rs6000.h revision 117395
1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING.  If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA.  */
22
23
24/* Note that some other tm.h files include this one and then override
25   many of the definitions.  */
26
27/* Definitions for the object file format.  These are set at
28   compile-time.  */
29
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
33#define OBJECT_MACHO 4
34
35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
44/* Default string to use for cpu if not specified.  */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
49/* Common ASM definitions used by ASM_SPEC among the various targets
50   for handling -mcpu=xxx switches.  */
51#define ASM_CPU_SPEC \
52"%{!mcpu*: \
53  %{mpower: %{!mpower2: -mpwr}} \
54  %{mpower2: -mpwrx} \
55  %{mpowerpc*: -mppc} \
56  %{mno-power: %{!mpowerpc*: -mcom}} \
57  %{!mno-power: %{!mpower2: %(asm_default)}}} \
58%{mcpu=common: -mcom} \
59%{mcpu=power: -mpwr} \
60%{mcpu=power2: -mpwrx} \
61%{mcpu=power3: -m604} \
62%{mcpu=power4: -mpower4} \
63%{mcpu=powerpc: -mppc} \
64%{mcpu=rios: -mpwr} \
65%{mcpu=rios1: -mpwr} \
66%{mcpu=rios2: -mpwrx} \
67%{mcpu=rsc: -mpwr} \
68%{mcpu=rsc1: -mpwr} \
69%{mcpu=401: -mppc} \
70%{mcpu=403: -m403} \
71%{mcpu=405: -m405} \
72%{mcpu=505: -mppc} \
73%{mcpu=601: -m601} \
74%{mcpu=602: -mppc} \
75%{mcpu=603: -mppc} \
76%{mcpu=603e: -mppc} \
77%{mcpu=ec603e: -mppc} \
78%{mcpu=604: -mppc} \
79%{mcpu=604e: -mppc} \
80%{mcpu=620: -mppc} \
81%{mcpu=630: -m604} \
82%{mcpu=740: -mppc} \
83%{mcpu=7400: -mppc} \
84%{mcpu=7450: -mppc} \
85%{mcpu=750: -mppc} \
86%{mcpu=801: -mppc} \
87%{mcpu=821: -mppc} \
88%{mcpu=823: -mppc} \
89%{mcpu=860: -mppc} \
90%{mcpu=8540: -me500} \
91%{maltivec: -maltivec}"
92
93#define CPP_DEFAULT_SPEC ""
94
95#define ASM_DEFAULT_SPEC ""
96
97/* This macro defines names of additional specifications to put in the specs
98   that can be used in various specifications like CC1_SPEC.  Its definition
99   is an initializer with a subgrouping for each command option.
100
101   Each subgrouping contains a string constant, that defines the
102   specification name, and a string constant that used by the GNU CC driver
103   program.
104
105   Do not define this macro if it does not need to do anything.  */
106
107#define SUBTARGET_EXTRA_SPECS
108
109#define EXTRA_SPECS							\
110  { "cpp_default",		CPP_DEFAULT_SPEC },			\
111  { "asm_cpu",			ASM_CPU_SPEC },				\
112  { "asm_default",		ASM_DEFAULT_SPEC },			\
113  SUBTARGET_EXTRA_SPECS
114
115/* Architecture type.  */
116
117extern int target_flags;
118
119/* Use POWER architecture instructions and MQ register.  */
120#define MASK_POWER		0x00000001
121
122/* Use POWER2 extensions to POWER architecture.  */
123#define MASK_POWER2		0x00000002
124
125/* Use PowerPC architecture instructions.  */
126#define MASK_POWERPC		0x00000004
127
128/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt.  */
129#define MASK_PPC_GPOPT		0x00000008
130
131/* Use PowerPC Graphics group optional instructions, e.g. fsel.  */
132#define MASK_PPC_GFXOPT		0x00000010
133
134/* Use PowerPC-64 architecture instructions.  */
135#define MASK_POWERPC64		0x00000020
136
137/* Use revised mnemonic names defined for PowerPC architecture.  */
138#define MASK_NEW_MNEMONICS	0x00000040
139
140/* Disable placing fp constants in the TOC; can be turned on when the
141   TOC overflows.  */
142#define MASK_NO_FP_IN_TOC	0x00000080
143
144/* Disable placing symbol+offset constants in the TOC; can be turned on when
145   the TOC overflows.  */
146#define MASK_NO_SUM_IN_TOC	0x00000100
147
148/* Output only one TOC entry per module.  Normally linking fails if
149   there are more than 16K unique variables/constants in an executable.  With
150   this option, linking fails only if there are more than 16K modules, or
151   if there are more than 16K unique variables/constant in a single module.
152
153   This is at the cost of having 2 extra loads and one extra store per
154   function, and one less allocable register.  */
155#define MASK_MINIMAL_TOC	0x00000200
156
157/* Nonzero for the 64bit model: longs and pointers are 64 bits.  */
158#define MASK_64BIT		0x00000400
159
160/* Disable use of FPRs.  */
161#define MASK_SOFT_FLOAT		0x00000800
162
163/* Enable load/store multiple, even on PowerPC */
164#define	MASK_MULTIPLE		0x00001000
165#define	MASK_MULTIPLE_SET	0x00002000
166
167/* Use string instructions for block moves */
168#define MASK_STRING		0x00004000
169#define MASK_STRING_SET		0x00008000
170
171/* Disable update form of load/store */
172#define MASK_NO_UPDATE		0x00010000
173
174/* Disable fused multiply/add operations */
175#define MASK_NO_FUSED_MADD	0x00020000
176
177/* Nonzero if we need to schedule the prolog and epilog.  */
178#define MASK_SCHED_PROLOG	0x00040000
179
180/* Use AltiVec instructions.  */
181#define MASK_ALTIVEC		0x00080000
182
183/* Return small structures in memory (as the AIX ABI requires).  */
184#define MASK_AIX_STRUCT_RET	0x00100000
185#define MASK_AIX_STRUCT_RET_SET	0x00200000
186
187/* The only remaining free bit is 0x00400000. sysv4.h uses
188   0x00800000 -> 0x40000000, and 0x80000000 is not available
189   because target_flags is signed.  */
190
191#define TARGET_POWER		(target_flags & MASK_POWER)
192#define TARGET_POWER2		(target_flags & MASK_POWER2)
193#define TARGET_POWERPC		(target_flags & MASK_POWERPC)
194#define TARGET_PPC_GPOPT	(target_flags & MASK_PPC_GPOPT)
195#define TARGET_PPC_GFXOPT	(target_flags & MASK_PPC_GFXOPT)
196#define TARGET_NEW_MNEMONICS	(target_flags & MASK_NEW_MNEMONICS)
197#define TARGET_NO_FP_IN_TOC	(target_flags & MASK_NO_FP_IN_TOC)
198#define TARGET_NO_SUM_IN_TOC	(target_flags & MASK_NO_SUM_IN_TOC)
199#define TARGET_MINIMAL_TOC	(target_flags & MASK_MINIMAL_TOC)
200#define TARGET_64BIT		(target_flags & MASK_64BIT)
201#define TARGET_SOFT_FLOAT	(target_flags & MASK_SOFT_FLOAT)
202#define	TARGET_MULTIPLE		(target_flags & MASK_MULTIPLE)
203#define	TARGET_MULTIPLE_SET	(target_flags & MASK_MULTIPLE_SET)
204#define TARGET_STRING		(target_flags & MASK_STRING)
205#define TARGET_STRING_SET	(target_flags & MASK_STRING_SET)
206#define TARGET_NO_UPDATE	(target_flags & MASK_NO_UPDATE)
207#define TARGET_NO_FUSED_MADD	(target_flags & MASK_NO_FUSED_MADD)
208#define TARGET_SCHED_PROLOG	(target_flags & MASK_SCHED_PROLOG)
209#define TARGET_ALTIVEC		(target_flags & MASK_ALTIVEC)
210#define TARGET_AIX_STRUCT_RET	(target_flags & MASK_AIX_STRUCT_RET)
211
212#define TARGET_32BIT		(! TARGET_64BIT)
213#define TARGET_HARD_FLOAT	(! TARGET_SOFT_FLOAT)
214#define TARGET_UPDATE		(! TARGET_NO_UPDATE)
215#define TARGET_FUSED_MADD	(! TARGET_NO_FUSED_MADD)
216
217#ifdef IN_LIBGCC2
218/* For libgcc2 we make sure this is a compile time constant */
219#if defined (__64BIT__) || defined (__powerpc64__)
220#define TARGET_POWERPC64	1
221#else
222#define TARGET_POWERPC64	0
223#endif
224#else
225#define TARGET_POWERPC64	(target_flags & MASK_POWERPC64)
226#endif
227
228#define TARGET_XL_CALL 0
229
230/* Run-time compilation parameters selecting different hardware subsets.
231
232   Macro to define tables used to set the flags.
233   This is a list in braces of pairs in braces,
234   each pair being { "NAME", VALUE }
235   where VALUE is the bits to set or minus the bits to clear.
236   An empty string NAME is used to identify the default VALUE.  */
237
238#define TARGET_SWITCHES							\
239 {{"power",		MASK_POWER  | MASK_MULTIPLE | MASK_STRING,	\
240			N_("Use POWER instruction set")},		\
241  {"power2",		(MASK_POWER | MASK_MULTIPLE | MASK_STRING	\
242			 | MASK_POWER2),				\
243			N_("Use POWER2 instruction set")},		\
244  {"no-power2",		- MASK_POWER2,					\
245			N_("Do not use POWER2 instruction set")},	\
246  {"no-power",		- (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE	\
247			   | MASK_STRING),				\
248			N_("Do not use POWER instruction set")},	\
249  {"powerpc",		MASK_POWERPC,					\
250			N_("Use PowerPC instruction set")},		\
251  {"no-powerpc",	- (MASK_POWERPC | MASK_PPC_GPOPT		\
252			   | MASK_PPC_GFXOPT | MASK_POWERPC64),		\
253			N_("Do not use PowerPC instruction set")},	\
254  {"powerpc-gpopt",	MASK_POWERPC | MASK_PPC_GPOPT,			\
255			N_("Use PowerPC General Purpose group optional instructions")},\
256  {"no-powerpc-gpopt",	- MASK_PPC_GPOPT,				\
257			N_("Don't use PowerPC General Purpose group optional instructions")},\
258  {"powerpc-gfxopt",	MASK_POWERPC | MASK_PPC_GFXOPT,			\
259			N_("Use PowerPC Graphics group optional instructions")},\
260  {"no-powerpc-gfxopt",	- MASK_PPC_GFXOPT,				\
261			N_("Don't use PowerPC Graphics group optional instructions")},\
262  {"powerpc64",		MASK_POWERPC64,					\
263			N_("Use PowerPC-64 instruction set")},		\
264  {"no-powerpc64",	- MASK_POWERPC64,				\
265			N_("Don't use PowerPC-64 instruction set")},	\
266  {"altivec",		MASK_ALTIVEC ,					\
267			N_("Use AltiVec instructions")},		\
268  {"no-altivec",	- MASK_ALTIVEC ,					\
269			N_("Don't use AltiVec instructions")},	\
270  {"new-mnemonics",	MASK_NEW_MNEMONICS,				\
271			N_("Use new mnemonics for PowerPC architecture")},\
272  {"old-mnemonics",	-MASK_NEW_MNEMONICS,				\
273			N_("Use old mnemonics for PowerPC architecture")},\
274  {"full-toc",		- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC	\
275			   | MASK_MINIMAL_TOC),				\
276			N_("Put everything in the regular TOC")},	\
277  {"fp-in-toc",		- MASK_NO_FP_IN_TOC,				\
278			N_("Place floating point constants in TOC")},	\
279  {"no-fp-in-toc",	MASK_NO_FP_IN_TOC,				\
280			N_("Don't place floating point constants in TOC")},\
281  {"sum-in-toc",	- MASK_NO_SUM_IN_TOC,				\
282			N_("Place symbol+offset constants in TOC")},	\
283  {"no-sum-in-toc",	MASK_NO_SUM_IN_TOC,				\
284			N_("Don't place symbol+offset constants in TOC")},\
285  {"minimal-toc",	MASK_MINIMAL_TOC,				\
286			"Use only one TOC entry per procedure"},	\
287  {"minimal-toc",	- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC),	\
288			""},						\
289  {"no-minimal-toc",	- MASK_MINIMAL_TOC,				\
290			N_("Place variable addresses in the regular TOC")},\
291  {"hard-float",	- MASK_SOFT_FLOAT,				\
292			N_("Use hardware fp")},				\
293  {"soft-float",	MASK_SOFT_FLOAT,				\
294			N_("Do not use hardware fp")},			\
295  {"multiple",		MASK_MULTIPLE | MASK_MULTIPLE_SET,		\
296			N_("Generate load/store multiple instructions")},	\
297  {"no-multiple",	- MASK_MULTIPLE,				\
298			N_("Do not generate load/store multiple instructions")},\
299  {"no-multiple",	MASK_MULTIPLE_SET,				\
300			""},						\
301  {"string",		MASK_STRING | MASK_STRING_SET,			\
302			N_("Generate string instructions for block moves")},\
303  {"no-string",		- MASK_STRING,					\
304			N_("Do not generate string instructions for block moves")},\
305  {"no-string",		MASK_STRING_SET,				\
306			""},						\
307  {"update",		- MASK_NO_UPDATE,				\
308			N_("Generate load/store with update instructions")},\
309  {"no-update",		MASK_NO_UPDATE,					\
310			N_("Do not generate load/store with update instructions")},\
311  {"fused-madd",	- MASK_NO_FUSED_MADD,				\
312			N_("Generate fused multiply/add instructions")},\
313  {"no-fused-madd",	MASK_NO_FUSED_MADD,				\
314			N_("Don't generate fused multiply/add instructions")},\
315  {"sched-prolog",      MASK_SCHED_PROLOG,                              \
316			""},						\
317  {"no-sched-prolog",   -MASK_SCHED_PROLOG,                             \
318			N_("Don't schedule the start and end of the procedure")},\
319  {"sched-epilog",      MASK_SCHED_PROLOG,                              \
320			""},						\
321  {"no-sched-epilog",   -MASK_SCHED_PROLOG,                             \
322			""},						\
323  {"aix-struct-return",	MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,	\
324			N_("Return all structures in memory (AIX default)")},\
325  {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
326			N_("Return small structures in registers (SVR4 default)")},\
327  {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
328			""},\
329  {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
330			""},\
331  {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
332			""},\
333  {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
334			""},\
335  SUBTARGET_SWITCHES							\
336  {"",			TARGET_DEFAULT | MASK_SCHED_PROLOG,		\
337			""}}
338
339#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
340
341/* This is meant to be redefined in the host dependent files */
342#define SUBTARGET_SWITCHES
343
344/* Processor type.  Order must match cpu attribute in MD file.  */
345enum processor_type
346 {
347   PROCESSOR_RIOS1,
348   PROCESSOR_RIOS2,
349   PROCESSOR_RS64A,
350   PROCESSOR_MPCCORE,
351   PROCESSOR_PPC403,
352   PROCESSOR_PPC405,
353   PROCESSOR_PPC601,
354   PROCESSOR_PPC603,
355   PROCESSOR_PPC604,
356   PROCESSOR_PPC604e,
357   PROCESSOR_PPC620,
358   PROCESSOR_PPC630,
359   PROCESSOR_PPC750,
360   PROCESSOR_PPC7400,
361   PROCESSOR_PPC7450,
362   PROCESSOR_PPC8540,
363   PROCESSOR_POWER4
364};
365
366extern enum processor_type rs6000_cpu;
367
368/* Recast the processor type to the cpu attribute.  */
369#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
370
371/* Define generic processor types based upon current deployment.  */
372#define PROCESSOR_COMMON    PROCESSOR_PPC601
373#define PROCESSOR_POWER     PROCESSOR_RIOS1
374#define PROCESSOR_POWERPC   PROCESSOR_PPC604
375#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
376
377/* Define the default processor.  This is overridden by other tm.h files.  */
378#define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
379#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
380
381/* Specify the dialect of assembler to use.  New mnemonics is dialect one
382   and the old mnemonics are dialect zero.  */
383#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
384
385/* This is meant to be overridden in target specific files.  */
386#define	SUBTARGET_OPTIONS
387
388#define TARGET_OPTIONS							\
389{									\
390   {"cpu=",  &rs6000_select[1].string,					\
391    N_("Use features of and schedule code for given CPU") },		\
392   {"tune=", &rs6000_select[2].string,					\
393    N_("Schedule code for given CPU") },				\
394   {"debug=", &rs6000_debug_name, N_("Enable debug output") },		\
395   {"traceback=", &rs6000_traceback_name,				\
396    N_("Select full, part, or no traceback table") },			\
397   {"abi=", &rs6000_abi_string, N_("Specify ABI to use") },		\
398   {"long-double-", &rs6000_long_double_size_string,			\
399    N_("Specify size of long double (64 or 128 bits)") },		\
400   {"isel=", &rs6000_isel_string,                                       \
401    N_("Specify yes/no if isel instructions should be generated") },    \
402   {"vrsave=", &rs6000_altivec_vrsave_string,                         \
403    N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
404   {"longcall", &rs6000_longcall_switch,				\
405    N_("Avoid all range limits on call instructions") },		\
406   {"no-longcall", &rs6000_longcall_switch, "" },			\
407   SUBTARGET_OPTIONS							\
408}
409
410/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
411struct rs6000_cpu_select
412{
413  const char *string;
414  const char *name;
415  int set_tune_p;
416  int set_arch_p;
417};
418
419extern struct rs6000_cpu_select rs6000_select[];
420
421/* Debug support */
422extern const char *rs6000_debug_name;	/* Name for -mdebug-xxxx option */
423extern const char *rs6000_abi_string;	/* for -mabi={sysv,darwin,eabi,aix,altivec} */
424extern int rs6000_debug_stack;		/* debug stack applications */
425extern int rs6000_debug_arg;		/* debug argument handling */
426
427#define	TARGET_DEBUG_STACK	rs6000_debug_stack
428#define	TARGET_DEBUG_ARG	rs6000_debug_arg
429
430extern const char *rs6000_traceback_name; /* Type of traceback table.  */
431
432/* These are separate from target_flags because we've run out of bits
433   there.  */
434extern const char *rs6000_long_double_size_string;
435extern int rs6000_long_double_type_size;
436extern int rs6000_altivec_abi;
437extern int rs6000_spe_abi;
438extern int rs6000_isel;
439extern int rs6000_fprs;
440extern const char *rs6000_isel_string;
441extern const char *rs6000_altivec_vrsave_string;
442extern int rs6000_altivec_vrsave;
443extern const char *rs6000_longcall_switch;
444extern int rs6000_default_long_calls;
445
446#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
447#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
448#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
449
450#define TARGET_SPE_ABI 0
451#define TARGET_SPE 0
452#define TARGET_ISEL 0
453#define TARGET_FPRS 1
454
455/* Sometimes certain combinations of command options do not make sense
456   on a particular target machine.  You can define a macro
457   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
458   defined, is executed once just after all the command options have
459   been parsed.
460
461   Don't use this macro to turn on various extra optimizations for
462   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
463
464   On the RS/6000 this is used to define the target cpu type.  */
465
466#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
467
468/* Define this to change the optimizations performed by default.  */
469#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
470
471/* Show we can debug even without a frame pointer.  */
472#define CAN_DEBUG_WITHOUT_FP
473
474/* Target pragma.  */
475#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
476  cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
477} while (0)
478
479/* Target #defines.  */
480#define TARGET_CPU_CPP_BUILTINS() \
481  rs6000_cpu_cpp_builtins (pfile)
482
483/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
484   we're compiling for.  Some configurations may need to override it.  */
485#define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
486  do						\
487    {						\
488      if (BYTES_BIG_ENDIAN)			\
489	{					\
490	  builtin_define ("__BIG_ENDIAN__");	\
491	  builtin_define ("_BIG_ENDIAN");	\
492	  builtin_assert ("machine=bigendian");	\
493	}					\
494      else					\
495	{					\
496	  builtin_define ("__LITTLE_ENDIAN__");	\
497	  builtin_define ("_LITTLE_ENDIAN");	\
498	  builtin_assert ("machine=littleendian"); \
499	}					\
500    }						\
501  while (0)
502
503/* Target machine storage layout.  */
504
505/* Define this macro if it is advisable to hold scalars in registers
506   in a wider mode than that declared by the program.  In such cases,
507   the value is constrained to be within the bounds of the declared
508   type, but kept valid in the wider mode.  The signedness of the
509   extension may differ from that of the type.  */
510
511#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
512  if (GET_MODE_CLASS (MODE) == MODE_INT		\
513      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
514    (MODE) = word_mode;
515
516/* Define this if function arguments should also be promoted using the above
517   procedure.  */
518
519#define PROMOTE_FUNCTION_ARGS
520
521/* Likewise, if the function return value is promoted.  */
522
523#define PROMOTE_FUNCTION_RETURN
524
525/* Define this if most significant bit is lowest numbered
526   in instructions that operate on numbered bit-fields.  */
527/* That is true on RS/6000.  */
528#define BITS_BIG_ENDIAN 1
529
530/* Define this if most significant byte of a word is the lowest numbered.  */
531/* That is true on RS/6000.  */
532#define BYTES_BIG_ENDIAN 1
533
534/* Define this if most significant word of a multiword number is lowest
535   numbered.
536
537   For RS/6000 we can decide arbitrarily since there are no machine
538   instructions for them.  Might as well be consistent with bits and bytes.  */
539#define WORDS_BIG_ENDIAN 1
540
541#define MAX_BITS_PER_WORD 64
542
543/* Width of a word, in units (bytes).  */
544#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
545#ifdef IN_LIBGCC2
546#define MIN_UNITS_PER_WORD UNITS_PER_WORD
547#else
548#define MIN_UNITS_PER_WORD 4
549#endif
550#define UNITS_PER_FP_WORD 8
551#define UNITS_PER_ALTIVEC_WORD 16
552#define UNITS_PER_SPE_WORD 8
553
554/* Type used for ptrdiff_t, as a string used in a declaration.  */
555#define PTRDIFF_TYPE "int"
556
557/* Type used for size_t, as a string used in a declaration.  */
558#define SIZE_TYPE "long unsigned int"
559
560/* Type used for wchar_t, as a string used in a declaration.  */
561#define WCHAR_TYPE "short unsigned int"
562
563/* Width of wchar_t in bits.  */
564#define WCHAR_TYPE_SIZE 16
565
566/* A C expression for the size in bits of the type `short' on the
567   target machine.  If you don't define this, the default is half a
568   word.  (If this would be less than one storage unit, it is
569   rounded up to one unit.)  */
570#define SHORT_TYPE_SIZE 16
571
572/* A C expression for the size in bits of the type `int' on the
573   target machine.  If you don't define this, the default is one
574   word.  */
575#define INT_TYPE_SIZE 32
576
577/* A C expression for the size in bits of the type `long' on the
578   target machine.  If you don't define this, the default is one
579   word.  */
580#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
581#define MAX_LONG_TYPE_SIZE 64
582
583/* A C expression for the size in bits of the type `long long' on the
584   target machine.  If you don't define this, the default is two
585   words.  */
586#define LONG_LONG_TYPE_SIZE 64
587
588/* A C expression for the size in bits of the type `float' on the
589   target machine.  If you don't define this, the default is one
590   word.  */
591#define FLOAT_TYPE_SIZE 32
592
593/* A C expression for the size in bits of the type `double' on the
594   target machine.  If you don't define this, the default is two
595   words.  */
596#define DOUBLE_TYPE_SIZE 64
597
598/* A C expression for the size in bits of the type `long double' on
599   the target machine.  If you don't define this, the default is two
600   words.  */
601#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
602
603/* Constant which presents upper bound of the above value.  */
604#define MAX_LONG_DOUBLE_TYPE_SIZE 128
605
606/* Define this to set long double type size to use in libgcc2.c, which can
607   not depend on target_flags.  */
608#ifdef __LONG_DOUBLE_128__
609#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
610#else
611#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
612#endif
613
614/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
615#define WIDEST_HARDWARE_FP_SIZE 64
616
617/* Width in bits of a pointer.
618   See also the macro `Pmode' defined below.  */
619#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
620
621/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
622#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
623
624/* Boundary (in *bits*) on which stack pointer should be aligned.  */
625#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
626
627/* Allocation boundary (in *bits*) for the code of a function.  */
628#define FUNCTION_BOUNDARY 32
629
630/* No data type wants to be aligned rounder than this.  */
631#define BIGGEST_ALIGNMENT 128
632
633/* A C expression to compute the alignment for a variables in the
634   local store.  TYPE is the data type, and ALIGN is the alignment
635   that the object would ordinarily have.  */
636#define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
637  ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 :	\
638    (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
639
640/* Alignment of field after `int : 0' in a structure.  */
641#define EMPTY_FIELD_BOUNDARY 32
642
643/* Every structure's size must be a multiple of this.  */
644#define STRUCTURE_SIZE_BOUNDARY 8
645
646/* Return 1 if a structure or array containing FIELD should be
647   accessed using `BLKMODE'.
648
649   For the SPE, simd types are V2SI, and gcc can be tempted to put the
650   entire thing in a DI and use subregs to access the internals.
651   store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
652   back-end.  Because a single GPR can hold a V2SI, but not a DI, the
653   best thing to do is set structs to BLKmode and avoid Severe Tire
654   Damage.  */
655#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
656  (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
657
658/* A bit-field declared as `int' forces `int' alignment for the struct.  */
659#define PCC_BITFIELD_TYPE_MATTERS 1
660
661/* Make strings word-aligned so strcpy from constants will be faster.
662   Make vector constants quadword aligned.  */
663#define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
664  (TREE_CODE (EXP) == STRING_CST	                         \
665   && (ALIGN) < BITS_PER_WORD                                    \
666   ? BITS_PER_WORD                                               \
667   : (ALIGN))
668
669/* Make arrays of chars word-aligned for the same reasons.
670   Align vectors to 128 bits.  */
671#define DATA_ALIGNMENT(TYPE, ALIGN)		\
672  (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128)	\
673   : TREE_CODE (TYPE) == ARRAY_TYPE		\
674   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
675   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
676
677/* Nonzero if move instructions will actually fail to work
678   when given unaligned data.  */
679#define STRICT_ALIGNMENT 0
680
681/* Define this macro to be the value 1 if unaligned accesses have a cost
682   many times greater than aligned accesses, for example if they are
683   emulated in a trap handler.  */
684#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
685  (STRICT_ALIGNMENT							\
686   || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode	\
687	|| (MODE) == DImode)						\
688       && (ALIGN) < 32))
689
690/* Standard register usage.  */
691
692/* Number of actual hardware registers.
693   The hardware registers are assigned numbers for the compiler
694   from 0 to just below FIRST_PSEUDO_REGISTER.
695   All registers that the compiler knows about must be given numbers,
696   even those that are not normally considered general registers.
697
698   RS/6000 has 32 fixed-point registers, 32 floating-point registers,
699   an MQ register, a count register, a link register, and 8 condition
700   register fields, which we view here as separate registers.
701
702   In addition, the difference between the frame and argument pointers is
703   a function of the number of registers saved, so we need to have a
704   register for AP that will later be eliminated in favor of SP or FP.
705   This is a normal register, but it is fixed.
706
707   We also create a pseudo register for float/int conversions, that will
708   really represent the memory location used.  It is represented here as
709   a register, in order to work around problems in allocating stack storage
710   in inline functions.  */
711
712#define FIRST_PSEUDO_REGISTER 113
713
714/* This must be included for pre gcc 3.0 glibc compatibility.  */
715#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
716
717/* 1 for registers that have pervasive standard uses
718   and are not available for the register allocator.
719
720   On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
721   as a local register; for all other OS's r2 is the TOC pointer.
722
723   cr5 is not supposed to be used.
724
725   On System V implementations, r13 is fixed and not available for use.  */
726
727#define FIXED_REGISTERS  \
728  {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
729   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
730   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
731   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
732   0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
733   /* AltiVec registers.  */			   \
734   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
735   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
736   1, 1						   \
737   , 1, 1                                          \
738}
739
740/* 1 for registers not available across function calls.
741   These must include the FIXED_REGISTERS and also any
742   registers that can be used without being saved.
743   The latter must include the registers where values are returned
744   and the register where structure-value addresses are passed.
745   Aside from that, you can include as many other registers as you like.  */
746
747#define CALL_USED_REGISTERS  \
748  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
749   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
750   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
751   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
752   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
753   /* AltiVec registers.  */			   \
754   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
755   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
756   1, 1						   \
757   , 1, 1                                          \
758}
759
760/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
761   the entire set of `FIXED_REGISTERS' be included.
762   (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
763   This macro is optional.  If not specified, it defaults to the value
764   of `CALL_USED_REGISTERS'.  */
765
766#define CALL_REALLY_USED_REGISTERS  \
767  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
768   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
769   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
770   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
771   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
772   /* AltiVec registers.  */			   \
773   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
774   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
775   0, 0						   \
776   , 0, 0                                          \
777}
778
779#define MQ_REGNO     64
780#define CR0_REGNO    68
781#define CR1_REGNO    69
782#define CR2_REGNO    70
783#define CR3_REGNO    71
784#define CR4_REGNO    72
785#define MAX_CR_REGNO 75
786#define XER_REGNO    76
787#define FIRST_ALTIVEC_REGNO	77
788#define LAST_ALTIVEC_REGNO	108
789#define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
790#define VRSAVE_REGNO		109
791#define VSCR_REGNO		110
792#define SPE_ACC_REGNO		111
793#define SPEFSCR_REGNO		112
794
795/* List the order in which to allocate registers.  Each register must be
796   listed once, even those in FIXED_REGISTERS.
797
798   We allocate in the following order:
799	fp0		(not saved or used for anything)
800	fp13 - fp2	(not saved; incoming fp arg registers)
801	fp1		(not saved; return value)
802 	fp31 - fp14	(saved; order given to save least number)
803	cr7, cr6	(not saved or special)
804	cr1		(not saved, but used for FP operations)
805	cr0		(not saved, but used for arithmetic operations)
806	cr4, cr3, cr2	(saved)
807        r0		(not saved; cannot be base reg)
808	r9		(not saved; best for TImode)
809	r11, r10, r8-r4	(not saved; highest used first to make less conflict)
810	r3     		(not saved; return value register)
811	r31 - r13	(saved; order given to save least number)
812	r12		(not saved; if used for DImode or DFmode would use r13)
813	mq		(not saved; best to use it if we can)
814	ctr		(not saved; when we have the choice ctr is better)
815	lr		(saved)
816        cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
817	spe_acc, spefscr (fixed)
818
819	AltiVec registers:
820	v0 - v1         (not saved or used for anything)
821	v13 - v3        (not saved; incoming vector arg registers)
822	v2              (not saved; incoming vector arg reg; return value)
823	v19 - v14       (not saved or used for anything)
824	v31 - v20       (saved; order given to save least number)
825*/
826
827
828#define REG_ALLOC_ORDER					\
829  {32, 							\
830   45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,	\
831   33,							\
832   63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,	\
833   50, 49, 48, 47, 46, 					\
834   75, 74, 69, 68, 72, 71, 70,				\
835   0,							\
836   9, 11, 10, 8, 7, 6, 5, 4,				\
837   3,							\
838   31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,	\
839   18, 17, 16, 15, 14, 13, 12,				\
840   64, 66, 65, 						\
841   73, 1, 2, 67, 76,					\
842   /* AltiVec registers.  */				\
843   77, 78,						\
844   90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,		\
845   79,							\
846   96, 95, 94, 93, 92, 91,				\
847   108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98,	\
848   97, 109, 110						\
849   , 111, 112                                              \
850}
851
852/* True if register is floating-point.  */
853#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
854
855/* True if register is a condition register.  */
856#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
857
858/* True if register is a condition register, but not cr0.  */
859#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
860
861/* True if register is an integer register.  */
862#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
863
864/* SPE SIMD registers are just the GPRs.  */
865#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
866
867/* True if register is the XER register.  */
868#define XER_REGNO_P(N) ((N) == XER_REGNO)
869
870/* True if register is an AltiVec register.  */
871#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
872
873/* Return number of consecutive hard regs needed starting at reg REGNO
874   to hold something of mode MODE.
875   This is ordinarily the length in words of a value of mode MODE
876   but can be less for certain modes in special long registers.
877
878   For the SPE, GPRs are 64 bits but only 32 bits are visible in
879   scalar instructions.  The upper 32 bits are only available to the
880   SIMD instructions.
881
882   POWER and PowerPC GPRs hold 32 bits worth;
883   PowerPC64 GPRs and FPRs point register holds 64 bits worth.  */
884
885#define HARD_REGNO_NREGS(REGNO, MODE)					\
886  (FP_REGNO_P (REGNO)							\
887   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
888   : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE))   \
889   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
890   : ALTIVEC_REGNO_P (REGNO)						\
891   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
892   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
893
894#define ALTIVEC_VECTOR_MODE(MODE)	\
895	 ((MODE) == V16QImode		\
896	  || (MODE) == V8HImode		\
897	  || (MODE) == V4SFmode		\
898	  || (MODE) == V4SImode)
899
900#define SPE_VECTOR_MODE(MODE)		\
901	((MODE) == V4HImode          	\
902         || (MODE) == V2SFmode          \
903         || (MODE) == V1DImode          \
904         || (MODE) == V2SImode)
905
906/* Define this macro to be nonzero if the port is prepared to handle
907   insns involving vector mode MODE.  At the very least, it must have
908   move patterns for this mode.  */
909
910#define VECTOR_MODE_SUPPORTED_P(MODE)			\
911        ((TARGET_SPE && SPE_VECTOR_MODE (MODE))		\
912	 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
913
914/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
915   For POWER and PowerPC, the GPRs can hold any mode, but the float
916   registers only can hold floating modes and DImode, and CR register only
917   can hold CC modes.  We cannot put TImode anywhere except general
918   register and it must be able to fit within the register set.  */
919
920#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
921  (FP_REGNO_P (REGNO) ?							\
922   (GET_MODE_CLASS (MODE) == MODE_FLOAT					\
923    || (GET_MODE_CLASS (MODE) == MODE_INT				\
924	&& GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD))			\
925   : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE)		\
926   : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
927   : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC		\
928   : XER_REGNO_P (REGNO) ? (MODE) == PSImode				\
929   : ! INT_REGNO_P (REGNO) ? GET_MODE_SIZE (MODE) <= UNITS_PER_WORD	\
930   : 1)
931
932/* Value is 1 if it is a good idea to tie two pseudo registers
933   when one has mode MODE1 and one has mode MODE2.
934   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
935   for any hard reg, then this must be 0 for correct output.  */
936#define MODES_TIEABLE_P(MODE1, MODE2) \
937  (GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
938   ? GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
939   : GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
940   ? GET_MODE_CLASS (MODE1) == MODE_FLOAT	\
941   : GET_MODE_CLASS (MODE1) == MODE_CC		\
942   ? GET_MODE_CLASS (MODE2) == MODE_CC		\
943   : GET_MODE_CLASS (MODE2) == MODE_CC		\
944   ? GET_MODE_CLASS (MODE1) == MODE_CC		\
945   : ALTIVEC_VECTOR_MODE (MODE1)		\
946   ? ALTIVEC_VECTOR_MODE (MODE2)		\
947   : ALTIVEC_VECTOR_MODE (MODE2)		\
948   ? ALTIVEC_VECTOR_MODE (MODE1)		\
949   : 1)
950
951/* A C expression returning the cost of moving data from a register of class
952   CLASS1 to one of CLASS2.  */
953
954#define REGISTER_MOVE_COST rs6000_register_move_cost
955
956/* A C expressions returning the cost of moving data of MODE from a register to
957   or from memory.  */
958
959#define MEMORY_MOVE_COST rs6000_memory_move_cost
960
961/* Specify the cost of a branch insn; roughly the number of extra insns that
962   should be added to avoid a branch.
963
964   Set this to 3 on the RS/6000 since that is roughly the average cost of an
965   unscheduled conditional branch.  */
966
967#define BRANCH_COST 3
968
969
970/* A fixed register used at prologue and epilogue generation to fix
971   addressing modes.  The SPE needs heavy addressing fixes at the last
972   minute, and it's best to save a register for it.
973
974   AltiVec also needs fixes, but we've gotten around using r11, which
975   is actually wrong because when use_backchain_to_restore_sp is true,
976   we end up clobbering r11.
977
978   The AltiVec case needs to be fixed.  Dunno if we should break ABI
979   compatability and reserve a register for it as well..  */
980
981#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
982
983/* Define this macro to change register usage conditional on target flags.
984   Set MQ register fixed (already call_used) if not POWER architecture
985   (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
986   64-bit AIX reserves GPR13 for thread-private data.
987   Conditionally disable FPRs.  */
988
989#define CONDITIONAL_REGISTER_USAGE					\
990{									\
991  int i;								\
992  if (! TARGET_POWER)							\
993    fixed_regs[64] = 1;							\
994  if (TARGET_64BIT)							\
995    fixed_regs[13] = call_used_regs[13]					\
996      = call_really_used_regs[13] = 1; 					\
997  if (TARGET_SOFT_FLOAT || !TARGET_FPRS)				\
998    for (i = 32; i < 64; i++)						\
999      fixed_regs[i] = call_used_regs[i]					\
1000        = call_really_used_regs[i] = 1;					\
1001  if (DEFAULT_ABI == ABI_V4						\
1002      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM			\
1003      && flag_pic == 2)							\
1004    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;			\
1005  if (DEFAULT_ABI == ABI_V4						\
1006      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM			\
1007      && flag_pic == 1)							\
1008    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1009      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1010      = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;	\
1011  if (DEFAULT_ABI == ABI_DARWIN						\
1012      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
1013    global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1014      = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1015      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1016      = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;	\
1017  if (TARGET_ALTIVEC)                                                   \
1018    global_regs[VSCR_REGNO] = 1;                                        \
1019  if (TARGET_SPE)							\
1020    {                                                                   \
1021      global_regs[SPEFSCR_REGNO] = 1;					\
1022      fixed_regs[FIXED_SCRATCH]						\
1023        = call_used_regs[FIXED_SCRATCH]					\
1024	= call_really_used_regs[FIXED_SCRATCH] = 1; 			\
1025    }                                                                   \
1026  if (! TARGET_ALTIVEC)							\
1027    {									\
1028      for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)	\
1029	fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1030      call_really_used_regs[VRSAVE_REGNO] = 1;				\
1031    }									\
1032  if (TARGET_ALTIVEC_ABI)						\
1033    for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)	\
1034      call_used_regs[i] = call_really_used_regs[i] = 1;			\
1035}
1036
1037/* Specify the registers used for certain standard purposes.
1038   The values of these macros are register numbers.  */
1039
1040/* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1041/* #define PC_REGNUM  */
1042
1043/* Register to use for pushing function arguments.  */
1044#define STACK_POINTER_REGNUM 1
1045
1046/* Base register for access to local variables of the function.  */
1047#define FRAME_POINTER_REGNUM 31
1048
1049/* Value should be nonzero if functions must have frame pointers.
1050   Zero means the frame pointer need not be set up (and parms
1051   may be accessed via the stack pointer) in functions that seem suitable.
1052   This is computed in `reload', in reload1.c.  */
1053#define FRAME_POINTER_REQUIRED 0
1054
1055/* Base register for access to arguments of the function.  */
1056#define ARG_POINTER_REGNUM 67
1057
1058/* Place to put static chain when calling a function that requires it.  */
1059#define STATIC_CHAIN_REGNUM 11
1060
1061/* Link register number.  */
1062#define LINK_REGISTER_REGNUM 65
1063
1064/* Count register number.  */
1065#define COUNT_REGISTER_REGNUM 66
1066
1067/* Place that structure value return address is placed.
1068
1069   On the RS/6000, it is passed as an extra parameter.  */
1070#define STRUCT_VALUE 0
1071
1072/* Define the classes of registers for register constraints in the
1073   machine description.  Also define ranges of constants.
1074
1075   One of the classes must always be named ALL_REGS and include all hard regs.
1076   If there is more than one class, another class must be named NO_REGS
1077   and contain no registers.
1078
1079   The name GENERAL_REGS must be the name of a class (or an alias for
1080   another name such as ALL_REGS).  This is the class of registers
1081   that is allowed by "g" or "r" in a register constraint.
1082   Also, registers outside this class are allocated only when
1083   instructions express preferences for them.
1084
1085   The classes must be numbered in nondecreasing order; that is,
1086   a larger-numbered class must never be contained completely
1087   in a smaller-numbered class.
1088
1089   For any two classes, it is very desirable that there be another
1090   class that represents their union.  */
1091
1092/* The RS/6000 has three types of registers, fixed-point, floating-point,
1093   and condition registers, plus three special registers, MQ, CTR, and the
1094   link register.
1095
1096   However, r0 is special in that it cannot be used as a base register.
1097   So make a class for registers valid as base registers.
1098
1099   Also, cr0 is the only condition code register that can be used in
1100   arithmetic insns, so make a separate class for it.  */
1101
1102enum reg_class
1103{
1104  NO_REGS,
1105  BASE_REGS,
1106  GENERAL_REGS,
1107  FLOAT_REGS,
1108  ALTIVEC_REGS,
1109  VRSAVE_REGS,
1110  VSCR_REGS,
1111  SPE_ACC_REGS,
1112  SPEFSCR_REGS,
1113  NON_SPECIAL_REGS,
1114  MQ_REGS,
1115  LINK_REGS,
1116  CTR_REGS,
1117  LINK_OR_CTR_REGS,
1118  SPECIAL_REGS,
1119  SPEC_OR_GEN_REGS,
1120  CR0_REGS,
1121  CR_REGS,
1122  NON_FLOAT_REGS,
1123  XER_REGS,
1124  ALL_REGS,
1125  LIM_REG_CLASSES
1126};
1127
1128#define N_REG_CLASSES (int) LIM_REG_CLASSES
1129
1130/* Give names of register classes as strings for dump file.  */
1131
1132#define REG_CLASS_NAMES							\
1133{									\
1134  "NO_REGS",								\
1135  "BASE_REGS",								\
1136  "GENERAL_REGS",							\
1137  "FLOAT_REGS",								\
1138  "ALTIVEC_REGS",							\
1139  "VRSAVE_REGS",							\
1140  "VSCR_REGS",								\
1141  "SPE_ACC_REGS",                                                       \
1142  "SPEFSCR_REGS",                                                       \
1143  "NON_SPECIAL_REGS",							\
1144  "MQ_REGS",								\
1145  "LINK_REGS",								\
1146  "CTR_REGS",								\
1147  "LINK_OR_CTR_REGS",							\
1148  "SPECIAL_REGS",							\
1149  "SPEC_OR_GEN_REGS",							\
1150  "CR0_REGS",								\
1151  "CR_REGS",								\
1152  "NON_FLOAT_REGS",							\
1153  "XER_REGS",								\
1154  "ALL_REGS"								\
1155}
1156
1157/* Define which registers fit in which classes.
1158   This is an initializer for a vector of HARD_REG_SET
1159   of length N_REG_CLASSES.  */
1160
1161#define REG_CLASS_CONTENTS						     \
1162{									     \
1163  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \
1164  { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */	     \
1165  { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */     \
1166  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1167  { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1168  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \
1169  { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */	     \
1170  { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1171  { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1172  { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1173  { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \
1174  { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \
1175  { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \
1176  { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1177  { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1178  { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1179  { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \
1180  { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \
1181  { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */   \
1182  { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \
1183  { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff }  /* ALL_REGS */	     \
1184}
1185
1186/* The same information, inverted:
1187   Return the class number of the smallest class containing
1188   reg number REGNO.  This could be a conditional expression
1189   or could index an array.  */
1190
1191#define REGNO_REG_CLASS(REGNO)			\
1192 ((REGNO) == 0 ? GENERAL_REGS			\
1193  : (REGNO) < 32 ? BASE_REGS			\
1194  : FP_REGNO_P (REGNO) ? FLOAT_REGS		\
1195  : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS	\
1196  : (REGNO) == CR0_REGNO ? CR0_REGS		\
1197  : CR_REGNO_P (REGNO) ? CR_REGS		\
1198  : (REGNO) == MQ_REGNO ? MQ_REGS		\
1199  : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS	\
1200  : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS	\
1201  : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS	\
1202  : (REGNO) == XER_REGNO ? XER_REGS		\
1203  : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS	\
1204  : (REGNO) == VSCR_REGNO ? VRSAVE_REGS	\
1205  : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS	\
1206  : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS	\
1207  : NO_REGS)
1208
1209/* The class value for index registers, and the one for base regs.  */
1210#define INDEX_REG_CLASS GENERAL_REGS
1211#define BASE_REG_CLASS BASE_REGS
1212
1213/* Get reg_class from a letter such as appears in the machine description.  */
1214
1215#define REG_CLASS_FROM_LETTER(C) \
1216  ((C) == 'f' ? FLOAT_REGS	\
1217   : (C) == 'b' ? BASE_REGS	\
1218   : (C) == 'h' ? SPECIAL_REGS	\
1219   : (C) == 'q' ? MQ_REGS	\
1220   : (C) == 'c' ? CTR_REGS	\
1221   : (C) == 'l' ? LINK_REGS	\
1222   : (C) == 'v' ? ALTIVEC_REGS	\
1223   : (C) == 'x' ? CR0_REGS	\
1224   : (C) == 'y' ? CR_REGS	\
1225   : (C) == 'z' ? XER_REGS	\
1226   : NO_REGS)
1227
1228/* The letters I, J, K, L, M, N, and P in a register constraint string
1229   can be used to stand for particular ranges of immediate operands.
1230   This macro defines what the ranges are.
1231   C is the letter, and VALUE is a constant value.
1232   Return 1 if VALUE is in the range specified by C.
1233
1234   `I' is a signed 16-bit constant
1235   `J' is a constant with only the high-order 16 bits nonzero
1236   `K' is a constant with only the low-order 16 bits nonzero
1237   `L' is a signed 16-bit constant shifted left 16 bits
1238   `M' is a constant that is greater than 31
1239   `N' is a positive constant that is an exact power of two
1240   `O' is the constant zero
1241   `P' is a constant whose negation is a signed 16-bit constant */
1242
1243#define CONST_OK_FOR_LETTER_P(VALUE, C)					\
1244   ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000	\
1245   : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1246   : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0		\
1247   : (C) == 'L' ? (((VALUE) & 0xffff) == 0				\
1248		   && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0))	\
1249   : (C) == 'M' ? (VALUE) > 31						\
1250   : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0		\
1251   : (C) == 'O' ? (VALUE) == 0						\
1252   : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1253   : 0)
1254
1255/* Similar, but for floating constants, and defining letters G and H.
1256   Here VALUE is the CONST_DOUBLE rtx itself.
1257
1258   We flag for special constants when we can copy the constant into
1259   a general register in two insns for DF/DI and one insn for SF.
1260
1261   'H' is used for DI/DF constants that take 3 insns.  */
1262
1263#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1264  (  (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE))		\
1265		   == ((GET_MODE (VALUE) == SFmode) ? 1 : 2))		\
1266   : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3)	\
1267   : 0)
1268
1269/* Optional extra constraints for this machine.
1270
1271   'Q' means that is a memory operand that is just an offset from a reg.
1272   'R' is for AIX TOC entries.
1273   'S' is a constant that can be placed into a 64-bit mask operand
1274   'T' is a constant that can be placed into a 32-bit mask operand
1275   'U' is for V.4 small data references.
1276   't' is for AND masks that can be performed by two rldic{l,r} insns.  */
1277
1278#define EXTRA_CONSTRAINT(OP, C)						\
1279  ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG	\
1280   : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP)		\
1281   : (C) == 'S' ? mask64_operand (OP, DImode)				\
1282   : (C) == 'T' ? mask_operand (OP, SImode)				\
1283   : (C) == 'U' ? (DEFAULT_ABI == ABI_V4				\
1284		   && small_data_operand (OP, GET_MODE (OP)))		\
1285   : (C) == 't' ? (mask64_2_operand (OP, DImode)			\
1286		   && (fixed_regs[CR0_REGNO]				\
1287		       || !logical_operand (OP, DImode))		\
1288		   && !mask64_operand (OP, DImode))			\
1289   : 0)
1290
1291/* Given an rtx X being reloaded into a reg required to be
1292   in class CLASS, return the class of reg to actually use.
1293   In general this is just CLASS; but on some machines
1294   in some cases it is preferable to use a more restrictive class.
1295
1296   On the RS/6000, we have to return NO_REGS when we want to reload a
1297   floating-point CONST_DOUBLE to force it to be copied to memory.
1298
1299   We also don't want to reload integer values into floating-point
1300   registers if we can at all help it.  In fact, this can
1301   cause reload to abort, if it tries to generate a reload of CTR
1302   into a FP register and discovers it doesn't have the memory location
1303   required.
1304
1305   ??? Would it be a good idea to have reload do the converse, that is
1306   try to reload floating modes into FP registers if possible?
1307 */
1308
1309#define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1310  (((GET_CODE (X) == CONST_DOUBLE			\
1311     && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)	\
1312    ? NO_REGS 						\
1313    : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT 	\
1314       && (CLASS) == NON_SPECIAL_REGS)			\
1315    ? GENERAL_REGS					\
1316    : (CLASS)))
1317
1318/* Return the register class of a scratch register needed to copy IN into
1319   or out of a register in CLASS in MODE.  If it can be done directly,
1320   NO_REGS is returned.  */
1321
1322#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1323  secondary_reload_class (CLASS, MODE, IN)
1324
1325/* If we are copying between FP or AltiVec registers and anything
1326   else, we need a memory location.  */
1327
1328#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) 		\
1329 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS		\
1330			   || (CLASS2) == FLOAT_REGS		\
1331			   || (CLASS1) == ALTIVEC_REGS		\
1332			   || (CLASS2) == ALTIVEC_REGS))
1333
1334/* Return the maximum number of consecutive registers
1335   needed to represent mode MODE in a register of class CLASS.
1336
1337   On RS/6000, this is the size of MODE in words,
1338   except in the FP regs, where a single reg is enough for two words.  */
1339#define CLASS_MAX_NREGS(CLASS, MODE)					\
1340 (((CLASS) == FLOAT_REGS) 						\
1341  ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1342  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1343
1344
1345/* Return a class of registers that cannot change FROM mode to TO mode.  */
1346
1347#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			\
1348  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)				\
1349   ? reg_classes_intersect_p (FLOAT_REGS, CLASS)			\
1350   : (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1		\
1351   ? reg_classes_intersect_p (GENERAL_REGS, CLASS) 			\
1352   : 0)
1353
1354/* Stack layout; function entry, exit and calling.  */
1355
1356/* Enumeration to give which calling sequence to use.  */
1357enum rs6000_abi {
1358  ABI_NONE,
1359  ABI_AIX,			/* IBM's AIX */
1360  ABI_AIX_NODESC,		/* AIX calling sequence minus
1361				   function descriptors */
1362  ABI_V4,			/* System V.4/eabi */
1363  ABI_DARWIN			/* Apple's Darwin (OS X kernel) */
1364};
1365
1366extern enum rs6000_abi rs6000_current_abi;	/* available for use by subtarget */
1367
1368/* Structure used to define the rs6000 stack */
1369typedef struct rs6000_stack {
1370  int first_gp_reg_save;	/* first callee saved GP register used */
1371  int first_fp_reg_save;	/* first callee saved FP register used */
1372  int first_altivec_reg_save;	/* first callee saved AltiVec register used */
1373  int lr_save_p;		/* true if the link reg needs to be saved */
1374  int cr_save_p;		/* true if the CR reg needs to be saved */
1375  unsigned int vrsave_mask;	/* mask of vec registers to save */
1376  int toc_save_p;		/* true if the TOC needs to be saved */
1377  int push_p;			/* true if we need to allocate stack space */
1378  int calls_p;			/* true if the function makes any calls */
1379  enum rs6000_abi abi;		/* which ABI to use */
1380  int gp_save_offset;		/* offset to save GP regs from initial SP */
1381  int fp_save_offset;		/* offset to save FP regs from initial SP */
1382  int altivec_save_offset;	/* offset to save AltiVec regs from inital SP */
1383  int lr_save_offset;		/* offset to save LR from initial SP */
1384  int cr_save_offset;		/* offset to save CR from initial SP */
1385  int vrsave_save_offset;	/* offset to save VRSAVE from initial SP */
1386  int spe_gp_save_offset;	/* offset to save spe 64-bit gprs  */
1387  int toc_save_offset;		/* offset to save the TOC pointer */
1388  int varargs_save_offset;	/* offset to save the varargs registers */
1389  int ehrd_offset;		/* offset to EH return data */
1390  int reg_size;			/* register size (4 or 8) */
1391  int varargs_size;		/* size to hold V.4 args passed in regs */
1392  int vars_size;		/* variable save area size */
1393  int parm_size;		/* outgoing parameter size */
1394  int save_size;		/* save area size */
1395  int fixed_size;		/* fixed size of stack frame */
1396  int gp_size;			/* size of saved GP registers */
1397  int fp_size;			/* size of saved FP registers */
1398  int altivec_size;		/* size of saved AltiVec registers */
1399  int cr_size;			/* size to hold CR if not in save_size */
1400  int lr_size;			/* size to hold LR if not in save_size */
1401  int vrsave_size;		/* size to hold VRSAVE if not in save_size */
1402  int altivec_padding_size;	/* size of altivec alignment padding if
1403				   not in save_size */
1404  int spe_gp_size;		/* size of 64-bit GPR save size for SPE */
1405  int spe_padding_size;
1406  int toc_size;			/* size to hold TOC if not in save_size */
1407  int total_size;		/* total bytes allocated for stack */
1408} rs6000_stack_t;
1409
1410/* Define this if pushing a word on the stack
1411   makes the stack pointer a smaller address.  */
1412#define STACK_GROWS_DOWNWARD
1413
1414/* Define this if the nominal address of the stack frame
1415   is at the high-address end of the local variables;
1416   that is, each additional local variable allocated
1417   goes at a more negative offset in the frame.
1418
1419   On the RS/6000, we grow upwards, from the area after the outgoing
1420   arguments.  */
1421/* #define FRAME_GROWS_DOWNWARD */
1422
1423/* Size of the outgoing register save area */
1424#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX			\
1425			  || DEFAULT_ABI == ABI_AIX_NODESC		\
1426			  || DEFAULT_ABI == ABI_DARWIN)			\
1427			 ? (TARGET_64BIT ? 64 : 32)			\
1428			 : 0)
1429
1430/* Size of the fixed area on the stack */
1431#define RS6000_SAVE_AREA \
1432  (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)	\
1433   << (TARGET_64BIT ? 1 : 0))
1434
1435/* MEM representing address to save the TOC register */
1436#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1437				     plus_constant (stack_pointer_rtx, \
1438						    (TARGET_32BIT ? 20 : 40)))
1439
1440/* Size of the V.4 varargs area if needed */
1441#define RS6000_VARARGS_AREA 0
1442
1443/* Align an address */
1444#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1445
1446/* Size of V.4 varargs area in bytes */
1447#define RS6000_VARARGS_SIZE \
1448  ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1449
1450/* Offset within stack frame to start allocating local variables at.
1451   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1452   first local allocated.  Otherwise, it is the offset to the BEGINNING
1453   of the first local allocated.
1454
1455   On the RS/6000, the frame pointer is the same as the stack pointer,
1456   except for dynamic allocations.  So we start after the fixed area and
1457   outgoing parameter area.  */
1458
1459#define STARTING_FRAME_OFFSET						\
1460  (RS6000_ALIGN (current_function_outgoing_args_size,			\
1461		 TARGET_ALTIVEC ? 16 : 8)				\
1462   + RS6000_VARARGS_AREA						\
1463   + RS6000_SAVE_AREA)
1464
1465/* Offset from the stack pointer register to an item dynamically
1466   allocated on the stack, e.g., by `alloca'.
1467
1468   The default value for this macro is `STACK_POINTER_OFFSET' plus the
1469   length of the outgoing arguments.  The default is correct for most
1470   machines.  See `function.c' for details.  */
1471#define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1472  (RS6000_ALIGN (current_function_outgoing_args_size,			\
1473		 TARGET_ALTIVEC ? 16 : 8)				\
1474   + (STACK_POINTER_OFFSET))
1475
1476/* If we generate an insn to push BYTES bytes,
1477   this says how many the stack pointer really advances by.
1478   On RS/6000, don't define this because there are no push insns.  */
1479/*  #define PUSH_ROUNDING(BYTES) */
1480
1481/* Offset of first parameter from the argument pointer register value.
1482   On the RS/6000, we define the argument pointer to the start of the fixed
1483   area.  */
1484#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1485
1486/* Offset from the argument pointer register value to the top of
1487   stack.  This is different from FIRST_PARM_OFFSET because of the
1488   register save area.  */
1489#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1490
1491/* Define this if stack space is still allocated for a parameter passed
1492   in a register.  The value is the number of bytes allocated to this
1493   area.  */
1494#define REG_PARM_STACK_SPACE(FNDECL)	RS6000_REG_SAVE
1495
1496/* Define this if the above stack space is to be considered part of the
1497   space allocated by the caller.  */
1498#define OUTGOING_REG_PARM_STACK_SPACE
1499
1500/* This is the difference between the logical top of stack and the actual sp.
1501
1502   For the RS/6000, sp points past the fixed area.  */
1503#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1504
1505/* Define this if the maximum size of all the outgoing args is to be
1506   accumulated and pushed during the prologue.  The amount can be
1507   found in the variable current_function_outgoing_args_size.  */
1508#define ACCUMULATE_OUTGOING_ARGS 1
1509
1510/* Value is the number of bytes of arguments automatically
1511   popped when returning from a subroutine call.
1512   FUNDECL is the declaration node of the function (as a tree),
1513   FUNTYPE is the data type of the function (as a tree),
1514   or for a library call it is an identifier node for the subroutine name.
1515   SIZE is the number of bytes of arguments passed on the stack.  */
1516
1517#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1518
1519/* Define how to find the value returned by a function.
1520   VALTYPE is the data type of the value (as a tree).
1521   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1522   otherwise, FUNC is 0.
1523
1524   On the SPE, both FPs and vectors are returned in r3.
1525
1526   On RS/6000 an integer value is in r3 and a floating-point value is in
1527   fp1, unless -msoft-float.  */
1528
1529#define FUNCTION_VALUE(VALTYPE, FUNC)				\
1530  gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE)			\
1531		&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD)	\
1532	       || POINTER_TYPE_P (VALTYPE)			\
1533	       ? word_mode : TYPE_MODE (VALTYPE),		\
1534	       TREE_CODE (VALTYPE) == VECTOR_TYPE		\
1535	       && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN		\
1536	       : TREE_CODE (VALTYPE) == REAL_TYPE		\
1537	         && TARGET_SPE_ABI && !TARGET_FPRS		\
1538	       ? GP_ARG_RETURN					\
1539	       : TREE_CODE (VALTYPE) == REAL_TYPE		\
1540		 && TARGET_HARD_FLOAT && TARGET_FPRS	        \
1541               ? FP_ARG_RETURN : GP_ARG_RETURN)
1542
1543/* Define how to find the value returned by a library function
1544   assuming the value has mode MODE.  */
1545
1546#define LIBCALL_VALUE(MODE)						\
1547  gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN	\
1548		     : GET_MODE_CLASS (MODE) == MODE_FLOAT		\
1549		     && TARGET_HARD_FLOAT && TARGET_FPRS		\
1550		     ? FP_ARG_RETURN : GP_ARG_RETURN)
1551
1552/* The AIX ABI for the RS/6000 specifies that all structures are
1553   returned in memory.  The Darwin ABI does the same.  The SVR4 ABI
1554   specifies that structures <= 8 bytes are returned in r3/r4, but a
1555   draft put them in memory, and GCC used to implement the draft
1556   instead of the final standard.  Therefore, TARGET_AIX_STRUCT_RET
1557   controls this instead of DEFAULT_ABI; V.4 targets needing backward
1558   compatibility can change DRAFT_V4_STRUCT_RET to override the
1559   default, and -m switches get the final word.  See
1560   rs6000_override_options for more details.
1561
1562   The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
1563   long double support is enabled.  These values are returned in memory.
1564
1565   int_size_in_bytes returns -1 for variable size objects, which go in
1566   memory always.  The cast to unsigned makes -1 > 8.  */
1567
1568#define RETURN_IN_MEMORY(TYPE) \
1569  ((AGGREGATE_TYPE_P (TYPE)						\
1570    && (TARGET_AIX_STRUCT_RET						\
1571	|| (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))	\
1572   || (DEFAULT_ABI == ABI_V4 && TYPE_MODE (TYPE) == TFmode))
1573
1574/* DRAFT_V4_STRUCT_RET defaults off.  */
1575#define DRAFT_V4_STRUCT_RET 0
1576
1577/* Let RETURN_IN_MEMORY control what happens.  */
1578#define DEFAULT_PCC_STRUCT_RETURN 0
1579
1580/* Mode of stack savearea.
1581   FUNCTION is VOIDmode because calling convention maintains SP.
1582   BLOCK needs Pmode for SP.
1583   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1584#define STACK_SAVEAREA_MODE(LEVEL)	\
1585  (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1586  : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1587
1588/* Minimum and maximum general purpose registers used to hold arguments.  */
1589#define GP_ARG_MIN_REG 3
1590#define GP_ARG_MAX_REG 10
1591#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1592
1593/* Minimum and maximum floating point registers used to hold arguments.  */
1594#define FP_ARG_MIN_REG 33
1595#define	FP_ARG_AIX_MAX_REG 45
1596#define	FP_ARG_V4_MAX_REG  40
1597#define	FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX				\
1598			 || DEFAULT_ABI == ABI_AIX_NODESC		\
1599			 || DEFAULT_ABI == ABI_DARWIN)			\
1600			? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1601#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1602
1603/* Minimum and maximum AltiVec registers used to hold arguments.  */
1604#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1605#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1606#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1607
1608/* Return registers */
1609#define GP_ARG_RETURN GP_ARG_MIN_REG
1610#define FP_ARG_RETURN FP_ARG_MIN_REG
1611#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1612
1613/* Flags for the call/call_value rtl operations set up by function_arg */
1614#define CALL_NORMAL		0x00000000	/* no special processing */
1615/* Bits in 0x00000001 are unused.  */
1616#define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1617#define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1618#define CALL_LONG		0x00000008	/* always call indirect */
1619#define CALL_LIBCALL		0x00000010	/* libcall */
1620
1621/* 1 if N is a possible register number for a function value
1622   as seen by the caller.
1623
1624   On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1625#define FUNCTION_VALUE_REGNO_P(N)					\
1626  ((N) == GP_ARG_RETURN							\
1627   || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT)			\
1628   || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC))
1629
1630/* 1 if N is a possible register number for function argument passing.
1631   On RS/6000, these are r3-r10 and fp1-fp13.
1632   On AltiVec, v2 - v13 are used for passing vectors.  */
1633#define FUNCTION_ARG_REGNO_P(N)						\
1634  ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG			\
1635   || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG	\
1636       && TARGET_ALTIVEC)						\
1637   || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG			\
1638       && TARGET_HARD_FLOAT))
1639
1640/* A C structure for machine-specific, per-function data.
1641   This is added to the cfun structure.  */
1642typedef struct machine_function GTY(())
1643{
1644  /* Whether a System V.4 varargs area was created.  */
1645  int sysv_varargs_p;
1646  /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
1647  int ra_needs_full_frame;
1648} machine_function;
1649
1650/* Define a data type for recording info about an argument list
1651   during the scan of that argument list.  This data type should
1652   hold all necessary information about the function itself
1653   and about the args processed so far, enough to enable macros
1654   such as FUNCTION_ARG to determine where the next arg should go.
1655
1656   On the RS/6000, this is a structure.  The first element is the number of
1657   total argument words, the second is used to store the next
1658   floating-point register number, and the third says how many more args we
1659   have prototype types for.
1660
1661   For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1662   the next availible GP register, `fregno' is the next available FP
1663   register, and `words' is the number of words used on the stack.
1664
1665   The varargs/stdarg support requires that this structure's size
1666   be a multiple of sizeof(int).  */
1667
1668typedef struct rs6000_args
1669{
1670  int words;			/* # words used for passing GP registers */
1671  int fregno;			/* next available FP register */
1672  int vregno;			/* next available AltiVec register */
1673  int nargs_prototype;		/* # args left in the current prototype */
1674  int orig_nargs;		/* Original value of nargs_prototype */
1675  int prototype;		/* Whether a prototype was defined */
1676  int call_cookie;		/* Do special things for this call */
1677  int sysv_gregno;		/* next available GP register */
1678} CUMULATIVE_ARGS;
1679
1680/* Define intermediate macro to compute the size (in registers) of an argument
1681   for the RS/6000.  */
1682
1683#define RS6000_ARG_SIZE(MODE, TYPE)					\
1684((MODE) != BLKmode							\
1685 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD	\
1686 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1687
1688/* Initialize a variable CUM of type CUMULATIVE_ARGS
1689   for a call to a function whose data type is FNTYPE.
1690   For a library call, FNTYPE is 0.  */
1691
1692#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1693  init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE)
1694
1695/* Similar, but when scanning the definition of a procedure.  We always
1696   set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1697
1698#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1699  init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE)
1700
1701/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1702
1703#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1704  init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE)
1705
1706/* Update the data in CUM to advance over an argument
1707   of mode MODE and data type TYPE.
1708   (TYPE is null for libcalls where that information may not be available.)  */
1709
1710#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1711  function_arg_advance (&CUM, MODE, TYPE, NAMED)
1712
1713/* Nonzero if we can use a floating-point register to pass this arg.  */
1714#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1715  (GET_MODE_CLASS (MODE) == MODE_FLOAT  \
1716   && (CUM).fregno <= FP_ARG_MAX_REG    \
1717   && TARGET_HARD_FLOAT && TARGET_FPRS)
1718
1719/* Nonzero if we can use an AltiVec register to pass this arg.  */
1720#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE)	\
1721  (ALTIVEC_VECTOR_MODE (MODE)			\
1722   && (CUM).vregno <= ALTIVEC_ARG_MAX_REG	\
1723   && TARGET_ALTIVEC_ABI)
1724
1725/* Determine where to put an argument to a function.
1726   Value is zero to push the argument on the stack,
1727   or a hard register in which to store the argument.
1728
1729   MODE is the argument's machine mode.
1730   TYPE is the data type of the argument (as a tree).
1731    This is null for libcalls where that information may
1732    not be available.
1733   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1734    the preceding args and about the function being called.
1735   NAMED is nonzero if this argument is a named parameter
1736    (otherwise it is an extra parameter matching an ellipsis).
1737
1738   On RS/6000 the first eight words of non-FP are normally in registers
1739   and the rest are pushed.  The first 13 FP args are in registers.
1740
1741   If this is floating-point and no prototype is specified, we use
1742   both an FP and integer register (or possibly FP reg and stack).  Library
1743   functions (when TYPE is zero) always have the proper types for args,
1744   so we can pass the FP value just in one register.  emit_library_function
1745   doesn't support EXPR_LIST anyway.  */
1746
1747#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1748  function_arg (&CUM, MODE, TYPE, NAMED)
1749
1750/* For an arg passed partly in registers and partly in memory,
1751   this is the number of registers used.
1752   For args passed entirely in registers or entirely in memory, zero.  */
1753
1754#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1755  function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1756
1757/* A C expression that indicates when an argument must be passed by
1758   reference.  If nonzero for an argument, a copy of that argument is
1759   made in memory and a pointer to the argument is passed instead of
1760   the argument itself.  The pointer is passed in whatever way is
1761   appropriate for passing a pointer to that type.  */
1762
1763#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1764  function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1765
1766/* If defined, a C expression which determines whether, and in which
1767   direction, to pad out an argument with extra space.  The value
1768   should be of type `enum direction': either `upward' to pad above
1769   the argument, `downward' to pad below, or `none' to inhibit
1770   padding.  */
1771
1772#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1773
1774/* If defined, a C expression that gives the alignment boundary, in bits,
1775   of an argument with the specified mode and type.  If it is not defined,
1776   PARM_BOUNDARY is used for all arguments.  */
1777
1778#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1779  function_arg_boundary (MODE, TYPE)
1780
1781/* Perform any needed actions needed for a function that is receiving a
1782   variable number of arguments.
1783
1784   CUM is as above.
1785
1786   MODE and TYPE are the mode and type of the current parameter.
1787
1788   PRETEND_SIZE is a variable that should be set to the amount of stack
1789   that must be pushed by the prolog to pretend that our caller pushed
1790   it.
1791
1792   Normally, this macro will push all remaining incoming registers on the
1793   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1794
1795#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1796  setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1797
1798/* Define the `__builtin_va_list' type for the ABI.  */
1799#define BUILD_VA_LIST_TYPE(VALIST) \
1800  (VALIST) = rs6000_build_va_list ()
1801
1802/* Implement `va_start' for varargs and stdarg.  */
1803#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1804  rs6000_va_start (valist, nextarg)
1805
1806/* Implement `va_arg'.  */
1807#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1808  rs6000_va_arg (valist, type)
1809
1810/* For AIX, the rule is that structures are passed left-aligned in
1811   their stack slot.  However, GCC does not presently do this:
1812   structures which are the same size as integer types are passed
1813   right-aligned, as if they were in fact integers.  This only
1814   matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1815   ABI_V4 does not use std_expand_builtin_va_arg.  */
1816#define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1817
1818/* Define this macro to be a nonzero value if the location where a function
1819   argument is passed depends on whether or not it is a named argument.  */
1820#define STRICT_ARGUMENT_NAMING 1
1821
1822/* We do not allow indirect calls to be optimized into sibling calls, nor
1823   do we allow calls with vector parameters.  */
1824#define FUNCTION_OK_FOR_SIBCALL(DECL) function_ok_for_sibcall ((DECL))
1825
1826/* Output assembler code to FILE to increment profiler label # LABELNO
1827   for profiling a function entry.  */
1828
1829#define FUNCTION_PROFILER(FILE, LABELNO)	\
1830  output_function_profiler ((FILE), (LABELNO));
1831
1832/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1833   the stack pointer does not matter. No definition is equivalent to
1834   always zero.
1835
1836   On the RS/6000, this is nonzero because we can restore the stack from
1837   its backpointer, which we maintain.  */
1838#define EXIT_IGNORE_STACK	1
1839
1840/* Define this macro as a C expression that is nonzero for registers
1841   that are used by the epilogue or the return' pattern.  The stack
1842   and frame pointer registers are already be assumed to be used as
1843   needed.  */
1844
1845#define	EPILOGUE_USES(REGNO)					\
1846  ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM)	\
1847   || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1848   || (current_function_calls_eh_return				\
1849       && TARGET_AIX						\
1850       && (REGNO) == 2))
1851
1852
1853/* TRAMPOLINE_TEMPLATE deleted */
1854
1855/* Length in units of the trampoline for entering a nested function.  */
1856
1857#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1858
1859/* Emit RTL insns to initialize the variable parts of a trampoline.
1860   FNADDR is an RTX for the address of the function's pure code.
1861   CXT is an RTX for the static chain value for the function.  */
1862
1863#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)		\
1864  rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1865
1866/* Definitions for __builtin_return_address and __builtin_frame_address.
1867   __builtin_return_address (0) should give link register (65), enable
1868   this.  */
1869/* This should be uncommented, so that the link register is used, but
1870   currently this would result in unmatched insns and spilling fixed
1871   registers so we'll leave it for another day.  When these problems are
1872   taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1873   (mrs) */
1874/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1875
1876/* Number of bytes into the frame return addresses can be found.  See
1877   rs6000_stack_info in rs6000.c for more information on how the different
1878   abi's store the return address.  */
1879#define RETURN_ADDRESS_OFFSET						\
1880 ((DEFAULT_ABI == ABI_AIX						\
1881   || DEFAULT_ABI == ABI_DARWIN						\
1882   || DEFAULT_ABI == ABI_AIX_NODESC)	? (TARGET_32BIT ? 8 : 16) :	\
1883  (DEFAULT_ABI == ABI_V4)		? 4 :				\
1884  (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1885
1886/* The current return address is in link register (65).  The return address
1887   of anything farther back is accessed normally at an offset of 8 from the
1888   frame pointer.  */
1889#define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1890  (rs6000_return_addr (COUNT, FRAME))
1891
1892
1893/* Definitions for register eliminations.
1894
1895   We have two registers that can be eliminated on the RS/6000.  First, the
1896   frame pointer register can often be eliminated in favor of the stack
1897   pointer register.  Secondly, the argument pointer register can always be
1898   eliminated; it is replaced with either the stack or frame pointer.
1899
1900   In addition, we use the elimination mechanism to see if r30 is needed
1901   Initially we assume that it isn't.  If it is, we spill it.  This is done
1902   by making it an eliminable register.  We replace it with itself so that
1903   if it isn't needed, then existing uses won't be modified.  */
1904
1905/* This is an array of structures.  Each structure initializes one pair
1906   of eliminable registers.  The "from" register number is given first,
1907   followed by "to".  Eliminations of the same "from" register are listed
1908   in order of preference.  */
1909#define ELIMINABLE_REGS				\
1910{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1911 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1912 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
1913 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1914
1915/* Given FROM and TO register numbers, say whether this elimination is allowed.
1916   Frame pointer elimination is automatically handled.
1917
1918   For the RS/6000, if frame pointer elimination is being done, we would like
1919   to convert ap into fp, not sp.
1920
1921   We need r30 if -mminimal-toc was specified, and there are constant pool
1922   references.  */
1923
1924#define CAN_ELIMINATE(FROM, TO)						\
1925 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
1926  ? ! frame_pointer_needed						\
1927  : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM 				\
1928  ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0	\
1929  : 1)
1930
1931/* Define the offset between two registers, one to be eliminated, and the other
1932   its replacement, at the start of a routine.  */
1933#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1934{									\
1935  rs6000_stack_t *info = rs6000_stack_info ();				\
1936									\
1937 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
1938   (OFFSET) = (info->push_p) ? 0 : - info->total_size;			\
1939 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)	\
1940   (OFFSET) = info->total_size;						\
1941 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
1942   (OFFSET) = (info->push_p) ? info->total_size : 0;			\
1943  else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM)			\
1944    (OFFSET) = 0;							\
1945  else									\
1946    abort ();								\
1947}
1948
1949/* Addressing modes, and classification of registers for them.  */
1950
1951/* #define HAVE_POST_INCREMENT 0 */
1952/* #define HAVE_POST_DECREMENT 0 */
1953
1954#define HAVE_PRE_DECREMENT 1
1955#define HAVE_PRE_INCREMENT 1
1956
1957/* Macros to check register numbers against specific register classes.  */
1958
1959/* These assume that REGNO is a hard or pseudo reg number.
1960   They give nonzero only if REGNO is a hard reg of the suitable class
1961   or a pseudo reg currently allocated to a suitable hard reg.
1962   Since they use reg_renumber, they are safe only once reg_renumber
1963   has been allocated, which happens in local-alloc.c.  */
1964
1965#define REGNO_OK_FOR_INDEX_P(REGNO)				\
1966((REGNO) < FIRST_PSEUDO_REGISTER				\
1967 ? (REGNO) <= 31 || (REGNO) == 67				\
1968 : (reg_renumber[REGNO] >= 0					\
1969    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1970
1971#define REGNO_OK_FOR_BASE_P(REGNO)				\
1972((REGNO) < FIRST_PSEUDO_REGISTER				\
1973 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
1974 : (reg_renumber[REGNO] > 0					\
1975    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1976
1977/* Maximum number of registers that can appear in a valid memory address.  */
1978
1979#define MAX_REGS_PER_ADDRESS 2
1980
1981/* Recognize any constant value that is a valid address.  */
1982
1983#define CONSTANT_ADDRESS_P(X)   \
1984  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1985   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1986   || GET_CODE (X) == HIGH)
1987
1988/* Nonzero if the constant value X is a legitimate general operand.
1989   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1990
1991   On the RS/6000, all integer constants are acceptable, most won't be valid
1992   for particular insns, though.  Only easy FP constants are
1993   acceptable.  */
1994
1995#define LEGITIMATE_CONSTANT_P(X)				\
1996  (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode	\
1997   || (TARGET_POWERPC64 && GET_MODE (X) == DImode)		\
1998   || easy_fp_constant (X, GET_MODE (X)))
1999
2000/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2001   and check its validity for a certain class.
2002   We have two alternate definitions for each of them.
2003   The usual definition accepts all pseudo regs; the other rejects
2004   them unless they have been allocated suitable hard regs.
2005   The symbol REG_OK_STRICT causes the latter definition to be used.
2006
2007   Most source files want to accept pseudo regs in the hope that
2008   they will get allocated to the class that the insn wants them to be in.
2009   Source files for reload pass need to be strict.
2010   After reload, it makes no difference, since pseudo regs have
2011   been eliminated by then.  */
2012
2013#ifdef REG_OK_STRICT
2014# define REG_OK_STRICT_FLAG 1
2015#else
2016# define REG_OK_STRICT_FLAG 0
2017#endif
2018
2019/* Nonzero if X is a hard reg that can be used as an index
2020   or if it is a pseudo reg in the non-strict case.  */
2021#define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
2022  ((! (STRICT)							\
2023    && (REGNO (X) <= 31						\
2024	|| REGNO (X) == ARG_POINTER_REGNUM			\
2025	|| REGNO (X) >= FIRST_PSEUDO_REGISTER))			\
2026   || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2027
2028/* Nonzero if X is a hard reg that can be used as a base reg
2029   or if it is a pseudo reg in the non-strict case.  */
2030#define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
2031  (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2032
2033#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2034#define REG_OK_FOR_BASE_P(X)  INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2035
2036/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2037   that is a valid memory address for an instruction.
2038   The MODE argument is the machine mode for the MEM expression
2039   that wants to use this address.
2040
2041   On the RS/6000, there are four valid address: a SYMBOL_REF that
2042   refers to a constant pool entry of an address (or the sum of it
2043   plus a constant), a short (16-bit signed) constant plus a register,
2044   the sum of two registers, or a register indirect, possibly with an
2045   auto-increment.  For DFmode and DImode with an constant plus register,
2046   we must ensure that both words are addressable or PowerPC64 with offset
2047   word aligned.
2048
2049   For modes spanning multiple registers (DFmode in 32-bit GPRs,
2050   32-bit DImode, TImode), indexed addressing cannot be used because
2051   adjacent memory cells are accessed by adding word-sized offsets
2052   during assembly output.  */
2053
2054#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2055
2056#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
2057
2058/* SPE offset addressing is limited to 5-bits worth of double words.  */
2059#define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
2060
2061#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X)				\
2062  (TARGET_TOC								\
2063  && GET_CODE (X) == PLUS						\
2064  && GET_CODE (XEXP (X, 0)) == REG					\
2065  && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER)	\
2066  && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
2067
2068#define LEGITIMATE_SMALL_DATA_P(MODE, X)				\
2069  (DEFAULT_ABI == ABI_V4						\
2070   && !flag_pic && !TARGET_TOC						\
2071   && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST)		\
2072   && small_data_operand (X, MODE))
2073
2074#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET)				\
2075 (GET_CODE (X) == CONST_INT						\
2076  && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
2077
2078#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT)		\
2079 (GET_CODE (X) == PLUS						\
2080  && GET_CODE (XEXP (X, 0)) == REG				\
2081  && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))		\
2082  && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0)		\
2083  && (! ALTIVEC_VECTOR_MODE (MODE)                            \
2084      || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
2085  && (! SPE_VECTOR_MODE (MODE)					\
2086      || (GET_CODE (XEXP (X, 1)) == CONST_INT			\
2087	  && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1)))))	\
2088  && (((MODE) != DFmode && (MODE) != DImode)			\
2089      || (TARGET_32BIT						\
2090	  ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) 	\
2091	  : ! (INTVAL (XEXP (X, 1)) & 3)))			\
2092  && (((MODE) != TFmode && (MODE) != TImode)			\
2093      || (TARGET_32BIT						\
2094	  ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) 	\
2095	  : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) 	\
2096	     && ! (INTVAL (XEXP (X, 1)) & 3)))))
2097
2098#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT)			\
2099 (GET_CODE (X) == PLUS						\
2100  && GET_CODE (XEXP (X, 0)) == REG				\
2101  && GET_CODE (XEXP (X, 1)) == REG				\
2102  && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))		\
2103       && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT)))	\
2104      || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT))		\
2105	  && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2106
2107#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT)		\
2108  (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2109
2110#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT)	\
2111  (TARGET_ELF						\
2112   && ! flag_pic && ! TARGET_TOC			\
2113   && GET_MODE_NUNITS (MODE) == 1			\
2114   && (GET_MODE_BITSIZE (MODE) <= 32 			\
2115       || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode))	\
2116   && GET_CODE (X) == LO_SUM				\
2117   && GET_CODE (XEXP (X, 0)) == REG			\
2118   && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))	\
2119   && CONSTANT_P (XEXP (X, 1)))
2120
2121#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)			\
2122{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG))	\
2123    goto ADDR;							\
2124}
2125
2126/* Try machine-dependent ways of modifying an illegitimate address
2127   to be legitimate.  If we find one, return the new, valid address.
2128   This macro is used in only one place: `memory_address' in explow.c.
2129
2130   OLDX is the address as it was before break_out_memory_refs was called.
2131   In some cases it is useful to look at this to decide what needs to be done.
2132
2133   MODE and WIN are passed so that this macro can use
2134   GO_IF_LEGITIMATE_ADDRESS.
2135
2136   It is always safe for this macro to do nothing.  It exists to recognize
2137   opportunities to optimize the output.
2138
2139   On RS/6000, first check for the sum of a register with a constant
2140   integer that is out of range.  If so, generate code to add the
2141   constant with the low-order 16 bits masked to the register and force
2142   this result into another register (this can be done with `cau').
2143   Then generate an address of REG+(CONST&0xffff), allowing for the
2144   possibility of bit 16 being a one.
2145
2146   Then check for the sum of a register and something not constant, try to
2147   load the other things into a register and return the sum.  */
2148
2149#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2150{  rtx result = rs6000_legitimize_address (X, OLDX, MODE);	\
2151   if (result != NULL_RTX)					\
2152     {								\
2153       (X) = result;						\
2154       goto WIN;						\
2155     }								\
2156}
2157
2158/* Try a machine-dependent way of reloading an illegitimate address
2159   operand.  If we find one, push the reload and jump to WIN.  This
2160   macro is used in only one place: `find_reloads_address' in reload.c.
2161
2162   Implemented on rs6000 by rs6000_legitimize_reload_address.
2163   Note that (X) is evaluated twice; this is safe in current usage.  */
2164
2165#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
2166do {									     \
2167  int win;								     \
2168  (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM),		     \
2169			(int)(TYPE), (IND_LEVELS), &win);		     \
2170  if ( win )								     \
2171    goto WIN;								     \
2172} while (0)
2173
2174/* Go to LABEL if ADDR (a legitimate address expression)
2175   has an effect that depends on the machine mode it is used for.
2176
2177   On the RS/6000 this is true if the address is valid with a zero offset
2178   but not with an offset of four (this means it cannot be used as an
2179   address for DImode or DFmode) or is a pre-increment or decrement.  Since
2180   we know it is valid, we just check for an address that is not valid with
2181   an offset of four.  */
2182
2183#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
2184{ if (GET_CODE (ADDR) == PLUS					\
2185      && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0)	\
2186      && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1),	\
2187					 (TARGET_32BIT ? 4 : 8))) \
2188    goto LABEL;							\
2189  if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC)		\
2190    goto LABEL;							\
2191  if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC)		\
2192    goto LABEL;							\
2193  if (GET_CODE (ADDR) == LO_SUM)				\
2194    goto LABEL;							\
2195}
2196
2197/* The register number of the register used to address a table of
2198   static data addresses in memory.  In some cases this register is
2199   defined by a processor's "application binary interface" (ABI).
2200   When this macro is defined, RTL is generated for this register
2201   once, as with the stack pointer and frame pointer registers.  If
2202   this macro is not defined, it is up to the machine-dependent files
2203   to allocate such a register (if necessary).  */
2204
2205#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2206#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2207
2208#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2209
2210/* Define this macro if the register defined by
2211   `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
2212   this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
2213
2214/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2215
2216/* By generating position-independent code, when two different
2217   programs (A and B) share a common library (libC.a), the text of
2218   the library can be shared whether or not the library is linked at
2219   the same address for both programs.  In some of these
2220   environments, position-independent code requires not only the use
2221   of different addressing modes, but also special code to enable the
2222   use of these addressing modes.
2223
2224   The `FINALIZE_PIC' macro serves as a hook to emit these special
2225   codes once the function is being compiled into assembly code, but
2226   not before.  (It is not done before, because in the case of
2227   compiling an inline function, it would lead to multiple PIC
2228   prologues being included in functions which used inline functions
2229   and were compiled to assembly language.)  */
2230
2231/* #define FINALIZE_PIC */
2232
2233/* A C expression that is nonzero if X is a legitimate immediate
2234   operand on the target machine when generating position independent
2235   code.  You can assume that X satisfies `CONSTANT_P', so you need
2236   not check this.  You can also assume FLAG_PIC is true, so you need
2237   not check it either.  You need not define this macro if all
2238   constants (including `SYMBOL_REF') can be immediate operands when
2239   generating position independent code.  */
2240
2241/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2242
2243/* In rare cases, correct code generation requires extra machine
2244   dependent processing between the second jump optimization pass and
2245   delayed branch scheduling.  On those machines, define this macro
2246   as a C statement to act on the code starting at INSN.  */
2247
2248/* #define MACHINE_DEPENDENT_REORG(INSN) */
2249
2250
2251/* Define this if some processing needs to be done immediately before
2252   emitting code for an insn.  */
2253
2254/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2255
2256/* Specify the machine mode that this machine uses
2257   for the index in the tablejump instruction.  */
2258#define CASE_VECTOR_MODE SImode
2259
2260/* Define as C expression which evaluates to nonzero if the tablejump
2261   instruction expects the table to contain offsets from the address of the
2262   table.
2263   Do not define this if the table should contain absolute addresses.  */
2264#define CASE_VECTOR_PC_RELATIVE 1
2265
2266/* Define this as 1 if `char' should by default be signed; else as 0.  */
2267#define DEFAULT_SIGNED_CHAR 0
2268
2269/* This flag, if defined, says the same insns that convert to a signed fixnum
2270   also convert validly to an unsigned one.  */
2271
2272/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2273
2274/* Max number of bytes we can move from memory to memory
2275   in one reasonably fast instruction.  */
2276#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2277#define MAX_MOVE_MAX 8
2278
2279/* Nonzero if access to memory by bytes is no faster than for words.
2280   Also nonzero if doing byte operations (specifically shifts) in registers
2281   is undesirable.  */
2282#define SLOW_BYTE_ACCESS 1
2283
2284/* Define if operations between registers always perform the operation
2285   on the full register even if a narrower mode is specified.  */
2286#define WORD_REGISTER_OPERATIONS
2287
2288/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2289   will either zero-extend or sign-extend.  The value of this macro should
2290   be the code that says which one of the two operations is implicitly
2291   done, NIL if none.  */
2292#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2293
2294/* Define if loading short immediate values into registers sign extends.  */
2295#define SHORT_IMMEDIATES_SIGN_EXTEND
2296
2297/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2298   is done just by pretending it is already truncated.  */
2299#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2300
2301/* Specify the machine mode that pointers have.
2302   After generation of rtl, the compiler makes no further distinction
2303   between pointers and any other objects of this machine mode.  */
2304#define Pmode (TARGET_32BIT ? SImode : DImode)
2305
2306/* Mode of a function address in a call instruction (for indexing purposes).
2307   Doesn't matter on RS/6000.  */
2308#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2309
2310/* Define this if addresses of constant functions
2311   shouldn't be put through pseudo regs where they can be cse'd.
2312   Desirable on machines where ordinary constants are expensive
2313   but a CALL with constant address is cheap.  */
2314#define NO_FUNCTION_CSE
2315
2316/* Define this to be nonzero if shift instructions ignore all but the low-order
2317   few bits.
2318
2319   The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2320   have been dropped from the PowerPC architecture.  */
2321
2322#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2323
2324/* Compute the cost of computing a constant rtl expression RTX
2325   whose rtx-code is CODE.  The body of this macro is a portion
2326   of a switch statement.  If the code is computed here,
2327   return it with a return statement.  Otherwise, break from the switch.
2328
2329   On the RS/6000, if it is valid in the insn, it is free.  So this
2330   always returns 0.  */
2331
2332#define CONST_COSTS(RTX,CODE,OUTER_CODE)			\
2333  case CONST_INT:						\
2334  case CONST:							\
2335  case LABEL_REF:						\
2336  case SYMBOL_REF:						\
2337  case CONST_DOUBLE:						\
2338  case HIGH:							\
2339    return 0;
2340
2341/* Provide the costs of a rtl expression.  This is in the body of a
2342   switch on CODE.  */
2343
2344#define RTX_COSTS(X,CODE,OUTER_CODE)					\
2345  case PLUS:								\
2346    return ((GET_CODE (XEXP (X, 1)) == CONST_INT			\
2347	     && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1))		\
2348					   + 0x8000) >= 0x10000)	\
2349	     && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0))			\
2350	    ? COSTS_N_INSNS (2)						\
2351	    : COSTS_N_INSNS (1));					\
2352  case AND:								\
2353  case IOR:								\
2354  case XOR:								\
2355    return ((GET_CODE (XEXP (X, 1)) == CONST_INT			\
2356	     && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
2357	     && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0))			\
2358	    ? COSTS_N_INSNS (2)						\
2359	    : COSTS_N_INSNS (1));					\
2360  case MULT:								\
2361    if (optimize_size)							\
2362      return COSTS_N_INSNS (2);						\
2363    switch (rs6000_cpu)							\
2364      {									\
2365      case PROCESSOR_RIOS1:						\
2366      case PROCESSOR_PPC405:						\
2367        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2368		? COSTS_N_INSNS (5)					\
2369		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2370		? COSTS_N_INSNS (3) : COSTS_N_INSNS (4));		\
2371      case PROCESSOR_RS64A:						\
2372        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2373		? GET_MODE (XEXP (X, 1)) != DImode			\
2374		? COSTS_N_INSNS (20) : COSTS_N_INSNS (34)		\
2375		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2376		? COSTS_N_INSNS (8) : COSTS_N_INSNS (12));		\
2377      case PROCESSOR_RIOS2:						\
2378      case PROCESSOR_MPCCORE:						\
2379      case PROCESSOR_PPC604e:						\
2380        return COSTS_N_INSNS (2);					\
2381      case PROCESSOR_PPC601:						\
2382        return COSTS_N_INSNS (5);					\
2383      case PROCESSOR_PPC603:						\
2384      case PROCESSOR_PPC7400:						\
2385      case PROCESSOR_PPC750:						\
2386        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2387		? COSTS_N_INSNS (5)					\
2388		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2389		? COSTS_N_INSNS (2) : COSTS_N_INSNS (3));		\
2390      case PROCESSOR_PPC7450:						\
2391        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2392		? COSTS_N_INSNS (4)					\
2393		: COSTS_N_INSNS (3));			    		\
2394      case PROCESSOR_PPC403:						\
2395      case PROCESSOR_PPC604:						\
2396      case PROCESSOR_PPC8540:						\
2397        return COSTS_N_INSNS (4);					\
2398      case PROCESSOR_PPC620:						\
2399      case PROCESSOR_PPC630:						\
2400        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2401		? GET_MODE (XEXP (X, 1)) != DImode			\
2402		? COSTS_N_INSNS (5) : COSTS_N_INSNS (7)			\
2403		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2404		? COSTS_N_INSNS (3) : COSTS_N_INSNS (4));		\
2405      case PROCESSOR_POWER4:						\
2406        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2407		? GET_MODE (XEXP (X, 1)) != DImode			\
2408		? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)			\
2409		: COSTS_N_INSNS (2));					\
2410      }									\
2411  case DIV:								\
2412  case MOD:								\
2413    if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2414	&& exact_log2 (INTVAL (XEXP (X, 1))) >= 0)			\
2415      return COSTS_N_INSNS (2);						\
2416    /* otherwise fall through to normal divide.  */			\
2417  case UDIV:								\
2418  case UMOD:								\
2419    switch (rs6000_cpu)							\
2420      {									\
2421      case PROCESSOR_RIOS1:						\
2422	return COSTS_N_INSNS (19);					\
2423      case PROCESSOR_RIOS2:						\
2424	return COSTS_N_INSNS (13);					\
2425      case PROCESSOR_RS64A:						\
2426        return (GET_MODE (XEXP (X, 1)) != DImode			\
2427		? COSTS_N_INSNS (65)					\
2428		: COSTS_N_INSNS (67));					\
2429      case PROCESSOR_MPCCORE:						\
2430	return COSTS_N_INSNS (6);					\
2431      case PROCESSOR_PPC403:						\
2432	return COSTS_N_INSNS (33);					\
2433      case PROCESSOR_PPC405:						\
2434	return COSTS_N_INSNS (35);					\
2435      case PROCESSOR_PPC601:						\
2436	return COSTS_N_INSNS (36);					\
2437      case PROCESSOR_PPC603:						\
2438	return COSTS_N_INSNS (37);					\
2439      case PROCESSOR_PPC604:						\
2440      case PROCESSOR_PPC604e:						\
2441	return COSTS_N_INSNS (20);					\
2442      case PROCESSOR_PPC620:						\
2443      case PROCESSOR_PPC630:						\
2444      case PROCESSOR_POWER4:						\
2445        return (GET_MODE (XEXP (X, 1)) != DImode			\
2446		? COSTS_N_INSNS (21)					\
2447		: COSTS_N_INSNS (37));					\
2448      case PROCESSOR_PPC750:						\
2449      case PROCESSOR_PPC8540:						\
2450      case PROCESSOR_PPC7400:						\
2451        return COSTS_N_INSNS (19);					\
2452      case PROCESSOR_PPC7450:						\
2453        return COSTS_N_INSNS (23);					\
2454      }									\
2455  case FFS:								\
2456    return COSTS_N_INSNS (4);						\
2457  case MEM:								\
2458    /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2459    return 5;
2460
2461/* Compute the cost of an address.  This is meant to approximate the size
2462   and/or execution delay of an insn using that address.  If the cost is
2463   approximated by the RTL complexity, including CONST_COSTS above, as
2464   is usually the case for CISC machines, this macro should not be defined.
2465   For aggressively RISCy machines, only one insn format is allowed, so
2466   this macro should be a constant.  The value of this macro only matters
2467   for valid addresses.
2468
2469   For the RS/6000, everything is cost 0.  */
2470
2471#define ADDRESS_COST(RTX) 0
2472
2473/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2474   should be adjusted to reflect any required changes.  This macro is used when
2475   there is some systematic length adjustment required that would be difficult
2476   to express in the length attribute.  */
2477
2478/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2479
2480/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2481   COMPARE, return the mode to be used for the comparison.  For
2482   floating-point, CCFPmode should be used.  CCUNSmode should be used
2483   for unsigned comparisons.  CCEQmode should be used when we are
2484   doing an inequality comparison on the result of a
2485   comparison.  CCmode should be used in all other cases.  */
2486
2487#define SELECT_CC_MODE(OP,X,Y) \
2488  (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode	\
2489   : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2490   : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<'   \
2491      ? CCEQmode : CCmode))
2492
2493/* Define the information needed to generate branch and scc insns.  This is
2494   stored from the compare operation.  Note that we can't use "rtx" here
2495   since it hasn't been defined!  */
2496
2497extern GTY(()) rtx rs6000_compare_op0;
2498extern GTY(()) rtx rs6000_compare_op1;
2499extern int rs6000_compare_fp_p;
2500
2501/* Control the assembler format that we output.  */
2502
2503/* A C string constant describing how to begin a comment in the target
2504   assembler language.  The compiler assumes that the comment will end at
2505   the end of the line.  */
2506#define ASM_COMMENT_START " #"
2507
2508/* Implicit library calls should use memcpy, not bcopy, etc.  */
2509
2510#define TARGET_MEM_FUNCTIONS
2511
2512/* Flag to say the TOC is initialized */
2513extern int toc_initialized;
2514
2515/* Macro to output a special constant pool entry.  Go to WIN if we output
2516   it.  Otherwise, it is written the usual way.
2517
2518   On the RS/6000, toc entries are handled this way.  */
2519
2520#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2521{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
2522    {									  \
2523      output_toc (FILE, X, LABELNO, MODE);				  \
2524      goto WIN;								  \
2525    }									  \
2526}
2527
2528#ifdef HAVE_GAS_WEAK
2529#define RS6000_WEAK 1
2530#else
2531#define RS6000_WEAK 0
2532#endif
2533
2534#if RS6000_WEAK
2535/* Used in lieu of ASM_WEAKEN_LABEL.  */
2536#define	ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)			 	\
2537  do									\
2538    {									\
2539      fputs ("\t.weak\t", (FILE));					\
2540      RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2541      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2542	  && DEFAULT_ABI == ABI_AIX)					\
2543	{								\
2544	  if (TARGET_XCOFF)						\
2545	    fputs ("[DS]", (FILE));					\
2546	  fputs ("\n\t.weak\t.", (FILE));				\
2547	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2548	}								\
2549      fputc ('\n', (FILE));						\
2550      if (VAL)								\
2551	{								\
2552	  ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));			\
2553	  if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL		\
2554	      && DEFAULT_ABI == ABI_AIX)				\
2555	    {								\
2556	      fputs ("\t.set\t.", (FILE));				\
2557	      RS6000_OUTPUT_BASENAME ((FILE), (NAME));			\
2558	      fputs (",.", (FILE));					\
2559	      RS6000_OUTPUT_BASENAME ((FILE), (VAL));			\
2560	      fputc ('\n', (FILE));					\
2561	    }								\
2562	}								\
2563    }									\
2564  while (0)
2565#endif
2566
2567/* This implements the `alias' attribute.  */
2568#undef	ASM_OUTPUT_DEF_FROM_DECLS
2569#define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
2570  do									\
2571    {									\
2572      const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
2573      const char *name = IDENTIFIER_POINTER (TARGET);			\
2574      if (TREE_CODE (DECL) == FUNCTION_DECL				\
2575	  && DEFAULT_ABI == ABI_AIX)					\
2576	{								\
2577	  if (TREE_PUBLIC (DECL))					\
2578	    {								\
2579	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2580		{							\
2581		  fputs ("\t.globl\t.", FILE);				\
2582		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2583		  putc ('\n', FILE);					\
2584		}							\
2585	    }								\
2586	  else if (TARGET_XCOFF)					\
2587	    {								\
2588	      fputs ("\t.lglobl\t.", FILE);				\
2589	      RS6000_OUTPUT_BASENAME (FILE, alias);			\
2590	      putc ('\n', FILE);					\
2591	    }								\
2592	  fputs ("\t.set\t.", FILE);					\
2593	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2594	  fputs (",.", FILE);						\
2595	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2596	  fputc ('\n', FILE);						\
2597	}								\
2598      ASM_OUTPUT_DEF (FILE, alias, name);				\
2599    }									\
2600   while (0)
2601
2602/* Output to assembler file text saying following lines
2603   may contain character constants, extra white space, comments, etc.  */
2604
2605#define ASM_APP_ON ""
2606
2607/* Output to assembler file text saying following lines
2608   no longer contain unusual constructs.  */
2609
2610#define ASM_APP_OFF ""
2611
2612/* How to refer to registers in assembler output.
2613   This sequence is indexed by compiler's hard-register-number (see above).  */
2614
2615extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2616
2617#define REGISTER_NAMES							\
2618{									\
2619  &rs6000_reg_names[ 0][0],	/* r0   */				\
2620  &rs6000_reg_names[ 1][0],	/* r1	*/				\
2621  &rs6000_reg_names[ 2][0],     /* r2	*/				\
2622  &rs6000_reg_names[ 3][0],	/* r3	*/				\
2623  &rs6000_reg_names[ 4][0],	/* r4	*/				\
2624  &rs6000_reg_names[ 5][0],	/* r5	*/				\
2625  &rs6000_reg_names[ 6][0],	/* r6	*/				\
2626  &rs6000_reg_names[ 7][0],	/* r7	*/				\
2627  &rs6000_reg_names[ 8][0],	/* r8	*/				\
2628  &rs6000_reg_names[ 9][0],	/* r9	*/				\
2629  &rs6000_reg_names[10][0],	/* r10  */				\
2630  &rs6000_reg_names[11][0],	/* r11  */				\
2631  &rs6000_reg_names[12][0],	/* r12  */				\
2632  &rs6000_reg_names[13][0],	/* r13  */				\
2633  &rs6000_reg_names[14][0],	/* r14  */				\
2634  &rs6000_reg_names[15][0],	/* r15  */				\
2635  &rs6000_reg_names[16][0],	/* r16  */				\
2636  &rs6000_reg_names[17][0],	/* r17  */				\
2637  &rs6000_reg_names[18][0],	/* r18  */				\
2638  &rs6000_reg_names[19][0],	/* r19  */				\
2639  &rs6000_reg_names[20][0],	/* r20  */				\
2640  &rs6000_reg_names[21][0],	/* r21  */				\
2641  &rs6000_reg_names[22][0],	/* r22  */				\
2642  &rs6000_reg_names[23][0],	/* r23  */				\
2643  &rs6000_reg_names[24][0],	/* r24  */				\
2644  &rs6000_reg_names[25][0],	/* r25  */				\
2645  &rs6000_reg_names[26][0],	/* r26  */				\
2646  &rs6000_reg_names[27][0],	/* r27  */				\
2647  &rs6000_reg_names[28][0],	/* r28  */				\
2648  &rs6000_reg_names[29][0],	/* r29  */				\
2649  &rs6000_reg_names[30][0],	/* r30  */				\
2650  &rs6000_reg_names[31][0],	/* r31  */				\
2651									\
2652  &rs6000_reg_names[32][0],     /* fr0  */				\
2653  &rs6000_reg_names[33][0],	/* fr1  */				\
2654  &rs6000_reg_names[34][0],	/* fr2  */				\
2655  &rs6000_reg_names[35][0],	/* fr3  */				\
2656  &rs6000_reg_names[36][0],	/* fr4  */				\
2657  &rs6000_reg_names[37][0],	/* fr5  */				\
2658  &rs6000_reg_names[38][0],	/* fr6  */				\
2659  &rs6000_reg_names[39][0],	/* fr7  */				\
2660  &rs6000_reg_names[40][0],	/* fr8  */				\
2661  &rs6000_reg_names[41][0],	/* fr9  */				\
2662  &rs6000_reg_names[42][0],	/* fr10 */				\
2663  &rs6000_reg_names[43][0],	/* fr11 */				\
2664  &rs6000_reg_names[44][0],	/* fr12 */				\
2665  &rs6000_reg_names[45][0],	/* fr13 */				\
2666  &rs6000_reg_names[46][0],	/* fr14 */				\
2667  &rs6000_reg_names[47][0],	/* fr15 */				\
2668  &rs6000_reg_names[48][0],	/* fr16 */				\
2669  &rs6000_reg_names[49][0],	/* fr17 */				\
2670  &rs6000_reg_names[50][0],	/* fr18 */				\
2671  &rs6000_reg_names[51][0],	/* fr19 */				\
2672  &rs6000_reg_names[52][0],	/* fr20 */				\
2673  &rs6000_reg_names[53][0],	/* fr21 */				\
2674  &rs6000_reg_names[54][0],	/* fr22 */				\
2675  &rs6000_reg_names[55][0],	/* fr23 */				\
2676  &rs6000_reg_names[56][0],	/* fr24 */				\
2677  &rs6000_reg_names[57][0],	/* fr25 */				\
2678  &rs6000_reg_names[58][0],	/* fr26 */				\
2679  &rs6000_reg_names[59][0],	/* fr27 */				\
2680  &rs6000_reg_names[60][0],	/* fr28 */				\
2681  &rs6000_reg_names[61][0],	/* fr29 */				\
2682  &rs6000_reg_names[62][0],	/* fr30 */				\
2683  &rs6000_reg_names[63][0],	/* fr31 */				\
2684									\
2685  &rs6000_reg_names[64][0],     /* mq   */				\
2686  &rs6000_reg_names[65][0],	/* lr   */				\
2687  &rs6000_reg_names[66][0],	/* ctr  */				\
2688  &rs6000_reg_names[67][0],	/* ap   */				\
2689									\
2690  &rs6000_reg_names[68][0],	/* cr0  */				\
2691  &rs6000_reg_names[69][0],	/* cr1  */				\
2692  &rs6000_reg_names[70][0],	/* cr2  */				\
2693  &rs6000_reg_names[71][0],	/* cr3  */				\
2694  &rs6000_reg_names[72][0],	/* cr4  */				\
2695  &rs6000_reg_names[73][0],	/* cr5  */				\
2696  &rs6000_reg_names[74][0],	/* cr6  */				\
2697  &rs6000_reg_names[75][0],	/* cr7  */				\
2698									\
2699  &rs6000_reg_names[76][0],	/* xer  */				\
2700									\
2701  &rs6000_reg_names[77][0],	/* v0  */				\
2702  &rs6000_reg_names[78][0],	/* v1  */				\
2703  &rs6000_reg_names[79][0],	/* v2  */				\
2704  &rs6000_reg_names[80][0],	/* v3  */				\
2705  &rs6000_reg_names[81][0],	/* v4  */				\
2706  &rs6000_reg_names[82][0],	/* v5  */				\
2707  &rs6000_reg_names[83][0],	/* v6  */				\
2708  &rs6000_reg_names[84][0],	/* v7  */				\
2709  &rs6000_reg_names[85][0],	/* v8  */				\
2710  &rs6000_reg_names[86][0],	/* v9  */				\
2711  &rs6000_reg_names[87][0],	/* v10  */				\
2712  &rs6000_reg_names[88][0],	/* v11  */				\
2713  &rs6000_reg_names[89][0],	/* v12  */				\
2714  &rs6000_reg_names[90][0],	/* v13  */				\
2715  &rs6000_reg_names[91][0],	/* v14  */				\
2716  &rs6000_reg_names[92][0],	/* v15  */				\
2717  &rs6000_reg_names[93][0],	/* v16  */				\
2718  &rs6000_reg_names[94][0],	/* v17  */				\
2719  &rs6000_reg_names[95][0],	/* v18  */				\
2720  &rs6000_reg_names[96][0],	/* v19  */				\
2721  &rs6000_reg_names[97][0],	/* v20  */				\
2722  &rs6000_reg_names[98][0],	/* v21  */				\
2723  &rs6000_reg_names[99][0],	/* v22  */				\
2724  &rs6000_reg_names[100][0],	/* v23  */				\
2725  &rs6000_reg_names[101][0],	/* v24  */				\
2726  &rs6000_reg_names[102][0],	/* v25  */				\
2727  &rs6000_reg_names[103][0],	/* v26  */				\
2728  &rs6000_reg_names[104][0],	/* v27  */				\
2729  &rs6000_reg_names[105][0],	/* v28  */				\
2730  &rs6000_reg_names[106][0],	/* v29  */				\
2731  &rs6000_reg_names[107][0],	/* v30  */				\
2732  &rs6000_reg_names[108][0],	/* v31  */				\
2733  &rs6000_reg_names[109][0],	/* vrsave  */				\
2734  &rs6000_reg_names[110][0],	/* vscr  */				\
2735  &rs6000_reg_names[111][0],	/* spe_acc */				\
2736  &rs6000_reg_names[112][0],	/* spefscr */				\
2737}
2738
2739/* print-rtl can't handle the above REGISTER_NAMES, so define the
2740   following for it.  Switch to use the alternate names since
2741   they are more mnemonic.  */
2742
2743#define DEBUG_REGISTER_NAMES						\
2744{									\
2745     "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",		\
2746     "r8",  "r9", "r10", "r11", "r12", "r13", "r14", "r15",		\
2747    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",		\
2748    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",		\
2749     "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",		\
2750     "f8",  "f9", "f10", "f11", "f12", "f13", "f14", "f15",		\
2751    "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",		\
2752    "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",		\
2753     "mq",  "lr", "ctr",  "ap",						\
2754    "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",		\
2755    "xer",								\
2756     "v0",  "v1",  "v2",  "v3",  "v4",  "v5",  "v6",  "v7",             \
2757     "v8",  "v9", "v10", "v11", "v12", "v13", "v14", "v15",             \
2758    "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",             \
2759    "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",             \
2760    "vrsave", "vscr",							\
2761    "spe_acc", "spefscr"                                                \
2762}
2763
2764/* Table of additional register names to use in user input.  */
2765
2766#define ADDITIONAL_REGISTER_NAMES \
2767 {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2768  {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2769  {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2770  {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2771  {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2772  {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2773  {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2774  {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2775  {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2776  {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2777  {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2778  {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2779  {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2780  {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2781  {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2782  {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2783  {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2784  {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2785  {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2786  {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2787  {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2788  {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2789  {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2790  {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2791  {"vrsave", 109}, {"vscr", 110},				\
2792  {"spe_acc", 111}, {"spefscr", 112},				\
2793  /* no additional names for: mq, lr, ctr, ap */		\
2794  {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2795  {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2796  {"cc",   68}, {"sp",    1}, {"toc",   2} }
2797
2798/* Text to write out after a CALL that may be replaced by glue code by
2799   the loader.  This depends on the AIX version.  */
2800#define RS6000_CALL_GLUE "cror 31,31,31"
2801
2802/* This is how to output an element of a case-vector that is relative.  */
2803
2804#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2805  do { char buf[100];					\
2806       fputs ("\t.long ", FILE);			\
2807       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2808       assemble_name (FILE, buf);			\
2809       putc ('-', FILE);				\
2810       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2811       assemble_name (FILE, buf);			\
2812       putc ('\n', FILE);				\
2813     } while (0)
2814
2815/* This is how to output an assembler line
2816   that says to advance the location counter
2817   to a multiple of 2**LOG bytes.  */
2818
2819#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2820  if ((LOG) != 0)			\
2821    fprintf (FILE, "\t.align %d\n", (LOG))
2822
2823/* Store in OUTPUT a string (made with alloca) containing
2824   an assembler-name for a local static variable named NAME.
2825   LABELNO is an integer which is different for each call.  */
2826
2827#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2828( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2829  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2830
2831/* Pick up the return address upon entry to a procedure. Used for
2832   dwarf2 unwind information.  This also enables the table driven
2833   mechanism.  */
2834
2835#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2836#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2837
2838/* Describe how we implement __builtin_eh_return.  */
2839#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2840#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2841
2842/* Print operand X (an rtx) in assembler syntax to file FILE.
2843   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2844   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2845
2846#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2847
2848/* Define which CODE values are valid.  */
2849
2850#define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2851  ((CODE) == '.')
2852
2853/* Print a memory address as an operand to reference that memory location.  */
2854
2855#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2856
2857/* Define the codes that are matched by predicates in rs6000.c.  */
2858
2859#define PREDICATE_CODES							   \
2860  {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,		   \
2861		   LABEL_REF, SUBREG, REG, MEM, PARALLEL}},		   \
2862  {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	   \
2863		    LABEL_REF, SUBREG, REG, MEM}},			   \
2864  {"short_cint_operand", {CONST_INT}},					   \
2865  {"u_short_cint_operand", {CONST_INT}},				   \
2866  {"non_short_cint_operand", {CONST_INT}},				   \
2867  {"exact_log2_cint_operand", {CONST_INT}},				   \
2868  {"gpc_reg_operand", {SUBREG, REG}},					   \
2869  {"cc_reg_operand", {SUBREG, REG}},					   \
2870  {"cc_reg_not_cr0_operand", {SUBREG, REG}},				   \
2871  {"reg_or_short_operand", {SUBREG, REG, CONST_INT}},			   \
2872  {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}},		   \
2873  {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}},		   \
2874  {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}},			   \
2875  {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},			   \
2876  {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}},		   \
2877  {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2878  {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2879  {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2880  {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}},			   \
2881  {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}},			   \
2882  {"easy_fp_constant", {CONST_DOUBLE}},					   \
2883  {"zero_fp_constant", {CONST_DOUBLE}},					   \
2884  {"reg_or_mem_operand", {SUBREG, MEM, REG}},				   \
2885  {"lwa_operand", {SUBREG, MEM, REG}},					   \
2886  {"volatile_mem_operand", {MEM}},					   \
2887  {"offsettable_mem_operand", {MEM}},					   \
2888  {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}},		   \
2889  {"add_operand", {SUBREG, REG, CONST_INT}},				   \
2890  {"non_add_cint_operand", {CONST_INT}},				   \
2891  {"and_operand", {SUBREG, REG, CONST_INT}},				   \
2892  {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2893  {"and64_2_operand", {SUBREG, REG, CONST_INT}},			   \
2894  {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2895  {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}},		   \
2896  {"mask_operand", {CONST_INT}},					   \
2897  {"mask_operand_wrap", {CONST_INT}},					   \
2898  {"mask64_operand", {CONST_INT}},					   \
2899  {"mask64_2_operand", {CONST_INT}},					   \
2900  {"count_register_operand", {REG}},					   \
2901  {"xer_operand", {REG}},						   \
2902  {"symbol_ref_operand", {SYMBOL_REF}},					   \
2903  {"call_operand", {SYMBOL_REF, REG}},					   \
2904  {"current_file_function_operand", {SYMBOL_REF}},			   \
2905  {"input_operand", {SUBREG, MEM, REG, CONST_INT,			   \
2906		     CONST_DOUBLE, SYMBOL_REF}},			   \
2907  {"load_multiple_operation", {PARALLEL}},				   \
2908  {"store_multiple_operation", {PARALLEL}},				   \
2909  {"vrsave_operation", {PARALLEL}},					   \
2910  {"branch_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2911				  GT, LEU, LTU, GEU, GTU,		   \
2912				  UNORDERED, ORDERED,			   \
2913				  UNGE, UNLE }},			   \
2914  {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU,	   \
2915					   UNORDERED }},		   \
2916  {"scc_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2917			       GT, LEU, LTU, GEU, GTU,			   \
2918			       UNORDERED, ORDERED,			   \
2919			       UNGE, UNLE }},				   \
2920  {"trap_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2921				GT, LEU, LTU, GEU, GTU}},		   \
2922  {"boolean_operator", {AND, IOR, XOR}},				   \
2923  {"boolean_or_operator", {IOR, XOR}},					   \
2924  {"altivec_register_operand", {REG}},	                                   \
2925  {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2926
2927/* uncomment for disabling the corresponding default options */
2928/* #define  MACHINE_no_sched_interblock */
2929/* #define  MACHINE_no_sched_speculative */
2930/* #define  MACHINE_no_sched_speculative_load */
2931
2932/* General flags.  */
2933extern int flag_pic;
2934extern int optimize;
2935extern int flag_expensive_optimizations;
2936extern int frame_pointer_needed;
2937
2938enum rs6000_builtins
2939{
2940  /* AltiVec builtins.  */
2941  ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2942  ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2943  ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2944  ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2945  ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2946  ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2947  ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2948  ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2949  ALTIVEC_BUILTIN_VADDUBM,
2950  ALTIVEC_BUILTIN_VADDUHM,
2951  ALTIVEC_BUILTIN_VADDUWM,
2952  ALTIVEC_BUILTIN_VADDFP,
2953  ALTIVEC_BUILTIN_VADDCUW,
2954  ALTIVEC_BUILTIN_VADDUBS,
2955  ALTIVEC_BUILTIN_VADDSBS,
2956  ALTIVEC_BUILTIN_VADDUHS,
2957  ALTIVEC_BUILTIN_VADDSHS,
2958  ALTIVEC_BUILTIN_VADDUWS,
2959  ALTIVEC_BUILTIN_VADDSWS,
2960  ALTIVEC_BUILTIN_VAND,
2961  ALTIVEC_BUILTIN_VANDC,
2962  ALTIVEC_BUILTIN_VAVGUB,
2963  ALTIVEC_BUILTIN_VAVGSB,
2964  ALTIVEC_BUILTIN_VAVGUH,
2965  ALTIVEC_BUILTIN_VAVGSH,
2966  ALTIVEC_BUILTIN_VAVGUW,
2967  ALTIVEC_BUILTIN_VAVGSW,
2968  ALTIVEC_BUILTIN_VCFUX,
2969  ALTIVEC_BUILTIN_VCFSX,
2970  ALTIVEC_BUILTIN_VCTSXS,
2971  ALTIVEC_BUILTIN_VCTUXS,
2972  ALTIVEC_BUILTIN_VCMPBFP,
2973  ALTIVEC_BUILTIN_VCMPEQUB,
2974  ALTIVEC_BUILTIN_VCMPEQUH,
2975  ALTIVEC_BUILTIN_VCMPEQUW,
2976  ALTIVEC_BUILTIN_VCMPEQFP,
2977  ALTIVEC_BUILTIN_VCMPGEFP,
2978  ALTIVEC_BUILTIN_VCMPGTUB,
2979  ALTIVEC_BUILTIN_VCMPGTSB,
2980  ALTIVEC_BUILTIN_VCMPGTUH,
2981  ALTIVEC_BUILTIN_VCMPGTSH,
2982  ALTIVEC_BUILTIN_VCMPGTUW,
2983  ALTIVEC_BUILTIN_VCMPGTSW,
2984  ALTIVEC_BUILTIN_VCMPGTFP,
2985  ALTIVEC_BUILTIN_VEXPTEFP,
2986  ALTIVEC_BUILTIN_VLOGEFP,
2987  ALTIVEC_BUILTIN_VMADDFP,
2988  ALTIVEC_BUILTIN_VMAXUB,
2989  ALTIVEC_BUILTIN_VMAXSB,
2990  ALTIVEC_BUILTIN_VMAXUH,
2991  ALTIVEC_BUILTIN_VMAXSH,
2992  ALTIVEC_BUILTIN_VMAXUW,
2993  ALTIVEC_BUILTIN_VMAXSW,
2994  ALTIVEC_BUILTIN_VMAXFP,
2995  ALTIVEC_BUILTIN_VMHADDSHS,
2996  ALTIVEC_BUILTIN_VMHRADDSHS,
2997  ALTIVEC_BUILTIN_VMLADDUHM,
2998  ALTIVEC_BUILTIN_VMRGHB,
2999  ALTIVEC_BUILTIN_VMRGHH,
3000  ALTIVEC_BUILTIN_VMRGHW,
3001  ALTIVEC_BUILTIN_VMRGLB,
3002  ALTIVEC_BUILTIN_VMRGLH,
3003  ALTIVEC_BUILTIN_VMRGLW,
3004  ALTIVEC_BUILTIN_VMSUMUBM,
3005  ALTIVEC_BUILTIN_VMSUMMBM,
3006  ALTIVEC_BUILTIN_VMSUMUHM,
3007  ALTIVEC_BUILTIN_VMSUMSHM,
3008  ALTIVEC_BUILTIN_VMSUMUHS,
3009  ALTIVEC_BUILTIN_VMSUMSHS,
3010  ALTIVEC_BUILTIN_VMINUB,
3011  ALTIVEC_BUILTIN_VMINSB,
3012  ALTIVEC_BUILTIN_VMINUH,
3013  ALTIVEC_BUILTIN_VMINSH,
3014  ALTIVEC_BUILTIN_VMINUW,
3015  ALTIVEC_BUILTIN_VMINSW,
3016  ALTIVEC_BUILTIN_VMINFP,
3017  ALTIVEC_BUILTIN_VMULEUB,
3018  ALTIVEC_BUILTIN_VMULESB,
3019  ALTIVEC_BUILTIN_VMULEUH,
3020  ALTIVEC_BUILTIN_VMULESH,
3021  ALTIVEC_BUILTIN_VMULOUB,
3022  ALTIVEC_BUILTIN_VMULOSB,
3023  ALTIVEC_BUILTIN_VMULOUH,
3024  ALTIVEC_BUILTIN_VMULOSH,
3025  ALTIVEC_BUILTIN_VNMSUBFP,
3026  ALTIVEC_BUILTIN_VNOR,
3027  ALTIVEC_BUILTIN_VOR,
3028  ALTIVEC_BUILTIN_VSEL_4SI,
3029  ALTIVEC_BUILTIN_VSEL_4SF,
3030  ALTIVEC_BUILTIN_VSEL_8HI,
3031  ALTIVEC_BUILTIN_VSEL_16QI,
3032  ALTIVEC_BUILTIN_VPERM_4SI,
3033  ALTIVEC_BUILTIN_VPERM_4SF,
3034  ALTIVEC_BUILTIN_VPERM_8HI,
3035  ALTIVEC_BUILTIN_VPERM_16QI,
3036  ALTIVEC_BUILTIN_VPKUHUM,
3037  ALTIVEC_BUILTIN_VPKUWUM,
3038  ALTIVEC_BUILTIN_VPKPX,
3039  ALTIVEC_BUILTIN_VPKUHSS,
3040  ALTIVEC_BUILTIN_VPKSHSS,
3041  ALTIVEC_BUILTIN_VPKUWSS,
3042  ALTIVEC_BUILTIN_VPKSWSS,
3043  ALTIVEC_BUILTIN_VPKUHUS,
3044  ALTIVEC_BUILTIN_VPKSHUS,
3045  ALTIVEC_BUILTIN_VPKUWUS,
3046  ALTIVEC_BUILTIN_VPKSWUS,
3047  ALTIVEC_BUILTIN_VREFP,
3048  ALTIVEC_BUILTIN_VRFIM,
3049  ALTIVEC_BUILTIN_VRFIN,
3050  ALTIVEC_BUILTIN_VRFIP,
3051  ALTIVEC_BUILTIN_VRFIZ,
3052  ALTIVEC_BUILTIN_VRLB,
3053  ALTIVEC_BUILTIN_VRLH,
3054  ALTIVEC_BUILTIN_VRLW,
3055  ALTIVEC_BUILTIN_VRSQRTEFP,
3056  ALTIVEC_BUILTIN_VSLB,
3057  ALTIVEC_BUILTIN_VSLH,
3058  ALTIVEC_BUILTIN_VSLW,
3059  ALTIVEC_BUILTIN_VSL,
3060  ALTIVEC_BUILTIN_VSLO,
3061  ALTIVEC_BUILTIN_VSPLTB,
3062  ALTIVEC_BUILTIN_VSPLTH,
3063  ALTIVEC_BUILTIN_VSPLTW,
3064  ALTIVEC_BUILTIN_VSPLTISB,
3065  ALTIVEC_BUILTIN_VSPLTISH,
3066  ALTIVEC_BUILTIN_VSPLTISW,
3067  ALTIVEC_BUILTIN_VSRB,
3068  ALTIVEC_BUILTIN_VSRH,
3069  ALTIVEC_BUILTIN_VSRW,
3070  ALTIVEC_BUILTIN_VSRAB,
3071  ALTIVEC_BUILTIN_VSRAH,
3072  ALTIVEC_BUILTIN_VSRAW,
3073  ALTIVEC_BUILTIN_VSR,
3074  ALTIVEC_BUILTIN_VSRO,
3075  ALTIVEC_BUILTIN_VSUBUBM,
3076  ALTIVEC_BUILTIN_VSUBUHM,
3077  ALTIVEC_BUILTIN_VSUBUWM,
3078  ALTIVEC_BUILTIN_VSUBFP,
3079  ALTIVEC_BUILTIN_VSUBCUW,
3080  ALTIVEC_BUILTIN_VSUBUBS,
3081  ALTIVEC_BUILTIN_VSUBSBS,
3082  ALTIVEC_BUILTIN_VSUBUHS,
3083  ALTIVEC_BUILTIN_VSUBSHS,
3084  ALTIVEC_BUILTIN_VSUBUWS,
3085  ALTIVEC_BUILTIN_VSUBSWS,
3086  ALTIVEC_BUILTIN_VSUM4UBS,
3087  ALTIVEC_BUILTIN_VSUM4SBS,
3088  ALTIVEC_BUILTIN_VSUM4SHS,
3089  ALTIVEC_BUILTIN_VSUM2SWS,
3090  ALTIVEC_BUILTIN_VSUMSWS,
3091  ALTIVEC_BUILTIN_VXOR,
3092  ALTIVEC_BUILTIN_VSLDOI_16QI,
3093  ALTIVEC_BUILTIN_VSLDOI_8HI,
3094  ALTIVEC_BUILTIN_VSLDOI_4SI,
3095  ALTIVEC_BUILTIN_VSLDOI_4SF,
3096  ALTIVEC_BUILTIN_VUPKHSB,
3097  ALTIVEC_BUILTIN_VUPKHPX,
3098  ALTIVEC_BUILTIN_VUPKHSH,
3099  ALTIVEC_BUILTIN_VUPKLSB,
3100  ALTIVEC_BUILTIN_VUPKLPX,
3101  ALTIVEC_BUILTIN_VUPKLSH,
3102  ALTIVEC_BUILTIN_MTVSCR,
3103  ALTIVEC_BUILTIN_MFVSCR,
3104  ALTIVEC_BUILTIN_DSSALL,
3105  ALTIVEC_BUILTIN_DSS,
3106  ALTIVEC_BUILTIN_LVSL,
3107  ALTIVEC_BUILTIN_LVSR,
3108  ALTIVEC_BUILTIN_DSTT,
3109  ALTIVEC_BUILTIN_DSTST,
3110  ALTIVEC_BUILTIN_DSTSTT,
3111  ALTIVEC_BUILTIN_DST,
3112  ALTIVEC_BUILTIN_LVEBX,
3113  ALTIVEC_BUILTIN_LVEHX,
3114  ALTIVEC_BUILTIN_LVEWX,
3115  ALTIVEC_BUILTIN_LVXL,
3116  ALTIVEC_BUILTIN_LVX,
3117  ALTIVEC_BUILTIN_STVX,
3118  ALTIVEC_BUILTIN_STVEBX,
3119  ALTIVEC_BUILTIN_STVEHX,
3120  ALTIVEC_BUILTIN_STVEWX,
3121  ALTIVEC_BUILTIN_STVXL,
3122  ALTIVEC_BUILTIN_VCMPBFP_P,
3123  ALTIVEC_BUILTIN_VCMPEQFP_P,
3124  ALTIVEC_BUILTIN_VCMPEQUB_P,
3125  ALTIVEC_BUILTIN_VCMPEQUH_P,
3126  ALTIVEC_BUILTIN_VCMPEQUW_P,
3127  ALTIVEC_BUILTIN_VCMPGEFP_P,
3128  ALTIVEC_BUILTIN_VCMPGTFP_P,
3129  ALTIVEC_BUILTIN_VCMPGTSB_P,
3130  ALTIVEC_BUILTIN_VCMPGTSH_P,
3131  ALTIVEC_BUILTIN_VCMPGTSW_P,
3132  ALTIVEC_BUILTIN_VCMPGTUB_P,
3133  ALTIVEC_BUILTIN_VCMPGTUH_P,
3134  ALTIVEC_BUILTIN_VCMPGTUW_P,
3135  ALTIVEC_BUILTIN_ABSS_V4SI,
3136  ALTIVEC_BUILTIN_ABSS_V8HI,
3137  ALTIVEC_BUILTIN_ABSS_V16QI,
3138  ALTIVEC_BUILTIN_ABS_V4SI,
3139  ALTIVEC_BUILTIN_ABS_V4SF,
3140  ALTIVEC_BUILTIN_ABS_V8HI,
3141  ALTIVEC_BUILTIN_ABS_V16QI
3142  /* SPE builtins.  */
3143  , SPE_BUILTIN_EVADDW,
3144  SPE_BUILTIN_EVAND,
3145  SPE_BUILTIN_EVANDC,
3146  SPE_BUILTIN_EVDIVWS,
3147  SPE_BUILTIN_EVDIVWU,
3148  SPE_BUILTIN_EVEQV,
3149  SPE_BUILTIN_EVFSADD,
3150  SPE_BUILTIN_EVFSDIV,
3151  SPE_BUILTIN_EVFSMUL,
3152  SPE_BUILTIN_EVFSSUB,
3153  SPE_BUILTIN_EVLDDX,
3154  SPE_BUILTIN_EVLDHX,
3155  SPE_BUILTIN_EVLDWX,
3156  SPE_BUILTIN_EVLHHESPLATX,
3157  SPE_BUILTIN_EVLHHOSSPLATX,
3158  SPE_BUILTIN_EVLHHOUSPLATX,
3159  SPE_BUILTIN_EVLWHEX,
3160  SPE_BUILTIN_EVLWHOSX,
3161  SPE_BUILTIN_EVLWHOUX,
3162  SPE_BUILTIN_EVLWHSPLATX,
3163  SPE_BUILTIN_EVLWWSPLATX,
3164  SPE_BUILTIN_EVMERGEHI,
3165  SPE_BUILTIN_EVMERGEHILO,
3166  SPE_BUILTIN_EVMERGELO,
3167  SPE_BUILTIN_EVMERGELOHI,
3168  SPE_BUILTIN_EVMHEGSMFAA,
3169  SPE_BUILTIN_EVMHEGSMFAN,
3170  SPE_BUILTIN_EVMHEGSMIAA,
3171  SPE_BUILTIN_EVMHEGSMIAN,
3172  SPE_BUILTIN_EVMHEGUMIAA,
3173  SPE_BUILTIN_EVMHEGUMIAN,
3174  SPE_BUILTIN_EVMHESMF,
3175  SPE_BUILTIN_EVMHESMFA,
3176  SPE_BUILTIN_EVMHESMFAAW,
3177  SPE_BUILTIN_EVMHESMFANW,
3178  SPE_BUILTIN_EVMHESMI,
3179  SPE_BUILTIN_EVMHESMIA,
3180  SPE_BUILTIN_EVMHESMIAAW,
3181  SPE_BUILTIN_EVMHESMIANW,
3182  SPE_BUILTIN_EVMHESSF,
3183  SPE_BUILTIN_EVMHESSFA,
3184  SPE_BUILTIN_EVMHESSFAAW,
3185  SPE_BUILTIN_EVMHESSFANW,
3186  SPE_BUILTIN_EVMHESSIAAW,
3187  SPE_BUILTIN_EVMHESSIANW,
3188  SPE_BUILTIN_EVMHEUMI,
3189  SPE_BUILTIN_EVMHEUMIA,
3190  SPE_BUILTIN_EVMHEUMIAAW,
3191  SPE_BUILTIN_EVMHEUMIANW,
3192  SPE_BUILTIN_EVMHEUSIAAW,
3193  SPE_BUILTIN_EVMHEUSIANW,
3194  SPE_BUILTIN_EVMHOGSMFAA,
3195  SPE_BUILTIN_EVMHOGSMFAN,
3196  SPE_BUILTIN_EVMHOGSMIAA,
3197  SPE_BUILTIN_EVMHOGSMIAN,
3198  SPE_BUILTIN_EVMHOGUMIAA,
3199  SPE_BUILTIN_EVMHOGUMIAN,
3200  SPE_BUILTIN_EVMHOSMF,
3201  SPE_BUILTIN_EVMHOSMFA,
3202  SPE_BUILTIN_EVMHOSMFAAW,
3203  SPE_BUILTIN_EVMHOSMFANW,
3204  SPE_BUILTIN_EVMHOSMI,
3205  SPE_BUILTIN_EVMHOSMIA,
3206  SPE_BUILTIN_EVMHOSMIAAW,
3207  SPE_BUILTIN_EVMHOSMIANW,
3208  SPE_BUILTIN_EVMHOSSF,
3209  SPE_BUILTIN_EVMHOSSFA,
3210  SPE_BUILTIN_EVMHOSSFAAW,
3211  SPE_BUILTIN_EVMHOSSFANW,
3212  SPE_BUILTIN_EVMHOSSIAAW,
3213  SPE_BUILTIN_EVMHOSSIANW,
3214  SPE_BUILTIN_EVMHOUMI,
3215  SPE_BUILTIN_EVMHOUMIA,
3216  SPE_BUILTIN_EVMHOUMIAAW,
3217  SPE_BUILTIN_EVMHOUMIANW,
3218  SPE_BUILTIN_EVMHOUSIAAW,
3219  SPE_BUILTIN_EVMHOUSIANW,
3220  SPE_BUILTIN_EVMWHSMF,
3221  SPE_BUILTIN_EVMWHSMFA,
3222  SPE_BUILTIN_EVMWHSMI,
3223  SPE_BUILTIN_EVMWHSMIA,
3224  SPE_BUILTIN_EVMWHSSF,
3225  SPE_BUILTIN_EVMWHSSFA,
3226  SPE_BUILTIN_EVMWHUMI,
3227  SPE_BUILTIN_EVMWHUMIA,
3228  SPE_BUILTIN_EVMWLSMIAAW,
3229  SPE_BUILTIN_EVMWLSMIANW,
3230  SPE_BUILTIN_EVMWLSSIAAW,
3231  SPE_BUILTIN_EVMWLSSIANW,
3232  SPE_BUILTIN_EVMWLUMI,
3233  SPE_BUILTIN_EVMWLUMIA,
3234  SPE_BUILTIN_EVMWLUMIAAW,
3235  SPE_BUILTIN_EVMWLUMIANW,
3236  SPE_BUILTIN_EVMWLUSIAAW,
3237  SPE_BUILTIN_EVMWLUSIANW,
3238  SPE_BUILTIN_EVMWSMF,
3239  SPE_BUILTIN_EVMWSMFA,
3240  SPE_BUILTIN_EVMWSMFAA,
3241  SPE_BUILTIN_EVMWSMFAN,
3242  SPE_BUILTIN_EVMWSMI,
3243  SPE_BUILTIN_EVMWSMIA,
3244  SPE_BUILTIN_EVMWSMIAA,
3245  SPE_BUILTIN_EVMWSMIAN,
3246  SPE_BUILTIN_EVMWHSSFAA,
3247  SPE_BUILTIN_EVMWSSF,
3248  SPE_BUILTIN_EVMWSSFA,
3249  SPE_BUILTIN_EVMWSSFAA,
3250  SPE_BUILTIN_EVMWSSFAN,
3251  SPE_BUILTIN_EVMWUMI,
3252  SPE_BUILTIN_EVMWUMIA,
3253  SPE_BUILTIN_EVMWUMIAA,
3254  SPE_BUILTIN_EVMWUMIAN,
3255  SPE_BUILTIN_EVNAND,
3256  SPE_BUILTIN_EVNOR,
3257  SPE_BUILTIN_EVOR,
3258  SPE_BUILTIN_EVORC,
3259  SPE_BUILTIN_EVRLW,
3260  SPE_BUILTIN_EVSLW,
3261  SPE_BUILTIN_EVSRWS,
3262  SPE_BUILTIN_EVSRWU,
3263  SPE_BUILTIN_EVSTDDX,
3264  SPE_BUILTIN_EVSTDHX,
3265  SPE_BUILTIN_EVSTDWX,
3266  SPE_BUILTIN_EVSTWHEX,
3267  SPE_BUILTIN_EVSTWHOX,
3268  SPE_BUILTIN_EVSTWWEX,
3269  SPE_BUILTIN_EVSTWWOX,
3270  SPE_BUILTIN_EVSUBFW,
3271  SPE_BUILTIN_EVXOR,
3272  SPE_BUILTIN_EVABS,
3273  SPE_BUILTIN_EVADDSMIAAW,
3274  SPE_BUILTIN_EVADDSSIAAW,
3275  SPE_BUILTIN_EVADDUMIAAW,
3276  SPE_BUILTIN_EVADDUSIAAW,
3277  SPE_BUILTIN_EVCNTLSW,
3278  SPE_BUILTIN_EVCNTLZW,
3279  SPE_BUILTIN_EVEXTSB,
3280  SPE_BUILTIN_EVEXTSH,
3281  SPE_BUILTIN_EVFSABS,
3282  SPE_BUILTIN_EVFSCFSF,
3283  SPE_BUILTIN_EVFSCFSI,
3284  SPE_BUILTIN_EVFSCFUF,
3285  SPE_BUILTIN_EVFSCFUI,
3286  SPE_BUILTIN_EVFSCTSF,
3287  SPE_BUILTIN_EVFSCTSI,
3288  SPE_BUILTIN_EVFSCTSIZ,
3289  SPE_BUILTIN_EVFSCTUF,
3290  SPE_BUILTIN_EVFSCTUI,
3291  SPE_BUILTIN_EVFSCTUIZ,
3292  SPE_BUILTIN_EVFSNABS,
3293  SPE_BUILTIN_EVFSNEG,
3294  SPE_BUILTIN_EVMRA,
3295  SPE_BUILTIN_EVNEG,
3296  SPE_BUILTIN_EVRNDW,
3297  SPE_BUILTIN_EVSUBFSMIAAW,
3298  SPE_BUILTIN_EVSUBFSSIAAW,
3299  SPE_BUILTIN_EVSUBFUMIAAW,
3300  SPE_BUILTIN_EVSUBFUSIAAW,
3301  SPE_BUILTIN_EVADDIW,
3302  SPE_BUILTIN_EVLDD,
3303  SPE_BUILTIN_EVLDH,
3304  SPE_BUILTIN_EVLDW,
3305  SPE_BUILTIN_EVLHHESPLAT,
3306  SPE_BUILTIN_EVLHHOSSPLAT,
3307  SPE_BUILTIN_EVLHHOUSPLAT,
3308  SPE_BUILTIN_EVLWHE,
3309  SPE_BUILTIN_EVLWHOS,
3310  SPE_BUILTIN_EVLWHOU,
3311  SPE_BUILTIN_EVLWHSPLAT,
3312  SPE_BUILTIN_EVLWWSPLAT,
3313  SPE_BUILTIN_EVRLWI,
3314  SPE_BUILTIN_EVSLWI,
3315  SPE_BUILTIN_EVSRWIS,
3316  SPE_BUILTIN_EVSRWIU,
3317  SPE_BUILTIN_EVSTDD,
3318  SPE_BUILTIN_EVSTDH,
3319  SPE_BUILTIN_EVSTDW,
3320  SPE_BUILTIN_EVSTWHE,
3321  SPE_BUILTIN_EVSTWHO,
3322  SPE_BUILTIN_EVSTWWE,
3323  SPE_BUILTIN_EVSTWWO,
3324  SPE_BUILTIN_EVSUBIFW,
3325
3326  /* Compares.  */
3327  SPE_BUILTIN_EVCMPEQ,
3328  SPE_BUILTIN_EVCMPGTS,
3329  SPE_BUILTIN_EVCMPGTU,
3330  SPE_BUILTIN_EVCMPLTS,
3331  SPE_BUILTIN_EVCMPLTU,
3332  SPE_BUILTIN_EVFSCMPEQ,
3333  SPE_BUILTIN_EVFSCMPGT,
3334  SPE_BUILTIN_EVFSCMPLT,
3335  SPE_BUILTIN_EVFSTSTEQ,
3336  SPE_BUILTIN_EVFSTSTGT,
3337  SPE_BUILTIN_EVFSTSTLT,
3338
3339  /* EVSEL compares.  */
3340  SPE_BUILTIN_EVSEL_CMPEQ,
3341  SPE_BUILTIN_EVSEL_CMPGTS,
3342  SPE_BUILTIN_EVSEL_CMPGTU,
3343  SPE_BUILTIN_EVSEL_CMPLTS,
3344  SPE_BUILTIN_EVSEL_CMPLTU,
3345  SPE_BUILTIN_EVSEL_FSCMPEQ,
3346  SPE_BUILTIN_EVSEL_FSCMPGT,
3347  SPE_BUILTIN_EVSEL_FSCMPLT,
3348  SPE_BUILTIN_EVSEL_FSTSTEQ,
3349  SPE_BUILTIN_EVSEL_FSTSTGT,
3350  SPE_BUILTIN_EVSEL_FSTSTLT,
3351
3352  SPE_BUILTIN_EVSPLATFI,
3353  SPE_BUILTIN_EVSPLATI,
3354  SPE_BUILTIN_EVMWHSSMAA,
3355  SPE_BUILTIN_EVMWHSMFAA,
3356  SPE_BUILTIN_EVMWHSMIAA,
3357  SPE_BUILTIN_EVMWHUSIAA,
3358  SPE_BUILTIN_EVMWHUMIAA,
3359  SPE_BUILTIN_EVMWHSSFAN,
3360  SPE_BUILTIN_EVMWHSSIAN,
3361  SPE_BUILTIN_EVMWHSMFAN,
3362  SPE_BUILTIN_EVMWHSMIAN,
3363  SPE_BUILTIN_EVMWHUSIAN,
3364  SPE_BUILTIN_EVMWHUMIAN,
3365  SPE_BUILTIN_EVMWHGSSFAA,
3366  SPE_BUILTIN_EVMWHGSMFAA,
3367  SPE_BUILTIN_EVMWHGSMIAA,
3368  SPE_BUILTIN_EVMWHGUMIAA,
3369  SPE_BUILTIN_EVMWHGSSFAN,
3370  SPE_BUILTIN_EVMWHGSMFAN,
3371  SPE_BUILTIN_EVMWHGSMIAN,
3372  SPE_BUILTIN_EVMWHGUMIAN,
3373  SPE_BUILTIN_MTSPEFSCR,
3374  SPE_BUILTIN_MFSPEFSCR,
3375  SPE_BUILTIN_BRINC
3376};
3377