merge.c revision 293861
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * This file contains routines that merge one tdata_t tree, called the child,
30 * into another, called the parent.  Note that these names are used mainly for
31 * convenience and to represent the direction of the merge.  They are not meant
32 * to imply any relationship between the tdata_t graphs prior to the merge.
33 *
34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37 * clean up loose ends.
38 *
39 * The algorithm is as follows:
40 *
41 * 1. Mapping iidesc_t nodes
42 *
43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44 * against the tdesc_t graph in the parent.  For each node in the child subgraph
45 * that exists in the parent, a mapping between the two (between their type IDs)
46 * is established.  For the child nodes that cannot be mapped onto existing
47 * parent nodes, a mapping is established between the child node ID and a
48 * newly-allocated ID that the node will use when it is re-created in the
49 * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50 * Added) hash, which tracks nodes that need to be created in the parent.
51 *
52 * If all of the nodes in the subgraph for an iidesc_t in the child can be
53 * mapped to existing nodes in the parent, then we can try to map the child
54 * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57 * list tracks iidesc_t nodes that are to be created in the parent.
58 *
59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60 * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61 * may be a structure or union definition in the child with the same name as the
62 * forward declaration in the parent.  If we find such a node, we record an
63 * association in the md_fdida (Forward => Definition ID Association) list
64 * between the parent ID of the forward declaration and the ID that the
65 * definition will use when re-created in the parent.
66 *
67 * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68 *
69 * We have now attempted to map all tdesc_t nodes from the child into the
70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71 * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72 * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73 * node, conjuring requires two steps - the copying of the common tdesc_t data
74 * (name, type, etc) from the child node, and the creation of links from the
75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76 * to by node being conjured.  Note that in some cases, the targets of these
77 * links will be on the md_tdtba hash themselves, and may not have been created
78 * yet.  As such, we can't establish the links from these new nodes into the
79 * parent graph.  We therefore conjure them with links to nodes in the *child*
80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81 * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83 *
84 * 3. Creating new iidesc_t nodes (the md_iitba list)
85 *
86 * When we have completed step 2, all tdesc_t nodes have been created (or
87 * already existed) in the parent.  Some of them may have incorrect links (the
88 * members of the md_tdtbr list), but they've all been created.  As such, we can
89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90 * pointers correctly.  We create each node, and attach the pointers to the
91 * appropriate parts of the parent tdesc_t graph.
92 *
93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94 *
95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96 * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97 * the parent will be established.  As saved in the md_tdtbr list, these
98 * pointers point into the child tdesc_t subgraph.  We can thus get the target
99 * type ID from the child, look at the ID mapping to determine the desired link
100 * target, and redirect the link accordingly.
101 *
102 * 5. Parent => child forward declaration resolution
103 *
104 * If entries were made in the md_fdida list in step 1, we have forward
105 * declarations in the parent that need to be resolved to their definitions
106 * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107 * the definition for the forward declaration, and we can redirect all inbound
108 * edges to the forward declaration node to the actual definition.
109 *
110 * A pox on the house of anyone who changes the algorithm without updating
111 * this comment.
112 */
113
114#include <stdio.h>
115#include <strings.h>
116#include <assert.h>
117#include <pthread.h>
118
119#include "ctf_headers.h"
120#include "ctftools.h"
121#include "list.h"
122#include "alist.h"
123#include "memory.h"
124#include "traverse.h"
125
126typedef struct equiv_data equiv_data_t;
127typedef struct merge_cb_data merge_cb_data_t;
128
129/*
130 * There are two traversals in this file, for equivalency and for tdesc_t
131 * re-creation, that do not fit into the tdtraverse() framework.  We have our
132 * own traversal mechanism and ops vector here for those two cases.
133 */
134typedef struct tdesc_ops {
135	const char *name;
136	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
137	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
138} tdesc_ops_t;
139extern tdesc_ops_t tdesc_ops[];
140
141/*
142 * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
143 * processed during various phases of the merge algorithm.
144 */
145struct merge_cb_data {
146	tdata_t *md_parent;
147	tdata_t *md_tgt;
148	alist_t *md_ta;		/* Type Association */
149	alist_t *md_fdida;	/* Forward -> Definition ID Association */
150	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
151	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
152	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
153	int md_flags;
154}; /* merge_cb_data_t */
155
156/*
157 * When we first create a tdata_t from stabs data, we will have duplicate nodes.
158 * Normal merges, however, assume that the child tdata_t is already self-unique,
159 * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
160 * the merge algorithm will self-uniquify by avoiding the insertion of
161 * duplicates in the md_tdtdba list.
162 */
163#define	MCD_F_SELFUNIQUIFY	0x1
164
165/*
166 * When we merge the CTF data for the modules, we don't want it to contain any
167 * data that can be found in the reference module (usually genunix).  If this
168 * flag is set, we're doing a merge between the fully merged tdata_t for this
169 * module and the tdata_t for the reference module, with the data unique to this
170 * module ending up in a third tdata_t.  It is this third tdata_t that will end
171 * up in the .SUNW_ctf section for the module.
172 */
173#define	MCD_F_REFMERGE	0x2
174
175/*
176 * Mapping of child type IDs to parent type IDs
177 */
178
179static void
180add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
181{
182	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
183
184	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
185	assert(srcid != 0 && tgtid != 0);
186
187	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
188}
189
190static tid_t
191get_mapping(alist_t *ta, int srcid)
192{
193	void *ltgtid;
194
195	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
196		return ((uintptr_t)ltgtid);
197	else
198		return (0);
199}
200
201/*
202 * Determining equivalence of tdesc_t subgraphs
203 */
204
205struct equiv_data {
206	alist_t *ed_ta;
207	tdesc_t *ed_node;
208	tdesc_t *ed_tgt;
209
210	int ed_clear_mark;
211	int ed_cur_mark;
212	int ed_selfuniquify;
213}; /* equiv_data_t */
214
215static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
216
217/*ARGSUSED2*/
218static int
219equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
220{
221	intr_t *si = stdp->t_intr;
222	intr_t *ti = ttdp->t_intr;
223
224	if (si->intr_type != ti->intr_type ||
225	    si->intr_signed != ti->intr_signed ||
226	    si->intr_offset != ti->intr_offset ||
227	    si->intr_nbits != ti->intr_nbits)
228		return (0);
229
230	if (si->intr_type == INTR_INT &&
231	    si->intr_iformat != ti->intr_iformat)
232		return (0);
233	else if (si->intr_type == INTR_REAL &&
234	    si->intr_fformat != ti->intr_fformat)
235		return (0);
236
237	return (1);
238}
239
240static int
241equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
242{
243	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
244}
245
246static int
247equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
248{
249	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
250	int i;
251
252	if (fn1->fn_nargs != fn2->fn_nargs ||
253	    fn1->fn_vargs != fn2->fn_vargs)
254		return (0);
255
256	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
257		return (0);
258
259	for (i = 0; i < (int) fn1->fn_nargs; i++) {
260		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
261			return (0);
262	}
263
264	return (1);
265}
266
267static int
268equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
269{
270	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
271
272	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
273	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
274		return (0);
275
276	if (ar1->ad_nelems != ar2->ad_nelems)
277		return (0);
278
279	return (1);
280}
281
282static int
283equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
284{
285	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
286
287	while (ml1 && ml2) {
288		if (ml1->ml_offset != ml2->ml_offset ||
289		    strcmp(ml1->ml_name, ml2->ml_name) != 0 ||
290		    ml1->ml_size != ml2->ml_size ||
291		    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
292			return (0);
293
294		ml1 = ml1->ml_next;
295		ml2 = ml2->ml_next;
296	}
297
298	if (ml1 || ml2)
299		return (0);
300
301	return (1);
302}
303
304/*ARGSUSED2*/
305static int
306equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
307{
308	elist_t *el1 = stdp->t_emem;
309	elist_t *el2 = ttdp->t_emem;
310
311	while (el1 && el2) {
312		if (el1->el_number != el2->el_number ||
313		    strcmp(el1->el_name, el2->el_name) != 0)
314			return (0);
315
316		el1 = el1->el_next;
317		el2 = el2->el_next;
318	}
319
320	if (el1 || el2)
321		return (0);
322
323	return (1);
324}
325
326/*ARGSUSED*/
327static int
328equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
329{
330	/* foul, evil, and very bad - this is a "shouldn't happen" */
331	assert(1 == 0);
332
333	return (0);
334}
335
336static int
337fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
338{
339	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
340
341	return (defn->t_type == STRUCT || defn->t_type == UNION);
342}
343
344static int
345equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
346{
347	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
348	int mapping;
349
350	if (ctdp->t_emark > ed->ed_clear_mark &&
351	    mtdp->t_emark > ed->ed_clear_mark)
352		return (ctdp->t_emark == mtdp->t_emark);
353
354	/*
355	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
356	 * checking on a subgraph that has already been checked.  If a mapping
357	 * has already been established for a given child node, we can simply
358	 * compare the mapping for the child node with the ID of the parent
359	 * node.  If we are in self-uniquify mode, then we're comparing two
360	 * subgraphs within the child graph, and thus need to ignore any
361	 * type mappings that have been created, as they are only valid into the
362	 * parent.
363	 */
364	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
365	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
366		return (1);
367
368	if (!streq(ctdp->t_name, mtdp->t_name))
369		return (0);
370
371	if (ctdp->t_type != mtdp->t_type) {
372		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
373			return (fwd_equiv(ctdp, mtdp));
374		else
375			return (0);
376	}
377
378	ctdp->t_emark = ed->ed_cur_mark;
379	mtdp->t_emark = ed->ed_cur_mark;
380	ed->ed_cur_mark++;
381
382	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
383		return (equiv(ctdp, mtdp, ed));
384
385	return (1);
386}
387
388/*
389 * We perform an equivalency check on two subgraphs by traversing through them
390 * in lockstep.  If a given node is equivalent in both the parent and the child,
391 * we mark it in both subgraphs, using the t_emark field, with a monotonically
392 * increasing number.  If, in the course of the traversal, we reach a node that
393 * we have visited and numbered during this equivalency check, we have a cycle.
394 * If the previously-visited nodes don't have the same emark, then the edges
395 * that brought us to these nodes are not equivalent, and so the check ends.
396 * If the emarks are the same, the edges are equivalent.  We then backtrack and
397 * continue the traversal.  If we have exhausted all edges in the subgraph, and
398 * have not found any inequivalent nodes, then the subgraphs are equivalent.
399 */
400static int
401equiv_cb(void *bucket, void *arg)
402{
403	equiv_data_t *ed = arg;
404	tdesc_t *mtdp = bucket;
405	tdesc_t *ctdp = ed->ed_node;
406
407	ed->ed_clear_mark = ed->ed_cur_mark + 1;
408	ed->ed_cur_mark = ed->ed_clear_mark + 1;
409
410	if (equiv_node(ctdp, mtdp, ed)) {
411		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
412		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
413		ed->ed_tgt = mtdp;
414		/* matched.  stop looking */
415		return (-1);
416	}
417
418	return (0);
419}
420
421/*ARGSUSED1*/
422static int
423map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
424{
425	merge_cb_data_t *mcd = private;
426
427	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
428		return (0);
429
430	return (1);
431}
432
433/*ARGSUSED1*/
434static int
435map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
436{
437	merge_cb_data_t *mcd = private;
438	equiv_data_t ed;
439
440	ed.ed_ta = mcd->md_ta;
441	ed.ed_clear_mark = mcd->md_parent->td_curemark;
442	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
443	ed.ed_node = ctdp;
444	ed.ed_selfuniquify = 0;
445
446	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
447
448	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
449	    equiv_cb, &ed) < 0) {
450		/* We found an equivalent node */
451		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
452			int id = mcd->md_tgt->td_nextid++;
453
454			debug(3, "Creating new defn type %d <%x>\n", id, id);
455			add_mapping(mcd->md_ta, ctdp->t_id, id);
456			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
457			    (void *)(ulong_t)id);
458			hash_add(mcd->md_tdtba, ctdp);
459		} else
460			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
461
462	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
463	    equiv_cb, &ed) < 0) {
464		/*
465		 * We didn't find an equivalent node by looking through the
466		 * layout hash, but we somehow found it by performing an
467		 * exhaustive search through the entire graph.  This usually
468		 * means that the "name" hash function is broken.
469		 */
470		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
471		    tdesc_name(ctdp), ed.ed_tgt->t_id);
472	} else {
473		int id = mcd->md_tgt->td_nextid++;
474
475		debug(3, "Creating new type %d <%x>\n", id, id);
476		add_mapping(mcd->md_ta, ctdp->t_id, id);
477		hash_add(mcd->md_tdtba, ctdp);
478	}
479
480	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
481
482	return (1);
483}
484
485/*ARGSUSED1*/
486static int
487map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
488{
489	merge_cb_data_t *mcd = private;
490	equiv_data_t ed;
491
492	ed.ed_ta = mcd->md_ta;
493	ed.ed_clear_mark = mcd->md_parent->td_curemark;
494	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
495	ed.ed_node = ctdp;
496	ed.ed_selfuniquify = 1;
497	ed.ed_tgt = NULL;
498
499	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
500		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
501		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
502		add_mapping(mcd->md_ta, ctdp->t_id,
503		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
504	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
505	    equiv_cb, &ed) < 0) {
506		/*
507		 * We didn't find an equivalent node using the quick way (going
508		 * through the hash normally), but we did find it by iterating
509		 * through the entire hash.  This usually means that the hash
510		 * function is broken.
511		 */
512		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
513		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
514		    ed.ed_tgt->t_id);
515	} else {
516		int id = mcd->md_tgt->td_nextid++;
517
518		debug(3, "Creating new type %d <%x>\n", id, id);
519		add_mapping(mcd->md_ta, ctdp->t_id, id);
520		hash_add(mcd->md_tdtba, ctdp);
521	}
522
523	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
524
525	return (1);
526}
527
528static tdtrav_cb_f map_pre[] = {
529	NULL,
530	map_td_tree_pre,	/* intrinsic */
531	map_td_tree_pre,	/* pointer */
532	map_td_tree_pre,	/* array */
533	map_td_tree_pre,	/* function */
534	map_td_tree_pre,	/* struct */
535	map_td_tree_pre,	/* union */
536	map_td_tree_pre,	/* enum */
537	map_td_tree_pre,	/* forward */
538	map_td_tree_pre,	/* typedef */
539	tdtrav_assert,		/* typedef_unres */
540	map_td_tree_pre,	/* volatile */
541	map_td_tree_pre,	/* const */
542	map_td_tree_pre		/* restrict */
543};
544
545static tdtrav_cb_f map_post[] = {
546	NULL,
547	map_td_tree_post,	/* intrinsic */
548	map_td_tree_post,	/* pointer */
549	map_td_tree_post,	/* array */
550	map_td_tree_post,	/* function */
551	map_td_tree_post,	/* struct */
552	map_td_tree_post,	/* union */
553	map_td_tree_post,	/* enum */
554	map_td_tree_post,	/* forward */
555	map_td_tree_post,	/* typedef */
556	tdtrav_assert,		/* typedef_unres */
557	map_td_tree_post,	/* volatile */
558	map_td_tree_post,	/* const */
559	map_td_tree_post	/* restrict */
560};
561
562static tdtrav_cb_f map_self_post[] = {
563	NULL,
564	map_td_tree_self_post,	/* intrinsic */
565	map_td_tree_self_post,	/* pointer */
566	map_td_tree_self_post,	/* array */
567	map_td_tree_self_post,	/* function */
568	map_td_tree_self_post,	/* struct */
569	map_td_tree_self_post,	/* union */
570	map_td_tree_self_post,	/* enum */
571	map_td_tree_self_post,	/* forward */
572	map_td_tree_self_post,	/* typedef */
573	tdtrav_assert,		/* typedef_unres */
574	map_td_tree_self_post,	/* volatile */
575	map_td_tree_self_post,	/* const */
576	map_td_tree_self_post	/* restrict */
577};
578
579/*
580 * Determining equivalence of iidesc_t nodes
581 */
582
583typedef struct iifind_data {
584	iidesc_t *iif_template;
585	alist_t *iif_ta;
586	int iif_newidx;
587	int iif_refmerge;
588} iifind_data_t;
589
590/*
591 * Check to see if this iidesc_t (node) - the current one on the list we're
592 * iterating through - matches the target one (iif->iif_template).  Return -1
593 * if it matches, to stop the iteration.
594 */
595static int
596iidesc_match(void *data, void *arg)
597{
598	iidesc_t *node = data;
599	iifind_data_t *iif = arg;
600	int i;
601
602	if (node->ii_type != iif->iif_template->ii_type ||
603	    !streq(node->ii_name, iif->iif_template->ii_name) ||
604	    node->ii_dtype->t_id != iif->iif_newidx)
605		return (0);
606
607	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
608	    !streq(node->ii_owner, iif->iif_template->ii_owner))
609		return (0);
610
611	if (node->ii_nargs != iif->iif_template->ii_nargs)
612		return (0);
613
614	for (i = 0; i < node->ii_nargs; i++) {
615		if (get_mapping(iif->iif_ta,
616		    iif->iif_template->ii_args[i]->t_id) !=
617		    node->ii_args[i]->t_id)
618			return (0);
619	}
620
621	if (iif->iif_refmerge) {
622		switch (iif->iif_template->ii_type) {
623		case II_GFUN:
624		case II_SFUN:
625		case II_GVAR:
626		case II_SVAR:
627			debug(3, "suppressing duping of %d %s from %s\n",
628			    iif->iif_template->ii_type,
629			    iif->iif_template->ii_name,
630			    (iif->iif_template->ii_owner ?
631			    iif->iif_template->ii_owner : "NULL"));
632			return (0);
633		case II_NOT:
634		case II_PSYM:
635		case II_SOU:
636		case II_TYPE:
637			break;
638		}
639	}
640
641	return (-1);
642}
643
644static int
645merge_type_cb(void *data, void *arg)
646{
647	iidesc_t *sii = data;
648	merge_cb_data_t *mcd = arg;
649	iifind_data_t iif;
650	tdtrav_cb_f *post;
651
652	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
653
654	/* Map the tdesc nodes */
655	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
656	    mcd);
657
658	/* Map the iidesc nodes */
659	iif.iif_template = sii;
660	iif.iif_ta = mcd->md_ta;
661	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
662	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
663
664	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
665	    &iif) == 1)
666		/* successfully mapped */
667		return (1);
668
669	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
670	    sii->ii_type);
671
672	list_add(mcd->md_iitba, sii);
673
674	return (0);
675}
676
677static int
678remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
679    merge_cb_data_t *mcd)
680{
681	tdesc_t *tgt = NULL;
682	tdesc_t template;
683	int oldid = oldtgt->t_id;
684
685	if (oldid == selftid) {
686		*tgtp = newself;
687		return (1);
688	}
689
690	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
691		aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
692
693	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
694	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
695	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
696	    (void *)&tgt))) {
697		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
698		    template.t_id, oldid, oldid);
699		*tgtp = oldtgt;
700		list_add(mcd->md_tdtbr, tgtp);
701		return (0);
702	}
703
704	*tgtp = tgt;
705	return (1);
706}
707
708static tdesc_t *
709conjure_template(tdesc_t *old, int newselfid)
710{
711	tdesc_t *new = xcalloc(sizeof (tdesc_t));
712
713	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
714	new->t_type = old->t_type;
715	new->t_size = old->t_size;
716	new->t_id = newselfid;
717	new->t_flags = old->t_flags;
718
719	return (new);
720}
721
722/*ARGSUSED2*/
723static tdesc_t *
724conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
725{
726	tdesc_t *new = conjure_template(old, newselfid);
727
728	new->t_intr = xmalloc(sizeof (intr_t));
729	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
730
731	return (new);
732}
733
734static tdesc_t *
735conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
736{
737	tdesc_t *new = conjure_template(old, newselfid);
738
739	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
740
741	return (new);
742}
743
744static tdesc_t *
745conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
746{
747	tdesc_t *new = conjure_template(old, newselfid);
748	fndef_t *nfn = xmalloc(sizeof (fndef_t));
749	fndef_t *ofn = old->t_fndef;
750	int i;
751
752	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
753
754	nfn->fn_nargs = ofn->fn_nargs;
755	nfn->fn_vargs = ofn->fn_vargs;
756
757	if (nfn->fn_nargs > 0)
758		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
759
760	for (i = 0; i < (int) ofn->fn_nargs; i++) {
761		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
762		    new, mcd);
763	}
764
765	new->t_fndef = nfn;
766
767	return (new);
768}
769
770static tdesc_t *
771conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
772{
773	tdesc_t *new = conjure_template(old, newselfid);
774	ardef_t *nar = xmalloc(sizeof (ardef_t));
775	ardef_t *oar = old->t_ardef;
776
777	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
778	    mcd);
779	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
780	    mcd);
781
782	nar->ad_nelems = oar->ad_nelems;
783
784	new->t_ardef = nar;
785
786	return (new);
787}
788
789static tdesc_t *
790conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
791{
792	tdesc_t *new = conjure_template(old, newselfid);
793	mlist_t *omem, **nmemp;
794
795	for (omem = old->t_members, nmemp = &new->t_members;
796	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
797		*nmemp = xmalloc(sizeof (mlist_t));
798		(*nmemp)->ml_offset = omem->ml_offset;
799		(*nmemp)->ml_size = omem->ml_size;
800		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
801		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
802		    old->t_id, new, mcd);
803	}
804	*nmemp = NULL;
805
806	return (new);
807}
808
809/*ARGSUSED2*/
810static tdesc_t *
811conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
812{
813	tdesc_t *new = conjure_template(old, newselfid);
814	elist_t *oel, **nelp;
815
816	for (oel = old->t_emem, nelp = &new->t_emem;
817	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
818		*nelp = xmalloc(sizeof (elist_t));
819		(*nelp)->el_name = xstrdup(oel->el_name);
820		(*nelp)->el_number = oel->el_number;
821	}
822	*nelp = NULL;
823
824	return (new);
825}
826
827/*ARGSUSED2*/
828static tdesc_t *
829conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
830{
831	tdesc_t *new = conjure_template(old, newselfid);
832
833	list_add(&mcd->md_tgt->td_fwdlist, new);
834
835	return (new);
836}
837
838/*ARGSUSED*/
839static tdesc_t *
840conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
841{
842	assert(1 == 0);
843	return (NULL);
844}
845
846static iidesc_t *
847conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
848{
849	iidesc_t *new = iidesc_dup(old);
850	int i;
851
852	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
853	for (i = 0; i < new->ii_nargs; i++) {
854		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
855		    mcd);
856	}
857
858	return (new);
859}
860
861static int
862fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
863{
864	alist_t *map = private;
865	void *defn;
866
867	if (!alist_find(map, (void *)fwd, (void **)&defn))
868		return (0);
869
870	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
871
872	*fwdp = defn;
873
874	return (1);
875}
876
877static tdtrav_cb_f fwd_redir_cbs[] = {
878	NULL,
879	NULL,			/* intrinsic */
880	NULL,			/* pointer */
881	NULL,			/* array */
882	NULL,			/* function */
883	NULL,			/* struct */
884	NULL,			/* union */
885	NULL,			/* enum */
886	fwd_redir,		/* forward */
887	NULL,			/* typedef */
888	tdtrav_assert,		/* typedef_unres */
889	NULL,			/* volatile */
890	NULL,			/* const */
891	NULL			/* restrict */
892};
893
894typedef struct redir_mstr_data {
895	tdata_t *rmd_tgt;
896	alist_t *rmd_map;
897} redir_mstr_data_t;
898
899static int
900redir_mstr_fwd_cb(void *name, void *value, void *arg)
901{
902	tdesc_t *fwd = name;
903	int defnid = (uintptr_t)value;
904	redir_mstr_data_t *rmd = arg;
905	tdesc_t template;
906	tdesc_t *defn;
907
908	template.t_id = defnid;
909
910	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
911	    (void *)&defn)) {
912		aborterr("Couldn't unforward %d (%s)\n", defnid,
913		    tdesc_name(defn));
914	}
915
916	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
917
918	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
919
920	return (1);
921}
922
923static void
924redir_mstr_fwds(merge_cb_data_t *mcd)
925{
926	redir_mstr_data_t rmd;
927	alist_t *map = alist_new(NULL, NULL);
928
929	rmd.rmd_tgt = mcd->md_tgt;
930	rmd.rmd_map = map;
931
932	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
933		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
934		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
935	}
936
937	alist_free(map);
938}
939
940static int
941add_iitba_cb(void *data, void *private)
942{
943	merge_cb_data_t *mcd = private;
944	iidesc_t *tba = data;
945	iidesc_t *new;
946	iifind_data_t iif;
947	int newidx;
948
949	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
950	assert(newidx != -1);
951
952	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
953
954	iif.iif_template = tba;
955	iif.iif_ta = mcd->md_ta;
956	iif.iif_newidx = newidx;
957	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
958
959	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
960	    &iif) == 1) {
961		debug(3, "iidesc_t %s already exists\n",
962		    (tba->ii_name ? tba->ii_name : "(anon)"));
963		return (1);
964	}
965
966	new = conjure_iidesc(tba, mcd);
967	hash_add(mcd->md_tgt->td_iihash, new);
968
969	return (1);
970}
971
972static int
973add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
974{
975	tdesc_t *newtdp;
976	tdesc_t template;
977
978	template.t_id = newid;
979	assert(hash_find(mcd->md_parent->td_idhash,
980	    (void *)&template, NULL) == 0);
981
982	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
983	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
984	    oldtdp->t_id, newid, newid);
985
986	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
987	    mcd)) == NULL)
988		/* couldn't map everything */
989		return (0);
990
991	debug(3, "succeeded\n");
992
993	hash_add(mcd->md_tgt->td_idhash, newtdp);
994	hash_add(mcd->md_tgt->td_layouthash, newtdp);
995
996	return (1);
997}
998
999static int
1000add_tdtba_cb(void *data, void *arg)
1001{
1002	tdesc_t *tdp = data;
1003	merge_cb_data_t *mcd = arg;
1004	int newid;
1005	int rc;
1006
1007	newid = get_mapping(mcd->md_ta, tdp->t_id);
1008	assert(newid != -1);
1009
1010	if ((rc = add_tdesc(tdp, newid, mcd)))
1011		hash_remove(mcd->md_tdtba, (void *)tdp);
1012
1013	return (rc);
1014}
1015
1016static int
1017add_tdtbr_cb(void *data, void *arg)
1018{
1019	tdesc_t **tdpp = data;
1020	merge_cb_data_t *mcd = arg;
1021
1022	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1023
1024	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1025		return (0);
1026
1027	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1028	return (1);
1029}
1030
1031static void
1032merge_types(hash_t *src, merge_cb_data_t *mcd)
1033{
1034	list_t *iitba = NULL;
1035	list_t *tdtbr = NULL;
1036	int iirc, tdrc;
1037
1038	mcd->md_iitba = &iitba;
1039	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1040	    tdesc_layoutcmp);
1041	mcd->md_tdtbr = &tdtbr;
1042
1043	(void) hash_iter(src, merge_type_cb, mcd);
1044
1045	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1046	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1047
1048	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1049	debug(3, "add_iitba_cb added %d items\n", iirc);
1050
1051	assert(list_count(*mcd->md_iitba) == 0 &&
1052	    hash_count(mcd->md_tdtba) == 0);
1053
1054	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1055	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1056
1057	if (list_count(*mcd->md_tdtbr) != 0)
1058		aborterr("Couldn't remap all nodes\n");
1059
1060	/*
1061	 * We now have an alist of master forwards and the ids of the new master
1062	 * definitions for those forwards in mcd->md_fdida.  By this point,
1063	 * we're guaranteed that all of the master definitions referenced in
1064	 * fdida have been added to the master tree.  We now traverse through
1065	 * the master tree, redirecting all edges inbound to forwards that have
1066	 * definitions to those definitions.
1067	 */
1068	if (mcd->md_parent == mcd->md_tgt) {
1069		redir_mstr_fwds(mcd);
1070	}
1071}
1072
1073void
1074merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1075{
1076	merge_cb_data_t mcd;
1077
1078	cur->td_ref++;
1079	mstr->td_ref++;
1080	if (tgt)
1081		tgt->td_ref++;
1082
1083	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1084	    (tgt == NULL || tgt->td_ref == 1));
1085
1086	mcd.md_parent = mstr;
1087	mcd.md_tgt = (tgt ? tgt : mstr);
1088	mcd.md_ta = alist_new(NULL, NULL);
1089	mcd.md_fdida = alist_new(NULL, NULL);
1090	mcd.md_flags = 0;
1091
1092	if (selfuniquify)
1093		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1094	if (tgt)
1095		mcd.md_flags |= MCD_F_REFMERGE;
1096
1097	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1098	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1099
1100	merge_types(cur->td_iihash, &mcd);
1101
1102	if (debug_level >= 3) {
1103		debug(3, "Type association stats\n");
1104		alist_stats(mcd.md_ta, 0);
1105		debug(3, "Layout hash stats\n");
1106		hash_stats(mcd.md_tgt->td_layouthash, 1);
1107	}
1108
1109	alist_free(mcd.md_fdida);
1110	alist_free(mcd.md_ta);
1111
1112	cur->td_ref--;
1113	mstr->td_ref--;
1114	if (tgt)
1115		tgt->td_ref--;
1116}
1117
1118tdesc_ops_t tdesc_ops[] = {
1119	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1120	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1121	{ "pointer", 		equiv_plain,		conjure_plain },
1122	{ "array", 		equiv_array,		conjure_array },
1123	{ "function", 		equiv_function,		conjure_function },
1124	{ "struct",		equiv_su,		conjure_su },
1125	{ "union",		equiv_su,		conjure_su },
1126	{ "enum",		equiv_enum,		conjure_enum },
1127	{ "forward",		NULL,			conjure_forward },
1128	{ "typedef",		equiv_plain,		conjure_plain },
1129	{ "typedef_unres",	equiv_assert,		conjure_assert },
1130	{ "volatile",		equiv_plain,		conjure_plain },
1131	{ "const", 		equiv_plain,		conjure_plain },
1132	{ "restrict",		equiv_plain,		conjure_plain }
1133};
1134