sanitizer_allocator.h revision 274201
1//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SANITIZER_ALLOCATOR_H
15#define SANITIZER_ALLOCATOR_H
16
17#include "sanitizer_internal_defs.h"
18#include "sanitizer_common.h"
19#include "sanitizer_libc.h"
20#include "sanitizer_list.h"
21#include "sanitizer_mutex.h"
22#include "sanitizer_lfstack.h"
23
24namespace __sanitizer {
25
26// Depending on allocator_may_return_null either return 0 or crash.
27void *AllocatorReturnNull();
28
29// SizeClassMap maps allocation sizes into size classes and back.
30// Class 0 corresponds to size 0.
31// Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
32// Next 4 classes: 256 + i * 64  (i = 1 to 4).
33// Next 4 classes: 512 + i * 128 (i = 1 to 4).
34// ...
35// Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
36// Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
37//
38// This structure of the size class map gives us:
39//   - Efficient table-free class-to-size and size-to-class functions.
40//   - Difference between two consequent size classes is betweed 14% and 25%
41//
42// This class also gives a hint to a thread-caching allocator about the amount
43// of chunks that need to be cached per-thread:
44//  - kMaxNumCached is the maximal number of chunks per size class.
45//  - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
46//
47// Part of output of SizeClassMap::Print():
48// c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
49// c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
50// c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
51// c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
52// c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
53// c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
54// c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
55// c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
56//
57// c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
58// c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
59// c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
60// c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
61// c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
62// c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
63// c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
64// c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
65//
66// c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
67// c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
68// c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
69// c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
70//
71// c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
72// c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
73// c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
74// c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
75//
76// c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
77// c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
78// c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
79// c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
80//
81// ...
82//
83// c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
84// c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
85// c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
86// c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
87//
88// c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
89
90template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
91class SizeClassMap {
92  static const uptr kMinSizeLog = 4;
93  static const uptr kMidSizeLog = kMinSizeLog + 4;
94  static const uptr kMinSize = 1 << kMinSizeLog;
95  static const uptr kMidSize = 1 << kMidSizeLog;
96  static const uptr kMidClass = kMidSize / kMinSize;
97  static const uptr S = 2;
98  static const uptr M = (1 << S) - 1;
99
100 public:
101  static const uptr kMaxNumCached = kMaxNumCachedT;
102  // We transfer chunks between central and thread-local free lists in batches.
103  // For small size classes we allocate batches separately.
104  // For large size classes we use one of the chunks to store the batch.
105  struct TransferBatch {
106    TransferBatch *next;
107    uptr count;
108    void *batch[kMaxNumCached];
109  };
110
111  static const uptr kMaxSize = 1UL << kMaxSizeLog;
112  static const uptr kNumClasses =
113      kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
114  COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
115  static const uptr kNumClassesRounded =
116      kNumClasses == 32  ? 32 :
117      kNumClasses <= 64  ? 64 :
118      kNumClasses <= 128 ? 128 : 256;
119
120  static uptr Size(uptr class_id) {
121    if (class_id <= kMidClass)
122      return kMinSize * class_id;
123    class_id -= kMidClass;
124    uptr t = kMidSize << (class_id >> S);
125    return t + (t >> S) * (class_id & M);
126  }
127
128  static uptr ClassID(uptr size) {
129    if (size <= kMidSize)
130      return (size + kMinSize - 1) >> kMinSizeLog;
131    if (size > kMaxSize) return 0;
132    uptr l = MostSignificantSetBitIndex(size);
133    uptr hbits = (size >> (l - S)) & M;
134    uptr lbits = size & ((1 << (l - S)) - 1);
135    uptr l1 = l - kMidSizeLog;
136    return kMidClass + (l1 << S) + hbits + (lbits > 0);
137  }
138
139  static uptr MaxCached(uptr class_id) {
140    if (class_id == 0) return 0;
141    uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
142    return Max<uptr>(1, Min(kMaxNumCached, n));
143  }
144
145  static void Print() {
146    uptr prev_s = 0;
147    uptr total_cached = 0;
148    for (uptr i = 0; i < kNumClasses; i++) {
149      uptr s = Size(i);
150      if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
151        Printf("\n");
152      uptr d = s - prev_s;
153      uptr p = prev_s ? (d * 100 / prev_s) : 0;
154      uptr l = s ? MostSignificantSetBitIndex(s) : 0;
155      uptr cached = MaxCached(i) * s;
156      Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
157             "cached: %zd %zd; id %zd\n",
158             i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
159      total_cached += cached;
160      prev_s = s;
161    }
162    Printf("Total cached: %zd\n", total_cached);
163  }
164
165  static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
166    return Size(class_id) < sizeof(TransferBatch) -
167        sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
168  }
169
170  static void Validate() {
171    for (uptr c = 1; c < kNumClasses; c++) {
172      // Printf("Validate: c%zd\n", c);
173      uptr s = Size(c);
174      CHECK_NE(s, 0U);
175      CHECK_EQ(ClassID(s), c);
176      if (c != kNumClasses - 1)
177        CHECK_EQ(ClassID(s + 1), c + 1);
178      CHECK_EQ(ClassID(s - 1), c);
179      if (c)
180        CHECK_GT(Size(c), Size(c-1));
181    }
182    CHECK_EQ(ClassID(kMaxSize + 1), 0);
183
184    for (uptr s = 1; s <= kMaxSize; s++) {
185      uptr c = ClassID(s);
186      // Printf("s%zd => c%zd\n", s, c);
187      CHECK_LT(c, kNumClasses);
188      CHECK_GE(Size(c), s);
189      if (c > 0)
190        CHECK_LT(Size(c-1), s);
191    }
192  }
193};
194
195typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
196typedef SizeClassMap<17, 64,  14> CompactSizeClassMap;
197template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
198
199// Memory allocator statistics
200enum AllocatorStat {
201  AllocatorStatMalloced,
202  AllocatorStatFreed,
203  AllocatorStatMmapped,
204  AllocatorStatUnmapped,
205  AllocatorStatCount
206};
207
208typedef u64 AllocatorStatCounters[AllocatorStatCount];
209
210// Per-thread stats, live in per-thread cache.
211class AllocatorStats {
212 public:
213  void Init() {
214    internal_memset(this, 0, sizeof(*this));
215  }
216
217  void Add(AllocatorStat i, u64 v) {
218    v += atomic_load(&stats_[i], memory_order_relaxed);
219    atomic_store(&stats_[i], v, memory_order_relaxed);
220  }
221
222  void Set(AllocatorStat i, u64 v) {
223    atomic_store(&stats_[i], v, memory_order_relaxed);
224  }
225
226  u64 Get(AllocatorStat i) const {
227    return atomic_load(&stats_[i], memory_order_relaxed);
228  }
229
230 private:
231  friend class AllocatorGlobalStats;
232  AllocatorStats *next_;
233  AllocatorStats *prev_;
234  atomic_uint64_t stats_[AllocatorStatCount];
235};
236
237// Global stats, used for aggregation and querying.
238class AllocatorGlobalStats : public AllocatorStats {
239 public:
240  void Init() {
241    internal_memset(this, 0, sizeof(*this));
242    next_ = this;
243    prev_ = this;
244  }
245
246  void Register(AllocatorStats *s) {
247    SpinMutexLock l(&mu_);
248    s->next_ = next_;
249    s->prev_ = this;
250    next_->prev_ = s;
251    next_ = s;
252  }
253
254  void Unregister(AllocatorStats *s) {
255    SpinMutexLock l(&mu_);
256    s->prev_->next_ = s->next_;
257    s->next_->prev_ = s->prev_;
258    for (int i = 0; i < AllocatorStatCount; i++)
259      Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
260  }
261
262  void Get(AllocatorStatCounters s) const {
263    internal_memset(s, 0, AllocatorStatCount * sizeof(u64));
264    SpinMutexLock l(&mu_);
265    const AllocatorStats *stats = this;
266    for (;;) {
267      for (int i = 0; i < AllocatorStatCount; i++)
268        s[i] += stats->Get(AllocatorStat(i));
269      stats = stats->next_;
270      if (stats == this)
271        break;
272    }
273  }
274
275 private:
276  mutable SpinMutex mu_;
277};
278
279// Allocators call these callbacks on mmap/munmap.
280struct NoOpMapUnmapCallback {
281  void OnMap(uptr p, uptr size) const { }
282  void OnUnmap(uptr p, uptr size) const { }
283};
284
285// Callback type for iterating over chunks.
286typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
287
288// SizeClassAllocator64 -- allocator for 64-bit address space.
289//
290// Space: a portion of address space of kSpaceSize bytes starting at
291// a fixed address (kSpaceBeg). Both constants are powers of two and
292// kSpaceBeg is kSpaceSize-aligned.
293// At the beginning the entire space is mprotect-ed, then small parts of it
294// are mapped on demand.
295//
296// Region: a part of Space dedicated to a single size class.
297// There are kNumClasses Regions of equal size.
298//
299// UserChunk: a piece of memory returned to user.
300// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
301//
302// A Region looks like this:
303// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
304template <const uptr kSpaceBeg, const uptr kSpaceSize,
305          const uptr kMetadataSize, class SizeClassMap,
306          class MapUnmapCallback = NoOpMapUnmapCallback>
307class SizeClassAllocator64 {
308 public:
309  typedef typename SizeClassMap::TransferBatch Batch;
310  typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
311      SizeClassMap, MapUnmapCallback> ThisT;
312  typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
313
314  void Init() {
315    CHECK_EQ(kSpaceBeg,
316             reinterpret_cast<uptr>(Mprotect(kSpaceBeg, kSpaceSize)));
317    MapWithCallback(kSpaceEnd, AdditionalSize());
318  }
319
320  void MapWithCallback(uptr beg, uptr size) {
321    CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
322    MapUnmapCallback().OnMap(beg, size);
323  }
324
325  void UnmapWithCallback(uptr beg, uptr size) {
326    MapUnmapCallback().OnUnmap(beg, size);
327    UnmapOrDie(reinterpret_cast<void *>(beg), size);
328  }
329
330  static bool CanAllocate(uptr size, uptr alignment) {
331    return size <= SizeClassMap::kMaxSize &&
332      alignment <= SizeClassMap::kMaxSize;
333  }
334
335  NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
336                                uptr class_id) {
337    CHECK_LT(class_id, kNumClasses);
338    RegionInfo *region = GetRegionInfo(class_id);
339    Batch *b = region->free_list.Pop();
340    if (b == 0)
341      b = PopulateFreeList(stat, c, class_id, region);
342    region->n_allocated += b->count;
343    return b;
344  }
345
346  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
347    RegionInfo *region = GetRegionInfo(class_id);
348    CHECK_GT(b->count, 0);
349    region->free_list.Push(b);
350    region->n_freed += b->count;
351  }
352
353  static bool PointerIsMine(const void *p) {
354    return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
355  }
356
357  static uptr GetSizeClass(const void *p) {
358    return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded;
359  }
360
361  void *GetBlockBegin(const void *p) {
362    uptr class_id = GetSizeClass(p);
363    uptr size = SizeClassMap::Size(class_id);
364    if (!size) return 0;
365    uptr chunk_idx = GetChunkIdx((uptr)p, size);
366    uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
367    uptr beg = chunk_idx * size;
368    uptr next_beg = beg + size;
369    if (class_id >= kNumClasses) return 0;
370    RegionInfo *region = GetRegionInfo(class_id);
371    if (region->mapped_user >= next_beg)
372      return reinterpret_cast<void*>(reg_beg + beg);
373    return 0;
374  }
375
376  static uptr GetActuallyAllocatedSize(void *p) {
377    CHECK(PointerIsMine(p));
378    return SizeClassMap::Size(GetSizeClass(p));
379  }
380
381  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
382
383  void *GetMetaData(const void *p) {
384    uptr class_id = GetSizeClass(p);
385    uptr size = SizeClassMap::Size(class_id);
386    uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
387    return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
388                                   (1 + chunk_idx) * kMetadataSize);
389  }
390
391  uptr TotalMemoryUsed() {
392    uptr res = 0;
393    for (uptr i = 0; i < kNumClasses; i++)
394      res += GetRegionInfo(i)->allocated_user;
395    return res;
396  }
397
398  // Test-only.
399  void TestOnlyUnmap() {
400    UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize());
401  }
402
403  void PrintStats() {
404    uptr total_mapped = 0;
405    uptr n_allocated = 0;
406    uptr n_freed = 0;
407    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
408      RegionInfo *region = GetRegionInfo(class_id);
409      total_mapped += region->mapped_user;
410      n_allocated += region->n_allocated;
411      n_freed += region->n_freed;
412    }
413    Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
414           "remains %zd\n",
415           total_mapped >> 20, n_allocated, n_allocated - n_freed);
416    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
417      RegionInfo *region = GetRegionInfo(class_id);
418      if (region->mapped_user == 0) continue;
419      Printf("  %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
420             class_id,
421             SizeClassMap::Size(class_id),
422             region->mapped_user >> 10,
423             region->n_allocated,
424             region->n_allocated - region->n_freed);
425    }
426  }
427
428  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
429  // introspection API.
430  void ForceLock() {
431    for (uptr i = 0; i < kNumClasses; i++) {
432      GetRegionInfo(i)->mutex.Lock();
433    }
434  }
435
436  void ForceUnlock() {
437    for (int i = (int)kNumClasses - 1; i >= 0; i--) {
438      GetRegionInfo(i)->mutex.Unlock();
439    }
440  }
441
442  // Iterate over all existing chunks.
443  // The allocator must be locked when calling this function.
444  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
445    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
446      RegionInfo *region = GetRegionInfo(class_id);
447      uptr chunk_size = SizeClassMap::Size(class_id);
448      uptr region_beg = kSpaceBeg + class_id * kRegionSize;
449      for (uptr chunk = region_beg;
450           chunk < region_beg + region->allocated_user;
451           chunk += chunk_size) {
452        // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
453        callback(chunk, arg);
454      }
455    }
456  }
457
458  typedef SizeClassMap SizeClassMapT;
459  static const uptr kNumClasses = SizeClassMap::kNumClasses;
460  static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
461
462 private:
463  static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
464  static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize;
465  COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
466  // kRegionSize must be >= 2^32.
467  COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
468  // Populate the free list with at most this number of bytes at once
469  // or with one element if its size is greater.
470  static const uptr kPopulateSize = 1 << 14;
471  // Call mmap for user memory with at least this size.
472  static const uptr kUserMapSize = 1 << 16;
473  // Call mmap for metadata memory with at least this size.
474  static const uptr kMetaMapSize = 1 << 16;
475
476  struct RegionInfo {
477    BlockingMutex mutex;
478    LFStack<Batch> free_list;
479    uptr allocated_user;  // Bytes allocated for user memory.
480    uptr allocated_meta;  // Bytes allocated for metadata.
481    uptr mapped_user;  // Bytes mapped for user memory.
482    uptr mapped_meta;  // Bytes mapped for metadata.
483    uptr n_allocated, n_freed;  // Just stats.
484  };
485  COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
486
487  static uptr AdditionalSize() {
488    return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
489                     GetPageSizeCached());
490  }
491
492  RegionInfo *GetRegionInfo(uptr class_id) {
493    CHECK_LT(class_id, kNumClasses);
494    RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
495    return &regions[class_id];
496  }
497
498  static uptr GetChunkIdx(uptr chunk, uptr size) {
499    uptr offset = chunk % kRegionSize;
500    // Here we divide by a non-constant. This is costly.
501    // size always fits into 32-bits. If the offset fits too, use 32-bit div.
502    if (offset >> (SANITIZER_WORDSIZE / 2))
503      return offset / size;
504    return (u32)offset / (u32)size;
505  }
506
507  NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
508                                   uptr class_id, RegionInfo *region) {
509    BlockingMutexLock l(&region->mutex);
510    Batch *b = region->free_list.Pop();
511    if (b)
512      return b;
513    uptr size = SizeClassMap::Size(class_id);
514    uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
515    uptr beg_idx = region->allocated_user;
516    uptr end_idx = beg_idx + count * size;
517    uptr region_beg = kSpaceBeg + kRegionSize * class_id;
518    if (end_idx + size > region->mapped_user) {
519      // Do the mmap for the user memory.
520      uptr map_size = kUserMapSize;
521      while (end_idx + size > region->mapped_user + map_size)
522        map_size += kUserMapSize;
523      CHECK_GE(region->mapped_user + map_size, end_idx);
524      MapWithCallback(region_beg + region->mapped_user, map_size);
525      stat->Add(AllocatorStatMmapped, map_size);
526      region->mapped_user += map_size;
527    }
528    uptr total_count = (region->mapped_user - beg_idx - size)
529        / size / count * count;
530    region->allocated_meta += total_count * kMetadataSize;
531    if (region->allocated_meta > region->mapped_meta) {
532      uptr map_size = kMetaMapSize;
533      while (region->allocated_meta > region->mapped_meta + map_size)
534        map_size += kMetaMapSize;
535      // Do the mmap for the metadata.
536      CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
537      MapWithCallback(region_beg + kRegionSize -
538                      region->mapped_meta - map_size, map_size);
539      region->mapped_meta += map_size;
540    }
541    CHECK_LE(region->allocated_meta, region->mapped_meta);
542    if (region->mapped_user + region->mapped_meta > kRegionSize) {
543      Printf("%s: Out of memory. Dying. ", SanitizerToolName);
544      Printf("The process has exhausted %zuMB for size class %zu.\n",
545          kRegionSize / 1024 / 1024, size);
546      Die();
547    }
548    for (;;) {
549      if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
550        b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
551      else
552        b = (Batch*)(region_beg + beg_idx);
553      b->count = count;
554      for (uptr i = 0; i < count; i++)
555        b->batch[i] = (void*)(region_beg + beg_idx + i * size);
556      region->allocated_user += count * size;
557      CHECK_LE(region->allocated_user, region->mapped_user);
558      beg_idx += count * size;
559      if (beg_idx + count * size + size > region->mapped_user)
560        break;
561      CHECK_GT(b->count, 0);
562      region->free_list.Push(b);
563    }
564    return b;
565  }
566};
567
568// Maps integers in rage [0, kSize) to u8 values.
569template<u64 kSize>
570class FlatByteMap {
571 public:
572  void TestOnlyInit() {
573    internal_memset(map_, 0, sizeof(map_));
574  }
575
576  void set(uptr idx, u8 val) {
577    CHECK_LT(idx, kSize);
578    CHECK_EQ(0U, map_[idx]);
579    map_[idx] = val;
580  }
581  u8 operator[] (uptr idx) {
582    CHECK_LT(idx, kSize);
583    // FIXME: CHECK may be too expensive here.
584    return map_[idx];
585  }
586 private:
587  u8 map_[kSize];
588};
589
590// FIXME: Also implement TwoLevelByteMap.
591
592// SizeClassAllocator32 -- allocator for 32-bit address space.
593// This allocator can theoretically be used on 64-bit arch, but there it is less
594// efficient than SizeClassAllocator64.
595//
596// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
597// be returned by MmapOrDie().
598//
599// Region:
600//   a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
601// Since the regions are aligned by kRegionSize, there are exactly
602// kNumPossibleRegions possible regions in the address space and so we keep
603// a ByteMap possible_regions to store the size classes of each Region.
604// 0 size class means the region is not used by the allocator.
605//
606// One Region is used to allocate chunks of a single size class.
607// A Region looks like this:
608// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
609//
610// In order to avoid false sharing the objects of this class should be
611// chache-line aligned.
612template <const uptr kSpaceBeg, const u64 kSpaceSize,
613          const uptr kMetadataSize, class SizeClassMap,
614          const uptr kRegionSizeLog,
615          class ByteMap,
616          class MapUnmapCallback = NoOpMapUnmapCallback>
617class SizeClassAllocator32 {
618 public:
619  typedef typename SizeClassMap::TransferBatch Batch;
620  typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
621      SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
622  typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
623
624  void Init() {
625    possible_regions.TestOnlyInit();
626    internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
627  }
628
629  void *MapWithCallback(uptr size) {
630    size = RoundUpTo(size, GetPageSizeCached());
631    void *res = MmapOrDie(size, "SizeClassAllocator32");
632    MapUnmapCallback().OnMap((uptr)res, size);
633    return res;
634  }
635
636  void UnmapWithCallback(uptr beg, uptr size) {
637    MapUnmapCallback().OnUnmap(beg, size);
638    UnmapOrDie(reinterpret_cast<void *>(beg), size);
639  }
640
641  static bool CanAllocate(uptr size, uptr alignment) {
642    return size <= SizeClassMap::kMaxSize &&
643      alignment <= SizeClassMap::kMaxSize;
644  }
645
646  void *GetMetaData(const void *p) {
647    CHECK(PointerIsMine(p));
648    uptr mem = reinterpret_cast<uptr>(p);
649    uptr beg = ComputeRegionBeg(mem);
650    uptr size = SizeClassMap::Size(GetSizeClass(p));
651    u32 offset = mem - beg;
652    uptr n = offset / (u32)size;  // 32-bit division
653    uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
654    return reinterpret_cast<void*>(meta);
655  }
656
657  NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
658                                uptr class_id) {
659    CHECK_LT(class_id, kNumClasses);
660    SizeClassInfo *sci = GetSizeClassInfo(class_id);
661    SpinMutexLock l(&sci->mutex);
662    if (sci->free_list.empty())
663      PopulateFreeList(stat, c, sci, class_id);
664    CHECK(!sci->free_list.empty());
665    Batch *b = sci->free_list.front();
666    sci->free_list.pop_front();
667    return b;
668  }
669
670  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
671    CHECK_LT(class_id, kNumClasses);
672    SizeClassInfo *sci = GetSizeClassInfo(class_id);
673    SpinMutexLock l(&sci->mutex);
674    CHECK_GT(b->count, 0);
675    sci->free_list.push_front(b);
676  }
677
678  bool PointerIsMine(const void *p) {
679    return GetSizeClass(p) != 0;
680  }
681
682  uptr GetSizeClass(const void *p) {
683    return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
684  }
685
686  void *GetBlockBegin(const void *p) {
687    CHECK(PointerIsMine(p));
688    uptr mem = reinterpret_cast<uptr>(p);
689    uptr beg = ComputeRegionBeg(mem);
690    uptr size = SizeClassMap::Size(GetSizeClass(p));
691    u32 offset = mem - beg;
692    u32 n = offset / (u32)size;  // 32-bit division
693    uptr res = beg + (n * (u32)size);
694    return reinterpret_cast<void*>(res);
695  }
696
697  uptr GetActuallyAllocatedSize(void *p) {
698    CHECK(PointerIsMine(p));
699    return SizeClassMap::Size(GetSizeClass(p));
700  }
701
702  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
703
704  uptr TotalMemoryUsed() {
705    // No need to lock here.
706    uptr res = 0;
707    for (uptr i = 0; i < kNumPossibleRegions; i++)
708      if (possible_regions[i])
709        res += kRegionSize;
710    return res;
711  }
712
713  void TestOnlyUnmap() {
714    for (uptr i = 0; i < kNumPossibleRegions; i++)
715      if (possible_regions[i])
716        UnmapWithCallback((i * kRegionSize), kRegionSize);
717  }
718
719  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
720  // introspection API.
721  void ForceLock() {
722    for (uptr i = 0; i < kNumClasses; i++) {
723      GetSizeClassInfo(i)->mutex.Lock();
724    }
725  }
726
727  void ForceUnlock() {
728    for (int i = kNumClasses - 1; i >= 0; i--) {
729      GetSizeClassInfo(i)->mutex.Unlock();
730    }
731  }
732
733  // Iterate over all existing chunks.
734  // The allocator must be locked when calling this function.
735  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
736    for (uptr region = 0; region < kNumPossibleRegions; region++)
737      if (possible_regions[region]) {
738        uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
739        uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
740        uptr region_beg = region * kRegionSize;
741        for (uptr chunk = region_beg;
742             chunk < region_beg + max_chunks_in_region * chunk_size;
743             chunk += chunk_size) {
744          // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
745          callback(chunk, arg);
746        }
747      }
748  }
749
750  void PrintStats() {
751  }
752
753  typedef SizeClassMap SizeClassMapT;
754  static const uptr kNumClasses = SizeClassMap::kNumClasses;
755
756 private:
757  static const uptr kRegionSize = 1 << kRegionSizeLog;
758  static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
759
760  struct SizeClassInfo {
761    SpinMutex mutex;
762    IntrusiveList<Batch> free_list;
763    char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
764  };
765  COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
766
767  uptr ComputeRegionId(uptr mem) {
768    uptr res = mem >> kRegionSizeLog;
769    CHECK_LT(res, kNumPossibleRegions);
770    return res;
771  }
772
773  uptr ComputeRegionBeg(uptr mem) {
774    return mem & ~(kRegionSize - 1);
775  }
776
777  uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
778    CHECK_LT(class_id, kNumClasses);
779    uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
780                                      "SizeClassAllocator32"));
781    MapUnmapCallback().OnMap(res, kRegionSize);
782    stat->Add(AllocatorStatMmapped, kRegionSize);
783    CHECK_EQ(0U, (res & (kRegionSize - 1)));
784    possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
785    return res;
786  }
787
788  SizeClassInfo *GetSizeClassInfo(uptr class_id) {
789    CHECK_LT(class_id, kNumClasses);
790    return &size_class_info_array[class_id];
791  }
792
793  void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
794                        SizeClassInfo *sci, uptr class_id) {
795    uptr size = SizeClassMap::Size(class_id);
796    uptr reg = AllocateRegion(stat, class_id);
797    uptr n_chunks = kRegionSize / (size + kMetadataSize);
798    uptr max_count = SizeClassMap::MaxCached(class_id);
799    Batch *b = 0;
800    for (uptr i = reg; i < reg + n_chunks * size; i += size) {
801      if (b == 0) {
802        if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
803          b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
804        else
805          b = (Batch*)i;
806        b->count = 0;
807      }
808      b->batch[b->count++] = (void*)i;
809      if (b->count == max_count) {
810        CHECK_GT(b->count, 0);
811        sci->free_list.push_back(b);
812        b = 0;
813      }
814    }
815    if (b) {
816      CHECK_GT(b->count, 0);
817      sci->free_list.push_back(b);
818    }
819  }
820
821  ByteMap possible_regions;
822  SizeClassInfo size_class_info_array[kNumClasses];
823};
824
825// Objects of this type should be used as local caches for SizeClassAllocator64
826// or SizeClassAllocator32. Since the typical use of this class is to have one
827// object per thread in TLS, is has to be POD.
828template<class SizeClassAllocator>
829struct SizeClassAllocatorLocalCache {
830  typedef SizeClassAllocator Allocator;
831  static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
832
833  void Init(AllocatorGlobalStats *s) {
834    stats_.Init();
835    if (s)
836      s->Register(&stats_);
837  }
838
839  void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
840    Drain(allocator);
841    if (s)
842      s->Unregister(&stats_);
843  }
844
845  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
846    CHECK_NE(class_id, 0UL);
847    CHECK_LT(class_id, kNumClasses);
848    stats_.Add(AllocatorStatMalloced, SizeClassMap::Size(class_id));
849    PerClass *c = &per_class_[class_id];
850    if (UNLIKELY(c->count == 0))
851      Refill(allocator, class_id);
852    void *res = c->batch[--c->count];
853    PREFETCH(c->batch[c->count - 1]);
854    return res;
855  }
856
857  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
858    CHECK_NE(class_id, 0UL);
859    CHECK_LT(class_id, kNumClasses);
860    // If the first allocator call on a new thread is a deallocation, then
861    // max_count will be zero, leading to check failure.
862    InitCache();
863    stats_.Add(AllocatorStatFreed, SizeClassMap::Size(class_id));
864    PerClass *c = &per_class_[class_id];
865    CHECK_NE(c->max_count, 0UL);
866    if (UNLIKELY(c->count == c->max_count))
867      Drain(allocator, class_id);
868    c->batch[c->count++] = p;
869  }
870
871  void Drain(SizeClassAllocator *allocator) {
872    for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
873      PerClass *c = &per_class_[class_id];
874      while (c->count > 0)
875        Drain(allocator, class_id);
876    }
877  }
878
879  // private:
880  typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
881  typedef typename SizeClassMap::TransferBatch Batch;
882  struct PerClass {
883    uptr count;
884    uptr max_count;
885    void *batch[2 * SizeClassMap::kMaxNumCached];
886  };
887  PerClass per_class_[kNumClasses];
888  AllocatorStats stats_;
889
890  void InitCache() {
891    if (per_class_[1].max_count)
892      return;
893    for (uptr i = 0; i < kNumClasses; i++) {
894      PerClass *c = &per_class_[i];
895      c->max_count = 2 * SizeClassMap::MaxCached(i);
896    }
897  }
898
899  NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
900    InitCache();
901    PerClass *c = &per_class_[class_id];
902    Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
903    CHECK_GT(b->count, 0);
904    for (uptr i = 0; i < b->count; i++)
905      c->batch[i] = b->batch[i];
906    c->count = b->count;
907    if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
908      Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
909  }
910
911  NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
912    InitCache();
913    PerClass *c = &per_class_[class_id];
914    Batch *b;
915    if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
916      b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
917    else
918      b = (Batch*)c->batch[0];
919    uptr cnt = Min(c->max_count / 2, c->count);
920    for (uptr i = 0; i < cnt; i++) {
921      b->batch[i] = c->batch[i];
922      c->batch[i] = c->batch[i + c->max_count / 2];
923    }
924    b->count = cnt;
925    c->count -= cnt;
926    CHECK_GT(b->count, 0);
927    allocator->DeallocateBatch(&stats_, class_id, b);
928  }
929};
930
931// This class can (de)allocate only large chunks of memory using mmap/unmap.
932// The main purpose of this allocator is to cover large and rare allocation
933// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
934template <class MapUnmapCallback = NoOpMapUnmapCallback>
935class LargeMmapAllocator {
936 public:
937  void Init() {
938    internal_memset(this, 0, sizeof(*this));
939    page_size_ = GetPageSizeCached();
940  }
941
942  void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
943    CHECK(IsPowerOfTwo(alignment));
944    uptr map_size = RoundUpMapSize(size);
945    if (alignment > page_size_)
946      map_size += alignment;
947    if (map_size < size) return AllocatorReturnNull();  // Overflow.
948    uptr map_beg = reinterpret_cast<uptr>(
949        MmapOrDie(map_size, "LargeMmapAllocator"));
950    MapUnmapCallback().OnMap(map_beg, map_size);
951    uptr map_end = map_beg + map_size;
952    uptr res = map_beg + page_size_;
953    if (res & (alignment - 1))  // Align.
954      res += alignment - (res & (alignment - 1));
955    CHECK_EQ(0, res & (alignment - 1));
956    CHECK_LE(res + size, map_end);
957    Header *h = GetHeader(res);
958    h->size = size;
959    h->map_beg = map_beg;
960    h->map_size = map_size;
961    uptr size_log = MostSignificantSetBitIndex(map_size);
962    CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
963    {
964      SpinMutexLock l(&mutex_);
965      uptr idx = n_chunks_++;
966      chunks_sorted_ = false;
967      CHECK_LT(idx, kMaxNumChunks);
968      h->chunk_idx = idx;
969      chunks_[idx] = h;
970      stats.n_allocs++;
971      stats.currently_allocated += map_size;
972      stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
973      stats.by_size_log[size_log]++;
974      stat->Add(AllocatorStatMalloced, map_size);
975      stat->Add(AllocatorStatMmapped, map_size);
976    }
977    return reinterpret_cast<void*>(res);
978  }
979
980  void Deallocate(AllocatorStats *stat, void *p) {
981    Header *h = GetHeader(p);
982    {
983      SpinMutexLock l(&mutex_);
984      uptr idx = h->chunk_idx;
985      CHECK_EQ(chunks_[idx], h);
986      CHECK_LT(idx, n_chunks_);
987      chunks_[idx] = chunks_[n_chunks_ - 1];
988      chunks_[idx]->chunk_idx = idx;
989      n_chunks_--;
990      chunks_sorted_ = false;
991      stats.n_frees++;
992      stats.currently_allocated -= h->map_size;
993      stat->Add(AllocatorStatFreed, h->map_size);
994      stat->Add(AllocatorStatUnmapped, h->map_size);
995    }
996    MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
997    UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
998  }
999
1000  uptr TotalMemoryUsed() {
1001    SpinMutexLock l(&mutex_);
1002    uptr res = 0;
1003    for (uptr i = 0; i < n_chunks_; i++) {
1004      Header *h = chunks_[i];
1005      CHECK_EQ(h->chunk_idx, i);
1006      res += RoundUpMapSize(h->size);
1007    }
1008    return res;
1009  }
1010
1011  bool PointerIsMine(const void *p) {
1012    return GetBlockBegin(p) != 0;
1013  }
1014
1015  uptr GetActuallyAllocatedSize(void *p) {
1016    return RoundUpTo(GetHeader(p)->size, page_size_);
1017  }
1018
1019  // At least page_size_/2 metadata bytes is available.
1020  void *GetMetaData(const void *p) {
1021    // Too slow: CHECK_EQ(p, GetBlockBegin(p));
1022    if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
1023      Printf("%s: bad pointer %p\n", SanitizerToolName, p);
1024      CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
1025    }
1026    return GetHeader(p) + 1;
1027  }
1028
1029  void *GetBlockBegin(const void *ptr) {
1030    uptr p = reinterpret_cast<uptr>(ptr);
1031    SpinMutexLock l(&mutex_);
1032    uptr nearest_chunk = 0;
1033    // Cache-friendly linear search.
1034    for (uptr i = 0; i < n_chunks_; i++) {
1035      uptr ch = reinterpret_cast<uptr>(chunks_[i]);
1036      if (p < ch) continue;  // p is at left to this chunk, skip it.
1037      if (p - ch < p - nearest_chunk)
1038        nearest_chunk = ch;
1039    }
1040    if (!nearest_chunk)
1041      return 0;
1042    Header *h = reinterpret_cast<Header *>(nearest_chunk);
1043    CHECK_GE(nearest_chunk, h->map_beg);
1044    CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
1045    CHECK_LE(nearest_chunk, p);
1046    if (h->map_beg + h->map_size <= p)
1047      return 0;
1048    return GetUser(h);
1049  }
1050
1051  // This function does the same as GetBlockBegin, but is much faster.
1052  // Must be called with the allocator locked.
1053  void *GetBlockBeginFastLocked(void *ptr) {
1054    mutex_.CheckLocked();
1055    uptr p = reinterpret_cast<uptr>(ptr);
1056    uptr n = n_chunks_;
1057    if (!n) return 0;
1058    if (!chunks_sorted_) {
1059      // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
1060      SortArray(reinterpret_cast<uptr*>(chunks_), n);
1061      for (uptr i = 0; i < n; i++)
1062        chunks_[i]->chunk_idx = i;
1063      chunks_sorted_ = true;
1064      min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
1065      max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
1066          chunks_[n - 1]->map_size;
1067    }
1068    if (p < min_mmap_ || p >= max_mmap_)
1069      return 0;
1070    uptr beg = 0, end = n - 1;
1071    // This loop is a log(n) lower_bound. It does not check for the exact match
1072    // to avoid expensive cache-thrashing loads.
1073    while (end - beg >= 2) {
1074      uptr mid = (beg + end) / 2;  // Invariant: mid >= beg + 1
1075      if (p < reinterpret_cast<uptr>(chunks_[mid]))
1076        end = mid - 1;  // We are not interested in chunks_[mid].
1077      else
1078        beg = mid;  // chunks_[mid] may still be what we want.
1079    }
1080
1081    if (beg < end) {
1082      CHECK_EQ(beg + 1, end);
1083      // There are 2 chunks left, choose one.
1084      if (p >= reinterpret_cast<uptr>(chunks_[end]))
1085        beg = end;
1086    }
1087
1088    Header *h = chunks_[beg];
1089    if (h->map_beg + h->map_size <= p || p < h->map_beg)
1090      return 0;
1091    return GetUser(h);
1092  }
1093
1094  void PrintStats() {
1095    Printf("Stats: LargeMmapAllocator: allocated %zd times, "
1096           "remains %zd (%zd K) max %zd M; by size logs: ",
1097           stats.n_allocs, stats.n_allocs - stats.n_frees,
1098           stats.currently_allocated >> 10, stats.max_allocated >> 20);
1099    for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
1100      uptr c = stats.by_size_log[i];
1101      if (!c) continue;
1102      Printf("%zd:%zd; ", i, c);
1103    }
1104    Printf("\n");
1105  }
1106
1107  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1108  // introspection API.
1109  void ForceLock() {
1110    mutex_.Lock();
1111  }
1112
1113  void ForceUnlock() {
1114    mutex_.Unlock();
1115  }
1116
1117  // Iterate over all existing chunks.
1118  // The allocator must be locked when calling this function.
1119  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1120    for (uptr i = 0; i < n_chunks_; i++)
1121      callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
1122  }
1123
1124 private:
1125  static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
1126  struct Header {
1127    uptr map_beg;
1128    uptr map_size;
1129    uptr size;
1130    uptr chunk_idx;
1131  };
1132
1133  Header *GetHeader(uptr p) {
1134    CHECK(IsAligned(p, page_size_));
1135    return reinterpret_cast<Header*>(p - page_size_);
1136  }
1137  Header *GetHeader(const void *p) {
1138    return GetHeader(reinterpret_cast<uptr>(p));
1139  }
1140
1141  void *GetUser(Header *h) {
1142    CHECK(IsAligned((uptr)h, page_size_));
1143    return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1144  }
1145
1146  uptr RoundUpMapSize(uptr size) {
1147    return RoundUpTo(size, page_size_) + page_size_;
1148  }
1149
1150  uptr page_size_;
1151  Header *chunks_[kMaxNumChunks];
1152  uptr n_chunks_;
1153  uptr min_mmap_, max_mmap_;
1154  bool chunks_sorted_;
1155  struct Stats {
1156    uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1157  } stats;
1158  SpinMutex mutex_;
1159};
1160
1161// This class implements a complete memory allocator by using two
1162// internal allocators:
1163// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1164//  When allocating 2^x bytes it should return 2^x aligned chunk.
1165// PrimaryAllocator is used via a local AllocatorCache.
1166// SecondaryAllocator can allocate anything, but is not efficient.
1167template <class PrimaryAllocator, class AllocatorCache,
1168          class SecondaryAllocator>  // NOLINT
1169class CombinedAllocator {
1170 public:
1171  void Init() {
1172    primary_.Init();
1173    secondary_.Init();
1174    stats_.Init();
1175  }
1176
1177  void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
1178                 bool cleared = false) {
1179    // Returning 0 on malloc(0) may break a lot of code.
1180    if (size == 0)
1181      size = 1;
1182    if (size + alignment < size)
1183      return AllocatorReturnNull();
1184    if (alignment > 8)
1185      size = RoundUpTo(size, alignment);
1186    void *res;
1187    if (primary_.CanAllocate(size, alignment))
1188      res = cache->Allocate(&primary_, primary_.ClassID(size));
1189    else
1190      res = secondary_.Allocate(&stats_, size, alignment);
1191    if (alignment > 8)
1192      CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1193    if (cleared && res)
1194      internal_memset(res, 0, size);
1195    return res;
1196  }
1197
1198  void Deallocate(AllocatorCache *cache, void *p) {
1199    if (!p) return;
1200    if (primary_.PointerIsMine(p))
1201      cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1202    else
1203      secondary_.Deallocate(&stats_, p);
1204  }
1205
1206  void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1207                   uptr alignment) {
1208    if (!p)
1209      return Allocate(cache, new_size, alignment);
1210    if (!new_size) {
1211      Deallocate(cache, p);
1212      return 0;
1213    }
1214    CHECK(PointerIsMine(p));
1215    uptr old_size = GetActuallyAllocatedSize(p);
1216    uptr memcpy_size = Min(new_size, old_size);
1217    void *new_p = Allocate(cache, new_size, alignment);
1218    if (new_p)
1219      internal_memcpy(new_p, p, memcpy_size);
1220    Deallocate(cache, p);
1221    return new_p;
1222  }
1223
1224  bool PointerIsMine(void *p) {
1225    if (primary_.PointerIsMine(p))
1226      return true;
1227    return secondary_.PointerIsMine(p);
1228  }
1229
1230  bool FromPrimary(void *p) {
1231    return primary_.PointerIsMine(p);
1232  }
1233
1234  void *GetMetaData(const void *p) {
1235    if (primary_.PointerIsMine(p))
1236      return primary_.GetMetaData(p);
1237    return secondary_.GetMetaData(p);
1238  }
1239
1240  void *GetBlockBegin(const void *p) {
1241    if (primary_.PointerIsMine(p))
1242      return primary_.GetBlockBegin(p);
1243    return secondary_.GetBlockBegin(p);
1244  }
1245
1246  // This function does the same as GetBlockBegin, but is much faster.
1247  // Must be called with the allocator locked.
1248  void *GetBlockBeginFastLocked(void *p) {
1249    if (primary_.PointerIsMine(p))
1250      return primary_.GetBlockBegin(p);
1251    return secondary_.GetBlockBeginFastLocked(p);
1252  }
1253
1254  uptr GetActuallyAllocatedSize(void *p) {
1255    if (primary_.PointerIsMine(p))
1256      return primary_.GetActuallyAllocatedSize(p);
1257    return secondary_.GetActuallyAllocatedSize(p);
1258  }
1259
1260  uptr TotalMemoryUsed() {
1261    return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1262  }
1263
1264  void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1265
1266  void InitCache(AllocatorCache *cache) {
1267    cache->Init(&stats_);
1268  }
1269
1270  void DestroyCache(AllocatorCache *cache) {
1271    cache->Destroy(&primary_, &stats_);
1272  }
1273
1274  void SwallowCache(AllocatorCache *cache) {
1275    cache->Drain(&primary_);
1276  }
1277
1278  void GetStats(AllocatorStatCounters s) const {
1279    stats_.Get(s);
1280  }
1281
1282  void PrintStats() {
1283    primary_.PrintStats();
1284    secondary_.PrintStats();
1285  }
1286
1287  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1288  // introspection API.
1289  void ForceLock() {
1290    primary_.ForceLock();
1291    secondary_.ForceLock();
1292  }
1293
1294  void ForceUnlock() {
1295    secondary_.ForceUnlock();
1296    primary_.ForceUnlock();
1297  }
1298
1299  // Iterate over all existing chunks.
1300  // The allocator must be locked when calling this function.
1301  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1302    primary_.ForEachChunk(callback, arg);
1303    secondary_.ForEachChunk(callback, arg);
1304  }
1305
1306 private:
1307  PrimaryAllocator primary_;
1308  SecondaryAllocator secondary_;
1309  AllocatorGlobalStats stats_;
1310};
1311
1312// Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1313bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1314
1315}  // namespace __sanitizer
1316
1317#endif  // SANITIZER_ALLOCATOR_H
1318
1319