syms.c revision 130561
1/* Generic symbol-table support for the BFD library.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
22
23/*
24SECTION
25	Symbols
26
27	BFD tries to maintain as much symbol information as it can when
28	it moves information from file to file. BFD passes information
29	to applications though the <<asymbol>> structure. When the
30	application requests the symbol table, BFD reads the table in
31	the native form and translates parts of it into the internal
32	format. To maintain more than the information passed to
33	applications, some targets keep some information ``behind the
34	scenes'' in a structure only the particular back end knows
35	about. For example, the coff back end keeps the original
36	symbol table structure as well as the canonical structure when
37	a BFD is read in. On output, the coff back end can reconstruct
38	the output symbol table so that no information is lost, even
39	information unique to coff which BFD doesn't know or
40	understand. If a coff symbol table were read, but were written
41	through an a.out back end, all the coff specific information
42	would be lost. The symbol table of a BFD
43	is not necessarily read in until a canonicalize request is
44	made. Then the BFD back end fills in a table provided by the
45	application with pointers to the canonical information.  To
46	output symbols, the application provides BFD with a table of
47	pointers to pointers to <<asymbol>>s. This allows applications
48	like the linker to output a symbol as it was read, since the ``behind
49	the scenes'' information will be still available.
50@menu
51@* Reading Symbols::
52@* Writing Symbols::
53@* Mini Symbols::
54@* typedef asymbol::
55@* symbol handling functions::
56@end menu
57
58INODE
59Reading Symbols, Writing Symbols, Symbols, Symbols
60SUBSECTION
61	Reading symbols
62
63	There are two stages to reading a symbol table from a BFD:
64	allocating storage, and the actual reading process. This is an
65	excerpt from an application which reads the symbol table:
66
67|	  long storage_needed;
68|	  asymbol **symbol_table;
69|	  long number_of_symbols;
70|	  long i;
71|
72|	  storage_needed = bfd_get_symtab_upper_bound (abfd);
73|
74|         if (storage_needed < 0)
75|           FAIL
76|
77|	  if (storage_needed == 0)
78|	    return;
79|
80|	  symbol_table = xmalloc (storage_needed);
81|	    ...
82|	  number_of_symbols =
83|	     bfd_canonicalize_symtab (abfd, symbol_table);
84|
85|         if (number_of_symbols < 0)
86|           FAIL
87|
88|	  for (i = 0; i < number_of_symbols; i++)
89|	    process_symbol (symbol_table[i]);
90
91	All storage for the symbols themselves is in an objalloc
92	connected to the BFD; it is freed when the BFD is closed.
93
94INODE
95Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96SUBSECTION
97	Writing symbols
98
99	Writing of a symbol table is automatic when a BFD open for
100	writing is closed. The application attaches a vector of
101	pointers to pointers to symbols to the BFD being written, and
102	fills in the symbol count. The close and cleanup code reads
103	through the table provided and performs all the necessary
104	operations. The BFD output code must always be provided with an
105	``owned'' symbol: one which has come from another BFD, or one
106	which has been created using <<bfd_make_empty_symbol>>.  Here is an
107	example showing the creation of a symbol table with only one element:
108
109|	#include "bfd.h"
110|	int main (void)
111|	{
112|	  bfd *abfd;
113|	  asymbol *ptrs[2];
114|	  asymbol *new;
115|
116|	  abfd = bfd_openw ("foo","a.out-sunos-big");
117|	  bfd_set_format (abfd, bfd_object);
118|	  new = bfd_make_empty_symbol (abfd);
119|	  new->name = "dummy_symbol";
120|	  new->section = bfd_make_section_old_way (abfd, ".text");
121|	  new->flags = BSF_GLOBAL;
122|	  new->value = 0x12345;
123|
124|	  ptrs[0] = new;
125|	  ptrs[1] = 0;
126|
127|	  bfd_set_symtab (abfd, ptrs, 1);
128|	  bfd_close (abfd);
129|	  return 0;
130|	}
131|
132|	./makesym
133|	nm foo
134|	00012345 A dummy_symbol
135
136	Many formats cannot represent arbitrary symbol information; for
137 	instance, the <<a.out>> object format does not allow an
138	arbitrary number of sections. A symbol pointing to a section
139	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
140	be described.
141
142INODE
143Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144SUBSECTION
145	Mini Symbols
146
147	Mini symbols provide read-only access to the symbol table.
148	They use less memory space, but require more time to access.
149	They can be useful for tools like nm or objdump, which may
150	have to handle symbol tables of extremely large executables.
151
152	The <<bfd_read_minisymbols>> function will read the symbols
153	into memory in an internal form.  It will return a <<void *>>
154	pointer to a block of memory, a symbol count, and the size of
155	each symbol.  The pointer is allocated using <<malloc>>, and
156	should be freed by the caller when it is no longer needed.
157
158	The function <<bfd_minisymbol_to_symbol>> will take a pointer
159	to a minisymbol, and a pointer to a structure returned by
160	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161	The return value may or may not be the same as the value from
162	<<bfd_make_empty_symbol>> which was passed in.
163
164*/
165
166/*
167DOCDD
168INODE
169typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171*/
172/*
173SUBSECTION
174	typedef asymbol
175
176	An <<asymbol>> has the form:
177
178*/
179
180/*
181CODE_FRAGMENT
182
183.
184.typedef struct bfd_symbol
185.{
186.  {* A pointer to the BFD which owns the symbol. This information
187.     is necessary so that a back end can work out what additional
188.     information (invisible to the application writer) is carried
189.     with the symbol.
190.
191.     This field is *almost* redundant, since you can use section->owner
192.     instead, except that some symbols point to the global sections
193.     bfd_{abs,com,und}_section.  This could be fixed by making
194.     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
195.  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
196.
197.  {* The text of the symbol. The name is left alone, and not copied; the
198.     application may not alter it.  *}
199.  const char *name;
200.
201.  {* The value of the symbol.  This really should be a union of a
202.     numeric value with a pointer, since some flags indicate that
203.     a pointer to another symbol is stored here.  *}
204.  symvalue value;
205.
206.  {* Attributes of a symbol.  *}
207.#define BSF_NO_FLAGS    0x00
208.
209.  {* The symbol has local scope; <<static>> in <<C>>. The value
210.     is the offset into the section of the data.  *}
211.#define BSF_LOCAL	0x01
212.
213.  {* The symbol has global scope; initialized data in <<C>>. The
214.     value is the offset into the section of the data.  *}
215.#define BSF_GLOBAL	0x02
216.
217.  {* The symbol has global scope and is exported. The value is
218.     the offset into the section of the data.  *}
219.#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
220.
221.  {* A normal C symbol would be one of:
222.     <<BSF_LOCAL>>, <<BSF_FORT_COMM>>,  <<BSF_UNDEFINED>> or
223.     <<BSF_GLOBAL>>.  *}
224.
225.  {* The symbol is a debugging record. The value has an arbitrary
226.     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
227.#define BSF_DEBUGGING	0x08
228.
229.  {* The symbol denotes a function entry point.  Used in ELF,
230.     perhaps others someday.  *}
231.#define BSF_FUNCTION    0x10
232.
233.  {* Used by the linker.  *}
234.#define BSF_KEEP        0x20
235.#define BSF_KEEP_G      0x40
236.
237.  {* A weak global symbol, overridable without warnings by
238.     a regular global symbol of the same name.  *}
239.#define BSF_WEAK        0x80
240.
241.  {* This symbol was created to point to a section, e.g. ELF's
242.     STT_SECTION symbols.  *}
243.#define BSF_SECTION_SYM 0x100
244.
245.  {* The symbol used to be a common symbol, but now it is
246.     allocated.  *}
247.#define BSF_OLD_COMMON  0x200
248.
249.  {* The default value for common data.  *}
250.#define BFD_FORT_COMM_DEFAULT_VALUE 0
251.
252.  {* In some files the type of a symbol sometimes alters its
253.     location in an output file - ie in coff a <<ISFCN>> symbol
254.     which is also <<C_EXT>> symbol appears where it was
255.     declared and not at the end of a section.  This bit is set
256.     by the target BFD part to convey this information.  *}
257.#define BSF_NOT_AT_END    0x400
258.
259.  {* Signal that the symbol is the label of constructor section.  *}
260.#define BSF_CONSTRUCTOR   0x800
261.
262.  {* Signal that the symbol is a warning symbol.  The name is a
263.     warning.  The name of the next symbol is the one to warn about;
264.     if a reference is made to a symbol with the same name as the next
265.     symbol, a warning is issued by the linker.  *}
266.#define BSF_WARNING       0x1000
267.
268.  {* Signal that the symbol is indirect.  This symbol is an indirect
269.     pointer to the symbol with the same name as the next symbol.  *}
270.#define BSF_INDIRECT      0x2000
271.
272.  {* BSF_FILE marks symbols that contain a file name.  This is used
273.     for ELF STT_FILE symbols.  *}
274.#define BSF_FILE          0x4000
275.
276.  {* Symbol is from dynamic linking information.  *}
277.#define BSF_DYNAMIC	   0x8000
278.
279.  {* The symbol denotes a data object.  Used in ELF, and perhaps
280.     others someday.  *}
281.#define BSF_OBJECT	   0x10000
282.
283.  {* This symbol is a debugging symbol.  The value is the offset
284.     into the section of the data.  BSF_DEBUGGING should be set
285.     as well.  *}
286.#define BSF_DEBUGGING_RELOC 0x20000
287.
288.  {* This symbol is thread local.  Used in ELF.  *}
289.#define BSF_THREAD_LOCAL  0x40000
290.
291.  flagword flags;
292.
293.  {* A pointer to the section to which this symbol is
294.     relative.  This will always be non NULL, there are special
295.     sections for undefined and absolute symbols.  *}
296.  struct bfd_section *section;
297.
298.  {* Back end special data.  *}
299.  union
300.    {
301.      void *p;
302.      bfd_vma i;
303.    }
304.  udata;
305.}
306.asymbol;
307.
308*/
309
310#include "bfd.h"
311#include "sysdep.h"
312#include "libbfd.h"
313#include "safe-ctype.h"
314#include "bfdlink.h"
315#include "aout/stab_gnu.h"
316
317/*
318DOCDD
319INODE
320symbol handling functions,  , typedef asymbol, Symbols
321SUBSECTION
322	Symbol handling functions
323*/
324
325/*
326FUNCTION
327	bfd_get_symtab_upper_bound
328
329DESCRIPTION
330	Return the number of bytes required to store a vector of pointers
331	to <<asymbols>> for all the symbols in the BFD @var{abfd},
332	including a terminal NULL pointer. If there are no symbols in
333	the BFD, then return 0.  If an error occurs, return -1.
334
335.#define bfd_get_symtab_upper_bound(abfd) \
336.     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
337.
338*/
339
340/*
341FUNCTION
342	bfd_is_local_label
343
344SYNOPSIS
345        bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
346
347DESCRIPTION
348	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
349	a compiler generated local label, else return FALSE.
350*/
351
352bfd_boolean
353bfd_is_local_label (bfd *abfd, asymbol *sym)
354{
355  /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
356     starts with '.' is local.  This would accidentally catch section names
357     if we didn't reject them here.  */
358  if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
359    return FALSE;
360  if (sym->name == NULL)
361    return FALSE;
362  return bfd_is_local_label_name (abfd, sym->name);
363}
364
365/*
366FUNCTION
367	bfd_is_local_label_name
368
369SYNOPSIS
370        bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
371
372DESCRIPTION
373	Return TRUE if a symbol with the name @var{name} in the BFD
374	@var{abfd} is a compiler generated local label, else return
375	FALSE.  This just checks whether the name has the form of a
376	local label.
377
378.#define bfd_is_local_label_name(abfd, name) \
379.  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
380.
381*/
382
383/*
384FUNCTION
385	bfd_canonicalize_symtab
386
387DESCRIPTION
388	Read the symbols from the BFD @var{abfd}, and fills in
389	the vector @var{location} with pointers to the symbols and
390	a trailing NULL.
391	Return the actual number of symbol pointers, not
392	including the NULL.
393
394.#define bfd_canonicalize_symtab(abfd, location) \
395.  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
396.
397*/
398
399/*
400FUNCTION
401	bfd_set_symtab
402
403SYNOPSIS
404	bfd_boolean bfd_set_symtab
405	  (bfd *abfd, asymbol **location, unsigned int count);
406
407DESCRIPTION
408	Arrange that when the output BFD @var{abfd} is closed,
409	the table @var{location} of @var{count} pointers to symbols
410	will be written.
411*/
412
413bfd_boolean
414bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
415{
416  if (abfd->format != bfd_object || bfd_read_p (abfd))
417    {
418      bfd_set_error (bfd_error_invalid_operation);
419      return FALSE;
420    }
421
422  bfd_get_outsymbols (abfd) = location;
423  bfd_get_symcount (abfd) = symcount;
424  return TRUE;
425}
426
427/*
428FUNCTION
429	bfd_print_symbol_vandf
430
431SYNOPSIS
432	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
433
434DESCRIPTION
435	Print the value and flags of the @var{symbol} supplied to the
436	stream @var{file}.
437*/
438void
439bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
440{
441  FILE *file = arg;
442
443  flagword type = symbol->flags;
444
445  if (symbol->section != NULL)
446    bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
447  else
448    bfd_fprintf_vma (abfd, file, symbol->value);
449
450  /* This presumes that a symbol can not be both BSF_DEBUGGING and
451     BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
452     BSF_OBJECT.  */
453  fprintf (file, " %c%c%c%c%c%c%c",
454	   ((type & BSF_LOCAL)
455	    ? (type & BSF_GLOBAL) ? '!' : 'l'
456	    : (type & BSF_GLOBAL) ? 'g' : ' '),
457	   (type & BSF_WEAK) ? 'w' : ' ',
458	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
459	   (type & BSF_WARNING) ? 'W' : ' ',
460	   (type & BSF_INDIRECT) ? 'I' : ' ',
461	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
462	   ((type & BSF_FUNCTION)
463	    ? 'F'
464	    : ((type & BSF_FILE)
465	       ? 'f'
466	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
467}
468
469/*
470FUNCTION
471	bfd_make_empty_symbol
472
473DESCRIPTION
474	Create a new <<asymbol>> structure for the BFD @var{abfd}
475	and return a pointer to it.
476
477	This routine is necessary because each back end has private
478	information surrounding the <<asymbol>>. Building your own
479	<<asymbol>> and pointing to it will not create the private
480	information, and will cause problems later on.
481
482.#define bfd_make_empty_symbol(abfd) \
483.  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
484.
485*/
486
487/*
488FUNCTION
489	_bfd_generic_make_empty_symbol
490
491SYNOPSIS
492	asymbol *_bfd_generic_make_empty_symbol (bfd *);
493
494DESCRIPTION
495	Create a new <<asymbol>> structure for the BFD @var{abfd}
496	and return a pointer to it.  Used by core file routines,
497	binary back-end and anywhere else where no private info
498	is needed.
499*/
500
501asymbol *
502_bfd_generic_make_empty_symbol (bfd *abfd)
503{
504  bfd_size_type amt = sizeof (asymbol);
505  asymbol *new = bfd_zalloc (abfd, amt);
506  if (new)
507    new->the_bfd = abfd;
508  return new;
509}
510
511/*
512FUNCTION
513	bfd_make_debug_symbol
514
515DESCRIPTION
516	Create a new <<asymbol>> structure for the BFD @var{abfd},
517	to be used as a debugging symbol.  Further details of its use have
518	yet to be worked out.
519
520.#define bfd_make_debug_symbol(abfd,ptr,size) \
521.  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
522.
523*/
524
525struct section_to_type
526{
527  const char *section;
528  char type;
529};
530
531/* Map section names to POSIX/BSD single-character symbol types.
532   This table is probably incomplete.  It is sorted for convenience of
533   adding entries.  Since it is so short, a linear search is used.  */
534static const struct section_to_type stt[] =
535{
536  {".bss", 'b'},
537  {"code", 't'},		/* MRI .text */
538  {".data", 'd'},
539  {"*DEBUG*", 'N'},
540  {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
541  {".drectve", 'i'},            /* MSVC's .drective section */
542  {".edata", 'e'},              /* MSVC's .edata (export) section */
543  {".fini", 't'},		/* ELF fini section */
544  {".idata", 'i'},              /* MSVC's .idata (import) section */
545  {".init", 't'},		/* ELF init section */
546  {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
547  {".rdata", 'r'},		/* Read only data.  */
548  {".rodata", 'r'},		/* Read only data.  */
549  {".sbss", 's'},		/* Small BSS (uninitialized data).  */
550  {".scommon", 'c'},		/* Small common.  */
551  {".sdata", 'g'},		/* Small initialized data.  */
552  {".text", 't'},
553  {"vars", 'd'},		/* MRI .data */
554  {"zerovars", 'b'},		/* MRI .bss */
555  {0, 0}
556};
557
558/* Return the single-character symbol type corresponding to
559   section S, or '?' for an unknown COFF section.
560
561   Check for any leading string which matches, so .text5 returns
562   't' as well as .text */
563
564static char
565coff_section_type (const char *s)
566{
567  const struct section_to_type *t;
568
569  for (t = &stt[0]; t->section; t++)
570    if (!strncmp (s, t->section, strlen (t->section)))
571      return t->type;
572
573  return '?';
574}
575
576/* Return the single-character symbol type corresponding to section
577   SECTION, or '?' for an unknown section.  This uses section flags to
578   identify sections.
579
580   FIXME These types are unhandled: c, i, e, p.  If we handled these also,
581   we could perhaps obsolete coff_section_type.  */
582
583static char
584decode_section_type (const struct bfd_section *section)
585{
586  if (section->flags & SEC_CODE)
587    return 't';
588  if (section->flags & SEC_DATA)
589    {
590      if (section->flags & SEC_READONLY)
591	return 'r';
592      else if (section->flags & SEC_SMALL_DATA)
593	return 'g';
594      else
595	return 'd';
596    }
597  if ((section->flags & SEC_HAS_CONTENTS) == 0)
598    {
599      if (section->flags & SEC_SMALL_DATA)
600	return 's';
601      else
602	return 'b';
603    }
604  if (section->flags & SEC_DEBUGGING)
605    return 'N';
606  if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
607    return 'n';
608
609  return '?';
610}
611
612/*
613FUNCTION
614	bfd_decode_symclass
615
616DESCRIPTION
617	Return a character corresponding to the symbol
618	class of @var{symbol}, or '?' for an unknown class.
619
620SYNOPSIS
621	int bfd_decode_symclass (asymbol *symbol);
622*/
623int
624bfd_decode_symclass (asymbol *symbol)
625{
626  char c;
627
628  if (bfd_is_com_section (symbol->section))
629    return 'C';
630  if (bfd_is_und_section (symbol->section))
631    {
632      if (symbol->flags & BSF_WEAK)
633	{
634	  /* If weak, determine if it's specifically an object
635	     or non-object weak.  */
636	  if (symbol->flags & BSF_OBJECT)
637	    return 'v';
638	  else
639	    return 'w';
640	}
641      else
642	return 'U';
643    }
644  if (bfd_is_ind_section (symbol->section))
645    return 'I';
646  if (symbol->flags & BSF_WEAK)
647    {
648      /* If weak, determine if it's specifically an object
649	 or non-object weak.  */
650      if (symbol->flags & BSF_OBJECT)
651	return 'V';
652      else
653	return 'W';
654    }
655  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
656    return '?';
657
658  if (bfd_is_abs_section (symbol->section))
659    c = 'a';
660  else if (symbol->section)
661    {
662      c = coff_section_type (symbol->section->name);
663      if (c == '?')
664	c = decode_section_type (symbol->section);
665    }
666  else
667    return '?';
668  if (symbol->flags & BSF_GLOBAL)
669    c = TOUPPER (c);
670  return c;
671
672  /* We don't have to handle these cases just yet, but we will soon:
673     N_SETV: 'v';
674     N_SETA: 'l';
675     N_SETT: 'x';
676     N_SETD: 'z';
677     N_SETB: 's';
678     N_INDR: 'i';
679     */
680}
681
682/*
683FUNCTION
684	bfd_is_undefined_symclass
685
686DESCRIPTION
687	Returns non-zero if the class symbol returned by
688	bfd_decode_symclass represents an undefined symbol.
689	Returns zero otherwise.
690
691SYNOPSIS
692	bfd_boolean bfd_is_undefined_symclass (int symclass);
693*/
694
695bfd_boolean
696bfd_is_undefined_symclass (int symclass)
697{
698  return symclass == 'U' || symclass == 'w' || symclass == 'v';
699}
700
701/*
702FUNCTION
703	bfd_symbol_info
704
705DESCRIPTION
706	Fill in the basic info about symbol that nm needs.
707	Additional info may be added by the back-ends after
708	calling this function.
709
710SYNOPSIS
711	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
712*/
713
714void
715bfd_symbol_info (asymbol *symbol, symbol_info *ret)
716{
717  ret->type = bfd_decode_symclass (symbol);
718
719  if (bfd_is_undefined_symclass (ret->type))
720    ret->value = 0;
721  else
722    ret->value = symbol->value + symbol->section->vma;
723
724  ret->name = symbol->name;
725}
726
727/*
728FUNCTION
729	bfd_copy_private_symbol_data
730
731SYNOPSIS
732	bfd_boolean bfd_copy_private_symbol_data
733	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
734
735DESCRIPTION
736	Copy private symbol information from @var{isym} in the BFD
737	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
738	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
739	returns are:
740
741	o <<bfd_error_no_memory>> -
742	Not enough memory exists to create private data for @var{osec}.
743
744.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
745.  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
746.            (ibfd, isymbol, obfd, osymbol))
747.
748*/
749
750/* The generic version of the function which returns mini symbols.
751   This is used when the backend does not provide a more efficient
752   version.  It just uses BFD asymbol structures as mini symbols.  */
753
754long
755_bfd_generic_read_minisymbols (bfd *abfd,
756			       bfd_boolean dynamic,
757			       void **minisymsp,
758			       unsigned int *sizep)
759{
760  long storage;
761  asymbol **syms = NULL;
762  long symcount;
763
764  if (dynamic)
765    storage = bfd_get_dynamic_symtab_upper_bound (abfd);
766  else
767    storage = bfd_get_symtab_upper_bound (abfd);
768  if (storage < 0)
769    goto error_return;
770  if (storage == 0)
771    return 0;
772
773  syms = bfd_malloc (storage);
774  if (syms == NULL)
775    goto error_return;
776
777  if (dynamic)
778    symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
779  else
780    symcount = bfd_canonicalize_symtab (abfd, syms);
781  if (symcount < 0)
782    goto error_return;
783
784  *minisymsp = syms;
785  *sizep = sizeof (asymbol *);
786  return symcount;
787
788 error_return:
789  bfd_set_error (bfd_error_no_symbols);
790  if (syms != NULL)
791    free (syms);
792  return -1;
793}
794
795/* The generic version of the function which converts a minisymbol to
796   an asymbol.  We don't worry about the sym argument we are passed;
797   we just return the asymbol the minisymbol points to.  */
798
799asymbol *
800_bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
801				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
802				   const void *minisym,
803				   asymbol *sym ATTRIBUTE_UNUSED)
804{
805  return *(asymbol **) minisym;
806}
807
808/* Look through stabs debugging information in .stab and .stabstr
809   sections to find the source file and line closest to a desired
810   location.  This is used by COFF and ELF targets.  It sets *pfound
811   to TRUE if it finds some information.  The *pinfo field is used to
812   pass cached information in and out of this routine; this first time
813   the routine is called for a BFD, *pinfo should be NULL.  The value
814   placed in *pinfo should be saved with the BFD, and passed back each
815   time this function is called.  */
816
817/* We use a cache by default.  */
818
819#define ENABLE_CACHING
820
821/* We keep an array of indexentry structures to record where in the
822   stabs section we should look to find line number information for a
823   particular address.  */
824
825struct indexentry
826{
827  bfd_vma val;
828  bfd_byte *stab;
829  bfd_byte *str;
830  char *directory_name;
831  char *file_name;
832  char *function_name;
833};
834
835/* Compare two indexentry structures.  This is called via qsort.  */
836
837static int
838cmpindexentry (const void *a, const void *b)
839{
840  const struct indexentry *contestantA = a;
841  const struct indexentry *contestantB = b;
842
843  if (contestantA->val < contestantB->val)
844    return -1;
845  else if (contestantA->val > contestantB->val)
846    return 1;
847  else
848    return 0;
849}
850
851/* A pointer to this structure is stored in *pinfo.  */
852
853struct stab_find_info
854{
855  /* The .stab section.  */
856  asection *stabsec;
857  /* The .stabstr section.  */
858  asection *strsec;
859  /* The contents of the .stab section.  */
860  bfd_byte *stabs;
861  /* The contents of the .stabstr section.  */
862  bfd_byte *strs;
863
864  /* A table that indexes stabs by memory address.  */
865  struct indexentry *indextable;
866  /* The number of entries in indextable.  */
867  int indextablesize;
868
869#ifdef ENABLE_CACHING
870  /* Cached values to restart quickly.  */
871  struct indexentry *cached_indexentry;
872  bfd_vma cached_offset;
873  bfd_byte *cached_stab;
874  char *cached_file_name;
875#endif
876
877  /* Saved ptr to malloc'ed filename.  */
878  char *filename;
879};
880
881bfd_boolean
882_bfd_stab_section_find_nearest_line (bfd *abfd,
883				     asymbol **symbols,
884				     asection *section,
885				     bfd_vma offset,
886				     bfd_boolean *pfound,
887				     const char **pfilename,
888				     const char **pfnname,
889				     unsigned int *pline,
890				     void **pinfo)
891{
892  struct stab_find_info *info;
893  bfd_size_type stabsize, strsize;
894  bfd_byte *stab, *str;
895  bfd_byte *last_stab = NULL;
896  bfd_size_type stroff;
897  struct indexentry *indexentry;
898  char *file_name;
899  char *directory_name;
900  int saw_fun;
901  bfd_boolean saw_line, saw_func;
902
903  *pfound = FALSE;
904  *pfilename = bfd_get_filename (abfd);
905  *pfnname = NULL;
906  *pline = 0;
907
908  /* Stabs entries use a 12 byte format:
909       4 byte string table index
910       1 byte stab type
911       1 byte stab other field
912       2 byte stab desc field
913       4 byte stab value
914     FIXME: This will have to change for a 64 bit object format.
915
916     The stabs symbols are divided into compilation units.  For the
917     first entry in each unit, the type of 0, the value is the length
918     of the string table for this unit, and the desc field is the
919     number of stabs symbols for this unit.  */
920
921#define STRDXOFF (0)
922#define TYPEOFF (4)
923#define OTHEROFF (5)
924#define DESCOFF (6)
925#define VALOFF (8)
926#define STABSIZE (12)
927
928  info = *pinfo;
929  if (info != NULL)
930    {
931      if (info->stabsec == NULL || info->strsec == NULL)
932	{
933	  /* No stabs debugging information.  */
934	  return TRUE;
935	}
936
937      stabsize = info->stabsec->_raw_size;
938      strsize = info->strsec->_raw_size;
939    }
940  else
941    {
942      long reloc_size, reloc_count;
943      arelent **reloc_vector;
944      int i;
945      char *name;
946      char *function_name;
947      bfd_size_type amt = sizeof *info;
948
949      info = bfd_zalloc (abfd, amt);
950      if (info == NULL)
951	return FALSE;
952
953      /* FIXME: When using the linker --split-by-file or
954	 --split-by-reloc options, it is possible for the .stab and
955	 .stabstr sections to be split.  We should handle that.  */
956
957      info->stabsec = bfd_get_section_by_name (abfd, ".stab");
958      info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
959
960      if (info->stabsec == NULL || info->strsec == NULL)
961	{
962	  /* No stabs debugging information.  Set *pinfo so that we
963             can return quickly in the info != NULL case above.  */
964	  *pinfo = info;
965	  return TRUE;
966	}
967
968      stabsize = info->stabsec->_raw_size;
969      strsize = info->strsec->_raw_size;
970
971      info->stabs = bfd_alloc (abfd, stabsize);
972      info->strs = bfd_alloc (abfd, strsize);
973      if (info->stabs == NULL || info->strs == NULL)
974	return FALSE;
975
976      if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
977				      (bfd_vma) 0, stabsize)
978	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
979					 (bfd_vma) 0, strsize))
980	return FALSE;
981
982      /* If this is a relocatable object file, we have to relocate
983	 the entries in .stab.  This should always be simple 32 bit
984	 relocations against symbols defined in this object file, so
985	 this should be no big deal.  */
986      reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
987      if (reloc_size < 0)
988	return FALSE;
989      reloc_vector = bfd_malloc (reloc_size);
990      if (reloc_vector == NULL && reloc_size != 0)
991	return FALSE;
992      reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
993					    symbols);
994      if (reloc_count < 0)
995	{
996	  if (reloc_vector != NULL)
997	    free (reloc_vector);
998	  return FALSE;
999	}
1000      if (reloc_count > 0)
1001	{
1002	  arelent **pr;
1003
1004	  for (pr = reloc_vector; *pr != NULL; pr++)
1005	    {
1006	      arelent *r;
1007	      unsigned long val;
1008	      asymbol *sym;
1009
1010	      r = *pr;
1011	      if (r->howto->rightshift != 0
1012		  || r->howto->size != 2
1013		  || r->howto->bitsize != 32
1014		  || r->howto->pc_relative
1015		  || r->howto->bitpos != 0
1016		  || r->howto->dst_mask != 0xffffffff)
1017		{
1018		  (*_bfd_error_handler)
1019		    (_("Unsupported .stab relocation"));
1020		  bfd_set_error (bfd_error_invalid_operation);
1021		  if (reloc_vector != NULL)
1022		    free (reloc_vector);
1023		  return FALSE;
1024		}
1025
1026	      val = bfd_get_32 (abfd, info->stabs + r->address);
1027	      val &= r->howto->src_mask;
1028	      sym = *r->sym_ptr_ptr;
1029	      val += sym->value + sym->section->vma + r->addend;
1030	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1031	    }
1032	}
1033
1034      if (reloc_vector != NULL)
1035	free (reloc_vector);
1036
1037      /* First time through this function, build a table matching
1038	 function VM addresses to stabs, then sort based on starting
1039	 VM address.  Do this in two passes: once to count how many
1040	 table entries we'll need, and a second to actually build the
1041	 table.  */
1042
1043      info->indextablesize = 0;
1044      saw_fun = 1;
1045      for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1046	{
1047	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1048	    {
1049	      /* N_SO with null name indicates EOF */
1050	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1051		continue;
1052
1053	      /* if we did not see a function def, leave space for one.  */
1054	      if (saw_fun == 0)
1055		++info->indextablesize;
1056
1057	      saw_fun = 0;
1058
1059	      /* two N_SO's in a row is a filename and directory. Skip */
1060	      if (stab + STABSIZE < info->stabs + stabsize
1061		  && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1062		{
1063		  stab += STABSIZE;
1064		}
1065	    }
1066	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1067	    {
1068	      saw_fun = 1;
1069	      ++info->indextablesize;
1070	    }
1071	}
1072
1073      if (saw_fun == 0)
1074	++info->indextablesize;
1075
1076      if (info->indextablesize == 0)
1077	return TRUE;
1078      ++info->indextablesize;
1079
1080      amt = info->indextablesize;
1081      amt *= sizeof (struct indexentry);
1082      info->indextable = bfd_alloc (abfd, amt);
1083      if (info->indextable == NULL)
1084	return FALSE;
1085
1086      file_name = NULL;
1087      directory_name = NULL;
1088      saw_fun = 1;
1089
1090      for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1091	   i < info->indextablesize && stab < info->stabs + stabsize;
1092	   stab += STABSIZE)
1093	{
1094	  switch (stab[TYPEOFF])
1095	    {
1096	    case 0:
1097	      /* This is the first entry in a compilation unit.  */
1098	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1099		break;
1100	      str += stroff;
1101	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1102	      break;
1103
1104	    case N_SO:
1105	      /* The main file name.  */
1106
1107	      /* The following code creates a new indextable entry with
1108	         a NULL function name if there were no N_FUNs in a file.
1109	         Note that a N_SO without a file name is an EOF and
1110	         there could be 2 N_SO following it with the new filename
1111	         and directory.  */
1112	      if (saw_fun == 0)
1113		{
1114		  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1115		  info->indextable[i].stab = last_stab;
1116		  info->indextable[i].str = str;
1117		  info->indextable[i].directory_name = directory_name;
1118		  info->indextable[i].file_name = file_name;
1119		  info->indextable[i].function_name = NULL;
1120		  ++i;
1121		}
1122	      saw_fun = 0;
1123
1124	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1125	      if (*file_name == '\0')
1126		{
1127		  directory_name = NULL;
1128		  file_name = NULL;
1129		  saw_fun = 1;
1130		}
1131	      else
1132		{
1133		  last_stab = stab;
1134		  if (stab + STABSIZE >= info->stabs + stabsize
1135		      || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1136		    {
1137		      directory_name = NULL;
1138		    }
1139		  else
1140		    {
1141		      /* Two consecutive N_SOs are a directory and a
1142			 file name.  */
1143		      stab += STABSIZE;
1144		      directory_name = file_name;
1145		      file_name = ((char *) str
1146				   + bfd_get_32 (abfd, stab + STRDXOFF));
1147		    }
1148		}
1149	      break;
1150
1151	    case N_SOL:
1152	      /* The name of an include file.  */
1153	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1154	      break;
1155
1156	    case N_FUN:
1157	      /* A function name.  */
1158	      saw_fun = 1;
1159	      name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1160
1161	      if (*name == '\0')
1162		name = NULL;
1163
1164	      function_name = name;
1165
1166	      if (name == NULL)
1167		continue;
1168
1169	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1170	      info->indextable[i].stab = stab;
1171	      info->indextable[i].str = str;
1172	      info->indextable[i].directory_name = directory_name;
1173	      info->indextable[i].file_name = file_name;
1174	      info->indextable[i].function_name = function_name;
1175	      ++i;
1176	      break;
1177	    }
1178	}
1179
1180      if (saw_fun == 0)
1181	{
1182	  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1183	  info->indextable[i].stab = last_stab;
1184	  info->indextable[i].str = str;
1185	  info->indextable[i].directory_name = directory_name;
1186	  info->indextable[i].file_name = file_name;
1187	  info->indextable[i].function_name = NULL;
1188	  ++i;
1189	}
1190
1191      info->indextable[i].val = (bfd_vma) -1;
1192      info->indextable[i].stab = info->stabs + stabsize;
1193      info->indextable[i].str = str;
1194      info->indextable[i].directory_name = NULL;
1195      info->indextable[i].file_name = NULL;
1196      info->indextable[i].function_name = NULL;
1197      ++i;
1198
1199      info->indextablesize = i;
1200      qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1201	     cmpindexentry);
1202
1203      *pinfo = info;
1204    }
1205
1206  /* We are passed a section relative offset.  The offsets in the
1207     stabs information are absolute.  */
1208  offset += bfd_get_section_vma (abfd, section);
1209
1210#ifdef ENABLE_CACHING
1211  if (info->cached_indexentry != NULL
1212      && offset >= info->cached_offset
1213      && offset < (info->cached_indexentry + 1)->val)
1214    {
1215      stab = info->cached_stab;
1216      indexentry = info->cached_indexentry;
1217      file_name = info->cached_file_name;
1218    }
1219  else
1220#endif
1221    {
1222      long low, high;
1223      long mid = -1;
1224
1225      /* Cache non-existent or invalid.  Do binary search on
1226         indextable.  */
1227      indexentry = NULL;
1228
1229      low = 0;
1230      high = info->indextablesize - 1;
1231      while (low != high)
1232	{
1233	  mid = (high + low) / 2;
1234	  if (offset >= info->indextable[mid].val
1235	      && offset < info->indextable[mid + 1].val)
1236	    {
1237	      indexentry = &info->indextable[mid];
1238	      break;
1239	    }
1240
1241	  if (info->indextable[mid].val > offset)
1242	    high = mid;
1243	  else
1244	    low = mid + 1;
1245	}
1246
1247      if (indexentry == NULL)
1248	return TRUE;
1249
1250      stab = indexentry->stab + STABSIZE;
1251      file_name = indexentry->file_name;
1252    }
1253
1254  directory_name = indexentry->directory_name;
1255  str = indexentry->str;
1256
1257  saw_line = FALSE;
1258  saw_func = FALSE;
1259  for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1260    {
1261      bfd_boolean done;
1262      bfd_vma val;
1263
1264      done = FALSE;
1265
1266      switch (stab[TYPEOFF])
1267	{
1268	case N_SOL:
1269	  /* The name of an include file.  */
1270	  val = bfd_get_32 (abfd, stab + VALOFF);
1271	  if (val <= offset)
1272	    {
1273	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1274	      *pline = 0;
1275	    }
1276	  break;
1277
1278	case N_SLINE:
1279	case N_DSLINE:
1280	case N_BSLINE:
1281	  /* A line number.  If the function was specified, then the value
1282	     is relative to the start of the function.  Otherwise, the
1283	     value is an absolute address.  */
1284	  val = ((indexentry->function_name ? indexentry->val : 0)
1285		 + bfd_get_32 (abfd, stab + VALOFF));
1286	  /* If this line starts before our desired offset, or if it's
1287	     the first line we've been able to find, use it.  The
1288	     !saw_line check works around a bug in GCC 2.95.3, which emits
1289	     the first N_SLINE late.  */
1290	  if (!saw_line || val <= offset)
1291	    {
1292	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1293
1294#ifdef ENABLE_CACHING
1295	      info->cached_stab = stab;
1296	      info->cached_offset = val;
1297	      info->cached_file_name = file_name;
1298	      info->cached_indexentry = indexentry;
1299#endif
1300	    }
1301	  if (val > offset)
1302	    done = TRUE;
1303	  saw_line = TRUE;
1304	  break;
1305
1306	case N_FUN:
1307	case N_SO:
1308	  if (saw_func || saw_line)
1309	    done = TRUE;
1310	  saw_func = TRUE;
1311	  break;
1312	}
1313
1314      if (done)
1315	break;
1316    }
1317
1318  *pfound = TRUE;
1319
1320  if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1321      || directory_name == NULL)
1322    *pfilename = file_name;
1323  else
1324    {
1325      size_t dirlen;
1326
1327      dirlen = strlen (directory_name);
1328      if (info->filename == NULL
1329	  || strncmp (info->filename, directory_name, dirlen) != 0
1330	  || strcmp (info->filename + dirlen, file_name) != 0)
1331	{
1332	  size_t len;
1333
1334	  if (info->filename != NULL)
1335	    free (info->filename);
1336	  len = strlen (file_name) + 1;
1337	  info->filename = bfd_malloc (dirlen + len);
1338	  if (info->filename == NULL)
1339	    return FALSE;
1340	  memcpy (info->filename, directory_name, dirlen);
1341	  memcpy (info->filename + dirlen, file_name, len);
1342	}
1343
1344      *pfilename = info->filename;
1345    }
1346
1347  if (indexentry->function_name != NULL)
1348    {
1349      char *s;
1350
1351      /* This will typically be something like main:F(0,1), so we want
1352         to clobber the colon.  It's OK to change the name, since the
1353         string is in our own local storage anyhow.  */
1354      s = strchr (indexentry->function_name, ':');
1355      if (s != NULL)
1356	*s = '\0';
1357
1358      *pfnname = indexentry->function_name;
1359    }
1360
1361  return TRUE;
1362}
1363