camdd.c revision 356692
1/*-
2 * Copyright (c) 1997-2007 Kenneth D. Merry
3 * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13 *    substantially similar to the "NO WARRANTY" disclaimer below
14 *    ("Disclaimer") and any redistribution must be conditioned upon
15 *    including a substantially similar Disclaimer requirement for further
16 *    binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGES.
30 *
31 * Authors: Ken Merry           (Spectra Logic Corporation)
32 */
33
34/*
35 * This is eventually intended to be:
36 * - A basic data transfer/copy utility
37 * - A simple benchmark utility
38 * - An example of how to use the asynchronous pass(4) driver interface.
39 */
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/11/usr.sbin/camdd/camdd.c 356692 2020-01-13 18:22:51Z kevans $");
42
43#include <sys/ioctl.h>
44#include <sys/stdint.h>
45#include <sys/types.h>
46#include <sys/endian.h>
47#include <sys/param.h>
48#include <sys/sbuf.h>
49#include <sys/stat.h>
50#include <sys/event.h>
51#include <sys/time.h>
52#include <sys/uio.h>
53#include <vm/vm.h>
54#include <machine/bus.h>
55#include <sys/bus.h>
56#include <sys/bus_dma.h>
57#include <sys/mtio.h>
58#include <sys/conf.h>
59#include <sys/disk.h>
60
61#include <stdio.h>
62#include <stdlib.h>
63#include <semaphore.h>
64#include <string.h>
65#include <unistd.h>
66#include <inttypes.h>
67#include <limits.h>
68#include <fcntl.h>
69#include <ctype.h>
70#include <err.h>
71#include <libutil.h>
72#include <pthread.h>
73#include <assert.h>
74#include <bsdxml.h>
75
76#include <cam/cam.h>
77#include <cam/cam_debug.h>
78#include <cam/cam_ccb.h>
79#include <cam/scsi/scsi_all.h>
80#include <cam/scsi/scsi_da.h>
81#include <cam/scsi/scsi_pass.h>
82#include <cam/scsi/scsi_message.h>
83#include <cam/scsi/smp_all.h>
84#include <camlib.h>
85#include <mtlib.h>
86#include <zlib.h>
87
88typedef enum {
89	CAMDD_CMD_NONE		= 0x00000000,
90	CAMDD_CMD_HELP		= 0x00000001,
91	CAMDD_CMD_WRITE		= 0x00000002,
92	CAMDD_CMD_READ		= 0x00000003
93} camdd_cmdmask;
94
95typedef enum {
96	CAMDD_ARG_NONE		= 0x00000000,
97	CAMDD_ARG_VERBOSE	= 0x00000001,
98	CAMDD_ARG_DEVICE	= 0x00000002,
99	CAMDD_ARG_BUS		= 0x00000004,
100	CAMDD_ARG_TARGET	= 0x00000008,
101	CAMDD_ARG_LUN		= 0x00000010,
102	CAMDD_ARG_UNIT		= 0x00000020,
103	CAMDD_ARG_TIMEOUT	= 0x00000040,
104	CAMDD_ARG_ERR_RECOVER	= 0x00000080,
105	CAMDD_ARG_RETRIES	= 0x00000100
106} camdd_argmask;
107
108typedef enum {
109	CAMDD_DEV_NONE		= 0x00,
110	CAMDD_DEV_PASS		= 0x01,
111	CAMDD_DEV_FILE		= 0x02
112} camdd_dev_type;
113
114struct camdd_io_opts {
115	camdd_dev_type	dev_type;
116	char		*dev_name;
117	uint64_t	blocksize;
118	uint64_t	queue_depth;
119	uint64_t	offset;
120	int		min_cmd_size;
121	int		write_dev;
122	uint64_t	debug;
123};
124
125typedef enum {
126	CAMDD_BUF_NONE,
127	CAMDD_BUF_DATA,
128	CAMDD_BUF_INDIRECT
129} camdd_buf_type;
130
131struct camdd_buf_indirect {
132	/*
133	 * Pointer to the source buffer.
134	 */
135	struct camdd_buf *src_buf;
136
137	/*
138	 * Offset into the source buffer, in bytes.
139	 */
140	uint64_t	  offset;
141	/*
142	 * Pointer to the starting point in the source buffer.
143	 */
144	uint8_t		 *start_ptr;
145
146	/*
147	 * Length of this chunk in bytes.
148	 */
149	size_t		  len;
150};
151
152struct camdd_buf_data {
153	/*
154	 * Buffer allocated when we allocate this camdd_buf.  This should
155	 * be the size of the blocksize for this device.
156	 */
157	uint8_t			*buf;
158
159	/*
160	 * The amount of backing store allocated in buf.  Generally this
161	 * will be the blocksize of the device.
162	 */
163	uint32_t		 alloc_len;
164
165	/*
166	 * The amount of data that was put into the buffer (on reads) or
167	 * the amount of data we have put onto the src_list so far (on
168	 * writes).
169	 */
170	uint32_t		 fill_len;
171
172	/*
173	 * The amount of data that was not transferred.
174	 */
175	uint32_t		 resid;
176
177	/*
178	 * Starting byte offset on the reader.
179	 */
180	uint64_t		 src_start_offset;
181
182	/*
183	 * CCB used for pass(4) device targets.
184	 */
185	union ccb		 ccb;
186
187	/*
188	 * Number of scatter/gather segments.
189	 */
190	int			 sg_count;
191
192	/*
193	 * Set if we had to tack on an extra buffer to round the transfer
194	 * up to a sector size.
195	 */
196	int			 extra_buf;
197
198	/*
199	 * Scatter/gather list used generally when we're the writer for a
200	 * pass(4) device.
201	 */
202	bus_dma_segment_t	*segs;
203
204	/*
205	 * Scatter/gather list used generally when we're the writer for a
206	 * file or block device;
207	 */
208	struct iovec		*iovec;
209};
210
211union camdd_buf_types {
212	struct camdd_buf_indirect	indirect;
213	struct camdd_buf_data		data;
214};
215
216typedef enum {
217	CAMDD_STATUS_NONE,
218	CAMDD_STATUS_OK,
219	CAMDD_STATUS_SHORT_IO,
220	CAMDD_STATUS_EOF,
221	CAMDD_STATUS_ERROR
222} camdd_buf_status;
223
224struct camdd_buf {
225	camdd_buf_type		 buf_type;
226	union camdd_buf_types	 buf_type_spec;
227
228	camdd_buf_status	 status;
229
230	uint64_t		 lba;
231	size_t			 len;
232
233	/*
234	 * A reference count of how many indirect buffers point to this
235	 * buffer.
236	 */
237	int			 refcount;
238
239	/*
240	 * A link back to our parent device.
241	 */
242	struct camdd_dev	*dev;
243	STAILQ_ENTRY(camdd_buf)  links;
244	STAILQ_ENTRY(camdd_buf)  work_links;
245
246	/*
247	 * A count of the buffers on the src_list.
248	 */
249	int			 src_count;
250
251	/*
252	 * List of buffers from our partner thread that are the components
253	 * of this buffer for the I/O.  Uses src_links.
254	 */
255	STAILQ_HEAD(,camdd_buf)	 src_list;
256	STAILQ_ENTRY(camdd_buf)  src_links;
257};
258
259#define	NUM_DEV_TYPES	2
260
261struct camdd_dev_pass {
262	int			 scsi_dev_type;
263	struct cam_device	*dev;
264	uint64_t		 max_sector;
265	uint32_t		 block_len;
266	uint32_t		 cpi_maxio;
267};
268
269typedef enum {
270	CAMDD_FILE_NONE,
271	CAMDD_FILE_REG,
272	CAMDD_FILE_STD,
273	CAMDD_FILE_PIPE,
274	CAMDD_FILE_DISK,
275	CAMDD_FILE_TAPE,
276	CAMDD_FILE_TTY,
277	CAMDD_FILE_MEM
278} camdd_file_type;
279
280typedef enum {
281	CAMDD_FF_NONE 		= 0x00,
282	CAMDD_FF_CAN_SEEK	= 0x01
283} camdd_file_flags;
284
285struct camdd_dev_file {
286	int			 fd;
287	struct stat		 sb;
288	char			 filename[MAXPATHLEN + 1];
289	camdd_file_type		 file_type;
290	camdd_file_flags	 file_flags;
291	uint8_t			*tmp_buf;
292};
293
294struct camdd_dev_block {
295	int			 fd;
296	uint64_t		 size_bytes;
297	uint32_t		 block_len;
298};
299
300union camdd_dev_spec {
301	struct camdd_dev_pass	pass;
302	struct camdd_dev_file	file;
303	struct camdd_dev_block	block;
304};
305
306typedef enum {
307	CAMDD_DEV_FLAG_NONE		= 0x00,
308	CAMDD_DEV_FLAG_EOF		= 0x01,
309	CAMDD_DEV_FLAG_PEER_EOF		= 0x02,
310	CAMDD_DEV_FLAG_ACTIVE		= 0x04,
311	CAMDD_DEV_FLAG_EOF_SENT		= 0x08,
312	CAMDD_DEV_FLAG_EOF_QUEUED	= 0x10
313} camdd_dev_flags;
314
315struct camdd_dev {
316	camdd_dev_type		 dev_type;
317	union camdd_dev_spec	 dev_spec;
318	camdd_dev_flags		 flags;
319	char			 device_name[MAXPATHLEN+1];
320	uint32_t		 blocksize;
321	uint32_t		 sector_size;
322	uint64_t		 max_sector;
323	uint64_t		 sector_io_limit;
324	int			 min_cmd_size;
325	int			 write_dev;
326	int			 retry_count;
327	int			 io_timeout;
328	int			 debug;
329	uint64_t		 start_offset_bytes;
330	uint64_t		 next_io_pos_bytes;
331	uint64_t		 next_peer_pos_bytes;
332	uint64_t		 next_completion_pos_bytes;
333	uint64_t		 peer_bytes_queued;
334	uint64_t		 bytes_transferred;
335	uint32_t		 target_queue_depth;
336	uint32_t		 cur_active_io;
337	uint8_t			*extra_buf;
338	uint32_t		 extra_buf_len;
339	struct camdd_dev	*peer_dev;
340	pthread_mutex_t		 mutex;
341	pthread_cond_t		 cond;
342	int			 kq;
343
344	int			 (*run)(struct camdd_dev *dev);
345	int			 (*fetch)(struct camdd_dev *dev);
346
347	/*
348	 * Buffers that are available for I/O.  Uses links.
349	 */
350	STAILQ_HEAD(,camdd_buf)	 free_queue;
351
352	/*
353	 * Free indirect buffers.  These are used for breaking a large
354	 * buffer into multiple pieces.
355	 */
356	STAILQ_HEAD(,camdd_buf)	 free_indirect_queue;
357
358	/*
359	 * Buffers that have been queued to the kernel.  Uses links.
360	 */
361	STAILQ_HEAD(,camdd_buf)	 active_queue;
362
363	/*
364	 * Will generally contain one of our buffers that is waiting for enough
365	 * I/O from our partner thread to be able to execute.  This will
366	 * generally happen when our per-I/O-size is larger than the
367	 * partner thread's per-I/O-size.  Uses links.
368	 */
369	STAILQ_HEAD(,camdd_buf)	 pending_queue;
370
371	/*
372	 * Number of buffers on the pending queue
373	 */
374	int			 num_pending_queue;
375
376	/*
377	 * Buffers that are filled and ready to execute.  This is used when
378	 * our partner (reader) thread sends us blocks that are larger than
379	 * our blocksize, and so we have to split them into multiple pieces.
380	 */
381	STAILQ_HEAD(,camdd_buf)	 run_queue;
382
383	/*
384	 * Number of buffers on the run queue.
385	 */
386	int			 num_run_queue;
387
388	STAILQ_HEAD(,camdd_buf)	 reorder_queue;
389
390	int			 num_reorder_queue;
391
392	/*
393	 * Buffers that have been queued to us by our partner thread
394	 * (generally the reader thread) to be written out.  Uses
395	 * work_links.
396	 */
397	STAILQ_HEAD(,camdd_buf)	 work_queue;
398
399	/*
400	 * Buffers that have been completed by our partner thread.  Uses
401	 * work_links.
402	 */
403	STAILQ_HEAD(,camdd_buf)	 peer_done_queue;
404
405	/*
406	 * Number of buffers on the peer done queue.
407	 */
408	uint32_t		 num_peer_done_queue;
409
410	/*
411	 * A list of buffers that we have queued to our peer thread.  Uses
412	 * links.
413	 */
414	STAILQ_HEAD(,camdd_buf)	 peer_work_queue;
415
416	/*
417	 * Number of buffers on the peer work queue.
418	 */
419	uint32_t		 num_peer_work_queue;
420};
421
422static sem_t camdd_sem;
423static sig_atomic_t need_exit = 0;
424static sig_atomic_t error_exit = 0;
425static sig_atomic_t need_status = 0;
426
427#ifndef min
428#define	min(a, b) (a < b) ? a : b
429#endif
430
431/*
432 * XXX KDM private copy of timespecsub().  This is normally defined in
433 * sys/time.h, but is only enabled in the kernel.  If that definition is
434 * enabled in userland, it breaks the build of libnetbsd.
435 */
436#ifndef timespecsub
437#define	timespecsub(vvp, uvp)						\
438	do {								\
439		(vvp)->tv_sec -= (uvp)->tv_sec;				\
440		(vvp)->tv_nsec -= (uvp)->tv_nsec;			\
441		if ((vvp)->tv_nsec < 0) {				\
442			(vvp)->tv_sec--;				\
443			(vvp)->tv_nsec += 1000000000;			\
444		}							\
445	} while (0)
446#endif
447
448
449/* Generically useful offsets into the peripheral private area */
450#define ppriv_ptr0 periph_priv.entries[0].ptr
451#define ppriv_ptr1 periph_priv.entries[1].ptr
452#define ppriv_field0 periph_priv.entries[0].field
453#define ppriv_field1 periph_priv.entries[1].field
454
455#define	ccb_buf	ppriv_ptr0
456
457#define	CAMDD_FILE_DEFAULT_BLOCK	524288
458#define	CAMDD_FILE_DEFAULT_DEPTH	1
459#define	CAMDD_PASS_MAX_BLOCK		1048576
460#define	CAMDD_PASS_DEFAULT_DEPTH	6
461#define	CAMDD_PASS_RW_TIMEOUT		60 * 1000
462
463static int parse_btl(char *tstr, int *bus, int *target, int *lun,
464		     camdd_argmask *arglst);
465void camdd_free_dev(struct camdd_dev *dev);
466struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
467				  struct kevent *new_ke, int num_ke,
468				  int retry_count, int timeout);
469static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
470					 camdd_buf_type buf_type);
471void camdd_release_buf(struct camdd_buf *buf);
472struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
473int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
474			uint32_t sector_size, uint32_t *num_sectors_used,
475			int *double_buf_needed);
476uint32_t camdd_buf_get_len(struct camdd_buf *buf);
477void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
478int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
479		     uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
480struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
481				   int retry_count, int timeout);
482struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
483				   struct camdd_io_opts *io_opts,
484				   camdd_argmask arglist, int probe_retry_count,
485				   int probe_timeout, int io_retry_count,
486				   int io_timeout);
487void *camdd_file_worker(void *arg);
488camdd_buf_status camdd_ccb_status(union ccb *ccb);
489int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
490int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
491void camdd_peer_done(struct camdd_buf *buf);
492void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
493			int *error_count);
494int camdd_pass_fetch(struct camdd_dev *dev);
495int camdd_file_run(struct camdd_dev *dev);
496int camdd_pass_run(struct camdd_dev *dev);
497int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
498int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
499void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
500		     uint32_t *peer_depth, uint32_t *our_bytes,
501		     uint32_t *peer_bytes);
502void *camdd_worker(void *arg);
503void camdd_sig_handler(int sig);
504void camdd_print_status(struct camdd_dev *camdd_dev,
505			struct camdd_dev *other_dev,
506			struct timespec *start_time);
507int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
508	     uint64_t max_io, int retry_count, int timeout);
509int camdd_parse_io_opts(char *args, int is_write,
510			struct camdd_io_opts *io_opts);
511void usage(void);
512
513/*
514 * Parse out a bus, or a bus, target and lun in the following
515 * format:
516 * bus
517 * bus:target
518 * bus:target:lun
519 *
520 * Returns the number of parsed components, or 0.
521 */
522static int
523parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
524{
525	char *tmpstr;
526	int convs = 0;
527
528	while (isspace(*tstr) && (*tstr != '\0'))
529		tstr++;
530
531	tmpstr = (char *)strtok(tstr, ":");
532	if ((tmpstr != NULL) && (*tmpstr != '\0')) {
533		*bus = strtol(tmpstr, NULL, 0);
534		*arglst |= CAMDD_ARG_BUS;
535		convs++;
536		tmpstr = (char *)strtok(NULL, ":");
537		if ((tmpstr != NULL) && (*tmpstr != '\0')) {
538			*target = strtol(tmpstr, NULL, 0);
539			*arglst |= CAMDD_ARG_TARGET;
540			convs++;
541			tmpstr = (char *)strtok(NULL, ":");
542			if ((tmpstr != NULL) && (*tmpstr != '\0')) {
543				*lun = strtol(tmpstr, NULL, 0);
544				*arglst |= CAMDD_ARG_LUN;
545				convs++;
546			}
547		}
548	}
549
550	return convs;
551}
552
553/*
554 * XXX KDM clean up and free all of the buffers on the queue!
555 */
556void
557camdd_free_dev(struct camdd_dev *dev)
558{
559	if (dev == NULL)
560		return;
561
562	switch (dev->dev_type) {
563	case CAMDD_DEV_FILE: {
564		struct camdd_dev_file *file_dev = &dev->dev_spec.file;
565
566		if (file_dev->fd != -1)
567			close(file_dev->fd);
568		free(file_dev->tmp_buf);
569		break;
570	}
571	case CAMDD_DEV_PASS: {
572		struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
573
574		if (pass_dev->dev != NULL)
575			cam_close_device(pass_dev->dev);
576		break;
577	}
578	default:
579		break;
580	}
581
582	free(dev);
583}
584
585struct camdd_dev *
586camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
587		int retry_count, int timeout)
588{
589	struct camdd_dev *dev = NULL;
590	struct kevent *ke;
591	size_t ke_size;
592	int retval = 0;
593
594	dev = calloc(1, sizeof(*dev));
595	if (dev == NULL) {
596		warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
597		goto bailout;
598	}
599
600	dev->dev_type = dev_type;
601	dev->io_timeout = timeout;
602	dev->retry_count = retry_count;
603	STAILQ_INIT(&dev->free_queue);
604	STAILQ_INIT(&dev->free_indirect_queue);
605	STAILQ_INIT(&dev->active_queue);
606	STAILQ_INIT(&dev->pending_queue);
607	STAILQ_INIT(&dev->run_queue);
608	STAILQ_INIT(&dev->reorder_queue);
609	STAILQ_INIT(&dev->work_queue);
610	STAILQ_INIT(&dev->peer_done_queue);
611	STAILQ_INIT(&dev->peer_work_queue);
612	retval = pthread_mutex_init(&dev->mutex, NULL);
613	if (retval != 0) {
614		warnc(retval, "%s: failed to initialize mutex", __func__);
615		goto bailout;
616	}
617
618	retval = pthread_cond_init(&dev->cond, NULL);
619	if (retval != 0) {
620		warnc(retval, "%s: failed to initialize condition variable",
621		      __func__);
622		goto bailout;
623	}
624
625	dev->kq = kqueue();
626	if (dev->kq == -1) {
627		warn("%s: Unable to create kqueue", __func__);
628		goto bailout;
629	}
630
631	ke_size = sizeof(struct kevent) * (num_ke + 4);
632	ke = calloc(1, ke_size);
633	if (ke == NULL) {
634		warn("%s: unable to malloc %zu bytes", __func__, ke_size);
635		goto bailout;
636	}
637	if (num_ke > 0)
638		bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
639
640	EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
641	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
642	EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
643	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
644	EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
645	EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
646
647	retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
648	if (retval == -1) {
649		warn("%s: Unable to register kevents", __func__);
650		goto bailout;
651	}
652
653
654	return (dev);
655
656bailout:
657	free(dev);
658
659	return (NULL);
660}
661
662static struct camdd_buf *
663camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
664{
665	struct camdd_buf *buf = NULL;
666	uint8_t *data_ptr = NULL;
667
668	/*
669	 * We only need to allocate data space for data buffers.
670	 */
671	switch (buf_type) {
672	case CAMDD_BUF_DATA:
673		data_ptr = malloc(dev->blocksize);
674		if (data_ptr == NULL) {
675			warn("unable to allocate %u bytes", dev->blocksize);
676			goto bailout_error;
677		}
678		break;
679	default:
680		break;
681	}
682
683	buf = calloc(1, sizeof(*buf));
684	if (buf == NULL) {
685		warn("unable to allocate %zu bytes", sizeof(*buf));
686		goto bailout_error;
687	}
688
689	buf->buf_type = buf_type;
690	buf->dev = dev;
691	switch (buf_type) {
692	case CAMDD_BUF_DATA: {
693		struct camdd_buf_data *data;
694
695		data = &buf->buf_type_spec.data;
696
697		data->alloc_len = dev->blocksize;
698		data->buf = data_ptr;
699		break;
700	}
701	case CAMDD_BUF_INDIRECT:
702		break;
703	default:
704		break;
705	}
706	STAILQ_INIT(&buf->src_list);
707
708	return (buf);
709
710bailout_error:
711	free(data_ptr);
712
713	return (NULL);
714}
715
716void
717camdd_release_buf(struct camdd_buf *buf)
718{
719	struct camdd_dev *dev;
720
721	dev = buf->dev;
722
723	switch (buf->buf_type) {
724	case CAMDD_BUF_DATA: {
725		struct camdd_buf_data *data;
726
727		data = &buf->buf_type_spec.data;
728
729		if (data->segs != NULL) {
730			if (data->extra_buf != 0) {
731				void *extra_buf;
732
733				extra_buf = (void *)
734				    data->segs[data->sg_count - 1].ds_addr;
735				free(extra_buf);
736				data->extra_buf = 0;
737			}
738			free(data->segs);
739			data->segs = NULL;
740			data->sg_count = 0;
741		} else if (data->iovec != NULL) {
742			if (data->extra_buf != 0) {
743				free(data->iovec[data->sg_count - 1].iov_base);
744				data->extra_buf = 0;
745			}
746			free(data->iovec);
747			data->iovec = NULL;
748			data->sg_count = 0;
749		}
750		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
751		break;
752	}
753	case CAMDD_BUF_INDIRECT:
754		STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
755		break;
756	default:
757		err(1, "%s: Invalid buffer type %d for released buffer",
758		    __func__, buf->buf_type);
759		break;
760	}
761}
762
763struct camdd_buf *
764camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
765{
766	struct camdd_buf *buf = NULL;
767
768	switch (buf_type) {
769	case CAMDD_BUF_DATA:
770		buf = STAILQ_FIRST(&dev->free_queue);
771		if (buf != NULL) {
772			struct camdd_buf_data *data;
773			uint8_t *data_ptr;
774			uint32_t alloc_len;
775
776			STAILQ_REMOVE_HEAD(&dev->free_queue, links);
777			data = &buf->buf_type_spec.data;
778			data_ptr = data->buf;
779			alloc_len = data->alloc_len;
780			bzero(buf, sizeof(*buf));
781			data->buf = data_ptr;
782			data->alloc_len = alloc_len;
783		}
784		break;
785	case CAMDD_BUF_INDIRECT:
786		buf = STAILQ_FIRST(&dev->free_indirect_queue);
787		if (buf != NULL) {
788			STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
789
790			bzero(buf, sizeof(*buf));
791		}
792		break;
793	default:
794		warnx("Unknown buffer type %d requested", buf_type);
795		break;
796	}
797
798
799	if (buf == NULL)
800		return (camdd_alloc_buf(dev, buf_type));
801	else {
802		STAILQ_INIT(&buf->src_list);
803		buf->dev = dev;
804		buf->buf_type = buf_type;
805
806		return (buf);
807	}
808}
809
810int
811camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
812		    uint32_t *num_sectors_used, int *double_buf_needed)
813{
814	struct camdd_buf *tmp_buf;
815	struct camdd_buf_data *data;
816	uint8_t *extra_buf = NULL;
817	size_t extra_buf_len = 0;
818	int i, retval = 0;
819
820	data = &buf->buf_type_spec.data;
821
822	data->sg_count = buf->src_count;
823	/*
824	 * Compose a scatter/gather list from all of the buffers in the list.
825	 * If the length of the buffer isn't a multiple of the sector size,
826	 * we'll have to add an extra buffer.  This should only happen
827	 * at the end of a transfer.
828	 */
829	if ((data->fill_len % sector_size) != 0) {
830		extra_buf_len = sector_size - (data->fill_len % sector_size);
831		extra_buf = calloc(extra_buf_len, 1);
832		if (extra_buf == NULL) {
833			warn("%s: unable to allocate %zu bytes for extra "
834			    "buffer space", __func__, extra_buf_len);
835			retval = 1;
836			goto bailout;
837		}
838		data->extra_buf = 1;
839		data->sg_count++;
840	}
841	if (iovec == 0) {
842		data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
843		if (data->segs == NULL) {
844			warn("%s: unable to allocate %zu bytes for S/G list",
845			    __func__, sizeof(bus_dma_segment_t) *
846			    data->sg_count);
847			retval = 1;
848			goto bailout;
849		}
850
851	} else {
852		data->iovec = calloc(data->sg_count, sizeof(struct iovec));
853		if (data->iovec == NULL) {
854			warn("%s: unable to allocate %zu bytes for S/G list",
855			    __func__, sizeof(struct iovec) * data->sg_count);
856			retval = 1;
857			goto bailout;
858		}
859	}
860
861	for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
862	     i < buf->src_count && tmp_buf != NULL; i++,
863	     tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
864
865		if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
866			struct camdd_buf_data *tmp_data;
867
868			tmp_data = &tmp_buf->buf_type_spec.data;
869			if (iovec == 0) {
870				data->segs[i].ds_addr =
871				    (bus_addr_t) tmp_data->buf;
872				data->segs[i].ds_len = tmp_data->fill_len -
873				    tmp_data->resid;
874			} else {
875				data->iovec[i].iov_base = tmp_data->buf;
876				data->iovec[i].iov_len = tmp_data->fill_len -
877				    tmp_data->resid;
878			}
879			if (((tmp_data->fill_len - tmp_data->resid) %
880			     sector_size) != 0)
881				*double_buf_needed = 1;
882		} else {
883			struct camdd_buf_indirect *tmp_ind;
884
885			tmp_ind = &tmp_buf->buf_type_spec.indirect;
886			if (iovec == 0) {
887				data->segs[i].ds_addr =
888				    (bus_addr_t)tmp_ind->start_ptr;
889				data->segs[i].ds_len = tmp_ind->len;
890			} else {
891				data->iovec[i].iov_base = tmp_ind->start_ptr;
892				data->iovec[i].iov_len = tmp_ind->len;
893			}
894			if ((tmp_ind->len % sector_size) != 0)
895				*double_buf_needed = 1;
896		}
897	}
898
899	if (extra_buf != NULL) {
900		if (iovec == 0) {
901			data->segs[i].ds_addr = (bus_addr_t)extra_buf;
902			data->segs[i].ds_len = extra_buf_len;
903		} else {
904			data->iovec[i].iov_base = extra_buf;
905			data->iovec[i].iov_len = extra_buf_len;
906		}
907		i++;
908	}
909	if ((tmp_buf != NULL) || (i != data->sg_count)) {
910		warnx("buffer source count does not match "
911		      "number of buffers in list!");
912		retval = 1;
913		goto bailout;
914	}
915
916bailout:
917	if (retval == 0) {
918		*num_sectors_used = (data->fill_len + extra_buf_len) /
919		    sector_size;
920	}
921	return (retval);
922}
923
924uint32_t
925camdd_buf_get_len(struct camdd_buf *buf)
926{
927	uint32_t len = 0;
928
929	if (buf->buf_type != CAMDD_BUF_DATA) {
930		struct camdd_buf_indirect *indirect;
931
932		indirect = &buf->buf_type_spec.indirect;
933		len = indirect->len;
934	} else {
935		struct camdd_buf_data *data;
936
937		data = &buf->buf_type_spec.data;
938		len = data->fill_len;
939	}
940
941	return (len);
942}
943
944void
945camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
946{
947	struct camdd_buf_data *data;
948
949	assert(buf->buf_type == CAMDD_BUF_DATA);
950
951	data = &buf->buf_type_spec.data;
952
953	STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
954	buf->src_count++;
955
956	data->fill_len += camdd_buf_get_len(child_buf);
957}
958
959typedef enum {
960	CAMDD_TS_MAX_BLK,
961	CAMDD_TS_MIN_BLK,
962	CAMDD_TS_BLK_GRAN,
963	CAMDD_TS_EFF_IOSIZE
964} camdd_status_item_index;
965
966static struct camdd_status_items {
967	const char *name;
968	struct mt_status_entry *entry;
969} req_status_items[] = {
970	{ "max_blk", NULL },
971	{ "min_blk", NULL },
972	{ "blk_gran", NULL },
973	{ "max_effective_iosize", NULL }
974};
975
976int
977camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
978		 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
979{
980	struct mt_status_data status_data;
981	char *xml_str = NULL;
982	unsigned int i;
983	int retval = 0;
984
985	retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
986	if (retval != 0)
987		err(1, "Couldn't get XML string from %s", filename);
988
989	retval = mt_get_status(xml_str, &status_data);
990	if (retval != XML_STATUS_OK) {
991		warn("couldn't get status for %s", filename);
992		retval = 1;
993		goto bailout;
994	} else
995		retval = 0;
996
997	if (status_data.error != 0) {
998		warnx("%s", status_data.error_str);
999		retval = 1;
1000		goto bailout;
1001	}
1002
1003	for (i = 0; i < nitems(req_status_items); i++) {
1004                char *name;
1005
1006		name = __DECONST(char *, req_status_items[i].name);
1007		req_status_items[i].entry = mt_status_entry_find(&status_data,
1008		    name);
1009		if (req_status_items[i].entry == NULL) {
1010			errx(1, "Cannot find status entry %s",
1011			    req_status_items[i].name);
1012		}
1013	}
1014
1015	*max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1016	*max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1017	*min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1018	*blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1019bailout:
1020
1021	free(xml_str);
1022	mt_status_free(&status_data);
1023
1024	return (retval);
1025}
1026
1027struct camdd_dev *
1028camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1029    int timeout)
1030{
1031	struct camdd_dev *dev = NULL;
1032	struct camdd_dev_file *file_dev;
1033	uint64_t blocksize = io_opts->blocksize;
1034
1035	dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1036	if (dev == NULL)
1037		goto bailout;
1038
1039	file_dev = &dev->dev_spec.file;
1040	file_dev->fd = fd;
1041	strlcpy(file_dev->filename, io_opts->dev_name,
1042	    sizeof(file_dev->filename));
1043	strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1044	if (blocksize == 0)
1045		dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1046	else
1047		dev->blocksize = blocksize;
1048
1049	if ((io_opts->queue_depth != 0)
1050	 && (io_opts->queue_depth != 1)) {
1051		warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1052		    "command supported", (uintmax_t)io_opts->queue_depth,
1053		    io_opts->dev_name);
1054	}
1055	dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1056	dev->run = camdd_file_run;
1057	dev->fetch = NULL;
1058
1059	/*
1060	 * We can effectively access files on byte boundaries.  We'll reset
1061	 * this for devices like disks that can be accessed on sector
1062	 * boundaries.
1063	 */
1064	dev->sector_size = 1;
1065
1066	if ((fd != STDIN_FILENO)
1067	 && (fd != STDOUT_FILENO)) {
1068		int retval;
1069
1070		retval = fstat(fd, &file_dev->sb);
1071		if (retval != 0) {
1072			warn("Cannot stat %s", dev->device_name);
1073			goto bailout_error;
1074		}
1075		if (S_ISREG(file_dev->sb.st_mode)) {
1076			file_dev->file_type = CAMDD_FILE_REG;
1077		} else if (S_ISCHR(file_dev->sb.st_mode)) {
1078			int type;
1079
1080			if (ioctl(fd, FIODTYPE, &type) == -1)
1081				err(1, "FIODTYPE ioctl failed on %s",
1082				    dev->device_name);
1083			else {
1084				if (type & D_TAPE)
1085					file_dev->file_type = CAMDD_FILE_TAPE;
1086				else if (type & D_DISK)
1087					file_dev->file_type = CAMDD_FILE_DISK;
1088				else if (type & D_MEM)
1089					file_dev->file_type = CAMDD_FILE_MEM;
1090				else if (type & D_TTY)
1091					file_dev->file_type = CAMDD_FILE_TTY;
1092			}
1093		} else if (S_ISDIR(file_dev->sb.st_mode)) {
1094			errx(1, "cannot operate on directory %s",
1095			    dev->device_name);
1096		} else if (S_ISFIFO(file_dev->sb.st_mode)) {
1097			file_dev->file_type = CAMDD_FILE_PIPE;
1098		} else
1099			errx(1, "Cannot determine file type for %s",
1100			    dev->device_name);
1101
1102		switch (file_dev->file_type) {
1103		case CAMDD_FILE_REG:
1104			if (file_dev->sb.st_size != 0)
1105				dev->max_sector = file_dev->sb.st_size - 1;
1106			else
1107				dev->max_sector = 0;
1108			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1109			break;
1110		case CAMDD_FILE_TAPE: {
1111			uint64_t max_iosize, max_blk, min_blk, blk_gran;
1112			/*
1113			 * Check block limits and maximum effective iosize.
1114			 * Make sure the blocksize is within the block
1115			 * limits (and a multiple of the minimum blocksize)
1116			 * and that the blocksize is <= maximum effective
1117			 * iosize.
1118			 */
1119			retval = camdd_probe_tape(fd, dev->device_name,
1120			    &max_iosize, &max_blk, &min_blk, &blk_gran);
1121			if (retval != 0)
1122				errx(1, "Unable to probe tape %s",
1123				    dev->device_name);
1124
1125			/*
1126			 * The blocksize needs to be <= the maximum
1127			 * effective I/O size of the tape device.  Note
1128			 * that this also takes into account the maximum
1129			 * blocksize reported by READ BLOCK LIMITS.
1130			 */
1131			if (dev->blocksize > max_iosize) {
1132				warnx("Blocksize %u too big for %s, limiting "
1133				    "to %ju", dev->blocksize, dev->device_name,
1134				    max_iosize);
1135				dev->blocksize = max_iosize;
1136			}
1137
1138			/*
1139			 * The blocksize needs to be at least min_blk;
1140			 */
1141			if (dev->blocksize < min_blk) {
1142				warnx("Blocksize %u too small for %s, "
1143				    "increasing to %ju", dev->blocksize,
1144				    dev->device_name, min_blk);
1145				dev->blocksize = min_blk;
1146			}
1147
1148			/*
1149			 * And the blocksize needs to be a multiple of
1150			 * the block granularity.
1151			 */
1152			if ((blk_gran != 0)
1153			 && (dev->blocksize % (1 << blk_gran))) {
1154				warnx("Blocksize %u for %s not a multiple of "
1155				    "%d, adjusting to %d", dev->blocksize,
1156				    dev->device_name, (1 << blk_gran),
1157				    dev->blocksize & ~((1 << blk_gran) - 1));
1158				dev->blocksize &= ~((1 << blk_gran) - 1);
1159			}
1160
1161			if (dev->blocksize == 0) {
1162				errx(1, "Unable to derive valid blocksize for "
1163				    "%s", dev->device_name);
1164			}
1165
1166			/*
1167			 * For tape drives, set the sector size to the
1168			 * blocksize so that we make sure not to write
1169			 * less than the blocksize out to the drive.
1170			 */
1171			dev->sector_size = dev->blocksize;
1172			break;
1173		}
1174		case CAMDD_FILE_DISK: {
1175			off_t media_size;
1176			unsigned int sector_size;
1177
1178			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1179
1180			if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1181				err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1182				    dev->device_name);
1183			}
1184
1185			if (sector_size == 0) {
1186				errx(1, "DIOCGSECTORSIZE ioctl returned "
1187				    "invalid sector size %u for %s",
1188				    sector_size, dev->device_name);
1189			}
1190
1191			if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1192				err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1193				    dev->device_name);
1194			}
1195
1196			if (media_size == 0) {
1197				errx(1, "DIOCGMEDIASIZE ioctl returned "
1198				    "invalid media size %ju for %s",
1199				    (uintmax_t)media_size, dev->device_name);
1200			}
1201
1202			if (dev->blocksize % sector_size) {
1203				errx(1, "%s blocksize %u not a multiple of "
1204				    "sector size %u", dev->device_name,
1205				    dev->blocksize, sector_size);
1206			}
1207
1208			dev->sector_size = sector_size;
1209			dev->max_sector = (media_size / sector_size) - 1;
1210			break;
1211		}
1212		case CAMDD_FILE_MEM:
1213			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1214			break;
1215		default:
1216			break;
1217		}
1218	}
1219
1220	if ((io_opts->offset != 0)
1221	 && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1222		warnx("Offset %ju specified for %s, but we cannot seek on %s",
1223		    io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1224		goto bailout_error;
1225	}
1226#if 0
1227	else if ((io_opts->offset != 0)
1228		&& ((io_opts->offset % dev->sector_size) != 0)) {
1229		warnx("Offset %ju for %s is not a multiple of the "
1230		      "sector size %u", io_opts->offset,
1231		      io_opts->dev_name, dev->sector_size);
1232		goto bailout_error;
1233	} else {
1234		dev->start_offset_bytes = io_opts->offset;
1235	}
1236#endif
1237
1238bailout:
1239	return (dev);
1240
1241bailout_error:
1242	camdd_free_dev(dev);
1243	return (NULL);
1244}
1245
1246/*
1247 * Need to implement this.  Do a basic probe:
1248 * - Check the inquiry data, make sure we're talking to a device that we
1249 *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1250 * - Send a test unit ready, make sure the device is available.
1251 * - Get the capacity and block size.
1252 */
1253struct camdd_dev *
1254camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1255		 camdd_argmask arglist, int probe_retry_count,
1256		 int probe_timeout, int io_retry_count, int io_timeout)
1257{
1258	union ccb *ccb;
1259	uint64_t maxsector;
1260	uint32_t cpi_maxio, max_iosize, pass_numblocks;
1261	uint32_t block_len;
1262	struct scsi_read_capacity_data rcap;
1263	struct scsi_read_capacity_data_long rcaplong;
1264	struct camdd_dev *dev;
1265	struct camdd_dev_pass *pass_dev;
1266	struct kevent ke;
1267	int scsi_dev_type;
1268
1269	dev = NULL;
1270
1271	scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1272	maxsector = 0;
1273	block_len = 0;
1274
1275	/*
1276	 * For devices that support READ CAPACITY, we'll attempt to get the
1277	 * capacity.  Otherwise, we really don't support tape or other
1278	 * devices via SCSI passthrough, so just return an error in that case.
1279	 */
1280	switch (scsi_dev_type) {
1281	case T_DIRECT:
1282	case T_WORM:
1283	case T_CDROM:
1284	case T_OPTICAL:
1285	case T_RBC:
1286	case T_ZBC_HM:
1287		break;
1288	default:
1289		errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1290		break; /*NOTREACHED*/
1291	}
1292
1293	ccb = cam_getccb(cam_dev);
1294
1295	if (ccb == NULL) {
1296		warnx("%s: error allocating ccb", __func__);
1297		goto bailout;
1298	}
1299
1300	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
1301
1302	scsi_read_capacity(&ccb->csio,
1303			   /*retries*/ probe_retry_count,
1304			   /*cbfcnp*/ NULL,
1305			   /*tag_action*/ MSG_SIMPLE_Q_TAG,
1306			   &rcap,
1307			   SSD_FULL_SIZE,
1308			   /*timeout*/ probe_timeout ? probe_timeout : 5000);
1309
1310	/* Disable freezing the device queue */
1311	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1312
1313	if (arglist & CAMDD_ARG_ERR_RECOVER)
1314		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1315
1316	if (cam_send_ccb(cam_dev, ccb) < 0) {
1317		warn("error sending READ CAPACITY command");
1318
1319		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1320				CAM_EPF_ALL, stderr);
1321
1322		goto bailout;
1323	}
1324
1325	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1326		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1327		goto bailout;
1328	}
1329
1330	maxsector = scsi_4btoul(rcap.addr);
1331	block_len = scsi_4btoul(rcap.length);
1332
1333	/*
1334	 * A last block of 2^32-1 means that the true capacity is over 2TB,
1335	 * and we need to issue the long READ CAPACITY to get the real
1336	 * capacity.  Otherwise, we're all set.
1337	 */
1338	if (maxsector != 0xffffffff)
1339		goto rcap_done;
1340
1341	scsi_read_capacity_16(&ccb->csio,
1342			      /*retries*/ probe_retry_count,
1343			      /*cbfcnp*/ NULL,
1344			      /*tag_action*/ MSG_SIMPLE_Q_TAG,
1345			      /*lba*/ 0,
1346			      /*reladdr*/ 0,
1347			      /*pmi*/ 0,
1348			      (uint8_t *)&rcaplong,
1349			      sizeof(rcaplong),
1350			      /*sense_len*/ SSD_FULL_SIZE,
1351			      /*timeout*/ probe_timeout ? probe_timeout : 5000);
1352
1353	/* Disable freezing the device queue */
1354	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1355
1356	if (arglist & CAMDD_ARG_ERR_RECOVER)
1357		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1358
1359	if (cam_send_ccb(cam_dev, ccb) < 0) {
1360		warn("error sending READ CAPACITY (16) command");
1361		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1362				CAM_EPF_ALL, stderr);
1363		goto bailout;
1364	}
1365
1366	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1367		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1368		goto bailout;
1369	}
1370
1371	maxsector = scsi_8btou64(rcaplong.addr);
1372	block_len = scsi_4btoul(rcaplong.length);
1373
1374rcap_done:
1375	if (block_len == 0) {
1376		warnx("Sector size for %s%u is 0, cannot continue",
1377		    cam_dev->device_name, cam_dev->dev_unit_num);
1378		goto bailout_error;
1379	}
1380
1381	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi);
1382
1383	ccb->ccb_h.func_code = XPT_PATH_INQ;
1384	ccb->ccb_h.flags = CAM_DIR_NONE;
1385	ccb->ccb_h.retry_count = 1;
1386
1387	if (cam_send_ccb(cam_dev, ccb) < 0) {
1388		warn("error sending XPT_PATH_INQ CCB");
1389
1390		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1391				CAM_EPF_ALL, stderr);
1392		goto bailout;
1393	}
1394
1395	EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1396
1397	dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1398			      io_timeout);
1399	if (dev == NULL)
1400		goto bailout;
1401
1402	pass_dev = &dev->dev_spec.pass;
1403	pass_dev->scsi_dev_type = scsi_dev_type;
1404	pass_dev->dev = cam_dev;
1405	pass_dev->max_sector = maxsector;
1406	pass_dev->block_len = block_len;
1407	pass_dev->cpi_maxio = ccb->cpi.maxio;
1408	snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1409		 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1410	dev->sector_size = block_len;
1411	dev->max_sector = maxsector;
1412
1413
1414	/*
1415	 * Determine the optimal blocksize to use for this device.
1416	 */
1417
1418	/*
1419	 * If the controller has not specified a maximum I/O size,
1420	 * just go with 128K as a somewhat conservative value.
1421	 */
1422	if (pass_dev->cpi_maxio == 0)
1423		cpi_maxio = 131072;
1424	else
1425		cpi_maxio = pass_dev->cpi_maxio;
1426
1427	/*
1428	 * If the controller has a large maximum I/O size, limit it
1429	 * to something smaller so that the kernel doesn't have trouble
1430	 * allocating buffers to copy data in and out for us.
1431	 * XXX KDM this is until we have unmapped I/O support in the kernel.
1432	 */
1433	max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1434
1435	/*
1436	 * If we weren't able to get a block size for some reason,
1437	 * default to 512 bytes.
1438	 */
1439	block_len = pass_dev->block_len;
1440	if (block_len == 0)
1441		block_len = 512;
1442
1443	/*
1444	 * Figure out how many blocksize chunks will fit in the
1445	 * maximum I/O size.
1446	 */
1447	pass_numblocks = max_iosize / block_len;
1448
1449	/*
1450	 * And finally, multiple the number of blocks by the LBA
1451	 * length to get our maximum block size;
1452	 */
1453	dev->blocksize = pass_numblocks * block_len;
1454
1455	if (io_opts->blocksize != 0) {
1456		if ((io_opts->blocksize % dev->sector_size) != 0) {
1457			warnx("Blocksize %ju for %s is not a multiple of "
1458			      "sector size %u", (uintmax_t)io_opts->blocksize,
1459			      dev->device_name, dev->sector_size);
1460			goto bailout_error;
1461		}
1462		dev->blocksize = io_opts->blocksize;
1463	}
1464	dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1465	if (io_opts->queue_depth != 0)
1466		dev->target_queue_depth = io_opts->queue_depth;
1467
1468	if (io_opts->offset != 0) {
1469		if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1470			warnx("Offset %ju is past the end of device %s",
1471			    io_opts->offset, dev->device_name);
1472			goto bailout_error;
1473		}
1474#if 0
1475		else if ((io_opts->offset % dev->sector_size) != 0) {
1476			warnx("Offset %ju for %s is not a multiple of the "
1477			      "sector size %u", io_opts->offset,
1478			      dev->device_name, dev->sector_size);
1479			goto bailout_error;
1480		}
1481		dev->start_offset_bytes = io_opts->offset;
1482#endif
1483	}
1484
1485	dev->min_cmd_size = io_opts->min_cmd_size;
1486
1487	dev->run = camdd_pass_run;
1488	dev->fetch = camdd_pass_fetch;
1489
1490bailout:
1491	cam_freeccb(ccb);
1492
1493	return (dev);
1494
1495bailout_error:
1496	cam_freeccb(ccb);
1497
1498	camdd_free_dev(dev);
1499
1500	return (NULL);
1501}
1502
1503void *
1504camdd_worker(void *arg)
1505{
1506	struct camdd_dev *dev = arg;
1507	struct camdd_buf *buf;
1508	struct timespec ts, *kq_ts;
1509
1510	ts.tv_sec = 0;
1511	ts.tv_nsec = 0;
1512
1513	pthread_mutex_lock(&dev->mutex);
1514
1515	dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1516
1517	for (;;) {
1518		struct kevent ke;
1519		int retval = 0;
1520
1521		/*
1522		 * XXX KDM check the reorder queue depth?
1523		 */
1524		if (dev->write_dev == 0) {
1525			uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1526			uint32_t target_depth = dev->target_queue_depth;
1527			uint32_t peer_target_depth =
1528			    dev->peer_dev->target_queue_depth;
1529			uint32_t peer_blocksize = dev->peer_dev->blocksize;
1530
1531			camdd_get_depth(dev, &our_depth, &peer_depth,
1532					&our_bytes, &peer_bytes);
1533
1534#if 0
1535			while (((our_depth < target_depth)
1536			     && (peer_depth < peer_target_depth))
1537			    || ((peer_bytes + our_bytes) <
1538				 (peer_blocksize * 2))) {
1539#endif
1540			while (((our_depth + peer_depth) <
1541			        (target_depth + peer_target_depth))
1542			    || ((peer_bytes + our_bytes) <
1543				(peer_blocksize * 3))) {
1544
1545				retval = camdd_queue(dev, NULL);
1546				if (retval == 1)
1547					break;
1548				else if (retval != 0) {
1549					error_exit = 1;
1550					goto bailout;
1551				}
1552
1553				camdd_get_depth(dev, &our_depth, &peer_depth,
1554						&our_bytes, &peer_bytes);
1555			}
1556		}
1557		/*
1558		 * See if we have any I/O that is ready to execute.
1559		 */
1560		buf = STAILQ_FIRST(&dev->run_queue);
1561		if (buf != NULL) {
1562			while (dev->target_queue_depth > dev->cur_active_io) {
1563				retval = dev->run(dev);
1564				if (retval == -1) {
1565					dev->flags |= CAMDD_DEV_FLAG_EOF;
1566					error_exit = 1;
1567					break;
1568				} else if (retval != 0) {
1569					break;
1570				}
1571			}
1572		}
1573
1574		/*
1575		 * We've reached EOF, or our partner has reached EOF.
1576		 */
1577		if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1578		 || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1579			if (dev->write_dev != 0) {
1580			 	if ((STAILQ_EMPTY(&dev->work_queue))
1581				 && (dev->num_run_queue == 0)
1582				 && (dev->cur_active_io == 0)) {
1583					goto bailout;
1584				}
1585			} else {
1586				/*
1587				 * If we're the reader, and the writer
1588				 * got EOF, he is already done.  If we got
1589				 * the EOF, then we need to wait until
1590				 * everything is flushed out for the writer.
1591				 */
1592				if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1593					goto bailout;
1594				} else if ((dev->num_peer_work_queue == 0)
1595					&& (dev->num_peer_done_queue == 0)
1596					&& (dev->cur_active_io == 0)
1597					&& (dev->num_run_queue == 0)) {
1598					goto bailout;
1599				}
1600			}
1601			/*
1602			 * XXX KDM need to do something about the pending
1603			 * queue and cleanup resources.
1604			 */
1605		}
1606
1607		if ((dev->write_dev == 0)
1608		 && (dev->cur_active_io == 0)
1609		 && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1610			kq_ts = &ts;
1611		else
1612			kq_ts = NULL;
1613
1614		/*
1615		 * Run kevent to see if there are events to process.
1616		 */
1617		pthread_mutex_unlock(&dev->mutex);
1618		retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1619		pthread_mutex_lock(&dev->mutex);
1620		if (retval == -1) {
1621			warn("%s: error returned from kevent",__func__);
1622			goto bailout;
1623		} else if (retval != 0) {
1624			switch (ke.filter) {
1625			case EVFILT_READ:
1626				if (dev->fetch != NULL) {
1627					retval = dev->fetch(dev);
1628					if (retval == -1) {
1629						error_exit = 1;
1630						goto bailout;
1631					}
1632				}
1633				break;
1634			case EVFILT_SIGNAL:
1635				/*
1636				 * We register for this so we don't get
1637				 * an error as a result of a SIGINFO or a
1638				 * SIGINT.  It will actually get handled
1639				 * by the signal handler.  If we get a
1640				 * SIGINT, bail out without printing an
1641				 * error message.  Any other signals
1642				 * will result in the error message above.
1643				 */
1644				if (ke.ident == SIGINT)
1645					goto bailout;
1646				break;
1647			case EVFILT_USER:
1648				retval = 0;
1649				/*
1650				 * Check to see if the other thread has
1651				 * queued any I/O for us to do.  (In this
1652				 * case we're the writer.)
1653				 */
1654				for (buf = STAILQ_FIRST(&dev->work_queue);
1655				     buf != NULL;
1656				     buf = STAILQ_FIRST(&dev->work_queue)) {
1657					STAILQ_REMOVE_HEAD(&dev->work_queue,
1658							   work_links);
1659					retval = camdd_queue(dev, buf);
1660					/*
1661					 * We keep going unless we get an
1662					 * actual error.  If we get EOF, we
1663					 * still want to remove the buffers
1664					 * from the queue and send the back
1665					 * to the reader thread.
1666					 */
1667					if (retval == -1) {
1668						error_exit = 1;
1669						goto bailout;
1670					} else
1671						retval = 0;
1672				}
1673
1674				/*
1675				 * Next check to see if the other thread has
1676				 * queued any completed buffers back to us.
1677				 * (In this case we're the reader.)
1678				 */
1679				for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1680				     buf != NULL;
1681				     buf = STAILQ_FIRST(&dev->peer_done_queue)){
1682					STAILQ_REMOVE_HEAD(
1683					    &dev->peer_done_queue, work_links);
1684					dev->num_peer_done_queue--;
1685					camdd_peer_done(buf);
1686				}
1687				break;
1688			default:
1689				warnx("%s: unknown kevent filter %d",
1690				      __func__, ke.filter);
1691				break;
1692			}
1693		}
1694	}
1695
1696bailout:
1697
1698	dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1699
1700	/* XXX KDM cleanup resources here? */
1701
1702	pthread_mutex_unlock(&dev->mutex);
1703
1704	need_exit = 1;
1705	sem_post(&camdd_sem);
1706
1707	return (NULL);
1708}
1709
1710/*
1711 * Simplistic translation of CCB status to our local status.
1712 */
1713camdd_buf_status
1714camdd_ccb_status(union ccb *ccb)
1715{
1716	camdd_buf_status status = CAMDD_STATUS_NONE;
1717	cam_status ccb_status;
1718
1719	ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1720
1721	switch (ccb_status) {
1722	case CAM_REQ_CMP: {
1723		if (ccb->csio.resid == 0) {
1724			status = CAMDD_STATUS_OK;
1725		} else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1726			status = CAMDD_STATUS_SHORT_IO;
1727		} else {
1728			status = CAMDD_STATUS_EOF;
1729		}
1730		break;
1731	}
1732	case CAM_SCSI_STATUS_ERROR: {
1733		switch (ccb->csio.scsi_status) {
1734		case SCSI_STATUS_OK:
1735		case SCSI_STATUS_COND_MET:
1736		case SCSI_STATUS_INTERMED:
1737		case SCSI_STATUS_INTERMED_COND_MET:
1738			status = CAMDD_STATUS_OK;
1739			break;
1740		case SCSI_STATUS_CMD_TERMINATED:
1741		case SCSI_STATUS_CHECK_COND:
1742		case SCSI_STATUS_QUEUE_FULL:
1743		case SCSI_STATUS_BUSY:
1744		case SCSI_STATUS_RESERV_CONFLICT:
1745		default:
1746			status = CAMDD_STATUS_ERROR;
1747			break;
1748		}
1749		break;
1750	}
1751	default:
1752		status = CAMDD_STATUS_ERROR;
1753		break;
1754	}
1755
1756	return (status);
1757}
1758
1759/*
1760 * Queue a buffer to our peer's work thread for writing.
1761 *
1762 * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1763 */
1764int
1765camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1766{
1767	struct kevent ke;
1768	STAILQ_HEAD(, camdd_buf) local_queue;
1769	struct camdd_buf *buf1, *buf2;
1770	struct camdd_buf_data *data = NULL;
1771	uint64_t peer_bytes_queued = 0;
1772	int active = 1;
1773	int retval = 0;
1774
1775	STAILQ_INIT(&local_queue);
1776
1777	/*
1778	 * Since we're the reader, we need to queue our I/O to the writer
1779	 * in sequential order in order to make sure it gets written out
1780	 * in sequential order.
1781	 *
1782	 * Check the next expected I/O starting offset.  If this doesn't
1783	 * match, put it on the reorder queue.
1784	 */
1785	if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1786
1787		/*
1788		 * If there is nothing on the queue, there is no sorting
1789		 * needed.
1790		 */
1791		if (STAILQ_EMPTY(&dev->reorder_queue)) {
1792			STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1793			dev->num_reorder_queue++;
1794			goto bailout;
1795		}
1796
1797		/*
1798		 * Sort in ascending order by starting LBA.  There should
1799		 * be no identical LBAs.
1800		 */
1801		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1802		     buf1 = buf2) {
1803			buf2 = STAILQ_NEXT(buf1, links);
1804			if (buf->lba < buf1->lba) {
1805				/*
1806				 * If we're less than the first one, then
1807				 * we insert at the head of the list
1808				 * because this has to be the first element
1809				 * on the list.
1810				 */
1811				STAILQ_INSERT_HEAD(&dev->reorder_queue,
1812						   buf, links);
1813				dev->num_reorder_queue++;
1814				break;
1815			} else if (buf->lba > buf1->lba) {
1816				if (buf2 == NULL) {
1817					STAILQ_INSERT_TAIL(&dev->reorder_queue,
1818					    buf, links);
1819					dev->num_reorder_queue++;
1820					break;
1821				} else if (buf->lba < buf2->lba) {
1822					STAILQ_INSERT_AFTER(&dev->reorder_queue,
1823					    buf1, buf, links);
1824					dev->num_reorder_queue++;
1825					break;
1826				}
1827			} else {
1828				errx(1, "Found buffers with duplicate LBA %ju!",
1829				     buf->lba);
1830			}
1831		}
1832		goto bailout;
1833	} else {
1834
1835		/*
1836		 * We're the next expected I/O completion, so put ourselves
1837		 * on the local queue to be sent to the writer.  We use
1838		 * work_links here so that we can queue this to the
1839		 * peer_work_queue before taking the buffer off of the
1840		 * local_queue.
1841		 */
1842		dev->next_completion_pos_bytes += buf->len;
1843		STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1844
1845		/*
1846		 * Go through the reorder queue looking for more sequential
1847		 * I/O and add it to the local queue.
1848		 */
1849		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1850		     buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1851			/*
1852			 * As soon as we see an I/O that is out of sequence,
1853			 * we're done.
1854			 */
1855			if ((buf1->lba * dev->sector_size) !=
1856			     dev->next_completion_pos_bytes)
1857				break;
1858
1859			STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1860			dev->num_reorder_queue--;
1861			STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1862			dev->next_completion_pos_bytes += buf1->len;
1863		}
1864	}
1865
1866	/*
1867	 * Setup the event to let the other thread know that it has work
1868	 * pending.
1869	 */
1870	EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1871	       NOTE_TRIGGER, 0, NULL);
1872
1873	/*
1874	 * Put this on our shadow queue so that we know what we've queued
1875	 * to the other thread.
1876	 */
1877	STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1878		if (buf1->buf_type != CAMDD_BUF_DATA) {
1879			errx(1, "%s: should have a data buffer, not an "
1880			    "indirect buffer", __func__);
1881		}
1882		data = &buf1->buf_type_spec.data;
1883
1884		/*
1885		 * We only need to send one EOF to the writer, and don't
1886		 * need to continue sending EOFs after that.
1887		 */
1888		if (buf1->status == CAMDD_STATUS_EOF) {
1889			if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1890				STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1891				    work_links);
1892				camdd_release_buf(buf1);
1893				retval = 1;
1894				continue;
1895			}
1896			dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1897		}
1898
1899
1900		STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
1901		peer_bytes_queued += (data->fill_len - data->resid);
1902		dev->peer_bytes_queued += (data->fill_len - data->resid);
1903		dev->num_peer_work_queue++;
1904	}
1905
1906	if (STAILQ_FIRST(&local_queue) == NULL)
1907		goto bailout;
1908
1909	/*
1910	 * Drop our mutex and pick up the other thread's mutex.  We need to
1911	 * do this to avoid deadlocks.
1912	 */
1913	pthread_mutex_unlock(&dev->mutex);
1914	pthread_mutex_lock(&dev->peer_dev->mutex);
1915
1916	if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
1917		/*
1918		 * Put the buffers on the other thread's incoming work queue.
1919		 */
1920		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1921		     buf1 = STAILQ_FIRST(&local_queue)) {
1922			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1923			STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
1924					   work_links);
1925		}
1926		/*
1927		 * Send an event to the other thread's kqueue to let it know
1928		 * that there is something on the work queue.
1929		 */
1930		retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
1931		if (retval == -1)
1932			warn("%s: unable to add peer work_queue kevent",
1933			     __func__);
1934		else
1935			retval = 0;
1936	} else
1937		active = 0;
1938
1939	pthread_mutex_unlock(&dev->peer_dev->mutex);
1940	pthread_mutex_lock(&dev->mutex);
1941
1942	/*
1943	 * If the other side isn't active, run through the queue and
1944	 * release all of the buffers.
1945	 */
1946	if (active == 0) {
1947		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1948		     buf1 = STAILQ_FIRST(&local_queue)) {
1949			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1950			STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
1951				      links);
1952			dev->num_peer_work_queue--;
1953			camdd_release_buf(buf1);
1954		}
1955		dev->peer_bytes_queued -= peer_bytes_queued;
1956		retval = 1;
1957	}
1958
1959bailout:
1960	return (retval);
1961}
1962
1963/*
1964 * Return a buffer to the reader thread when we have completed writing it.
1965 */
1966int
1967camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
1968{
1969	struct kevent ke;
1970	int retval = 0;
1971
1972	/*
1973	 * Setup the event to let the other thread know that we have
1974	 * completed a buffer.
1975	 */
1976	EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
1977	       NOTE_TRIGGER, 0, NULL);
1978
1979	/*
1980	 * Drop our lock and acquire the other thread's lock before
1981	 * manipulating
1982	 */
1983	pthread_mutex_unlock(&dev->mutex);
1984	pthread_mutex_lock(&dev->peer_dev->mutex);
1985
1986	/*
1987	 * Put the buffer on the reader thread's peer done queue now that
1988	 * we have completed it.
1989	 */
1990	STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
1991			   work_links);
1992	dev->peer_dev->num_peer_done_queue++;
1993
1994	/*
1995	 * Send an event to the peer thread to let it know that we've added
1996	 * something to its peer done queue.
1997	 */
1998	retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
1999	if (retval == -1)
2000		warn("%s: unable to add peer_done_queue kevent", __func__);
2001	else
2002		retval = 0;
2003
2004	/*
2005	 * Drop the other thread's lock and reacquire ours.
2006	 */
2007	pthread_mutex_unlock(&dev->peer_dev->mutex);
2008	pthread_mutex_lock(&dev->mutex);
2009
2010	return (retval);
2011}
2012
2013/*
2014 * Free a buffer that was written out by the writer thread and returned to
2015 * the reader thread.
2016 */
2017void
2018camdd_peer_done(struct camdd_buf *buf)
2019{
2020	struct camdd_dev *dev;
2021	struct camdd_buf_data *data;
2022
2023	dev = buf->dev;
2024	if (buf->buf_type != CAMDD_BUF_DATA) {
2025		errx(1, "%s: should have a data buffer, not an "
2026		    "indirect buffer", __func__);
2027	}
2028
2029	data = &buf->buf_type_spec.data;
2030
2031	STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2032	dev->num_peer_work_queue--;
2033	dev->peer_bytes_queued -= (data->fill_len - data->resid);
2034
2035	if (buf->status == CAMDD_STATUS_EOF)
2036		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2037
2038	STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2039}
2040
2041/*
2042 * Assumes caller holds the lock for this device.
2043 */
2044void
2045camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2046		   int *error_count)
2047{
2048	int retval = 0;
2049
2050	/*
2051	 * If we're the reader, we need to send the completed I/O
2052	 * to the writer.  If we're the writer, we need to just
2053	 * free up resources, or let the reader know if we've
2054	 * encountered an error.
2055	 */
2056	if (dev->write_dev == 0) {
2057		retval = camdd_queue_peer_buf(dev, buf);
2058		if (retval != 0)
2059			(*error_count)++;
2060	} else {
2061		struct camdd_buf *tmp_buf, *next_buf;
2062
2063		STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2064				    next_buf) {
2065			struct camdd_buf *src_buf;
2066			struct camdd_buf_indirect *indirect;
2067
2068			STAILQ_REMOVE(&buf->src_list, tmp_buf,
2069				      camdd_buf, src_links);
2070
2071			tmp_buf->status = buf->status;
2072
2073			if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2074				camdd_complete_peer_buf(dev, tmp_buf);
2075				continue;
2076			}
2077
2078			indirect = &tmp_buf->buf_type_spec.indirect;
2079			src_buf = indirect->src_buf;
2080			src_buf->refcount--;
2081			/*
2082			 * XXX KDM we probably need to account for
2083			 * exactly how many bytes we were able to
2084			 * write.  Allocate the residual to the
2085			 * first N buffers?  Or just track the
2086			 * number of bytes written?  Right now the reader
2087			 * doesn't do anything with a residual.
2088			 */
2089			src_buf->status = buf->status;
2090			if (src_buf->refcount <= 0)
2091				camdd_complete_peer_buf(dev, src_buf);
2092			STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2093					   tmp_buf, links);
2094		}
2095
2096		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2097	}
2098}
2099
2100/*
2101 * Fetch all completed commands from the pass(4) device.
2102 *
2103 * Returns the number of commands received, or -1 if any of the commands
2104 * completed with an error.  Returns 0 if no commands are available.
2105 */
2106int
2107camdd_pass_fetch(struct camdd_dev *dev)
2108{
2109	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2110	union ccb ccb;
2111	int retval = 0, num_fetched = 0, error_count = 0;
2112
2113	pthread_mutex_unlock(&dev->mutex);
2114	/*
2115	 * XXX KDM we don't distinguish between EFAULT and ENOENT.
2116	 */
2117	while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2118		struct camdd_buf *buf;
2119		struct camdd_buf_data *data;
2120		cam_status ccb_status;
2121		union ccb *buf_ccb;
2122
2123		buf = ccb.ccb_h.ccb_buf;
2124		data = &buf->buf_type_spec.data;
2125		buf_ccb = &data->ccb;
2126
2127		num_fetched++;
2128
2129		/*
2130		 * Copy the CCB back out so we get status, sense data, etc.
2131		 */
2132		bcopy(&ccb, buf_ccb, sizeof(ccb));
2133
2134		pthread_mutex_lock(&dev->mutex);
2135
2136		/*
2137		 * We're now done, so take this off the active queue.
2138		 */
2139		STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2140		dev->cur_active_io--;
2141
2142		ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2143		if (ccb_status != CAM_REQ_CMP) {
2144			cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2145					CAM_EPF_ALL, stderr);
2146		}
2147
2148		data->resid = ccb.csio.resid;
2149		dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2150
2151		if (buf->status == CAMDD_STATUS_NONE)
2152			buf->status = camdd_ccb_status(&ccb);
2153		if (buf->status == CAMDD_STATUS_ERROR)
2154			error_count++;
2155		else if (buf->status == CAMDD_STATUS_EOF) {
2156			/*
2157			 * Once we queue this buffer to our partner thread,
2158			 * he will know that we've hit EOF.
2159			 */
2160			dev->flags |= CAMDD_DEV_FLAG_EOF;
2161		}
2162
2163		camdd_complete_buf(dev, buf, &error_count);
2164
2165		/*
2166		 * Unlock in preparation for the ioctl call.
2167		 */
2168		pthread_mutex_unlock(&dev->mutex);
2169	}
2170
2171	pthread_mutex_lock(&dev->mutex);
2172
2173	if (error_count > 0)
2174		return (-1);
2175	else
2176		return (num_fetched);
2177}
2178
2179/*
2180 * Returns -1 for error, 0 for success/continue, and 1 for resource
2181 * shortage/stop processing.
2182 */
2183int
2184camdd_file_run(struct camdd_dev *dev)
2185{
2186	struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2187	struct camdd_buf_data *data;
2188	struct camdd_buf *buf;
2189	off_t io_offset;
2190	int retval = 0, write_dev = dev->write_dev;
2191	int error_count = 0, no_resources = 0, double_buf_needed = 0;
2192	uint32_t num_sectors = 0, db_len = 0;
2193
2194	buf = STAILQ_FIRST(&dev->run_queue);
2195	if (buf == NULL) {
2196		no_resources = 1;
2197		goto bailout;
2198	} else if ((dev->write_dev == 0)
2199		&& (dev->flags & (CAMDD_DEV_FLAG_EOF |
2200				  CAMDD_DEV_FLAG_EOF_SENT))) {
2201		STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2202		dev->num_run_queue--;
2203		buf->status = CAMDD_STATUS_EOF;
2204		error_count++;
2205		goto bailout;
2206	}
2207
2208	/*
2209	 * If we're writing, we need to go through the source buffer list
2210	 * and create an S/G list.
2211	 */
2212	if (write_dev != 0) {
2213		retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2214		    dev->sector_size, &num_sectors, &double_buf_needed);
2215		if (retval != 0) {
2216			no_resources = 1;
2217			goto bailout;
2218		}
2219	}
2220
2221	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2222	dev->num_run_queue--;
2223
2224	data = &buf->buf_type_spec.data;
2225
2226	/*
2227	 * pread(2) and pwrite(2) offsets are byte offsets.
2228	 */
2229	io_offset = buf->lba * dev->sector_size;
2230
2231	/*
2232	 * Unlock the mutex while we read or write.
2233	 */
2234	pthread_mutex_unlock(&dev->mutex);
2235
2236	/*
2237	 * Note that we don't need to double buffer if we're the reader
2238	 * because in that case, we have allocated a single buffer of
2239	 * sufficient size to do the read.  This copy is necessary on
2240	 * writes because if one of the components of the S/G list is not
2241	 * a sector size multiple, the kernel will reject the write.  This
2242	 * is unfortunate but not surprising.  So this will make sure that
2243	 * we're using a single buffer that is a multiple of the sector size.
2244	 */
2245	if ((double_buf_needed != 0)
2246	 && (data->sg_count > 1)
2247	 && (write_dev != 0)) {
2248		uint32_t cur_offset;
2249		int i;
2250
2251		if (file_dev->tmp_buf == NULL)
2252			file_dev->tmp_buf = calloc(dev->blocksize, 1);
2253		if (file_dev->tmp_buf == NULL) {
2254			buf->status = CAMDD_STATUS_ERROR;
2255			error_count++;
2256			pthread_mutex_lock(&dev->mutex);
2257			goto bailout;
2258		}
2259		for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2260			bcopy(data->iovec[i].iov_base,
2261			    &file_dev->tmp_buf[cur_offset],
2262			    data->iovec[i].iov_len);
2263			cur_offset += data->iovec[i].iov_len;
2264		}
2265		db_len = cur_offset;
2266	}
2267
2268	if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2269		if (write_dev == 0) {
2270			/*
2271			 * XXX KDM is there any way we would need a S/G
2272			 * list here?
2273			 */
2274			retval = pread(file_dev->fd, data->buf,
2275			    buf->len, io_offset);
2276		} else {
2277			if (double_buf_needed != 0) {
2278				retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2279				    db_len, io_offset);
2280			} else if (data->sg_count == 0) {
2281				retval = pwrite(file_dev->fd, data->buf,
2282				    data->fill_len, io_offset);
2283			} else {
2284				retval = pwritev(file_dev->fd, data->iovec,
2285				    data->sg_count, io_offset);
2286			}
2287		}
2288	} else {
2289		if (write_dev == 0) {
2290			/*
2291			 * XXX KDM is there any way we would need a S/G
2292			 * list here?
2293			 */
2294			retval = read(file_dev->fd, data->buf, buf->len);
2295		} else {
2296			if (double_buf_needed != 0) {
2297				retval = write(file_dev->fd, file_dev->tmp_buf,
2298				    db_len);
2299			} else if (data->sg_count == 0) {
2300				retval = write(file_dev->fd, data->buf,
2301				    data->fill_len);
2302			} else {
2303				retval = writev(file_dev->fd, data->iovec,
2304				    data->sg_count);
2305			}
2306		}
2307	}
2308
2309	/* We're done, re-acquire the lock */
2310	pthread_mutex_lock(&dev->mutex);
2311
2312	if (retval >= (ssize_t)data->fill_len) {
2313		/*
2314		 * If the bytes transferred is more than the request size,
2315		 * that indicates an overrun, which should only happen at
2316		 * the end of a transfer if we have to round up to a sector
2317		 * boundary.
2318		 */
2319		if (buf->status == CAMDD_STATUS_NONE)
2320			buf->status = CAMDD_STATUS_OK;
2321		data->resid = 0;
2322		dev->bytes_transferred += retval;
2323	} else if (retval == -1) {
2324		warn("Error %s %s", (write_dev) ? "writing to" :
2325		    "reading from", file_dev->filename);
2326
2327		buf->status = CAMDD_STATUS_ERROR;
2328		data->resid = data->fill_len;
2329		error_count++;
2330
2331		if (dev->debug == 0)
2332			goto bailout;
2333
2334		if ((double_buf_needed != 0)
2335		 && (write_dev != 0)) {
2336			fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2337			    "offset %ju\n", __func__, file_dev->fd,
2338			    file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2339			    (uintmax_t)io_offset);
2340		} else if (data->sg_count == 0) {
2341			fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2342			    "offset %ju\n", __func__, file_dev->fd, data->buf,
2343			    data->fill_len, (uintmax_t)buf->lba,
2344			    (uintmax_t)io_offset);
2345		} else {
2346			int i;
2347
2348			fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2349			    "offset %ju\n", __func__, file_dev->fd,
2350			    data->fill_len, (uintmax_t)buf->lba,
2351			    (uintmax_t)io_offset);
2352
2353			for (i = 0; i < data->sg_count; i++) {
2354				fprintf(stderr, "index %d ptr %p len %zu\n",
2355				    i, data->iovec[i].iov_base,
2356				    data->iovec[i].iov_len);
2357			}
2358		}
2359	} else if (retval == 0) {
2360		buf->status = CAMDD_STATUS_EOF;
2361		if (dev->debug != 0)
2362			printf("%s: got EOF from %s!\n", __func__,
2363			    file_dev->filename);
2364		data->resid = data->fill_len;
2365		error_count++;
2366	} else if (retval < (ssize_t)data->fill_len) {
2367		if (buf->status == CAMDD_STATUS_NONE)
2368			buf->status = CAMDD_STATUS_SHORT_IO;
2369		data->resid = data->fill_len - retval;
2370		dev->bytes_transferred += retval;
2371	}
2372
2373bailout:
2374	if (buf != NULL) {
2375		if (buf->status == CAMDD_STATUS_EOF) {
2376			struct camdd_buf *buf2;
2377			dev->flags |= CAMDD_DEV_FLAG_EOF;
2378			STAILQ_FOREACH(buf2, &dev->run_queue, links)
2379				buf2->status = CAMDD_STATUS_EOF;
2380		}
2381
2382		camdd_complete_buf(dev, buf, &error_count);
2383	}
2384
2385	if (error_count != 0)
2386		return (-1);
2387	else if (no_resources != 0)
2388		return (1);
2389	else
2390		return (0);
2391}
2392
2393/*
2394 * Execute one command from the run queue.  Returns 0 for success, 1 for
2395 * stop processing, and -1 for error.
2396 */
2397int
2398camdd_pass_run(struct camdd_dev *dev)
2399{
2400	struct camdd_buf *buf = NULL;
2401	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2402	struct camdd_buf_data *data;
2403	uint32_t num_blocks, sectors_used = 0;
2404	union ccb *ccb;
2405	int retval = 0, is_write = dev->write_dev;
2406	int double_buf_needed = 0;
2407
2408	buf = STAILQ_FIRST(&dev->run_queue);
2409	if (buf == NULL) {
2410		retval = 1;
2411		goto bailout;
2412	}
2413
2414	/*
2415	 * If we're writing, we need to go through the source buffer list
2416	 * and create an S/G list.
2417	 */
2418	if (is_write != 0) {
2419		retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2420		    &sectors_used, &double_buf_needed);
2421		if (retval != 0) {
2422			retval = -1;
2423			goto bailout;
2424		}
2425	}
2426
2427	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2428	dev->num_run_queue--;
2429
2430	data = &buf->buf_type_spec.data;
2431
2432	ccb = &data->ccb;
2433	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
2434
2435	/*
2436	 * In almost every case the number of blocks should be the device
2437	 * block size.  The exception may be at the end of an I/O stream
2438	 * for a partial block or at the end of a device.
2439	 */
2440	if (is_write != 0)
2441		num_blocks = sectors_used;
2442	else
2443		num_blocks = data->fill_len / pass_dev->block_len;
2444
2445	scsi_read_write(&ccb->csio,
2446			/*retries*/ dev->retry_count,
2447			/*cbfcnp*/ NULL,
2448			/*tag_action*/ MSG_SIMPLE_Q_TAG,
2449			/*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2450				   SCSI_RW_WRITE,
2451			/*byte2*/ 0,
2452			/*minimum_cmd_size*/ dev->min_cmd_size,
2453			/*lba*/ buf->lba,
2454			/*block_count*/ num_blocks,
2455			/*data_ptr*/ (data->sg_count != 0) ?
2456				     (uint8_t *)data->segs : data->buf,
2457			/*dxfer_len*/ (num_blocks * pass_dev->block_len),
2458			/*sense_len*/ SSD_FULL_SIZE,
2459			/*timeout*/ dev->io_timeout);
2460
2461	/* Disable freezing the device queue */
2462	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2463
2464	if (dev->retry_count != 0)
2465		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2466
2467	if (data->sg_count != 0) {
2468		ccb->csio.sglist_cnt = data->sg_count;
2469		ccb->ccb_h.flags |= CAM_DATA_SG;
2470	}
2471
2472	/*
2473	 * Store a pointer to the buffer in the CCB.  The kernel will
2474	 * restore this when we get it back, and we'll use it to identify
2475	 * the buffer this CCB came from.
2476	 */
2477	ccb->ccb_h.ccb_buf = buf;
2478
2479	/*
2480	 * Unlock our mutex in preparation for issuing the ioctl.
2481	 */
2482	pthread_mutex_unlock(&dev->mutex);
2483	/*
2484	 * Queue the CCB to the pass(4) driver.
2485	 */
2486	if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2487		pthread_mutex_lock(&dev->mutex);
2488
2489		warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2490		     pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2491		warn("%s: CCB address is %p", __func__, ccb);
2492		retval = -1;
2493
2494		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2495	} else {
2496		pthread_mutex_lock(&dev->mutex);
2497
2498		dev->cur_active_io++;
2499		STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2500	}
2501
2502bailout:
2503	return (retval);
2504}
2505
2506int
2507camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2508{
2509	struct camdd_dev_pass *pass_dev;
2510	uint32_t num_blocks;
2511	int retval = 0;
2512
2513	pass_dev = &dev->dev_spec.pass;
2514
2515	*lba = dev->next_io_pos_bytes / dev->sector_size;
2516	*len = dev->blocksize;
2517	num_blocks = *len / dev->sector_size;
2518
2519	/*
2520	 * If max_sector is 0, then we have no set limit.  This can happen
2521	 * if we're writing to a file in a filesystem, or reading from
2522	 * something like /dev/zero.
2523	 */
2524	if ((dev->max_sector != 0)
2525	 || (dev->sector_io_limit != 0)) {
2526		uint64_t max_sector;
2527
2528		if ((dev->max_sector != 0)
2529		 && (dev->sector_io_limit != 0))
2530			max_sector = min(dev->sector_io_limit, dev->max_sector);
2531		else if (dev->max_sector != 0)
2532			max_sector = dev->max_sector;
2533		else
2534			max_sector = dev->sector_io_limit;
2535
2536
2537		/*
2538		 * Check to see whether we're starting off past the end of
2539		 * the device.  If so, we need to just send an EOF
2540		 * notification to the writer.
2541		 */
2542		if (*lba > max_sector) {
2543			*len = 0;
2544			retval = 1;
2545		} else if (((*lba + num_blocks) > max_sector + 1)
2546			|| ((*lba + num_blocks) < *lba)) {
2547			/*
2548			 * If we get here (but pass the first check), we
2549			 * can trim the request length down to go to the
2550			 * end of the device.
2551			 */
2552			num_blocks = (max_sector + 1) - *lba;
2553			*len = num_blocks * dev->sector_size;
2554			retval = 1;
2555		}
2556	}
2557
2558	dev->next_io_pos_bytes += *len;
2559
2560	return (retval);
2561}
2562
2563/*
2564 * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2565 */
2566int
2567camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2568{
2569	struct camdd_buf *buf = NULL;
2570	struct camdd_buf_data *data;
2571	struct camdd_dev_pass *pass_dev;
2572	size_t new_len;
2573	struct camdd_buf_data *rb_data;
2574	int is_write = dev->write_dev;
2575	int eof_flush_needed = 0;
2576	int retval = 0;
2577	int error;
2578
2579	pass_dev = &dev->dev_spec.pass;
2580
2581	/*
2582	 * If we've gotten EOF or our partner has, we should not continue
2583	 * queueing I/O.  If we're a writer, though, we should continue
2584	 * to write any buffers that don't have EOF status.
2585	 */
2586	if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2587	 || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2588	  && (is_write == 0))) {
2589		/*
2590		 * Tell the worker thread that we have seen EOF.
2591		 */
2592		retval = 1;
2593
2594		/*
2595		 * If we're the writer, send the buffer back with EOF status.
2596		 */
2597		if (is_write) {
2598			read_buf->status = CAMDD_STATUS_EOF;
2599
2600			error = camdd_complete_peer_buf(dev, read_buf);
2601		}
2602		goto bailout;
2603	}
2604
2605	if (is_write == 0) {
2606		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2607		if (buf == NULL) {
2608			retval = -1;
2609			goto bailout;
2610		}
2611		data = &buf->buf_type_spec.data;
2612
2613		retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2614		if (retval != 0) {
2615			buf->status = CAMDD_STATUS_EOF;
2616
2617		 	if ((buf->len == 0)
2618			 && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2619			     CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2620				camdd_release_buf(buf);
2621				goto bailout;
2622			}
2623			dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2624		}
2625
2626		data->fill_len = buf->len;
2627		data->src_start_offset = buf->lba * dev->sector_size;
2628
2629		/*
2630		 * Put this on the run queue.
2631		 */
2632		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2633		dev->num_run_queue++;
2634
2635		/* We're done. */
2636		goto bailout;
2637	}
2638
2639	/*
2640	 * Check for new EOF status from the reader.
2641	 */
2642	if ((read_buf->status == CAMDD_STATUS_EOF)
2643	 || (read_buf->status == CAMDD_STATUS_ERROR)) {
2644		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2645		if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2646		 && (read_buf->len == 0)) {
2647			camdd_complete_peer_buf(dev, read_buf);
2648			retval = 1;
2649			goto bailout;
2650		} else
2651			eof_flush_needed = 1;
2652	}
2653
2654	/*
2655	 * See if we have a buffer we're composing with pieces from our
2656	 * partner thread.
2657	 */
2658	buf = STAILQ_FIRST(&dev->pending_queue);
2659	if (buf == NULL) {
2660		uint64_t lba;
2661		ssize_t len;
2662
2663		retval = camdd_get_next_lba_len(dev, &lba, &len);
2664		if (retval != 0) {
2665			read_buf->status = CAMDD_STATUS_EOF;
2666
2667			if (len == 0) {
2668				dev->flags |= CAMDD_DEV_FLAG_EOF;
2669				error = camdd_complete_peer_buf(dev, read_buf);
2670				goto bailout;
2671			}
2672		}
2673
2674		/*
2675		 * If we don't have a pending buffer, we need to grab a new
2676		 * one from the free list or allocate another one.
2677		 */
2678		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2679		if (buf == NULL) {
2680			retval = 1;
2681			goto bailout;
2682		}
2683
2684		buf->lba = lba;
2685		buf->len = len;
2686
2687		STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2688		dev->num_pending_queue++;
2689	}
2690
2691	data = &buf->buf_type_spec.data;
2692
2693	rb_data = &read_buf->buf_type_spec.data;
2694
2695	if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2696	 && (dev->debug != 0)) {
2697		printf("%s: WARNING: reader offset %#jx != expected offset "
2698		    "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2699		    (uintmax_t)dev->next_peer_pos_bytes);
2700	}
2701	dev->next_peer_pos_bytes = rb_data->src_start_offset +
2702	    (rb_data->fill_len - rb_data->resid);
2703
2704	new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2705	if (new_len < buf->len) {
2706		/*
2707		 * There are three cases here:
2708		 * 1. We need more data to fill up a block, so we put
2709		 *    this I/O on the queue and wait for more I/O.
2710		 * 2. We have a pending buffer in the queue that is
2711		 *    smaller than our blocksize, but we got an EOF.  So we
2712		 *    need to go ahead and flush the write out.
2713		 * 3. We got an error.
2714		 */
2715
2716		/*
2717		 * Increment our fill length.
2718		 */
2719		data->fill_len += (rb_data->fill_len - rb_data->resid);
2720
2721		/*
2722		 * Add the new read buffer to the list for writing.
2723		 */
2724		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2725
2726		/* Increment the count */
2727		buf->src_count++;
2728
2729		if (eof_flush_needed == 0) {
2730			/*
2731			 * We need to exit, because we don't have enough
2732			 * data yet.
2733			 */
2734			goto bailout;
2735		} else {
2736			/*
2737			 * Take the buffer off of the pending queue.
2738			 */
2739			STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2740				      links);
2741			dev->num_pending_queue--;
2742
2743			/*
2744			 * If we need an EOF flush, but there is no data
2745			 * to flush, go ahead and return this buffer.
2746			 */
2747			if (data->fill_len == 0) {
2748				camdd_complete_buf(dev, buf, /*error_count*/0);
2749				retval = 1;
2750				goto bailout;
2751			}
2752
2753			/*
2754			 * Put this on the next queue for execution.
2755			 */
2756			STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2757			dev->num_run_queue++;
2758		}
2759	} else if (new_len == buf->len) {
2760		/*
2761		 * We have enough data to completey fill one block,
2762		 * so we're ready to issue the I/O.
2763		 */
2764
2765		/*
2766		 * Take the buffer off of the pending queue.
2767		 */
2768		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2769		dev->num_pending_queue--;
2770
2771		/*
2772		 * Add the new read buffer to the list for writing.
2773		 */
2774		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2775
2776		/* Increment the count */
2777		buf->src_count++;
2778
2779		/*
2780		 * Increment our fill length.
2781		 */
2782		data->fill_len += (rb_data->fill_len - rb_data->resid);
2783
2784		/*
2785		 * Put this on the next queue for execution.
2786		 */
2787		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2788		dev->num_run_queue++;
2789	} else {
2790		struct camdd_buf *idb;
2791		struct camdd_buf_indirect *indirect;
2792		uint32_t len_to_go, cur_offset;
2793
2794
2795		idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2796		if (idb == NULL) {
2797			retval = 1;
2798			goto bailout;
2799		}
2800		indirect = &idb->buf_type_spec.indirect;
2801		indirect->src_buf = read_buf;
2802		read_buf->refcount++;
2803		indirect->offset = 0;
2804		indirect->start_ptr = rb_data->buf;
2805		/*
2806		 * We've already established that there is more
2807		 * data in read_buf than we have room for in our
2808		 * current write request.  So this particular chunk
2809		 * of the request should just be the remainder
2810		 * needed to fill up a block.
2811		 */
2812		indirect->len = buf->len - (data->fill_len - data->resid);
2813
2814		camdd_buf_add_child(buf, idb);
2815
2816		/*
2817		 * This buffer is ready to execute, so we can take
2818		 * it off the pending queue and put it on the run
2819		 * queue.
2820		 */
2821		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2822			      links);
2823		dev->num_pending_queue--;
2824		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2825		dev->num_run_queue++;
2826
2827		cur_offset = indirect->offset + indirect->len;
2828
2829		/*
2830		 * The resulting I/O would be too large to fit in
2831		 * one block.  We need to split this I/O into
2832		 * multiple pieces.  Allocate as many buffers as needed.
2833		 */
2834		for (len_to_go = rb_data->fill_len - rb_data->resid -
2835		     indirect->len; len_to_go > 0;) {
2836			struct camdd_buf *new_buf;
2837			struct camdd_buf_data *new_data;
2838			uint64_t lba;
2839			ssize_t len;
2840
2841			retval = camdd_get_next_lba_len(dev, &lba, &len);
2842			if ((retval != 0)
2843			 && (len == 0)) {
2844				/*
2845				 * The device has already been marked
2846				 * as EOF, and there is no space left.
2847				 */
2848				goto bailout;
2849			}
2850
2851			new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2852			if (new_buf == NULL) {
2853				retval = 1;
2854				goto bailout;
2855			}
2856
2857			new_buf->lba = lba;
2858			new_buf->len = len;
2859
2860			idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2861			if (idb == NULL) {
2862				retval = 1;
2863				goto bailout;
2864			}
2865
2866			indirect = &idb->buf_type_spec.indirect;
2867
2868			indirect->src_buf = read_buf;
2869			read_buf->refcount++;
2870			indirect->offset = cur_offset;
2871			indirect->start_ptr = rb_data->buf + cur_offset;
2872			indirect->len = min(len_to_go, new_buf->len);
2873#if 0
2874			if (((indirect->len % dev->sector_size) != 0)
2875			 || ((indirect->offset % dev->sector_size) != 0)) {
2876				warnx("offset %ju len %ju not aligned with "
2877				    "sector size %u", indirect->offset,
2878				    (uintmax_t)indirect->len, dev->sector_size);
2879			}
2880#endif
2881			cur_offset += indirect->len;
2882			len_to_go -= indirect->len;
2883
2884			camdd_buf_add_child(new_buf, idb);
2885
2886			new_data = &new_buf->buf_type_spec.data;
2887
2888			if ((new_data->fill_len == new_buf->len)
2889			 || (eof_flush_needed != 0)) {
2890				STAILQ_INSERT_TAIL(&dev->run_queue,
2891						   new_buf, links);
2892				dev->num_run_queue++;
2893			} else if (new_data->fill_len < buf->len) {
2894				STAILQ_INSERT_TAIL(&dev->pending_queue,
2895					   	new_buf, links);
2896				dev->num_pending_queue++;
2897			} else {
2898				warnx("%s: too much data in new "
2899				      "buffer!", __func__);
2900				retval = 1;
2901				goto bailout;
2902			}
2903		}
2904	}
2905
2906bailout:
2907	return (retval);
2908}
2909
2910void
2911camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
2912		uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
2913{
2914	*our_depth = dev->cur_active_io + dev->num_run_queue;
2915	if (dev->num_peer_work_queue >
2916	    dev->num_peer_done_queue)
2917		*peer_depth = dev->num_peer_work_queue -
2918			      dev->num_peer_done_queue;
2919	else
2920		*peer_depth = 0;
2921	*our_bytes = *our_depth * dev->blocksize;
2922	*peer_bytes = dev->peer_bytes_queued;
2923}
2924
2925void
2926camdd_sig_handler(int sig)
2927{
2928	if (sig == SIGINFO)
2929		need_status = 1;
2930	else {
2931		need_exit = 1;
2932		error_exit = 1;
2933	}
2934
2935	sem_post(&camdd_sem);
2936}
2937
2938void
2939camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev,
2940		   struct timespec *start_time)
2941{
2942	struct timespec done_time;
2943	uint64_t total_ns;
2944	long double mb_sec, total_sec;
2945	int error = 0;
2946
2947	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
2948	if (error != 0) {
2949		warn("Unable to get done time");
2950		return;
2951	}
2952
2953	timespecsub(&done_time, start_time);
2954
2955	total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
2956	total_sec = total_ns;
2957	total_sec /= 1000000000;
2958
2959	fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
2960		"%.4Lf seconds elapsed\n",
2961		(uintmax_t)camdd_dev->bytes_transferred,
2962		(camdd_dev->write_dev == 0) ?  "read from" : "written to",
2963		camdd_dev->device_name,
2964		(uintmax_t)other_dev->bytes_transferred,
2965		(other_dev->write_dev == 0) ? "read from" : "written to",
2966		other_dev->device_name, total_sec);
2967
2968	mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
2969	mb_sec /= 1024 * 1024;
2970	mb_sec *= 1000000000;
2971	mb_sec /= total_ns;
2972	fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
2973}
2974
2975int
2976camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
2977	 int retry_count, int timeout)
2978{
2979	struct cam_device *new_cam_dev = NULL;
2980	struct camdd_dev *devs[2];
2981	struct timespec start_time;
2982	pthread_t threads[2];
2983	int unit = 0;
2984	int error = 0;
2985	int i;
2986
2987	bzero(devs, sizeof(devs));
2988
2989	if (num_io_opts != 2) {
2990		warnx("Must have one input and one output path");
2991		error = 1;
2992		goto bailout;
2993	}
2994
2995	for (i = 0; i < num_io_opts; i++) {
2996		switch (io_opts[i].dev_type) {
2997		case CAMDD_DEV_PASS: {
2998			if (isdigit(io_opts[i].dev_name[0])) {
2999				camdd_argmask new_arglist = CAMDD_ARG_NONE;
3000				int bus = 0, target = 0, lun = 0;
3001				int rv;
3002
3003				/* device specified as bus:target[:lun] */
3004				rv = parse_btl(io_opts[i].dev_name, &bus,
3005				    &target, &lun, &new_arglist);
3006				if (rv < 2) {
3007					warnx("numeric device specification "
3008					     "must be either bus:target, or "
3009					     "bus:target:lun");
3010					error = 1;
3011					goto bailout;
3012				}
3013				/* default to 0 if lun was not specified */
3014				if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3015					lun = 0;
3016					new_arglist |= CAMDD_ARG_LUN;
3017				}
3018				new_cam_dev = cam_open_btl(bus, target, lun,
3019				    O_RDWR, NULL);
3020			} else {
3021				char name[30];
3022
3023				if (cam_get_device(io_opts[i].dev_name, name,
3024						   sizeof name, &unit) == -1) {
3025					warnx("%s", cam_errbuf);
3026					error = 1;
3027					goto bailout;
3028				}
3029				new_cam_dev = cam_open_spec_device(name, unit,
3030				    O_RDWR, NULL);
3031			}
3032
3033			if (new_cam_dev == NULL) {
3034				warnx("%s", cam_errbuf);
3035				error = 1;
3036				goto bailout;
3037			}
3038
3039			devs[i] = camdd_probe_pass(new_cam_dev,
3040			    /*io_opts*/ &io_opts[i],
3041			    CAMDD_ARG_ERR_RECOVER,
3042			    /*probe_retry_count*/ 3,
3043			    /*probe_timeout*/ 5000,
3044			    /*io_retry_count*/ retry_count,
3045			    /*io_timeout*/ timeout);
3046			if (devs[i] == NULL) {
3047				warn("Unable to probe device %s%u",
3048				     new_cam_dev->device_name,
3049				     new_cam_dev->dev_unit_num);
3050				error = 1;
3051				goto bailout;
3052			}
3053			break;
3054		}
3055		case CAMDD_DEV_FILE: {
3056			int fd = -1;
3057
3058			if (io_opts[i].dev_name[0] == '-') {
3059				if (io_opts[i].write_dev != 0)
3060					fd = STDOUT_FILENO;
3061				else
3062					fd = STDIN_FILENO;
3063			} else {
3064				if (io_opts[i].write_dev != 0) {
3065					fd = open(io_opts[i].dev_name,
3066					    O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3067				} else {
3068					fd = open(io_opts[i].dev_name,
3069					    O_RDONLY);
3070				}
3071			}
3072			if (fd == -1) {
3073				warn("error opening file %s",
3074				    io_opts[i].dev_name);
3075				error = 1;
3076				goto bailout;
3077			}
3078
3079			devs[i] = camdd_probe_file(fd, &io_opts[i],
3080			    retry_count, timeout);
3081			if (devs[i] == NULL) {
3082				error = 1;
3083				goto bailout;
3084			}
3085
3086			break;
3087		}
3088		default:
3089			warnx("Unknown device type %d (%s)",
3090			    io_opts[i].dev_type, io_opts[i].dev_name);
3091			error = 1;
3092			goto bailout;
3093			break; /*NOTREACHED */
3094		}
3095
3096		devs[i]->write_dev = io_opts[i].write_dev;
3097
3098		devs[i]->start_offset_bytes = io_opts[i].offset;
3099
3100		if (max_io != 0) {
3101			devs[i]->sector_io_limit =
3102			    (devs[i]->start_offset_bytes /
3103			    devs[i]->sector_size) +
3104			    (max_io / devs[i]->sector_size) - 1;
3105			devs[i]->sector_io_limit =
3106			    (devs[i]->start_offset_bytes /
3107			    devs[i]->sector_size) +
3108			    (max_io / devs[i]->sector_size) - 1;
3109		}
3110
3111		devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3112		devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3113	}
3114
3115	devs[0]->peer_dev = devs[1];
3116	devs[1]->peer_dev = devs[0];
3117	devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3118	devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3119
3120	sem_init(&camdd_sem, /*pshared*/ 0, 0);
3121
3122	signal(SIGINFO, camdd_sig_handler);
3123	signal(SIGINT, camdd_sig_handler);
3124
3125	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3126	if (error != 0) {
3127		warn("Unable to get start time");
3128		goto bailout;
3129	}
3130
3131	for (i = 0; i < num_io_opts; i++) {
3132		error = pthread_create(&threads[i], NULL, camdd_worker,
3133				       (void *)devs[i]);
3134		if (error != 0) {
3135			warnc(error, "pthread_create() failed");
3136			goto bailout;
3137		}
3138	}
3139
3140	for (;;) {
3141		if ((sem_wait(&camdd_sem) == -1)
3142		 || (need_exit != 0)) {
3143			struct kevent ke;
3144
3145			for (i = 0; i < num_io_opts; i++) {
3146				EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3147				    EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3148
3149				devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3150
3151				error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3152						NULL);
3153				if (error == -1)
3154					warn("%s: unable to wake up thread",
3155					    __func__);
3156				error = 0;
3157			}
3158			break;
3159		} else if (need_status != 0) {
3160			camdd_print_status(devs[0], devs[1], &start_time);
3161			need_status = 0;
3162		}
3163	}
3164	for (i = 0; i < num_io_opts; i++) {
3165		pthread_join(threads[i], NULL);
3166	}
3167
3168	camdd_print_status(devs[0], devs[1], &start_time);
3169
3170bailout:
3171
3172	for (i = 0; i < num_io_opts; i++)
3173		camdd_free_dev(devs[i]);
3174
3175	return (error + error_exit);
3176}
3177
3178void
3179usage(void)
3180{
3181	fprintf(stderr,
3182"usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3183"              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3184"              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3185"              <-i|-o file=/dev/nsa0,bs=512K>\n"
3186"              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3187"Option description\n"
3188"-i <arg=val>  Specify input device/file and parameters\n"
3189"-o <arg=val>  Specify output device/file and parameters\n"
3190"Input and Output parameters\n"
3191"pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3192"file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3193"              or - for stdin/stdout\n"
3194"bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3195"offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3196"              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3197"depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3198"mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3199"Optional arguments\n"
3200"-C retry_cnt  Specify a retry count for pass(4) devices\n"
3201"-E            Enable CAM error recovery for pass(4) devices\n"
3202"-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3203"              using K, G, M, etc. suffixes\n"
3204"-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3205"-v            Enable verbose error recovery\n"
3206"-h            Print this message\n");
3207}
3208
3209
3210int
3211camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3212{
3213	char *tmpstr, *tmpstr2;
3214	char *orig_tmpstr = NULL;
3215	int retval = 0;
3216
3217	io_opts->write_dev = is_write;
3218
3219	tmpstr = strdup(args);
3220	if (tmpstr == NULL) {
3221		warn("strdup failed");
3222		retval = 1;
3223		goto bailout;
3224	}
3225	orig_tmpstr = tmpstr;
3226	while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3227		char *name, *value;
3228
3229		/*
3230		 * If the user creates an empty parameter by putting in two
3231		 * commas, skip over it and look for the next field.
3232		 */
3233		if (*tmpstr2 == '\0')
3234			continue;
3235
3236		name = strsep(&tmpstr2, "=");
3237		if (*name == '\0') {
3238			warnx("Got empty I/O parameter name");
3239			retval = 1;
3240			goto bailout;
3241		}
3242		value = strsep(&tmpstr2, "=");
3243		if ((value == NULL)
3244		 || (*value == '\0')) {
3245			warnx("Empty I/O parameter value for %s", name);
3246			retval = 1;
3247			goto bailout;
3248		}
3249		if (strncasecmp(name, "file", 4) == 0) {
3250			io_opts->dev_type = CAMDD_DEV_FILE;
3251			io_opts->dev_name = strdup(value);
3252			if (io_opts->dev_name == NULL) {
3253				warn("Error allocating memory");
3254				retval = 1;
3255				goto bailout;
3256			}
3257		} else if (strncasecmp(name, "pass", 4) == 0) {
3258			io_opts->dev_type = CAMDD_DEV_PASS;
3259			io_opts->dev_name = strdup(value);
3260			if (io_opts->dev_name == NULL) {
3261				warn("Error allocating memory");
3262				retval = 1;
3263				goto bailout;
3264			}
3265		} else if ((strncasecmp(name, "bs", 2) == 0)
3266			|| (strncasecmp(name, "blocksize", 9) == 0)) {
3267			retval = expand_number(value, &io_opts->blocksize);
3268			if (retval == -1) {
3269				warn("expand_number(3) failed on %s=%s", name,
3270				    value);
3271				retval = 1;
3272				goto bailout;
3273			}
3274		} else if (strncasecmp(name, "depth", 5) == 0) {
3275			char *endptr;
3276
3277			io_opts->queue_depth = strtoull(value, &endptr, 0);
3278			if (*endptr != '\0') {
3279				warnx("invalid queue depth %s", value);
3280				retval = 1;
3281				goto bailout;
3282			}
3283		} else if (strncasecmp(name, "mcs", 3) == 0) {
3284			char *endptr;
3285
3286			io_opts->min_cmd_size = strtol(value, &endptr, 0);
3287			if ((*endptr != '\0')
3288			 || ((io_opts->min_cmd_size > 16)
3289			  || (io_opts->min_cmd_size < 0))) {
3290				warnx("invalid minimum cmd size %s", value);
3291				retval = 1;
3292				goto bailout;
3293			}
3294		} else if (strncasecmp(name, "offset", 6) == 0) {
3295			retval = expand_number(value, &io_opts->offset);
3296			if (retval == -1) {
3297				warn("expand_number(3) failed on %s=%s", name,
3298				    value);
3299				retval = 1;
3300				goto bailout;
3301			}
3302		} else if (strncasecmp(name, "debug", 5) == 0) {
3303			char *endptr;
3304
3305			io_opts->debug = strtoull(value, &endptr, 0);
3306			if (*endptr != '\0') {
3307				warnx("invalid debug level %s", value);
3308				retval = 1;
3309				goto bailout;
3310			}
3311		} else {
3312			warnx("Unrecognized parameter %s=%s", name, value);
3313		}
3314	}
3315bailout:
3316	free(orig_tmpstr);
3317
3318	return (retval);
3319}
3320
3321int
3322main(int argc, char **argv)
3323{
3324	int c;
3325	camdd_argmask arglist = CAMDD_ARG_NONE;
3326	int timeout = 0, retry_count = 1;
3327	int error = 0;
3328	uint64_t max_io = 0;
3329	struct camdd_io_opts *opt_list = NULL;
3330
3331	if (argc == 1) {
3332		usage();
3333		exit(1);
3334	}
3335
3336	opt_list = calloc(2, sizeof(struct camdd_io_opts));
3337	if (opt_list == NULL) {
3338		warn("Unable to allocate option list");
3339		error = 1;
3340		goto bailout;
3341	}
3342
3343	while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3344		switch (c) {
3345		case 'C':
3346			retry_count = strtol(optarg, NULL, 0);
3347			if (retry_count < 0)
3348				errx(1, "retry count %d is < 0",
3349				     retry_count);
3350			arglist |= CAMDD_ARG_RETRIES;
3351			break;
3352		case 'E':
3353			arglist |= CAMDD_ARG_ERR_RECOVER;
3354			break;
3355		case 'i':
3356		case 'o':
3357			if (((c == 'i')
3358			  && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3359			 || ((c == 'o')
3360			  && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3361				errx(1, "Only one input and output path "
3362				    "allowed");
3363			}
3364			error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3365			    (c == 'o') ? &opt_list[1] : &opt_list[0]);
3366			if (error != 0)
3367				goto bailout;
3368			break;
3369		case 'm':
3370			error = expand_number(optarg, &max_io);
3371			if (error == -1) {
3372				warn("invalid maximum I/O amount %s", optarg);
3373				error = 1;
3374				goto bailout;
3375			}
3376			break;
3377		case 't':
3378			timeout = strtol(optarg, NULL, 0);
3379			if (timeout < 0)
3380				errx(1, "invalid timeout %d", timeout);
3381			/* Convert the timeout from seconds to ms */
3382			timeout *= 1000;
3383			arglist |= CAMDD_ARG_TIMEOUT;
3384			break;
3385		case 'v':
3386			arglist |= CAMDD_ARG_VERBOSE;
3387			break;
3388		case 'h':
3389		default:
3390			usage();
3391			exit(1);
3392			break; /*NOTREACHED*/
3393		}
3394	}
3395
3396	if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3397	 || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3398		errx(1, "Must specify both -i and -o");
3399
3400	/*
3401	 * Set the timeout if the user hasn't specified one.
3402	 */
3403	if (timeout == 0)
3404		timeout = CAMDD_PASS_RW_TIMEOUT;
3405
3406	error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3407
3408bailout:
3409	free(opt_list);
3410
3411	exit(error);
3412}
3413