1//===-- dfsan.cc ----------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of DataFlowSanitizer.
11//
12// DataFlowSanitizer runtime.  This file defines the public interface to
13// DataFlowSanitizer as well as the definition of certain runtime functions
14// called automatically by the compiler (specifically the instrumentation pass
15// in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
16//
17// The public interface is defined in include/sanitizer/dfsan_interface.h whose
18// functions are prefixed dfsan_ while the compiler interface functions are
19// prefixed __dfsan_.
20//===----------------------------------------------------------------------===//
21
22#include "sanitizer_common/sanitizer_atomic.h"
23#include "sanitizer_common/sanitizer_common.h"
24#include "sanitizer_common/sanitizer_flags.h"
25#include "sanitizer_common/sanitizer_flag_parser.h"
26#include "sanitizer_common/sanitizer_libc.h"
27
28#include "dfsan/dfsan.h"
29
30using namespace __dfsan;
31
32typedef atomic_uint16_t atomic_dfsan_label;
33static const dfsan_label kInitializingLabel = -1;
34
35static const uptr kNumLabels = 1 << (sizeof(dfsan_label) * 8);
36
37static atomic_dfsan_label __dfsan_last_label;
38static dfsan_label_info __dfsan_label_info[kNumLabels];
39
40Flags __dfsan::flags_data;
41
42SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_retval_tls;
43SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_arg_tls[64];
44
45SANITIZER_INTERFACE_ATTRIBUTE uptr __dfsan_shadow_ptr_mask;
46
47// On Linux/x86_64, memory is laid out as follows:
48//
49// +--------------------+ 0x800000000000 (top of memory)
50// | application memory |
51// +--------------------+ 0x700000008000 (kAppAddr)
52// |                    |
53// |       unused       |
54// |                    |
55// +--------------------+ 0x200200000000 (kUnusedAddr)
56// |    union table     |
57// +--------------------+ 0x200000000000 (kUnionTableAddr)
58// |   shadow memory    |
59// +--------------------+ 0x000000010000 (kShadowAddr)
60// | reserved by kernel |
61// +--------------------+ 0x000000000000
62//
63// To derive a shadow memory address from an application memory address,
64// bits 44-46 are cleared to bring the address into the range
65// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
66// account for the double byte representation of shadow labels and move the
67// address into the shadow memory range.  See the function shadow_for below.
68
69// On Linux/MIPS64, memory is laid out as follows:
70//
71// +--------------------+ 0x10000000000 (top of memory)
72// | application memory |
73// +--------------------+ 0xF000008000 (kAppAddr)
74// |                    |
75// |       unused       |
76// |                    |
77// +--------------------+ 0x2200000000 (kUnusedAddr)
78// |    union table     |
79// +--------------------+ 0x2000000000 (kUnionTableAddr)
80// |   shadow memory    |
81// +--------------------+ 0x0000010000 (kShadowAddr)
82// | reserved by kernel |
83// +--------------------+ 0x0000000000
84
85// On Linux/AArch64 (39-bit VMA), memory is laid out as follow:
86//
87// +--------------------+ 0x8000000000 (top of memory)
88// | application memory |
89// +--------------------+ 0x7000008000 (kAppAddr)
90// |                    |
91// |       unused       |
92// |                    |
93// +--------------------+ 0x1200000000 (kUnusedAddr)
94// |    union table     |
95// +--------------------+ 0x1000000000 (kUnionTableAddr)
96// |   shadow memory    |
97// +--------------------+ 0x0000010000 (kShadowAddr)
98// | reserved by kernel |
99// +--------------------+ 0x0000000000
100
101// On Linux/AArch64 (42-bit VMA), memory is laid out as follow:
102//
103// +--------------------+ 0x40000000000 (top of memory)
104// | application memory |
105// +--------------------+ 0x3ff00008000 (kAppAddr)
106// |                    |
107// |       unused       |
108// |                    |
109// +--------------------+ 0x1200000000 (kUnusedAddr)
110// |    union table     |
111// +--------------------+ 0x8000000000 (kUnionTableAddr)
112// |   shadow memory    |
113// +--------------------+ 0x0000010000 (kShadowAddr)
114// | reserved by kernel |
115// +--------------------+ 0x0000000000
116
117typedef atomic_dfsan_label dfsan_union_table_t[kNumLabels][kNumLabels];
118
119#ifdef DFSAN_RUNTIME_VMA
120// Runtime detected VMA size.
121int __dfsan::vmaSize;
122#endif
123
124static uptr UnusedAddr() {
125  return MappingArchImpl<MAPPING_UNION_TABLE_ADDR>()
126         + sizeof(dfsan_union_table_t);
127}
128
129static atomic_dfsan_label *union_table(dfsan_label l1, dfsan_label l2) {
130  return &(*(dfsan_union_table_t *) UnionTableAddr())[l1][l2];
131}
132
133// Checks we do not run out of labels.
134static void dfsan_check_label(dfsan_label label) {
135  if (label == kInitializingLabel) {
136    Report("FATAL: DataFlowSanitizer: out of labels\n");
137    Die();
138  }
139}
140
141// Resolves the union of two unequal labels.  Nonequality is a precondition for
142// this function (the instrumentation pass inlines the equality test).
143extern "C" SANITIZER_INTERFACE_ATTRIBUTE
144dfsan_label __dfsan_union(dfsan_label l1, dfsan_label l2) {
145  DCHECK_NE(l1, l2);
146
147  if (l1 == 0)
148    return l2;
149  if (l2 == 0)
150    return l1;
151
152  if (l1 > l2)
153    Swap(l1, l2);
154
155  atomic_dfsan_label *table_ent = union_table(l1, l2);
156  // We need to deal with the case where two threads concurrently request
157  // a union of the same pair of labels.  If the table entry is uninitialized,
158  // (i.e. 0) use a compare-exchange to set the entry to kInitializingLabel
159  // (i.e. -1) to mark that we are initializing it.
160  dfsan_label label = 0;
161  if (atomic_compare_exchange_strong(table_ent, &label, kInitializingLabel,
162                                     memory_order_acquire)) {
163    // Check whether l2 subsumes l1.  We don't need to check whether l1
164    // subsumes l2 because we are guaranteed here that l1 < l2, and (at least
165    // in the cases we are interested in) a label may only subsume labels
166    // created earlier (i.e. with a lower numerical value).
167    if (__dfsan_label_info[l2].l1 == l1 ||
168        __dfsan_label_info[l2].l2 == l1) {
169      label = l2;
170    } else {
171      label =
172        atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
173      dfsan_check_label(label);
174      __dfsan_label_info[label].l1 = l1;
175      __dfsan_label_info[label].l2 = l2;
176    }
177    atomic_store(table_ent, label, memory_order_release);
178  } else if (label == kInitializingLabel) {
179    // Another thread is initializing the entry.  Wait until it is finished.
180    do {
181      internal_sched_yield();
182      label = atomic_load(table_ent, memory_order_acquire);
183    } while (label == kInitializingLabel);
184  }
185  return label;
186}
187
188extern "C" SANITIZER_INTERFACE_ATTRIBUTE
189dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
190  dfsan_label label = ls[0];
191  for (uptr i = 1; i != n; ++i) {
192    dfsan_label next_label = ls[i];
193    if (label != next_label)
194      label = __dfsan_union(label, next_label);
195  }
196  return label;
197}
198
199extern "C" SANITIZER_INTERFACE_ATTRIBUTE
200void __dfsan_unimplemented(char *fname) {
201  if (flags().warn_unimplemented)
202    Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
203           fname);
204}
205
206// Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
207// to try to figure out where labels are being introduced in a nominally
208// label-free program.
209extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
210  if (flags().warn_nonzero_labels)
211    Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
212}
213
214// Indirect call to an uninstrumented vararg function. We don't have a way of
215// handling these at the moment.
216extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
217__dfsan_vararg_wrapper(const char *fname) {
218  Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg "
219         "function %s\n", fname);
220  Die();
221}
222
223// Like __dfsan_union, but for use from the client or custom functions.  Hence
224// the equality comparison is done here before calling __dfsan_union.
225SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
226dfsan_union(dfsan_label l1, dfsan_label l2) {
227  if (l1 == l2)
228    return l1;
229  return __dfsan_union(l1, l2);
230}
231
232extern "C" SANITIZER_INTERFACE_ATTRIBUTE
233dfsan_label dfsan_create_label(const char *desc, void *userdata) {
234  dfsan_label label =
235    atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
236  dfsan_check_label(label);
237  __dfsan_label_info[label].l1 = __dfsan_label_info[label].l2 = 0;
238  __dfsan_label_info[label].desc = desc;
239  __dfsan_label_info[label].userdata = userdata;
240  return label;
241}
242
243extern "C" SANITIZER_INTERFACE_ATTRIBUTE
244void __dfsan_set_label(dfsan_label label, void *addr, uptr size) {
245  for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp) {
246    // Don't write the label if it is already the value we need it to be.
247    // In a program where most addresses are not labeled, it is common that
248    // a page of shadow memory is entirely zeroed.  The Linux copy-on-write
249    // implementation will share all of the zeroed pages, making a copy of a
250    // page when any value is written.  The un-sharing will happen even if
251    // the value written does not change the value in memory.  Avoiding the
252    // write when both |label| and |*labelp| are zero dramatically reduces
253    // the amount of real memory used by large programs.
254    if (label == *labelp)
255      continue;
256
257    *labelp = label;
258  }
259}
260
261SANITIZER_INTERFACE_ATTRIBUTE
262void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
263  __dfsan_set_label(label, addr, size);
264}
265
266SANITIZER_INTERFACE_ATTRIBUTE
267void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
268  for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
269    if (*labelp != label)
270      *labelp = __dfsan_union(*labelp, label);
271}
272
273// Unlike the other dfsan interface functions the behavior of this function
274// depends on the label of one of its arguments.  Hence it is implemented as a
275// custom function.
276extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
277__dfsw_dfsan_get_label(long data, dfsan_label data_label,
278                       dfsan_label *ret_label) {
279  *ret_label = 0;
280  return data_label;
281}
282
283SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
284dfsan_read_label(const void *addr, uptr size) {
285  if (size == 0)
286    return 0;
287  return __dfsan_union_load(shadow_for(addr), size);
288}
289
290extern "C" SANITIZER_INTERFACE_ATTRIBUTE
291const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
292  return &__dfsan_label_info[label];
293}
294
295extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
296dfsan_has_label(dfsan_label label, dfsan_label elem) {
297  if (label == elem)
298    return true;
299  const dfsan_label_info *info = dfsan_get_label_info(label);
300  if (info->l1 != 0) {
301    return dfsan_has_label(info->l1, elem) || dfsan_has_label(info->l2, elem);
302  } else {
303    return false;
304  }
305}
306
307extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
308dfsan_has_label_with_desc(dfsan_label label, const char *desc) {
309  const dfsan_label_info *info = dfsan_get_label_info(label);
310  if (info->l1 != 0) {
311    return dfsan_has_label_with_desc(info->l1, desc) ||
312           dfsan_has_label_with_desc(info->l2, desc);
313  } else {
314    return internal_strcmp(desc, info->desc) == 0;
315  }
316}
317
318extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
319dfsan_get_label_count(void) {
320  dfsan_label max_label_allocated =
321      atomic_load(&__dfsan_last_label, memory_order_relaxed);
322
323  return static_cast<uptr>(max_label_allocated);
324}
325
326extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
327dfsan_dump_labels(int fd) {
328  dfsan_label last_label =
329      atomic_load(&__dfsan_last_label, memory_order_relaxed);
330
331  for (uptr l = 1; l <= last_label; ++l) {
332    char buf[64];
333    internal_snprintf(buf, sizeof(buf), "%u %u %u ", l,
334                      __dfsan_label_info[l].l1, __dfsan_label_info[l].l2);
335    WriteToFile(fd, buf, internal_strlen(buf));
336    if (__dfsan_label_info[l].l1 == 0 && __dfsan_label_info[l].desc) {
337      WriteToFile(fd, __dfsan_label_info[l].desc,
338                  internal_strlen(__dfsan_label_info[l].desc));
339    }
340    WriteToFile(fd, "\n", 1);
341  }
342}
343
344void Flags::SetDefaults() {
345#define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
346#include "dfsan_flags.inc"
347#undef DFSAN_FLAG
348}
349
350static void RegisterDfsanFlags(FlagParser *parser, Flags *f) {
351#define DFSAN_FLAG(Type, Name, DefaultValue, Description) \
352  RegisterFlag(parser, #Name, Description, &f->Name);
353#include "dfsan_flags.inc"
354#undef DFSAN_FLAG
355}
356
357static void InitializeFlags() {
358  SetCommonFlagsDefaults();
359  flags().SetDefaults();
360
361  FlagParser parser;
362  RegisterCommonFlags(&parser);
363  RegisterDfsanFlags(&parser, &flags());
364  parser.ParseString(GetEnv("DFSAN_OPTIONS"));
365  SetVerbosity(common_flags()->verbosity);
366  if (Verbosity()) ReportUnrecognizedFlags();
367  if (common_flags()->help) parser.PrintFlagDescriptions();
368}
369
370static void InitializePlatformEarly() {
371#ifdef DFSAN_RUNTIME_VMA
372  __dfsan::vmaSize =
373    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
374  if (__dfsan::vmaSize == 39 || __dfsan::vmaSize == 42) {
375    __dfsan_shadow_ptr_mask = ShadowMask();
376  } else {
377    Printf("FATAL: DataFlowSanitizer: unsupported VMA range\n");
378    Printf("FATAL: Found %d - Supported 39 and 42\n", __dfsan::vmaSize);
379    Die();
380  }
381#endif
382}
383
384static void dfsan_fini() {
385  if (internal_strcmp(flags().dump_labels_at_exit, "") != 0) {
386    fd_t fd = OpenFile(flags().dump_labels_at_exit, WrOnly);
387    if (fd == kInvalidFd) {
388      Report("WARNING: DataFlowSanitizer: unable to open output file %s\n",
389             flags().dump_labels_at_exit);
390      return;
391    }
392
393    Report("INFO: DataFlowSanitizer: dumping labels to %s\n",
394           flags().dump_labels_at_exit);
395    dfsan_dump_labels(fd);
396    CloseFile(fd);
397  }
398}
399
400static void dfsan_init(int argc, char **argv, char **envp) {
401  InitializeFlags();
402
403  InitializePlatformEarly();
404
405  MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr());
406
407  // Protect the region of memory we don't use, to preserve the one-to-one
408  // mapping from application to shadow memory. But if ASLR is disabled, Linux
409  // will load our executable in the middle of our unused region. This mostly
410  // works so long as the program doesn't use too much memory. We support this
411  // case by disabling memory protection when ASLR is disabled.
412  uptr init_addr = (uptr)&dfsan_init;
413  if (!(init_addr >= UnusedAddr() && init_addr < AppAddr()))
414    MmapNoAccess(UnusedAddr(), AppAddr() - UnusedAddr());
415
416  InitializeInterceptors();
417
418  // Register the fini callback to run when the program terminates successfully
419  // or it is killed by the runtime.
420  Atexit(dfsan_fini);
421  AddDieCallback(dfsan_fini);
422
423  __dfsan_label_info[kInitializingLabel].desc = "<init label>";
424}
425
426#if SANITIZER_CAN_USE_PREINIT_ARRAY
427__attribute__((section(".preinit_array"), used))
428static void (*dfsan_init_ptr)(int, char **, char **) = dfsan_init;
429#endif
430