuing an asm insn we should start a new cycle.  */
2573	  if (advance == 0 && asm_p)
2574	    advance = 1;
2575	  if (advance != 0)
2576	    break;
2577
2578	next:
2579	  first_cycle_insn_p = 0;
2580
2581	  /* Sort the ready list based on priority.  This must be
2582	     redone here, as schedule_insn may have readied additional
2583	     insns that will not be sorted correctly.  */
2584	  if (ready.n_ready > 0)
2585	    ready_sort (&ready);
2586
2587	  if (targetm.sched.reorder2
2588	      && (ready.n_ready == 0
2589		  || !SCHED_GROUP_P (ready_element (&ready, 0))))
2590	    {
2591	      can_issue_more =
2592		(*targetm.sched.reorder2) (sched_dump, sched_verbose,
2593					   ready.n_ready
2594					   ? ready_lastpos (&ready) : NULL,
2595					   &ready.n_ready, clock_var);
2596	    }
2597	}
2598
2599      if ((!targetm.sched.use_dfa_pipeline_interface
2600	   || !(*targetm.sched.use_dfa_pipeline_interface) ())
2601	  && sched_verbose)
2602	/* Debug info.  */
2603	visualize_scheduled_insns (clock_var);
2604    }
2605
2606  if (targetm.sched.md_finish)
2607    (*targetm.sched.md_finish) (sched_dump, sched_verbose);
2608
2609  /* Debug info.  */
2610  if (sched_verbose)
2611    {
2612      fprintf (sched_dump, ";;\tReady list (final):  ");
2613      debug_ready_list (&ready);
2614      if (!targetm.sched.use_dfa_pipeline_interface
2615	  || !(*targetm.sched.use_dfa_pipeline_interface) ())
2616	print_block_visualization ("");
2617    }
2618
2619  /* Sanity check -- queue must be empty now.  Meaningless if region has
2620     multiple bbs.  */
2621  if (current_sched_info->queue_must_finish_empty && q_size != 0)
2622      abort ();
2623
2624  /* Update head/tail boundaries.  */
2625  head = NEXT_INSN (prev_head);
2626  tail = last_scheduled_insn;
2627
2628  if (!reload_completed)
2629    {
2630      rtx insn, link, next;
2631
2632      /* INSN_TICK (minimum clock tick at which the insn becomes
2633         ready) may be not correct for the insn in the subsequent
2634         blocks of the region.  We should use a correct value of
2635         `clock_var' or modify INSN_TICK.  It is better to keep
2636         clock_var value equal to 0 at the start of a basic block.
2637         Therefore we modify INSN_TICK here.  */
2638      for (insn = head; insn != tail; insn = NEXT_INSN (insn))
2639	if (INSN_P (insn))
2640	  {
2641	    for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
2642	      {
2643		next = XEXP (link, 0);
2644		INSN_TICK (next) -= clock_var;
2645	      }
2646	  }
2647    }
2648
2649  /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
2650     previously found among the insns.  Insert them at the beginning
2651     of the insns.  */
2652  if (note_list != 0)
2653    {
2654      rtx note_head = note_list;
2655
2656      while (PREV_INSN (note_head))
2657	{
2658	  note_head = PREV_INSN (note_head);
2659	}
2660
2661      PREV_INSN (note_head) = PREV_INSN (head);
2662      NEXT_INSN (PREV_INSN (head)) = note_head;
2663      PREV_INSN (head) = note_list;
2664      NEXT_INSN (note_list) = head;
2665      head = note_head;
2666    }
2667
2668  /* Debugging.  */
2669  if (sched_verbose)
2670    {
2671      fprintf (sched_dump, ";;   total time = %d\n;;   new head = %d\n",
2672	       clock_var, INSN_UID (head));
2673      fprintf (sched_dump, ";;   new tail = %d\n\n",
2674	       INSN_UID (tail));
2675      visualize_free ();
2676    }
2677
2678  current_sched_info->head = head;
2679  current_sched_info->tail = tail;
2680
2681  free (ready.vec);
2682
2683  if (targetm.sched.use_dfa_pipeline_interface
2684      && (*targetm.sched.use_dfa_pipeline_interface) ())
2685    {
2686      free (ready_try);
2687      for (i = 0; i <= rgn_n_insns; i++)
2688	free (choice_stack [i].state);
2689      free (choice_stack);
2690    }
2691}
2692
2693/* Set_priorities: compute priority of each insn in the block.  */
2694
2695int
2696set_priorities (rtx head, rtx tail)
2697{
2698  rtx insn;
2699  int n_insn;
2700  int sched_max_insns_priority =
2701	current_sched_info->sched_max_insns_priority;
2702  rtx prev_head;
2703
2704  prev_head = PREV_INSN (head);
2705
2706  if (head == tail && (! INSN_P (head)))
2707    return 0;
2708
2709  n_insn = 0;
2710  sched_max_insns_priority = 0;
2711  for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
2712    {
2713      if (GET_CODE (insn) == NOTE)
2714	continue;
2715
2716      n_insn++;
2717      (void) priority (insn);
2718
2719      if (INSN_PRIORITY_KNOWN (insn))
2720	sched_max_insns_priority =
2721	  MAX (sched_max_insns_priority, INSN_PRIORITY (insn));
2722    }
2723  sched_max_insns_priority += 1;
2724  current_sched_info->sched_max_insns_priority =
2725	sched_max_insns_priority;
2726
2727  return n_insn;
2728}
2729
2730/* Initialize some global state for the scheduler.  DUMP_FILE is to be used
2731   for debugging output.  */
2732
2733void
2734sched_init (FILE *dump_file)
2735{
2736  int luid;
2737  basic_block b;
2738  rtx insn;
2739  int i;
2740
2741  /* Disable speculative loads in their presence if cc0 defined.  */
2742#ifdef HAVE_cc0
2743  flag_schedule_speculative_load = 0;
2744#endif
2745
2746  /* Set dump and sched_verbose for the desired debugging output.  If no
2747     dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
2748     For -fsched-verbose=N, N>=10, print everything to stderr.  */
2749  sched_verbose = sched_verbose_param;
2750  if (sched_verbose_param == 0 && dump_file)
2751    sched_verbose = 1;
2752  sched_dump = ((sched_verbose_param >= 10 || !dump_file)
2753		? stderr : dump_file);
2754
2755  /* Initialize issue_rate.  */
2756  if (targetm.sched.issue_rate)
2757    issue_rate = (*targetm.sched.issue_rate) ();
2758  else
2759    issue_rate = 1;
2760
2761  if (cached_issue_rate != issue_rate)
2762    {
2763      cached_issue_rate = issue_rate;
2764      /* To invalidate max_lookahead_tries:  */
2765      cached_first_cycle_multipass_dfa_lookahead = 0;
2766    }
2767
2768  /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
2769     pseudos which do not cross calls.  */
2770  old_max_uid = get_max_uid () + 1;
2771
2772  h_i_d = xcalloc (old_max_uid, sizeof (*h_i_d));
2773
2774  for (i = 0; i < old_max_uid; i++)
2775    h_i_d [i].cost = -1;
2776
2777  if (targetm.sched.use_dfa_pipeline_interface
2778      && (*targetm.sched.use_dfa_pipeline_interface) ())
2779    {
2780      if (targetm.sched.init_dfa_pre_cycle_insn)
2781	(*targetm.sched.init_dfa_pre_cycle_insn) ();
2782
2783      if (targetm.sched.init_dfa_post_cycle_insn)
2784	(*targetm.sched.init_dfa_post_cycle_insn) ();
2785
2786      if (targetm.sched.first_cycle_multipass_dfa_lookahead
2787	  && targetm.sched.init_dfa_bubbles)
2788	(*targetm.sched.init_dfa_bubbles) ();
2789
2790      dfa_start ();
2791      dfa_state_size = state_size ();
2792      curr_state = xmalloc (dfa_state_size);
2793    }
2794
2795  h_i_d[0].luid = 0;
2796  luid = 1;
2797  FOR_EACH_BB (b)
2798    for (insn = BB_HEAD (b); ; insn = NEXT_INSN (insn))
2799      {
2800	INSN_LUID (insn) = luid;
2801
2802	/* Increment the next luid, unless this is a note.  We don't
2803	   really need separate IDs for notes and we don't want to
2804	   schedule differently depending on whether or not there are
2805	   line-number notes, i.e., depending on whether or not we're
2806	   generating debugging information.  */
2807	if (GET_CODE (insn) != NOTE)
2808	  ++luid;
2809
2810	if (insn == BB_END (b))
2811	  break;
2812      }
2813
2814  init_dependency_caches (luid);
2815
2816  init_alias_analysis ();
2817
2818  if (write_symbols != NO_DEBUG)
2819    {
2820      rtx line;
2821
2822      line_note_head = xcalloc (last_basic_block, sizeof (rtx));
2823
2824      /* Save-line-note-head:
2825         Determine the line-number at the start of each basic block.
2826         This must be computed and saved now, because after a basic block's
2827         predecessor has been scheduled, it is impossible to accurately
2828         determine the correct line number for the first insn of the block.  */
2829
2830      FOR_EACH_BB (b)
2831	{
2832	  for (line = BB_HEAD (b); line; line = PREV_INSN (line))
2833	    if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
2834	      {
2835		line_note_head[b->index] = line;
2836		break;
2837	      }
2838	  /* Do a forward search as well, since we won't get to see the first
2839	     notes in a basic block.  */
2840	  for (line = BB_HEAD (b); line; line = NEXT_INSN (line))
2841	    {
2842	      if (INSN_P (line))
2843		break;
2844	      if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
2845		line_note_head[b->index] = line;
2846	    }
2847	}
2848    }
2849
2850  if ((!targetm.sched.use_dfa_pipeline_interface
2851       || !(*targetm.sched.use_dfa_pipeline_interface) ())
2852      && sched_verbose)
2853    /* Find units used in this function, for visualization.  */
2854    init_target_units ();
2855
2856  /* ??? Add a NOTE after the last insn of the last basic block.  It is not
2857     known why this is done.  */
2858
2859  insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
2860  if (NEXT_INSN (insn) == 0
2861      || (GET_CODE (insn) != NOTE
2862	  && GET_CODE (insn) != CODE_LABEL
2863	  /* Don't emit a NOTE if it would end up before a BARRIER.  */
2864	  && GET_CODE (NEXT_INSN (insn)) != BARRIER))
2865    {
2866      emit_note_after (NOTE_INSN_DELETED, BB_END (EXIT_BLOCK_PTR->prev_bb));
2867      /* Make insn to appear outside BB.  */
2868      BB_END (EXIT_BLOCK_PTR->prev_bb) = PREV_INSN (BB_END (EXIT_BLOCK_PTR->prev_bb));
2869    }
2870
2871  /* Compute INSN_REG_WEIGHT for all blocks.  We must do this before
2872     removing death notes.  */
2873  FOR_EACH_BB_REVERSE (b)
2874    find_insn_reg_weight (b->index);
2875}
2876
2877/* Free global data used during insn scheduling.  */
2878
2879void
2880sched_finish (void)
2881{
2882  free (h_i_d);
2883
2884  if (targetm.sched.use_dfa_pipeline_interface
2885      && (*targetm.sched.use_dfa_pipeline_interface) ())
2886    {
2887      free (curr_state);
2888      dfa_finish ();
2889    }
2890  free_dependency_caches ();
2891  end_alias_analysis ();
2892  if (write_symbols != NO_DEBUG)
2893    free (line_note_head);
2894}
2895#endif /* INSN_SCHEDULING */
2896