1//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SANITIZER_ALLOCATOR_H
15#define SANITIZER_ALLOCATOR_H
16
17#include "sanitizer_internal_defs.h"
18#include "sanitizer_common.h"
19#include "sanitizer_libc.h"
20#include "sanitizer_list.h"
21#include "sanitizer_mutex.h"
22#include "sanitizer_lfstack.h"
23
24namespace __sanitizer {
25
26// Prints error message and kills the program.
27void NORETURN ReportAllocatorCannotReturnNull();
28
29// SizeClassMap maps allocation sizes into size classes and back.
30// Class 0 corresponds to size 0.
31// Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
32// Next 4 classes: 256 + i * 64  (i = 1 to 4).
33// Next 4 classes: 512 + i * 128 (i = 1 to 4).
34// ...
35// Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
36// Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
37//
38// This structure of the size class map gives us:
39//   - Efficient table-free class-to-size and size-to-class functions.
40//   - Difference between two consequent size classes is betweed 14% and 25%
41//
42// This class also gives a hint to a thread-caching allocator about the amount
43// of chunks that need to be cached per-thread:
44//  - kMaxNumCached is the maximal number of chunks per size class.
45//  - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
46//
47// Part of output of SizeClassMap::Print():
48// c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
49// c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
50// c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
51// c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
52// c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
53// c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
54// c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
55// c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
56//
57// c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
58// c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
59// c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
60// c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
61// c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
62// c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
63// c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
64// c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
65//
66// c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
67// c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
68// c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
69// c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
70//
71// c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
72// c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
73// c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
74// c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
75//
76// c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
77// c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
78// c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
79// c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
80//
81// ...
82//
83// c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
84// c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
85// c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
86// c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
87//
88// c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
89
90template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
91class SizeClassMap {
92  static const uptr kMinSizeLog = 4;
93  static const uptr kMidSizeLog = kMinSizeLog + 4;
94  static const uptr kMinSize = 1 << kMinSizeLog;
95  static const uptr kMidSize = 1 << kMidSizeLog;
96  static const uptr kMidClass = kMidSize / kMinSize;
97  static const uptr S = 2;
98  static const uptr M = (1 << S) - 1;
99
100 public:
101  static const uptr kMaxNumCached = kMaxNumCachedT;
102  // We transfer chunks between central and thread-local free lists in batches.
103  // For small size classes we allocate batches separately.
104  // For large size classes we use one of the chunks to store the batch.
105  struct TransferBatch {
106    TransferBatch *next;
107    uptr count;
108    void *batch[kMaxNumCached];
109  };
110
111  static const uptr kMaxSize = 1UL << kMaxSizeLog;
112  static const uptr kNumClasses =
113      kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
114  COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
115  static const uptr kNumClassesRounded =
116      kNumClasses == 32  ? 32 :
117      kNumClasses <= 64  ? 64 :
118      kNumClasses <= 128 ? 128 : 256;
119
120  static uptr Size(uptr class_id) {
121    if (class_id <= kMidClass)
122      return kMinSize * class_id;
123    class_id -= kMidClass;
124    uptr t = kMidSize << (class_id >> S);
125    return t + (t >> S) * (class_id & M);
126  }
127
128  static uptr ClassID(uptr size) {
129    if (size <= kMidSize)
130      return (size + kMinSize - 1) >> kMinSizeLog;
131    if (size > kMaxSize) return 0;
132    uptr l = MostSignificantSetBitIndex(size);
133    uptr hbits = (size >> (l - S)) & M;
134    uptr lbits = size & ((1 << (l - S)) - 1);
135    uptr l1 = l - kMidSizeLog;
136    return kMidClass + (l1 << S) + hbits + (lbits > 0);
137  }
138
139  static uptr MaxCached(uptr class_id) {
140    if (class_id == 0) return 0;
141    uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
142    return Max<uptr>(1, Min(kMaxNumCached, n));
143  }
144
145  static void Print() {
146    uptr prev_s = 0;
147    uptr total_cached = 0;
148    for (uptr i = 0; i < kNumClasses; i++) {
149      uptr s = Size(i);
150      if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
151        Printf("\n");
152      uptr d = s - prev_s;
153      uptr p = prev_s ? (d * 100 / prev_s) : 0;
154      uptr l = s ? MostSignificantSetBitIndex(s) : 0;
155      uptr cached = MaxCached(i) * s;
156      Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
157             "cached: %zd %zd; id %zd\n",
158             i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
159      total_cached += cached;
160      prev_s = s;
161    }
162    Printf("Total cached: %zd\n", total_cached);
163  }
164
165  static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
166    return Size(class_id) < sizeof(TransferBatch) -
167        sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
168  }
169
170  static void Validate() {
171    for (uptr c = 1; c < kNumClasses; c++) {
172      // Printf("Validate: c%zd\n", c);
173      uptr s = Size(c);
174      CHECK_NE(s, 0U);
175      CHECK_EQ(ClassID(s), c);
176      if (c != kNumClasses - 1)
177        CHECK_EQ(ClassID(s + 1), c + 1);
178      CHECK_EQ(ClassID(s - 1), c);
179      if (c)
180        CHECK_GT(Size(c), Size(c-1));
181    }
182    CHECK_EQ(ClassID(kMaxSize + 1), 0);
183
184    for (uptr s = 1; s <= kMaxSize; s++) {
185      uptr c = ClassID(s);
186      // Printf("s%zd => c%zd\n", s, c);
187      CHECK_LT(c, kNumClasses);
188      CHECK_GE(Size(c), s);
189      if (c > 0)
190        CHECK_LT(Size(c-1), s);
191    }
192  }
193};
194
195typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
196typedef SizeClassMap<17, 64,  14> CompactSizeClassMap;
197template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
198
199// Memory allocator statistics
200enum AllocatorStat {
201  AllocatorStatAllocated,
202  AllocatorStatMapped,
203  AllocatorStatCount
204};
205
206typedef uptr AllocatorStatCounters[AllocatorStatCount];
207
208// Per-thread stats, live in per-thread cache.
209class AllocatorStats {
210 public:
211  void Init() {
212    internal_memset(this, 0, sizeof(*this));
213  }
214  void InitLinkerInitialized() {}
215
216  void Add(AllocatorStat i, uptr v) {
217    v += atomic_load(&stats_[i], memory_order_relaxed);
218    atomic_store(&stats_[i], v, memory_order_relaxed);
219  }
220
221  void Sub(AllocatorStat i, uptr v) {
222    v = atomic_load(&stats_[i], memory_order_relaxed) - v;
223    atomic_store(&stats_[i], v, memory_order_relaxed);
224  }
225
226  void Set(AllocatorStat i, uptr v) {
227    atomic_store(&stats_[i], v, memory_order_relaxed);
228  }
229
230  uptr Get(AllocatorStat i) const {
231    return atomic_load(&stats_[i], memory_order_relaxed);
232  }
233
234 private:
235  friend class AllocatorGlobalStats;
236  AllocatorStats *next_;
237  AllocatorStats *prev_;
238  atomic_uintptr_t stats_[AllocatorStatCount];
239};
240
241// Global stats, used for aggregation and querying.
242class AllocatorGlobalStats : public AllocatorStats {
243 public:
244  void InitLinkerInitialized() {
245    next_ = this;
246    prev_ = this;
247  }
248  void Init() {
249    internal_memset(this, 0, sizeof(*this));
250    InitLinkerInitialized();
251  }
252
253  void Register(AllocatorStats *s) {
254    SpinMutexLock l(&mu_);
255    s->next_ = next_;
256    s->prev_ = this;
257    next_->prev_ = s;
258    next_ = s;
259  }
260
261  void Unregister(AllocatorStats *s) {
262    SpinMutexLock l(&mu_);
263    s->prev_->next_ = s->next_;
264    s->next_->prev_ = s->prev_;
265    for (int i = 0; i < AllocatorStatCount; i++)
266      Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
267  }
268
269  void Get(AllocatorStatCounters s) const {
270    internal_memset(s, 0, AllocatorStatCount * sizeof(uptr));
271    SpinMutexLock l(&mu_);
272    const AllocatorStats *stats = this;
273    for (;;) {
274      for (int i = 0; i < AllocatorStatCount; i++)
275        s[i] += stats->Get(AllocatorStat(i));
276      stats = stats->next_;
277      if (stats == this)
278        break;
279    }
280    // All stats must be non-negative.
281    for (int i = 0; i < AllocatorStatCount; i++)
282      s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0;
283  }
284
285 private:
286  mutable SpinMutex mu_;
287};
288
289// Allocators call these callbacks on mmap/munmap.
290struct NoOpMapUnmapCallback {
291  void OnMap(uptr p, uptr size) const { }
292  void OnUnmap(uptr p, uptr size) const { }
293};
294
295// Callback type for iterating over chunks.
296typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
297
298// SizeClassAllocator64 -- allocator for 64-bit address space.
299//
300// Space: a portion of address space of kSpaceSize bytes starting at
301// a fixed address (kSpaceBeg). Both constants are powers of two and
302// kSpaceBeg is kSpaceSize-aligned.
303// At the beginning the entire space is mprotect-ed, then small parts of it
304// are mapped on demand.
305//
306// Region: a part of Space dedicated to a single size class.
307// There are kNumClasses Regions of equal size.
308//
309// UserChunk: a piece of memory returned to user.
310// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
311//
312// A Region looks like this:
313// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
314template <const uptr kSpaceBeg, const uptr kSpaceSize,
315          const uptr kMetadataSize, class SizeClassMap,
316          class MapUnmapCallback = NoOpMapUnmapCallback>
317class SizeClassAllocator64 {
318 public:
319  typedef typename SizeClassMap::TransferBatch Batch;
320  typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
321      SizeClassMap, MapUnmapCallback> ThisT;
322  typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
323
324  void Init() {
325    CHECK_EQ(kSpaceBeg,
326             reinterpret_cast<uptr>(MmapNoAccess(kSpaceBeg, kSpaceSize)));
327    MapWithCallback(kSpaceEnd, AdditionalSize());
328  }
329
330  void MapWithCallback(uptr beg, uptr size) {
331    CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
332    MapUnmapCallback().OnMap(beg, size);
333  }
334
335  void UnmapWithCallback(uptr beg, uptr size) {
336    MapUnmapCallback().OnUnmap(beg, size);
337    UnmapOrDie(reinterpret_cast<void *>(beg), size);
338  }
339
340  static bool CanAllocate(uptr size, uptr alignment) {
341    return size <= SizeClassMap::kMaxSize &&
342      alignment <= SizeClassMap::kMaxSize;
343  }
344
345  NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
346                                uptr class_id) {
347    CHECK_LT(class_id, kNumClasses);
348    RegionInfo *region = GetRegionInfo(class_id);
349    Batch *b = region->free_list.Pop();
350    if (!b)
351      b = PopulateFreeList(stat, c, class_id, region);
352    region->n_allocated += b->count;
353    return b;
354  }
355
356  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
357    RegionInfo *region = GetRegionInfo(class_id);
358    CHECK_GT(b->count, 0);
359    region->free_list.Push(b);
360    region->n_freed += b->count;
361  }
362
363  static bool PointerIsMine(const void *p) {
364    return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
365  }
366
367  static uptr GetSizeClass(const void *p) {
368    return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded;
369  }
370
371  void *GetBlockBegin(const void *p) {
372    uptr class_id = GetSizeClass(p);
373    uptr size = SizeClassMap::Size(class_id);
374    if (!size) return nullptr;
375    uptr chunk_idx = GetChunkIdx((uptr)p, size);
376    uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
377    uptr beg = chunk_idx * size;
378    uptr next_beg = beg + size;
379    if (class_id >= kNumClasses) return nullptr;
380    RegionInfo *region = GetRegionInfo(class_id);
381    if (region->mapped_user >= next_beg)
382      return reinterpret_cast<void*>(reg_beg + beg);
383    return nullptr;
384  }
385
386  static uptr GetActuallyAllocatedSize(void *p) {
387    CHECK(PointerIsMine(p));
388    return SizeClassMap::Size(GetSizeClass(p));
389  }
390
391  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
392
393  void *GetMetaData(const void *p) {
394    uptr class_id = GetSizeClass(p);
395    uptr size = SizeClassMap::Size(class_id);
396    uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
397    return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
398                                   (1 + chunk_idx) * kMetadataSize);
399  }
400
401  uptr TotalMemoryUsed() {
402    uptr res = 0;
403    for (uptr i = 0; i < kNumClasses; i++)
404      res += GetRegionInfo(i)->allocated_user;
405    return res;
406  }
407
408  // Test-only.
409  void TestOnlyUnmap() {
410    UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize());
411  }
412
413  void PrintStats() {
414    uptr total_mapped = 0;
415    uptr n_allocated = 0;
416    uptr n_freed = 0;
417    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
418      RegionInfo *region = GetRegionInfo(class_id);
419      total_mapped += region->mapped_user;
420      n_allocated += region->n_allocated;
421      n_freed += region->n_freed;
422    }
423    Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
424           "remains %zd\n",
425           total_mapped >> 20, n_allocated, n_allocated - n_freed);
426    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
427      RegionInfo *region = GetRegionInfo(class_id);
428      if (region->mapped_user == 0) continue;
429      Printf("  %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
430             class_id,
431             SizeClassMap::Size(class_id),
432             region->mapped_user >> 10,
433             region->n_allocated,
434             region->n_allocated - region->n_freed);
435    }
436  }
437
438  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
439  // introspection API.
440  void ForceLock() {
441    for (uptr i = 0; i < kNumClasses; i++) {
442      GetRegionInfo(i)->mutex.Lock();
443    }
444  }
445
446  void ForceUnlock() {
447    for (int i = (int)kNumClasses - 1; i >= 0; i--) {
448      GetRegionInfo(i)->mutex.Unlock();
449    }
450  }
451
452  // Iterate over all existing chunks.
453  // The allocator must be locked when calling this function.
454  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
455    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
456      RegionInfo *region = GetRegionInfo(class_id);
457      uptr chunk_size = SizeClassMap::Size(class_id);
458      uptr region_beg = kSpaceBeg + class_id * kRegionSize;
459      for (uptr chunk = region_beg;
460           chunk < region_beg + region->allocated_user;
461           chunk += chunk_size) {
462        // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
463        callback(chunk, arg);
464      }
465    }
466  }
467
468  static uptr AdditionalSize() {
469    return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
470                     GetPageSizeCached());
471  }
472
473  typedef SizeClassMap SizeClassMapT;
474  static const uptr kNumClasses = SizeClassMap::kNumClasses;
475  static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
476
477 private:
478  static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
479  static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize;
480  COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
481  // kRegionSize must be >= 2^32.
482  COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
483  // Populate the free list with at most this number of bytes at once
484  // or with one element if its size is greater.
485  static const uptr kPopulateSize = 1 << 14;
486  // Call mmap for user memory with at least this size.
487  static const uptr kUserMapSize = 1 << 16;
488  // Call mmap for metadata memory with at least this size.
489  static const uptr kMetaMapSize = 1 << 16;
490
491  struct RegionInfo {
492    BlockingMutex mutex;
493    LFStack<Batch> free_list;
494    uptr allocated_user;  // Bytes allocated for user memory.
495    uptr allocated_meta;  // Bytes allocated for metadata.
496    uptr mapped_user;  // Bytes mapped for user memory.
497    uptr mapped_meta;  // Bytes mapped for metadata.
498    uptr n_allocated, n_freed;  // Just stats.
499  };
500  COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
501
502  RegionInfo *GetRegionInfo(uptr class_id) {
503    CHECK_LT(class_id, kNumClasses);
504    RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
505    return &regions[class_id];
506  }
507
508  static uptr GetChunkIdx(uptr chunk, uptr size) {
509    uptr offset = chunk % kRegionSize;
510    // Here we divide by a non-constant. This is costly.
511    // size always fits into 32-bits. If the offset fits too, use 32-bit div.
512    if (offset >> (SANITIZER_WORDSIZE / 2))
513      return offset / size;
514    return (u32)offset / (u32)size;
515  }
516
517  NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
518                                   uptr class_id, RegionInfo *region) {
519    BlockingMutexLock l(&region->mutex);
520    Batch *b = region->free_list.Pop();
521    if (b)
522      return b;
523    uptr size = SizeClassMap::Size(class_id);
524    uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
525    uptr beg_idx = region->allocated_user;
526    uptr end_idx = beg_idx + count * size;
527    uptr region_beg = kSpaceBeg + kRegionSize * class_id;
528    if (end_idx + size > region->mapped_user) {
529      // Do the mmap for the user memory.
530      uptr map_size = kUserMapSize;
531      while (end_idx + size > region->mapped_user + map_size)
532        map_size += kUserMapSize;
533      CHECK_GE(region->mapped_user + map_size, end_idx);
534      MapWithCallback(region_beg + region->mapped_user, map_size);
535      stat->Add(AllocatorStatMapped, map_size);
536      region->mapped_user += map_size;
537    }
538    uptr total_count = (region->mapped_user - beg_idx - size)
539        / size / count * count;
540    region->allocated_meta += total_count * kMetadataSize;
541    if (region->allocated_meta > region->mapped_meta) {
542      uptr map_size = kMetaMapSize;
543      while (region->allocated_meta > region->mapped_meta + map_size)
544        map_size += kMetaMapSize;
545      // Do the mmap for the metadata.
546      CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
547      MapWithCallback(region_beg + kRegionSize -
548                      region->mapped_meta - map_size, map_size);
549      region->mapped_meta += map_size;
550    }
551    CHECK_LE(region->allocated_meta, region->mapped_meta);
552    if (region->mapped_user + region->mapped_meta > kRegionSize) {
553      Printf("%s: Out of memory. Dying. ", SanitizerToolName);
554      Printf("The process has exhausted %zuMB for size class %zu.\n",
555          kRegionSize / 1024 / 1024, size);
556      Die();
557    }
558    for (;;) {
559      if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
560        b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
561      else
562        b = (Batch*)(region_beg + beg_idx);
563      b->count = count;
564      for (uptr i = 0; i < count; i++)
565        b->batch[i] = (void*)(region_beg + beg_idx + i * size);
566      region->allocated_user += count * size;
567      CHECK_LE(region->allocated_user, region->mapped_user);
568      beg_idx += count * size;
569      if (beg_idx + count * size + size > region->mapped_user)
570        break;
571      CHECK_GT(b->count, 0);
572      region->free_list.Push(b);
573    }
574    return b;
575  }
576};
577
578// Maps integers in rage [0, kSize) to u8 values.
579template<u64 kSize>
580class FlatByteMap {
581 public:
582  void TestOnlyInit() {
583    internal_memset(map_, 0, sizeof(map_));
584  }
585
586  void set(uptr idx, u8 val) {
587    CHECK_LT(idx, kSize);
588    CHECK_EQ(0U, map_[idx]);
589    map_[idx] = val;
590  }
591  u8 operator[] (uptr idx) {
592    CHECK_LT(idx, kSize);
593    // FIXME: CHECK may be too expensive here.
594    return map_[idx];
595  }
596 private:
597  u8 map_[kSize];
598};
599
600// TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
601// It is implemented as a two-dimensional array: array of kSize1 pointers
602// to kSize2-byte arrays. The secondary arrays are mmaped on demand.
603// Each value is initially zero and can be set to something else only once.
604// Setting and getting values from multiple threads is safe w/o extra locking.
605template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
606class TwoLevelByteMap {
607 public:
608  void TestOnlyInit() {
609    internal_memset(map1_, 0, sizeof(map1_));
610    mu_.Init();
611  }
612
613  void TestOnlyUnmap() {
614    for (uptr i = 0; i < kSize1; i++) {
615      u8 *p = Get(i);
616      if (!p) continue;
617      MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
618      UnmapOrDie(p, kSize2);
619    }
620  }
621
622  uptr size() const { return kSize1 * kSize2; }
623  uptr size1() const { return kSize1; }
624  uptr size2() const { return kSize2; }
625
626  void set(uptr idx, u8 val) {
627    CHECK_LT(idx, kSize1 * kSize2);
628    u8 *map2 = GetOrCreate(idx / kSize2);
629    CHECK_EQ(0U, map2[idx % kSize2]);
630    map2[idx % kSize2] = val;
631  }
632
633  u8 operator[] (uptr idx) const {
634    CHECK_LT(idx, kSize1 * kSize2);
635    u8 *map2 = Get(idx / kSize2);
636    if (!map2) return 0;
637    return map2[idx % kSize2];
638  }
639
640 private:
641  u8 *Get(uptr idx) const {
642    CHECK_LT(idx, kSize1);
643    return reinterpret_cast<u8 *>(
644        atomic_load(&map1_[idx], memory_order_acquire));
645  }
646
647  u8 *GetOrCreate(uptr idx) {
648    u8 *res = Get(idx);
649    if (!res) {
650      SpinMutexLock l(&mu_);
651      if (!(res = Get(idx))) {
652        res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
653        MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
654        atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
655                     memory_order_release);
656      }
657    }
658    return res;
659  }
660
661  atomic_uintptr_t map1_[kSize1];
662  StaticSpinMutex mu_;
663};
664
665// SizeClassAllocator32 -- allocator for 32-bit address space.
666// This allocator can theoretically be used on 64-bit arch, but there it is less
667// efficient than SizeClassAllocator64.
668//
669// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
670// be returned by MmapOrDie().
671//
672// Region:
673//   a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
674// Since the regions are aligned by kRegionSize, there are exactly
675// kNumPossibleRegions possible regions in the address space and so we keep
676// a ByteMap possible_regions to store the size classes of each Region.
677// 0 size class means the region is not used by the allocator.
678//
679// One Region is used to allocate chunks of a single size class.
680// A Region looks like this:
681// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
682//
683// In order to avoid false sharing the objects of this class should be
684// chache-line aligned.
685template <const uptr kSpaceBeg, const u64 kSpaceSize,
686          const uptr kMetadataSize, class SizeClassMap,
687          const uptr kRegionSizeLog,
688          class ByteMap,
689          class MapUnmapCallback = NoOpMapUnmapCallback>
690class SizeClassAllocator32 {
691 public:
692  typedef typename SizeClassMap::TransferBatch Batch;
693  typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
694      SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
695  typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
696
697  void Init() {
698    possible_regions.TestOnlyInit();
699    internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
700  }
701
702  void *MapWithCallback(uptr size) {
703    size = RoundUpTo(size, GetPageSizeCached());
704    void *res = MmapOrDie(size, "SizeClassAllocator32");
705    MapUnmapCallback().OnMap((uptr)res, size);
706    return res;
707  }
708
709  void UnmapWithCallback(uptr beg, uptr size) {
710    MapUnmapCallback().OnUnmap(beg, size);
711    UnmapOrDie(reinterpret_cast<void *>(beg), size);
712  }
713
714  static bool CanAllocate(uptr size, uptr alignment) {
715    return size <= SizeClassMap::kMaxSize &&
716      alignment <= SizeClassMap::kMaxSize;
717  }
718
719  void *GetMetaData(const void *p) {
720    CHECK(PointerIsMine(p));
721    uptr mem = reinterpret_cast<uptr>(p);
722    uptr beg = ComputeRegionBeg(mem);
723    uptr size = SizeClassMap::Size(GetSizeClass(p));
724    u32 offset = mem - beg;
725    uptr n = offset / (u32)size;  // 32-bit division
726    uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
727    return reinterpret_cast<void*>(meta);
728  }
729
730  NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
731                                uptr class_id) {
732    CHECK_LT(class_id, kNumClasses);
733    SizeClassInfo *sci = GetSizeClassInfo(class_id);
734    SpinMutexLock l(&sci->mutex);
735    if (sci->free_list.empty())
736      PopulateFreeList(stat, c, sci, class_id);
737    CHECK(!sci->free_list.empty());
738    Batch *b = sci->free_list.front();
739    sci->free_list.pop_front();
740    return b;
741  }
742
743  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
744    CHECK_LT(class_id, kNumClasses);
745    SizeClassInfo *sci = GetSizeClassInfo(class_id);
746    SpinMutexLock l(&sci->mutex);
747    CHECK_GT(b->count, 0);
748    sci->free_list.push_front(b);
749  }
750
751  bool PointerIsMine(const void *p) {
752    return GetSizeClass(p) != 0;
753  }
754
755  uptr GetSizeClass(const void *p) {
756    return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
757  }
758
759  void *GetBlockBegin(const void *p) {
760    CHECK(PointerIsMine(p));
761    uptr mem = reinterpret_cast<uptr>(p);
762    uptr beg = ComputeRegionBeg(mem);
763    uptr size = SizeClassMap::Size(GetSizeClass(p));
764    u32 offset = mem - beg;
765    u32 n = offset / (u32)size;  // 32-bit division
766    uptr res = beg + (n * (u32)size);
767    return reinterpret_cast<void*>(res);
768  }
769
770  uptr GetActuallyAllocatedSize(void *p) {
771    CHECK(PointerIsMine(p));
772    return SizeClassMap::Size(GetSizeClass(p));
773  }
774
775  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
776
777  uptr TotalMemoryUsed() {
778    // No need to lock here.
779    uptr res = 0;
780    for (uptr i = 0; i < kNumPossibleRegions; i++)
781      if (possible_regions[i])
782        res += kRegionSize;
783    return res;
784  }
785
786  void TestOnlyUnmap() {
787    for (uptr i = 0; i < kNumPossibleRegions; i++)
788      if (possible_regions[i])
789        UnmapWithCallback((i * kRegionSize), kRegionSize);
790  }
791
792  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
793  // introspection API.
794  void ForceLock() {
795    for (uptr i = 0; i < kNumClasses; i++) {
796      GetSizeClassInfo(i)->mutex.Lock();
797    }
798  }
799
800  void ForceUnlock() {
801    for (int i = kNumClasses - 1; i >= 0; i--) {
802      GetSizeClassInfo(i)->mutex.Unlock();
803    }
804  }
805
806  // Iterate over all existing chunks.
807  // The allocator must be locked when calling this function.
808  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
809    for (uptr region = 0; region < kNumPossibleRegions; region++)
810      if (possible_regions[region]) {
811        uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
812        uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
813        uptr region_beg = region * kRegionSize;
814        for (uptr chunk = region_beg;
815             chunk < region_beg + max_chunks_in_region * chunk_size;
816             chunk += chunk_size) {
817          // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
818          callback(chunk, arg);
819        }
820      }
821  }
822
823  void PrintStats() {
824  }
825
826  static uptr AdditionalSize() {
827    return 0;
828  }
829
830  typedef SizeClassMap SizeClassMapT;
831  static const uptr kNumClasses = SizeClassMap::kNumClasses;
832
833 private:
834  static const uptr kRegionSize = 1 << kRegionSizeLog;
835  static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
836
837  struct SizeClassInfo {
838    SpinMutex mutex;
839    IntrusiveList<Batch> free_list;
840    char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
841  };
842  COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
843
844  uptr ComputeRegionId(uptr mem) {
845    uptr res = mem >> kRegionSizeLog;
846    CHECK_LT(res, kNumPossibleRegions);
847    return res;
848  }
849
850  uptr ComputeRegionBeg(uptr mem) {
851    return mem & ~(kRegionSize - 1);
852  }
853
854  uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
855    CHECK_LT(class_id, kNumClasses);
856    uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
857                                      "SizeClassAllocator32"));
858    MapUnmapCallback().OnMap(res, kRegionSize);
859    stat->Add(AllocatorStatMapped, kRegionSize);
860    CHECK_EQ(0U, (res & (kRegionSize - 1)));
861    possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
862    return res;
863  }
864
865  SizeClassInfo *GetSizeClassInfo(uptr class_id) {
866    CHECK_LT(class_id, kNumClasses);
867    return &size_class_info_array[class_id];
868  }
869
870  void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
871                        SizeClassInfo *sci, uptr class_id) {
872    uptr size = SizeClassMap::Size(class_id);
873    uptr reg = AllocateRegion(stat, class_id);
874    uptr n_chunks = kRegionSize / (size + kMetadataSize);
875    uptr max_count = SizeClassMap::MaxCached(class_id);
876    Batch *b = nullptr;
877    for (uptr i = reg; i < reg + n_chunks * size; i += size) {
878      if (!b) {
879        if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
880          b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
881        else
882          b = (Batch*)i;
883        b->count = 0;
884      }
885      b->batch[b->count++] = (void*)i;
886      if (b->count == max_count) {
887        CHECK_GT(b->count, 0);
888        sci->free_list.push_back(b);
889        b = nullptr;
890      }
891    }
892    if (b) {
893      CHECK_GT(b->count, 0);
894      sci->free_list.push_back(b);
895    }
896  }
897
898  ByteMap possible_regions;
899  SizeClassInfo size_class_info_array[kNumClasses];
900};
901
902// Objects of this type should be used as local caches for SizeClassAllocator64
903// or SizeClassAllocator32. Since the typical use of this class is to have one
904// object per thread in TLS, is has to be POD.
905template<class SizeClassAllocator>
906struct SizeClassAllocatorLocalCache {
907  typedef SizeClassAllocator Allocator;
908  static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
909
910  void Init(AllocatorGlobalStats *s) {
911    stats_.Init();
912    if (s)
913      s->Register(&stats_);
914  }
915
916  void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
917    Drain(allocator);
918    if (s)
919      s->Unregister(&stats_);
920  }
921
922  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
923    CHECK_NE(class_id, 0UL);
924    CHECK_LT(class_id, kNumClasses);
925    stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id));
926    PerClass *c = &per_class_[class_id];
927    if (UNLIKELY(c->count == 0))
928      Refill(allocator, class_id);
929    void *res = c->batch[--c->count];
930    PREFETCH(c->batch[c->count - 1]);
931    return res;
932  }
933
934  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
935    CHECK_NE(class_id, 0UL);
936    CHECK_LT(class_id, kNumClasses);
937    // If the first allocator call on a new thread is a deallocation, then
938    // max_count will be zero, leading to check failure.
939    InitCache();
940    stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id));
941    PerClass *c = &per_class_[class_id];
942    CHECK_NE(c->max_count, 0UL);
943    if (UNLIKELY(c->count == c->max_count))
944      Drain(allocator, class_id);
945    c->batch[c->count++] = p;
946  }
947
948  void Drain(SizeClassAllocator *allocator) {
949    for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
950      PerClass *c = &per_class_[class_id];
951      while (c->count > 0)
952        Drain(allocator, class_id);
953    }
954  }
955
956  // private:
957  typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
958  typedef typename SizeClassMap::TransferBatch Batch;
959  struct PerClass {
960    uptr count;
961    uptr max_count;
962    void *batch[2 * SizeClassMap::kMaxNumCached];
963  };
964  PerClass per_class_[kNumClasses];
965  AllocatorStats stats_;
966
967  void InitCache() {
968    if (per_class_[1].max_count)
969      return;
970    for (uptr i = 0; i < kNumClasses; i++) {
971      PerClass *c = &per_class_[i];
972      c->max_count = 2 * SizeClassMap::MaxCached(i);
973    }
974  }
975
976  NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
977    InitCache();
978    PerClass *c = &per_class_[class_id];
979    Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
980    CHECK_GT(b->count, 0);
981    for (uptr i = 0; i < b->count; i++)
982      c->batch[i] = b->batch[i];
983    c->count = b->count;
984    if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
985      Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
986  }
987
988  NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
989    InitCache();
990    PerClass *c = &per_class_[class_id];
991    Batch *b;
992    if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
993      b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
994    else
995      b = (Batch*)c->batch[0];
996    uptr cnt = Min(c->max_count / 2, c->count);
997    for (uptr i = 0; i < cnt; i++) {
998      b->batch[i] = c->batch[i];
999      c->batch[i] = c->batch[i + c->max_count / 2];
1000    }
1001    b->count = cnt;
1002    c->count -= cnt;
1003    CHECK_GT(b->count, 0);
1004    allocator->DeallocateBatch(&stats_, class_id, b);
1005  }
1006};
1007
1008// This class can (de)allocate only large chunks of memory using mmap/unmap.
1009// The main purpose of this allocator is to cover large and rare allocation
1010// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
1011template <class MapUnmapCallback = NoOpMapUnmapCallback>
1012class LargeMmapAllocator {
1013 public:
1014  void InitLinkerInitialized(bool may_return_null) {
1015    page_size_ = GetPageSizeCached();
1016    atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
1017  }
1018
1019  void Init(bool may_return_null) {
1020    internal_memset(this, 0, sizeof(*this));
1021    InitLinkerInitialized(may_return_null);
1022  }
1023
1024  void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
1025    CHECK(IsPowerOfTwo(alignment));
1026    uptr map_size = RoundUpMapSize(size);
1027    if (alignment > page_size_)
1028      map_size += alignment;
1029    // Overflow.
1030    if (map_size < size)
1031      return ReturnNullOrDie();
1032    uptr map_beg = reinterpret_cast<uptr>(
1033        MmapOrDie(map_size, "LargeMmapAllocator"));
1034    CHECK(IsAligned(map_beg, page_size_));
1035    MapUnmapCallback().OnMap(map_beg, map_size);
1036    uptr map_end = map_beg + map_size;
1037    uptr res = map_beg + page_size_;
1038    if (res & (alignment - 1))  // Align.
1039      res += alignment - (res & (alignment - 1));
1040    CHECK(IsAligned(res, alignment));
1041    CHECK(IsAligned(res, page_size_));
1042    CHECK_GE(res + size, map_beg);
1043    CHECK_LE(res + size, map_end);
1044    Header *h = GetHeader(res);
1045    h->size = size;
1046    h->map_beg = map_beg;
1047    h->map_size = map_size;
1048    uptr size_log = MostSignificantSetBitIndex(map_size);
1049    CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
1050    {
1051      SpinMutexLock l(&mutex_);
1052      uptr idx = n_chunks_++;
1053      chunks_sorted_ = false;
1054      CHECK_LT(idx, kMaxNumChunks);
1055      h->chunk_idx = idx;
1056      chunks_[idx] = h;
1057      stats.n_allocs++;
1058      stats.currently_allocated += map_size;
1059      stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
1060      stats.by_size_log[size_log]++;
1061      stat->Add(AllocatorStatAllocated, map_size);
1062      stat->Add(AllocatorStatMapped, map_size);
1063    }
1064    return reinterpret_cast<void*>(res);
1065  }
1066
1067  void *ReturnNullOrDie() {
1068    if (atomic_load(&may_return_null_, memory_order_acquire))
1069      return nullptr;
1070    ReportAllocatorCannotReturnNull();
1071  }
1072
1073  void SetMayReturnNull(bool may_return_null) {
1074    atomic_store(&may_return_null_, may_return_null, memory_order_release);
1075  }
1076
1077  void Deallocate(AllocatorStats *stat, void *p) {
1078    Header *h = GetHeader(p);
1079    {
1080      SpinMutexLock l(&mutex_);
1081      uptr idx = h->chunk_idx;
1082      CHECK_EQ(chunks_[idx], h);
1083      CHECK_LT(idx, n_chunks_);
1084      chunks_[idx] = chunks_[n_chunks_ - 1];
1085      chunks_[idx]->chunk_idx = idx;
1086      n_chunks_--;
1087      chunks_sorted_ = false;
1088      stats.n_frees++;
1089      stats.currently_allocated -= h->map_size;
1090      stat->Sub(AllocatorStatAllocated, h->map_size);
1091      stat->Sub(AllocatorStatMapped, h->map_size);
1092    }
1093    MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
1094    UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
1095  }
1096
1097  uptr TotalMemoryUsed() {
1098    SpinMutexLock l(&mutex_);
1099    uptr res = 0;
1100    for (uptr i = 0; i < n_chunks_; i++) {
1101      Header *h = chunks_[i];
1102      CHECK_EQ(h->chunk_idx, i);
1103      res += RoundUpMapSize(h->size);
1104    }
1105    return res;
1106  }
1107
1108  bool PointerIsMine(const void *p) {
1109    return GetBlockBegin(p) != nullptr;
1110  }
1111
1112  uptr GetActuallyAllocatedSize(void *p) {
1113    return RoundUpTo(GetHeader(p)->size, page_size_);
1114  }
1115
1116  // At least page_size_/2 metadata bytes is available.
1117  void *GetMetaData(const void *p) {
1118    // Too slow: CHECK_EQ(p, GetBlockBegin(p));
1119    if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
1120      Printf("%s: bad pointer %p\n", SanitizerToolName, p);
1121      CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
1122    }
1123    return GetHeader(p) + 1;
1124  }
1125
1126  void *GetBlockBegin(const void *ptr) {
1127    uptr p = reinterpret_cast<uptr>(ptr);
1128    SpinMutexLock l(&mutex_);
1129    uptr nearest_chunk = 0;
1130    // Cache-friendly linear search.
1131    for (uptr i = 0; i < n_chunks_; i++) {
1132      uptr ch = reinterpret_cast<uptr>(chunks_[i]);
1133      if (p < ch) continue;  // p is at left to this chunk, skip it.
1134      if (p - ch < p - nearest_chunk)
1135        nearest_chunk = ch;
1136    }
1137    if (!nearest_chunk)
1138      return nullptr;
1139    Header *h = reinterpret_cast<Header *>(nearest_chunk);
1140    CHECK_GE(nearest_chunk, h->map_beg);
1141    CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
1142    CHECK_LE(nearest_chunk, p);
1143    if (h->map_beg + h->map_size <= p)
1144      return nullptr;
1145    return GetUser(h);
1146  }
1147
1148  // This function does the same as GetBlockBegin, but is much faster.
1149  // Must be called with the allocator locked.
1150  void *GetBlockBeginFastLocked(void *ptr) {
1151    mutex_.CheckLocked();
1152    uptr p = reinterpret_cast<uptr>(ptr);
1153    uptr n = n_chunks_;
1154    if (!n) return nullptr;
1155    if (!chunks_sorted_) {
1156      // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
1157      SortArray(reinterpret_cast<uptr*>(chunks_), n);
1158      for (uptr i = 0; i < n; i++)
1159        chunks_[i]->chunk_idx = i;
1160      chunks_sorted_ = true;
1161      min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
1162      max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
1163          chunks_[n - 1]->map_size;
1164    }
1165    if (p < min_mmap_ || p >= max_mmap_)
1166      return nullptr;
1167    uptr beg = 0, end = n - 1;
1168    // This loop is a log(n) lower_bound. It does not check for the exact match
1169    // to avoid expensive cache-thrashing loads.
1170    while (end - beg >= 2) {
1171      uptr mid = (beg + end) / 2;  // Invariant: mid >= beg + 1
1172      if (p < reinterpret_cast<uptr>(chunks_[mid]))
1173        end = mid - 1;  // We are not interested in chunks_[mid].
1174      else
1175        beg = mid;  // chunks_[mid] may still be what we want.
1176    }
1177
1178    if (beg < end) {
1179      CHECK_EQ(beg + 1, end);
1180      // There are 2 chunks left, choose one.
1181      if (p >= reinterpret_cast<uptr>(chunks_[end]))
1182        beg = end;
1183    }
1184
1185    Header *h = chunks_[beg];
1186    if (h->map_beg + h->map_size <= p || p < h->map_beg)
1187      return nullptr;
1188    return GetUser(h);
1189  }
1190
1191  void PrintStats() {
1192    Printf("Stats: LargeMmapAllocator: allocated %zd times, "
1193           "remains %zd (%zd K) max %zd M; by size logs: ",
1194           stats.n_allocs, stats.n_allocs - stats.n_frees,
1195           stats.currently_allocated >> 10, stats.max_allocated >> 20);
1196    for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
1197      uptr c = stats.by_size_log[i];
1198      if (!c) continue;
1199      Printf("%zd:%zd; ", i, c);
1200    }
1201    Printf("\n");
1202  }
1203
1204  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1205  // introspection API.
1206  void ForceLock() {
1207    mutex_.Lock();
1208  }
1209
1210  void ForceUnlock() {
1211    mutex_.Unlock();
1212  }
1213
1214  // Iterate over all existing chunks.
1215  // The allocator must be locked when calling this function.
1216  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1217    for (uptr i = 0; i < n_chunks_; i++)
1218      callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
1219  }
1220
1221 private:
1222  static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
1223  struct Header {
1224    uptr map_beg;
1225    uptr map_size;
1226    uptr size;
1227    uptr chunk_idx;
1228  };
1229
1230  Header *GetHeader(uptr p) {
1231    CHECK(IsAligned(p, page_size_));
1232    return reinterpret_cast<Header*>(p - page_size_);
1233  }
1234  Header *GetHeader(const void *p) {
1235    return GetHeader(reinterpret_cast<uptr>(p));
1236  }
1237
1238  void *GetUser(Header *h) {
1239    CHECK(IsAligned((uptr)h, page_size_));
1240    return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1241  }
1242
1243  uptr RoundUpMapSize(uptr size) {
1244    return RoundUpTo(size, page_size_) + page_size_;
1245  }
1246
1247  uptr page_size_;
1248  Header *chunks_[kMaxNumChunks];
1249  uptr n_chunks_;
1250  uptr min_mmap_, max_mmap_;
1251  bool chunks_sorted_;
1252  struct Stats {
1253    uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1254  } stats;
1255  atomic_uint8_t may_return_null_;
1256  SpinMutex mutex_;
1257};
1258
1259// This class implements a complete memory allocator by using two
1260// internal allocators:
1261// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1262//  When allocating 2^x bytes it should return 2^x aligned chunk.
1263// PrimaryAllocator is used via a local AllocatorCache.
1264// SecondaryAllocator can allocate anything, but is not efficient.
1265template <class PrimaryAllocator, class AllocatorCache,
1266          class SecondaryAllocator>  // NOLINT
1267class CombinedAllocator {
1268 public:
1269  void InitCommon(bool may_return_null) {
1270    primary_.Init();
1271    atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
1272  }
1273
1274  void InitLinkerInitialized(bool may_return_null) {
1275    secondary_.InitLinkerInitialized(may_return_null);
1276    stats_.InitLinkerInitialized();
1277    InitCommon(may_return_null);
1278  }
1279
1280  void Init(bool may_return_null) {
1281    secondary_.Init(may_return_null);
1282    stats_.Init();
1283    InitCommon(may_return_null);
1284  }
1285
1286  void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
1287                 bool cleared = false, bool check_rss_limit = false) {
1288    // Returning 0 on malloc(0) may break a lot of code.
1289    if (size == 0)
1290      size = 1;
1291    if (size + alignment < size)
1292      return ReturnNullOrDie();
1293    if (check_rss_limit && RssLimitIsExceeded())
1294      return ReturnNullOrDie();
1295    if (alignment > 8)
1296      size = RoundUpTo(size, alignment);
1297    void *res;
1298    bool from_primary = primary_.CanAllocate(size, alignment);
1299    if (from_primary)
1300      res = cache->Allocate(&primary_, primary_.ClassID(size));
1301    else
1302      res = secondary_.Allocate(&stats_, size, alignment);
1303    if (alignment > 8)
1304      CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1305    if (cleared && res && from_primary)
1306      internal_bzero_aligned16(res, RoundUpTo(size, 16));
1307    return res;
1308  }
1309
1310  bool MayReturnNull() const {
1311    return atomic_load(&may_return_null_, memory_order_acquire);
1312  }
1313
1314  void *ReturnNullOrDie() {
1315    if (MayReturnNull())
1316      return nullptr;
1317    ReportAllocatorCannotReturnNull();
1318  }
1319
1320  void SetMayReturnNull(bool may_return_null) {
1321    secondary_.SetMayReturnNull(may_return_null);
1322    atomic_store(&may_return_null_, may_return_null, memory_order_release);
1323  }
1324
1325  bool RssLimitIsExceeded() {
1326    return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire);
1327  }
1328
1329  void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) {
1330    atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded,
1331                 memory_order_release);
1332  }
1333
1334  void Deallocate(AllocatorCache *cache, void *p) {
1335    if (!p) return;
1336    if (primary_.PointerIsMine(p))
1337      cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1338    else
1339      secondary_.Deallocate(&stats_, p);
1340  }
1341
1342  void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1343                   uptr alignment) {
1344    if (!p)
1345      return Allocate(cache, new_size, alignment);
1346    if (!new_size) {
1347      Deallocate(cache, p);
1348      return nullptr;
1349    }
1350    CHECK(PointerIsMine(p));
1351    uptr old_size = GetActuallyAllocatedSize(p);
1352    uptr memcpy_size = Min(new_size, old_size);
1353    void *new_p = Allocate(cache, new_size, alignment);
1354    if (new_p)
1355      internal_memcpy(new_p, p, memcpy_size);
1356    Deallocate(cache, p);
1357    return new_p;
1358  }
1359
1360  bool PointerIsMine(void *p) {
1361    if (primary_.PointerIsMine(p))
1362      return true;
1363    return secondary_.PointerIsMine(p);
1364  }
1365
1366  bool FromPrimary(void *p) {
1367    return primary_.PointerIsMine(p);
1368  }
1369
1370  void *GetMetaData(const void *p) {
1371    if (primary_.PointerIsMine(p))
1372      return primary_.GetMetaData(p);
1373    return secondary_.GetMetaData(p);
1374  }
1375
1376  void *GetBlockBegin(const void *p) {
1377    if (primary_.PointerIsMine(p))
1378      return primary_.GetBlockBegin(p);
1379    return secondary_.GetBlockBegin(p);
1380  }
1381
1382  // This function does the same as GetBlockBegin, but is much faster.
1383  // Must be called with the allocator locked.
1384  void *GetBlockBeginFastLocked(void *p) {
1385    if (primary_.PointerIsMine(p))
1386      return primary_.GetBlockBegin(p);
1387    return secondary_.GetBlockBeginFastLocked(p);
1388  }
1389
1390  uptr GetActuallyAllocatedSize(void *p) {
1391    if (primary_.PointerIsMine(p))
1392      return primary_.GetActuallyAllocatedSize(p);
1393    return secondary_.GetActuallyAllocatedSize(p);
1394  }
1395
1396  uptr TotalMemoryUsed() {
1397    return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1398  }
1399
1400  void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1401
1402  void InitCache(AllocatorCache *cache) {
1403    cache->Init(&stats_);
1404  }
1405
1406  void DestroyCache(AllocatorCache *cache) {
1407    cache->Destroy(&primary_, &stats_);
1408  }
1409
1410  void SwallowCache(AllocatorCache *cache) {
1411    cache->Drain(&primary_);
1412  }
1413
1414  void GetStats(AllocatorStatCounters s) const {
1415    stats_.Get(s);
1416  }
1417
1418  void PrintStats() {
1419    primary_.PrintStats();
1420    secondary_.PrintStats();
1421  }
1422
1423  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1424  // introspection API.
1425  void ForceLock() {
1426    primary_.ForceLock();
1427    secondary_.ForceLock();
1428  }
1429
1430  void ForceUnlock() {
1431    secondary_.ForceUnlock();
1432    primary_.ForceUnlock();
1433  }
1434
1435  // Iterate over all existing chunks.
1436  // The allocator must be locked when calling this function.
1437  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1438    primary_.ForEachChunk(callback, arg);
1439    secondary_.ForEachChunk(callback, arg);
1440  }
1441
1442 private:
1443  PrimaryAllocator primary_;
1444  SecondaryAllocator secondary_;
1445  AllocatorGlobalStats stats_;
1446  atomic_uint8_t may_return_null_;
1447  atomic_uint8_t rss_limit_is_exceeded_;
1448};
1449
1450// Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1451bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1452
1453} // namespace __sanitizer
1454
1455#endif // SANITIZER_ALLOCATOR_H
1456