ffs_alloc.c revision 329099
1/*	$NetBSD: ffs_alloc.c,v 1.14 2004/06/20 22:20:18 jmc Exp $	*/
2/* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3
4/*
5 * Copyright (c) 2002 Networks Associates Technology, Inc.
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Marshall
9 * Kirk McKusick and Network Associates Laboratories, the Security
10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12 * research program
13 *
14 * Copyright (c) 1982, 1986, 1989, 1993
15 *	The Regents of the University of California.  All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
42 */
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: stable/11/usr.sbin/makefs/ffs/ffs_alloc.c 329099 2018-02-10 04:37:44Z kevans $");
46
47#include <sys/param.h>
48#include <sys/time.h>
49
50#include <errno.h>
51#include <stdint.h>
52
53#include "makefs.h"
54
55#include <ufs/ufs/dinode.h>
56#include <ufs/ffs/fs.h>
57
58#include "ffs/ufs_bswap.h"
59#include "ffs/buf.h"
60#include "ffs/ufs_inode.h"
61#include "ffs/ffs_extern.h"
62
63static int scanc(u_int, const u_char *, const u_char *, int);
64
65static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
66static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
67static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
68		     daddr_t (*)(struct inode *, int, daddr_t, int));
69static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
70
71/*
72 * Allocate a block in the file system.
73 *
74 * The size of the requested block is given, which must be some
75 * multiple of fs_fsize and <= fs_bsize.
76 * A preference may be optionally specified. If a preference is given
77 * the following hierarchy is used to allocate a block:
78 *   1) allocate the requested block.
79 *   2) allocate a rotationally optimal block in the same cylinder.
80 *   3) allocate a block in the same cylinder group.
81 *   4) quadradically rehash into other cylinder groups, until an
82 *      available block is located.
83 * If no block preference is given the following hierarchy is used
84 * to allocate a block:
85 *   1) allocate a block in the cylinder group that contains the
86 *      inode for the file.
87 *   2) quadradically rehash into other cylinder groups, until an
88 *      available block is located.
89 */
90int
91ffs_alloc(struct inode *ip, daddr_t lbn __unused, daddr_t bpref, int size,
92    daddr_t *bnp)
93{
94	struct fs *fs = ip->i_fs;
95	daddr_t bno;
96	int cg;
97
98	*bnp = 0;
99	if (size > fs->fs_bsize || fragoff(fs, size) != 0) {
100		errx(1, "ffs_alloc: bad size: bsize %d size %d",
101		    fs->fs_bsize, size);
102	}
103	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
104		goto nospace;
105	if (bpref >= fs->fs_size)
106		bpref = 0;
107	if (bpref == 0)
108		cg = ino_to_cg(fs, ip->i_number);
109	else
110		cg = dtog(fs, bpref);
111	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
112	if (bno > 0) {
113		if (ip->i_fs->fs_magic == FS_UFS1_MAGIC)
114			ip->i_ffs1_blocks += size / DEV_BSIZE;
115		else
116			ip->i_ffs2_blocks += size / DEV_BSIZE;
117		*bnp = bno;
118		return (0);
119	}
120nospace:
121	return (ENOSPC);
122}
123
124/*
125 * Select the desired position for the next block in a file.  The file is
126 * logically divided into sections. The first section is composed of the
127 * direct blocks. Each additional section contains fs_maxbpg blocks.
128 *
129 * If no blocks have been allocated in the first section, the policy is to
130 * request a block in the same cylinder group as the inode that describes
131 * the file. If no blocks have been allocated in any other section, the
132 * policy is to place the section in a cylinder group with a greater than
133 * average number of free blocks.  An appropriate cylinder group is found
134 * by using a rotor that sweeps the cylinder groups. When a new group of
135 * blocks is needed, the sweep begins in the cylinder group following the
136 * cylinder group from which the previous allocation was made. The sweep
137 * continues until a cylinder group with greater than the average number
138 * of free blocks is found. If the allocation is for the first block in an
139 * indirect block, the information on the previous allocation is unavailable;
140 * here a best guess is made based upon the logical block number being
141 * allocated.
142 *
143 * If a section is already partially allocated, the policy is to
144 * contiguously allocate fs_maxcontig blocks.  The end of one of these
145 * contiguous blocks and the beginning of the next is physically separated
146 * so that the disk head will be in transit between them for at least
147 * fs_rotdelay milliseconds.  This is to allow time for the processor to
148 * schedule another I/O transfer.
149 */
150/* XXX ondisk32 */
151daddr_t
152ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
153{
154	struct fs *fs;
155	int cg;
156	int avgbfree, startcg;
157
158	fs = ip->i_fs;
159	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
160		if (lbn < NDADDR + NINDIR(fs)) {
161			cg = ino_to_cg(fs, ip->i_number);
162			return (fs->fs_fpg * cg + fs->fs_frag);
163		}
164		/*
165		 * Find a cylinder with greater than average number of
166		 * unused data blocks.
167		 */
168		if (indx == 0 || bap[indx - 1] == 0)
169			startcg =
170			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
171		else
172			startcg = dtog(fs,
173				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
174		startcg %= fs->fs_ncg;
175		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
176		for (cg = startcg; cg < fs->fs_ncg; cg++)
177			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
178				return (fs->fs_fpg * cg + fs->fs_frag);
179		for (cg = 0; cg <= startcg; cg++)
180			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
181				return (fs->fs_fpg * cg + fs->fs_frag);
182		return (0);
183	}
184	/*
185	 * We just always try to lay things out contiguously.
186	 */
187	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
188}
189
190daddr_t
191ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
192{
193	struct fs *fs;
194	int cg;
195	int avgbfree, startcg;
196
197	fs = ip->i_fs;
198	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
199		if (lbn < NDADDR + NINDIR(fs)) {
200			cg = ino_to_cg(fs, ip->i_number);
201			return (fs->fs_fpg * cg + fs->fs_frag);
202		}
203		/*
204		 * Find a cylinder with greater than average number of
205		 * unused data blocks.
206		 */
207		if (indx == 0 || bap[indx - 1] == 0)
208			startcg =
209			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
210		else
211			startcg = dtog(fs,
212				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
213		startcg %= fs->fs_ncg;
214		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
215		for (cg = startcg; cg < fs->fs_ncg; cg++)
216			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
217				return (fs->fs_fpg * cg + fs->fs_frag);
218			}
219		for (cg = 0; cg < startcg; cg++)
220			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
221				return (fs->fs_fpg * cg + fs->fs_frag);
222			}
223		return (0);
224	}
225	/*
226	 * We just always try to lay things out contiguously.
227	 */
228	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
229}
230
231/*
232 * Implement the cylinder overflow algorithm.
233 *
234 * The policy implemented by this algorithm is:
235 *   1) allocate the block in its requested cylinder group.
236 *   2) quadradically rehash on the cylinder group number.
237 *   3) brute force search for a free block.
238 *
239 * `size':	size for data blocks, mode for inodes
240 */
241/*VARARGS5*/
242static daddr_t
243ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
244    daddr_t (*allocator)(struct inode *, int, daddr_t, int))
245{
246	struct fs *fs;
247	daddr_t result;
248	int i, icg = cg;
249
250	fs = ip->i_fs;
251	/*
252	 * 1: preferred cylinder group
253	 */
254	result = (*allocator)(ip, cg, pref, size);
255	if (result)
256		return (result);
257	/*
258	 * 2: quadratic rehash
259	 */
260	for (i = 1; i < fs->fs_ncg; i *= 2) {
261		cg += i;
262		if (cg >= fs->fs_ncg)
263			cg -= fs->fs_ncg;
264		result = (*allocator)(ip, cg, 0, size);
265		if (result)
266			return (result);
267	}
268	/*
269	 * 3: brute force search
270	 * Note that we start at i == 2, since 0 was checked initially,
271	 * and 1 is always checked in the quadratic rehash.
272	 */
273	cg = (icg + 2) % fs->fs_ncg;
274	for (i = 2; i < fs->fs_ncg; i++) {
275		result = (*allocator)(ip, cg, 0, size);
276		if (result)
277			return (result);
278		cg++;
279		if (cg == fs->fs_ncg)
280			cg = 0;
281	}
282	return (0);
283}
284
285/*
286 * Determine whether a block can be allocated.
287 *
288 * Check to see if a block of the appropriate size is available,
289 * and if it is, allocate it.
290 */
291static daddr_t
292ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
293{
294	struct cg *cgp;
295	struct buf *bp;
296	daddr_t bno, blkno;
297	int error, frags, allocsiz, i;
298	struct fs *fs = ip->i_fs;
299	const int needswap = UFS_FSNEEDSWAP(fs);
300	struct vnode vp = { ip->i_fd, ip->i_fs, NULL, 0 };
301
302	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
303		return (0);
304	error = bread(&vp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
305	    NULL, &bp);
306	if (error) {
307		brelse(bp, 0);
308		return (0);
309	}
310	cgp = (struct cg *)bp->b_data;
311	if (!cg_chkmagic_swap(cgp, needswap) ||
312	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
313		brelse(bp, 0);
314		return (0);
315	}
316	if (size == fs->fs_bsize) {
317		bno = ffs_alloccgblk(ip, bp, bpref);
318		bdwrite(bp);
319		return (bno);
320	}
321	/*
322	 * check to see if any fragments are already available
323	 * allocsiz is the size which will be allocated, hacking
324	 * it down to a smaller size if necessary
325	 */
326	frags = numfrags(fs, size);
327	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
328		if (cgp->cg_frsum[allocsiz] != 0)
329			break;
330	if (allocsiz == fs->fs_frag) {
331		/*
332		 * no fragments were available, so a block will be
333		 * allocated, and hacked up
334		 */
335		if (cgp->cg_cs.cs_nbfree == 0) {
336			brelse(bp, 0);
337			return (0);
338		}
339		bno = ffs_alloccgblk(ip, bp, bpref);
340		bpref = dtogd(fs, bno);
341		for (i = frags; i < fs->fs_frag; i++)
342			setbit(cg_blksfree_swap(cgp, needswap), bpref + i);
343		i = fs->fs_frag - frags;
344		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
345		fs->fs_cstotal.cs_nffree += i;
346		fs->fs_cs(fs, cg).cs_nffree += i;
347		fs->fs_fmod = 1;
348		ufs_add32(cgp->cg_frsum[i], 1, needswap);
349		bdwrite(bp);
350		return (bno);
351	}
352	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
353	for (i = 0; i < frags; i++)
354		clrbit(cg_blksfree_swap(cgp, needswap), bno + i);
355	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
356	fs->fs_cstotal.cs_nffree -= frags;
357	fs->fs_cs(fs, cg).cs_nffree -= frags;
358	fs->fs_fmod = 1;
359	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
360	if (frags != allocsiz)
361		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
362	blkno = cg * fs->fs_fpg + bno;
363	bdwrite(bp);
364	return blkno;
365}
366
367/*
368 * Allocate a block in a cylinder group.
369 *
370 * This algorithm implements the following policy:
371 *   1) allocate the requested block.
372 *   2) allocate a rotationally optimal block in the same cylinder.
373 *   3) allocate the next available block on the block rotor for the
374 *      specified cylinder group.
375 * Note that this routine only allocates fs_bsize blocks; these
376 * blocks may be fragmented by the routine that allocates them.
377 */
378static daddr_t
379ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
380{
381	struct cg *cgp;
382	daddr_t blkno;
383	int32_t bno;
384	struct fs *fs = ip->i_fs;
385	const int needswap = UFS_FSNEEDSWAP(fs);
386	u_int8_t *blksfree_swap;
387
388	cgp = (struct cg *)bp->b_data;
389	blksfree_swap = cg_blksfree_swap(cgp, needswap);
390	if (bpref == 0 || (uint32_t)dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
391		bpref = ufs_rw32(cgp->cg_rotor, needswap);
392	} else {
393		bpref = blknum(fs, bpref);
394		bno = dtogd(fs, bpref);
395		/*
396		 * if the requested block is available, use it
397		 */
398		if (ffs_isblock(fs, blksfree_swap, fragstoblks(fs, bno)))
399			goto gotit;
400	}
401	/*
402	 * Take the next available one in this cylinder group.
403	 */
404	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
405	if (bno < 0)
406		return (0);
407	cgp->cg_rotor = ufs_rw32(bno, needswap);
408gotit:
409	blkno = fragstoblks(fs, bno);
410	ffs_clrblock(fs, blksfree_swap, (long)blkno);
411	ffs_clusteracct(fs, cgp, blkno, -1);
412	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
413	fs->fs_cstotal.cs_nbfree--;
414	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
415	fs->fs_fmod = 1;
416	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
417	return (blkno);
418}
419
420/*
421 * Free a block or fragment.
422 *
423 * The specified block or fragment is placed back in the
424 * free map. If a fragment is deallocated, a possible
425 * block reassembly is checked.
426 */
427void
428ffs_blkfree(struct inode *ip, daddr_t bno, long size)
429{
430	struct cg *cgp;
431	struct buf *bp;
432	int32_t fragno, cgbno;
433	int i, error, cg, blk, frags, bbase;
434	struct fs *fs = ip->i_fs;
435	const int needswap = UFS_FSNEEDSWAP(fs);
436	struct vnode vp = { ip->i_fd, ip->i_fs, NULL, 0 };
437
438	if (size > fs->fs_bsize || fragoff(fs, size) != 0 ||
439	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
440		errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
441		    (long long)bno, fs->fs_bsize, size);
442	}
443	cg = dtog(fs, bno);
444	if (bno >= fs->fs_size) {
445		warnx("bad block %lld, ino %ju", (long long)bno,
446		    (uintmax_t)ip->i_number);
447		return;
448	}
449	error = bread(&vp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
450	    NULL, &bp);
451	if (error) {
452		brelse(bp, 0);
453		return;
454	}
455	cgp = (struct cg *)bp->b_data;
456	if (!cg_chkmagic_swap(cgp, needswap)) {
457		brelse(bp, 0);
458		return;
459	}
460	cgbno = dtogd(fs, bno);
461	if (size == fs->fs_bsize) {
462		fragno = fragstoblks(fs, cgbno);
463		if (!ffs_isfreeblock(fs, cg_blksfree_swap(cgp, needswap), fragno)) {
464			errx(1, "blkfree: freeing free block %lld",
465			    (long long)bno);
466		}
467		ffs_setblock(fs, cg_blksfree_swap(cgp, needswap), fragno);
468		ffs_clusteracct(fs, cgp, fragno, 1);
469		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
470		fs->fs_cstotal.cs_nbfree++;
471		fs->fs_cs(fs, cg).cs_nbfree++;
472	} else {
473		bbase = cgbno - fragnum(fs, cgbno);
474		/*
475		 * decrement the counts associated with the old frags
476		 */
477		blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bbase);
478		ffs_fragacct_swap(fs, blk, cgp->cg_frsum, -1, needswap);
479		/*
480		 * deallocate the fragment
481		 */
482		frags = numfrags(fs, size);
483		for (i = 0; i < frags; i++) {
484			if (isset(cg_blksfree_swap(cgp, needswap), cgbno + i)) {
485				errx(1, "blkfree: freeing free frag: block %lld",
486				    (long long)(cgbno + i));
487			}
488			setbit(cg_blksfree_swap(cgp, needswap), cgbno + i);
489		}
490		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
491		fs->fs_cstotal.cs_nffree += i;
492		fs->fs_cs(fs, cg).cs_nffree += i;
493		/*
494		 * add back in counts associated with the new frags
495		 */
496		blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bbase);
497		ffs_fragacct_swap(fs, blk, cgp->cg_frsum, 1, needswap);
498		/*
499		 * if a complete block has been reassembled, account for it
500		 */
501		fragno = fragstoblks(fs, bbase);
502		if (ffs_isblock(fs, cg_blksfree_swap(cgp, needswap), fragno)) {
503			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
504			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
505			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
506			ffs_clusteracct(fs, cgp, fragno, 1);
507			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
508			fs->fs_cstotal.cs_nbfree++;
509			fs->fs_cs(fs, cg).cs_nbfree++;
510		}
511	}
512	fs->fs_fmod = 1;
513	bdwrite(bp);
514}
515
516
517static int
518scanc(u_int size, const u_char *cp, const u_char table[], int mask)
519{
520	const u_char *end = &cp[size];
521
522	while (cp < end && (table[*cp] & mask) == 0)
523		cp++;
524	return (end - cp);
525}
526
527/*
528 * Find a block of the specified size in the specified cylinder group.
529 *
530 * It is a panic if a request is made to find a block if none are
531 * available.
532 */
533static int32_t
534ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
535{
536	int32_t bno;
537	int start, len, loc, i;
538	int blk, field, subfield, pos;
539	int ostart, olen;
540	const int needswap = UFS_FSNEEDSWAP(fs);
541
542	/*
543	 * find the fragment by searching through the free block
544	 * map for an appropriate bit pattern
545	 */
546	if (bpref)
547		start = dtogd(fs, bpref) / NBBY;
548	else
549		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
550	len = howmany(fs->fs_fpg, NBBY) - start;
551	ostart = start;
552	olen = len;
553	loc = scanc((u_int)len,
554		(const u_char *)&cg_blksfree_swap(cgp, needswap)[start],
555		(const u_char *)fragtbl[fs->fs_frag],
556		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
557	if (loc == 0) {
558		len = start + 1;
559		start = 0;
560		loc = scanc((u_int)len,
561			(const u_char *)&cg_blksfree_swap(cgp, needswap)[0],
562			(const u_char *)fragtbl[fs->fs_frag],
563			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
564		if (loc == 0) {
565			errx(1,
566    "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
567				ostart, olen,
568				ufs_rw32(cgp->cg_freeoff, needswap),
569				(long)cg_blksfree_swap(cgp, needswap) - (long)cgp);
570			/* NOTREACHED */
571		}
572	}
573	bno = (start + len - loc) * NBBY;
574	cgp->cg_frotor = ufs_rw32(bno, needswap);
575	/*
576	 * found the byte in the map
577	 * sift through the bits to find the selected frag
578	 */
579	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
580		blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bno);
581		blk <<= 1;
582		field = around[allocsiz];
583		subfield = inside[allocsiz];
584		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
585			if ((blk & field) == subfield)
586				return (bno + pos);
587			field <<= 1;
588			subfield <<= 1;
589		}
590	}
591	errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
592	return (-1);
593}
594
595/*
596 * Update the cluster map because of an allocation or free.
597 *
598 * Cnt == 1 means free; cnt == -1 means allocating.
599 */
600void
601ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
602{
603	int32_t *sump;
604	int32_t *lp;
605	u_char *freemapp, *mapp;
606	int i, start, end, forw, back, map, bit;
607	const int needswap = UFS_FSNEEDSWAP(fs);
608
609	if (fs->fs_contigsumsize <= 0)
610		return;
611	freemapp = cg_clustersfree_swap(cgp, needswap);
612	sump = cg_clustersum_swap(cgp, needswap);
613	/*
614	 * Allocate or clear the actual block.
615	 */
616	if (cnt > 0)
617		setbit(freemapp, blkno);
618	else
619		clrbit(freemapp, blkno);
620	/*
621	 * Find the size of the cluster going forward.
622	 */
623	start = blkno + 1;
624	end = start + fs->fs_contigsumsize;
625	if ((unsigned)end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
626		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
627	mapp = &freemapp[start / NBBY];
628	map = *mapp++;
629	bit = 1 << (start % NBBY);
630	for (i = start; i < end; i++) {
631		if ((map & bit) == 0)
632			break;
633		if ((i & (NBBY - 1)) != (NBBY - 1)) {
634			bit <<= 1;
635		} else {
636			map = *mapp++;
637			bit = 1;
638		}
639	}
640	forw = i - start;
641	/*
642	 * Find the size of the cluster going backward.
643	 */
644	start = blkno - 1;
645	end = start - fs->fs_contigsumsize;
646	if (end < 0)
647		end = -1;
648	mapp = &freemapp[start / NBBY];
649	map = *mapp--;
650	bit = 1 << (start % NBBY);
651	for (i = start; i > end; i--) {
652		if ((map & bit) == 0)
653			break;
654		if ((i & (NBBY - 1)) != 0) {
655			bit >>= 1;
656		} else {
657			map = *mapp--;
658			bit = 1 << (NBBY - 1);
659		}
660	}
661	back = start - i;
662	/*
663	 * Account for old cluster and the possibly new forward and
664	 * back clusters.
665	 */
666	i = back + forw + 1;
667	if (i > fs->fs_contigsumsize)
668		i = fs->fs_contigsumsize;
669	ufs_add32(sump[i], cnt, needswap);
670	if (back > 0)
671		ufs_add32(sump[back], -cnt, needswap);
672	if (forw > 0)
673		ufs_add32(sump[forw], -cnt, needswap);
674
675	/*
676	 * Update cluster summary information.
677	 */
678	lp = &sump[fs->fs_contigsumsize];
679	for (i = fs->fs_contigsumsize; i > 0; i--)
680		if (ufs_rw32(*lp--, needswap) > 0)
681			break;
682	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
683}
684