camdd.c revision 317062
1/*-
2 * Copyright (c) 1997-2007 Kenneth D. Merry
3 * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13 *    substantially similar to the "NO WARRANTY" disclaimer below
14 *    ("Disclaimer") and any redistribution must be conditioned upon
15 *    including a substantially similar Disclaimer requirement for further
16 *    binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGES.
30 *
31 * Authors: Ken Merry           (Spectra Logic Corporation)
32 */
33
34/*
35 * This is eventually intended to be:
36 * - A basic data transfer/copy utility
37 * - A simple benchmark utility
38 * - An example of how to use the asynchronous pass(4) driver interface.
39 */
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/11/usr.sbin/camdd/camdd.c 317062 2017-04-17 18:55:54Z araujo $");
42
43#include <sys/ioctl.h>
44#include <sys/stdint.h>
45#include <sys/types.h>
46#include <sys/endian.h>
47#include <sys/param.h>
48#include <sys/sbuf.h>
49#include <sys/stat.h>
50#include <sys/event.h>
51#include <sys/time.h>
52#include <sys/uio.h>
53#include <vm/vm.h>
54#include <machine/bus.h>
55#include <sys/bus.h>
56#include <sys/bus_dma.h>
57#include <sys/mtio.h>
58#include <sys/conf.h>
59#include <sys/disk.h>
60
61#include <stdio.h>
62#include <stdlib.h>
63#include <semaphore.h>
64#include <string.h>
65#include <unistd.h>
66#include <inttypes.h>
67#include <limits.h>
68#include <fcntl.h>
69#include <ctype.h>
70#include <err.h>
71#include <libutil.h>
72#include <pthread.h>
73#include <assert.h>
74#include <bsdxml.h>
75
76#include <cam/cam.h>
77#include <cam/cam_debug.h>
78#include <cam/cam_ccb.h>
79#include <cam/scsi/scsi_all.h>
80#include <cam/scsi/scsi_da.h>
81#include <cam/scsi/scsi_pass.h>
82#include <cam/scsi/scsi_message.h>
83#include <cam/scsi/smp_all.h>
84#include <camlib.h>
85#include <mtlib.h>
86#include <zlib.h>
87
88typedef enum {
89	CAMDD_CMD_NONE		= 0x00000000,
90	CAMDD_CMD_HELP		= 0x00000001,
91	CAMDD_CMD_WRITE		= 0x00000002,
92	CAMDD_CMD_READ		= 0x00000003
93} camdd_cmdmask;
94
95typedef enum {
96	CAMDD_ARG_NONE		= 0x00000000,
97	CAMDD_ARG_VERBOSE	= 0x00000001,
98	CAMDD_ARG_DEVICE	= 0x00000002,
99	CAMDD_ARG_BUS		= 0x00000004,
100	CAMDD_ARG_TARGET	= 0x00000008,
101	CAMDD_ARG_LUN		= 0x00000010,
102	CAMDD_ARG_UNIT		= 0x00000020,
103	CAMDD_ARG_TIMEOUT	= 0x00000040,
104	CAMDD_ARG_ERR_RECOVER	= 0x00000080,
105	CAMDD_ARG_RETRIES	= 0x00000100
106} camdd_argmask;
107
108typedef enum {
109	CAMDD_DEV_NONE		= 0x00,
110	CAMDD_DEV_PASS		= 0x01,
111	CAMDD_DEV_FILE		= 0x02
112} camdd_dev_type;
113
114struct camdd_io_opts {
115	camdd_dev_type	dev_type;
116	char		*dev_name;
117	uint64_t	blocksize;
118	uint64_t	queue_depth;
119	uint64_t	offset;
120	int		min_cmd_size;
121	int		write_dev;
122	uint64_t	debug;
123};
124
125typedef enum {
126	CAMDD_BUF_NONE,
127	CAMDD_BUF_DATA,
128	CAMDD_BUF_INDIRECT
129} camdd_buf_type;
130
131struct camdd_buf_indirect {
132	/*
133	 * Pointer to the source buffer.
134	 */
135	struct camdd_buf *src_buf;
136
137	/*
138	 * Offset into the source buffer, in bytes.
139	 */
140	uint64_t	  offset;
141	/*
142	 * Pointer to the starting point in the source buffer.
143	 */
144	uint8_t		 *start_ptr;
145
146	/*
147	 * Length of this chunk in bytes.
148	 */
149	size_t		  len;
150};
151
152struct camdd_buf_data {
153	/*
154	 * Buffer allocated when we allocate this camdd_buf.  This should
155	 * be the size of the blocksize for this device.
156	 */
157	uint8_t			*buf;
158
159	/*
160	 * The amount of backing store allocated in buf.  Generally this
161	 * will be the blocksize of the device.
162	 */
163	uint32_t		 alloc_len;
164
165	/*
166	 * The amount of data that was put into the buffer (on reads) or
167	 * the amount of data we have put onto the src_list so far (on
168	 * writes).
169	 */
170	uint32_t		 fill_len;
171
172	/*
173	 * The amount of data that was not transferred.
174	 */
175	uint32_t		 resid;
176
177	/*
178	 * Starting byte offset on the reader.
179	 */
180	uint64_t		 src_start_offset;
181
182	/*
183	 * CCB used for pass(4) device targets.
184	 */
185	union ccb		 ccb;
186
187	/*
188	 * Number of scatter/gather segments.
189	 */
190	int			 sg_count;
191
192	/*
193	 * Set if we had to tack on an extra buffer to round the transfer
194	 * up to a sector size.
195	 */
196	int			 extra_buf;
197
198	/*
199	 * Scatter/gather list used generally when we're the writer for a
200	 * pass(4) device.
201	 */
202	bus_dma_segment_t	*segs;
203
204	/*
205	 * Scatter/gather list used generally when we're the writer for a
206	 * file or block device;
207	 */
208	struct iovec		*iovec;
209};
210
211union camdd_buf_types {
212	struct camdd_buf_indirect	indirect;
213	struct camdd_buf_data		data;
214};
215
216typedef enum {
217	CAMDD_STATUS_NONE,
218	CAMDD_STATUS_OK,
219	CAMDD_STATUS_SHORT_IO,
220	CAMDD_STATUS_EOF,
221	CAMDD_STATUS_ERROR
222} camdd_buf_status;
223
224struct camdd_buf {
225	camdd_buf_type		 buf_type;
226	union camdd_buf_types	 buf_type_spec;
227
228	camdd_buf_status	 status;
229
230	uint64_t		 lba;
231	size_t			 len;
232
233	/*
234	 * A reference count of how many indirect buffers point to this
235	 * buffer.
236	 */
237	int			 refcount;
238
239	/*
240	 * A link back to our parent device.
241	 */
242	struct camdd_dev	*dev;
243	STAILQ_ENTRY(camdd_buf)  links;
244	STAILQ_ENTRY(camdd_buf)  work_links;
245
246	/*
247	 * A count of the buffers on the src_list.
248	 */
249	int			 src_count;
250
251	/*
252	 * List of buffers from our partner thread that are the components
253	 * of this buffer for the I/O.  Uses src_links.
254	 */
255	STAILQ_HEAD(,camdd_buf)	 src_list;
256	STAILQ_ENTRY(camdd_buf)  src_links;
257};
258
259#define	NUM_DEV_TYPES	2
260
261struct camdd_dev_pass {
262	int			 scsi_dev_type;
263	struct cam_device	*dev;
264	uint64_t		 max_sector;
265	uint32_t		 block_len;
266	uint32_t		 cpi_maxio;
267};
268
269typedef enum {
270	CAMDD_FILE_NONE,
271	CAMDD_FILE_REG,
272	CAMDD_FILE_STD,
273	CAMDD_FILE_PIPE,
274	CAMDD_FILE_DISK,
275	CAMDD_FILE_TAPE,
276	CAMDD_FILE_TTY,
277	CAMDD_FILE_MEM
278} camdd_file_type;
279
280typedef enum {
281	CAMDD_FF_NONE 		= 0x00,
282	CAMDD_FF_CAN_SEEK	= 0x01
283} camdd_file_flags;
284
285struct camdd_dev_file {
286	int			 fd;
287	struct stat		 sb;
288	char			 filename[MAXPATHLEN + 1];
289	camdd_file_type		 file_type;
290	camdd_file_flags	 file_flags;
291	uint8_t			*tmp_buf;
292};
293
294struct camdd_dev_block {
295	int			 fd;
296	uint64_t		 size_bytes;
297	uint32_t		 block_len;
298};
299
300union camdd_dev_spec {
301	struct camdd_dev_pass	pass;
302	struct camdd_dev_file	file;
303	struct camdd_dev_block	block;
304};
305
306typedef enum {
307	CAMDD_DEV_FLAG_NONE		= 0x00,
308	CAMDD_DEV_FLAG_EOF		= 0x01,
309	CAMDD_DEV_FLAG_PEER_EOF		= 0x02,
310	CAMDD_DEV_FLAG_ACTIVE		= 0x04,
311	CAMDD_DEV_FLAG_EOF_SENT		= 0x08,
312	CAMDD_DEV_FLAG_EOF_QUEUED	= 0x10
313} camdd_dev_flags;
314
315struct camdd_dev {
316	camdd_dev_type		 dev_type;
317	union camdd_dev_spec	 dev_spec;
318	camdd_dev_flags		 flags;
319	char			 device_name[MAXPATHLEN+1];
320	uint32_t		 blocksize;
321	uint32_t		 sector_size;
322	uint64_t		 max_sector;
323	uint64_t		 sector_io_limit;
324	int			 min_cmd_size;
325	int			 write_dev;
326	int			 retry_count;
327	int			 io_timeout;
328	int			 debug;
329	uint64_t		 start_offset_bytes;
330	uint64_t		 next_io_pos_bytes;
331	uint64_t		 next_peer_pos_bytes;
332	uint64_t		 next_completion_pos_bytes;
333	uint64_t		 peer_bytes_queued;
334	uint64_t		 bytes_transferred;
335	uint32_t		 target_queue_depth;
336	uint32_t		 cur_active_io;
337	uint8_t			*extra_buf;
338	uint32_t		 extra_buf_len;
339	struct camdd_dev	*peer_dev;
340	pthread_mutex_t		 mutex;
341	pthread_cond_t		 cond;
342	int			 kq;
343
344	int			 (*run)(struct camdd_dev *dev);
345	int			 (*fetch)(struct camdd_dev *dev);
346
347	/*
348	 * Buffers that are available for I/O.  Uses links.
349	 */
350	STAILQ_HEAD(,camdd_buf)	 free_queue;
351
352	/*
353	 * Free indirect buffers.  These are used for breaking a large
354	 * buffer into multiple pieces.
355	 */
356	STAILQ_HEAD(,camdd_buf)	 free_indirect_queue;
357
358	/*
359	 * Buffers that have been queued to the kernel.  Uses links.
360	 */
361	STAILQ_HEAD(,camdd_buf)	 active_queue;
362
363	/*
364	 * Will generally contain one of our buffers that is waiting for enough
365	 * I/O from our partner thread to be able to execute.  This will
366	 * generally happen when our per-I/O-size is larger than the
367	 * partner thread's per-I/O-size.  Uses links.
368	 */
369	STAILQ_HEAD(,camdd_buf)	 pending_queue;
370
371	/*
372	 * Number of buffers on the pending queue
373	 */
374	int			 num_pending_queue;
375
376	/*
377	 * Buffers that are filled and ready to execute.  This is used when
378	 * our partner (reader) thread sends us blocks that are larger than
379	 * our blocksize, and so we have to split them into multiple pieces.
380	 */
381	STAILQ_HEAD(,camdd_buf)	 run_queue;
382
383	/*
384	 * Number of buffers on the run queue.
385	 */
386	int			 num_run_queue;
387
388	STAILQ_HEAD(,camdd_buf)	 reorder_queue;
389
390	int			 num_reorder_queue;
391
392	/*
393	 * Buffers that have been queued to us by our partner thread
394	 * (generally the reader thread) to be written out.  Uses
395	 * work_links.
396	 */
397	STAILQ_HEAD(,camdd_buf)	 work_queue;
398
399	/*
400	 * Buffers that have been completed by our partner thread.  Uses
401	 * work_links.
402	 */
403	STAILQ_HEAD(,camdd_buf)	 peer_done_queue;
404
405	/*
406	 * Number of buffers on the peer done queue.
407	 */
408	uint32_t		 num_peer_done_queue;
409
410	/*
411	 * A list of buffers that we have queued to our peer thread.  Uses
412	 * links.
413	 */
414	STAILQ_HEAD(,camdd_buf)	 peer_work_queue;
415
416	/*
417	 * Number of buffers on the peer work queue.
418	 */
419	uint32_t		 num_peer_work_queue;
420};
421
422static sem_t camdd_sem;
423static sig_atomic_t need_exit = 0;
424static sig_atomic_t error_exit = 0;
425static sig_atomic_t need_status = 0;
426
427#ifndef min
428#define	min(a, b) (a < b) ? a : b
429#endif
430
431/*
432 * XXX KDM private copy of timespecsub().  This is normally defined in
433 * sys/time.h, but is only enabled in the kernel.  If that definition is
434 * enabled in userland, it breaks the build of libnetbsd.
435 */
436#ifndef timespecsub
437#define	timespecsub(vvp, uvp)						\
438	do {								\
439		(vvp)->tv_sec -= (uvp)->tv_sec;				\
440		(vvp)->tv_nsec -= (uvp)->tv_nsec;			\
441		if ((vvp)->tv_nsec < 0) {				\
442			(vvp)->tv_sec--;				\
443			(vvp)->tv_nsec += 1000000000;			\
444		}							\
445	} while (0)
446#endif
447
448
449/* Generically useful offsets into the peripheral private area */
450#define ppriv_ptr0 periph_priv.entries[0].ptr
451#define ppriv_ptr1 periph_priv.entries[1].ptr
452#define ppriv_field0 periph_priv.entries[0].field
453#define ppriv_field1 periph_priv.entries[1].field
454
455#define	ccb_buf	ppriv_ptr0
456
457#define	CAMDD_FILE_DEFAULT_BLOCK	524288
458#define	CAMDD_FILE_DEFAULT_DEPTH	1
459#define	CAMDD_PASS_MAX_BLOCK		1048576
460#define	CAMDD_PASS_DEFAULT_DEPTH	6
461#define	CAMDD_PASS_RW_TIMEOUT		60 * 1000
462
463static int parse_btl(char *tstr, int *bus, int *target, int *lun,
464		     camdd_argmask *arglst);
465void camdd_free_dev(struct camdd_dev *dev);
466struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
467				  struct kevent *new_ke, int num_ke,
468				  int retry_count, int timeout);
469static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
470					 camdd_buf_type buf_type);
471void camdd_release_buf(struct camdd_buf *buf);
472struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
473int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
474			uint32_t sector_size, uint32_t *num_sectors_used,
475			int *double_buf_needed);
476uint32_t camdd_buf_get_len(struct camdd_buf *buf);
477void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
478int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
479		     uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
480struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
481				   int retry_count, int timeout);
482struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
483				   struct camdd_io_opts *io_opts,
484				   camdd_argmask arglist, int probe_retry_count,
485				   int probe_timeout, int io_retry_count,
486				   int io_timeout);
487void *camdd_file_worker(void *arg);
488camdd_buf_status camdd_ccb_status(union ccb *ccb);
489int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
490int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
491void camdd_peer_done(struct camdd_buf *buf);
492void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
493			int *error_count);
494int camdd_pass_fetch(struct camdd_dev *dev);
495int camdd_file_run(struct camdd_dev *dev);
496int camdd_pass_run(struct camdd_dev *dev);
497int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
498int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
499void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
500		     uint32_t *peer_depth, uint32_t *our_bytes,
501		     uint32_t *peer_bytes);
502void *camdd_worker(void *arg);
503void camdd_sig_handler(int sig);
504void camdd_print_status(struct camdd_dev *camdd_dev,
505			struct camdd_dev *other_dev,
506			struct timespec *start_time);
507int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
508	     uint64_t max_io, int retry_count, int timeout);
509int camdd_parse_io_opts(char *args, int is_write,
510			struct camdd_io_opts *io_opts);
511void usage(void);
512
513/*
514 * Parse out a bus, or a bus, target and lun in the following
515 * format:
516 * bus
517 * bus:target
518 * bus:target:lun
519 *
520 * Returns the number of parsed components, or 0.
521 */
522static int
523parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
524{
525	char *tmpstr;
526	int convs = 0;
527
528	while (isspace(*tstr) && (*tstr != '\0'))
529		tstr++;
530
531	tmpstr = (char *)strtok(tstr, ":");
532	if ((tmpstr != NULL) && (*tmpstr != '\0')) {
533		*bus = strtol(tmpstr, NULL, 0);
534		*arglst |= CAMDD_ARG_BUS;
535		convs++;
536		tmpstr = (char *)strtok(NULL, ":");
537		if ((tmpstr != NULL) && (*tmpstr != '\0')) {
538			*target = strtol(tmpstr, NULL, 0);
539			*arglst |= CAMDD_ARG_TARGET;
540			convs++;
541			tmpstr = (char *)strtok(NULL, ":");
542			if ((tmpstr != NULL) && (*tmpstr != '\0')) {
543				*lun = strtol(tmpstr, NULL, 0);
544				*arglst |= CAMDD_ARG_LUN;
545				convs++;
546			}
547		}
548	}
549
550	return convs;
551}
552
553/*
554 * XXX KDM clean up and free all of the buffers on the queue!
555 */
556void
557camdd_free_dev(struct camdd_dev *dev)
558{
559	if (dev == NULL)
560		return;
561
562	switch (dev->dev_type) {
563	case CAMDD_DEV_FILE: {
564		struct camdd_dev_file *file_dev = &dev->dev_spec.file;
565
566		if (file_dev->fd != -1)
567			close(file_dev->fd);
568		free(file_dev->tmp_buf);
569		break;
570	}
571	case CAMDD_DEV_PASS: {
572		struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
573
574		if (pass_dev->dev != NULL)
575			cam_close_device(pass_dev->dev);
576		break;
577	}
578	default:
579		break;
580	}
581
582	free(dev);
583}
584
585struct camdd_dev *
586camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
587		int retry_count, int timeout)
588{
589	struct camdd_dev *dev = NULL;
590	struct kevent *ke;
591	size_t ke_size;
592	int retval = 0;
593
594	dev = malloc(sizeof(*dev));
595	if (dev == NULL) {
596		warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
597		goto bailout;
598	}
599
600	bzero(dev, sizeof(*dev));
601
602	dev->dev_type = dev_type;
603	dev->io_timeout = timeout;
604	dev->retry_count = retry_count;
605	STAILQ_INIT(&dev->free_queue);
606	STAILQ_INIT(&dev->free_indirect_queue);
607	STAILQ_INIT(&dev->active_queue);
608	STAILQ_INIT(&dev->pending_queue);
609	STAILQ_INIT(&dev->run_queue);
610	STAILQ_INIT(&dev->reorder_queue);
611	STAILQ_INIT(&dev->work_queue);
612	STAILQ_INIT(&dev->peer_done_queue);
613	STAILQ_INIT(&dev->peer_work_queue);
614	retval = pthread_mutex_init(&dev->mutex, NULL);
615	if (retval != 0) {
616		warnc(retval, "%s: failed to initialize mutex", __func__);
617		goto bailout;
618	}
619
620	retval = pthread_cond_init(&dev->cond, NULL);
621	if (retval != 0) {
622		warnc(retval, "%s: failed to initialize condition variable",
623		      __func__);
624		goto bailout;
625	}
626
627	dev->kq = kqueue();
628	if (dev->kq == -1) {
629		warn("%s: Unable to create kqueue", __func__);
630		goto bailout;
631	}
632
633	ke_size = sizeof(struct kevent) * (num_ke + 4);
634	ke = malloc(ke_size);
635	if (ke == NULL) {
636		warn("%s: unable to malloc %zu bytes", __func__, ke_size);
637		goto bailout;
638	}
639	bzero(ke, ke_size);
640	if (num_ke > 0)
641		bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
642
643	EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
644	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
645	EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
646	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
647	EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
648	EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
649
650	retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
651	if (retval == -1) {
652		warn("%s: Unable to register kevents", __func__);
653		goto bailout;
654	}
655
656
657	return (dev);
658
659bailout:
660	free(dev);
661
662	return (NULL);
663}
664
665static struct camdd_buf *
666camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
667{
668	struct camdd_buf *buf = NULL;
669	uint8_t *data_ptr = NULL;
670
671	/*
672	 * We only need to allocate data space for data buffers.
673	 */
674	switch (buf_type) {
675	case CAMDD_BUF_DATA:
676		data_ptr = malloc(dev->blocksize);
677		if (data_ptr == NULL) {
678			warn("unable to allocate %u bytes", dev->blocksize);
679			goto bailout_error;
680		}
681		break;
682	default:
683		break;
684	}
685
686	buf = malloc(sizeof(*buf));
687	if (buf == NULL) {
688		warn("unable to allocate %zu bytes", sizeof(*buf));
689		goto bailout_error;
690	}
691
692	bzero(buf, sizeof(*buf));
693	buf->buf_type = buf_type;
694	buf->dev = dev;
695	switch (buf_type) {
696	case CAMDD_BUF_DATA: {
697		struct camdd_buf_data *data;
698
699		data = &buf->buf_type_spec.data;
700
701		data->alloc_len = dev->blocksize;
702		data->buf = data_ptr;
703		break;
704	}
705	case CAMDD_BUF_INDIRECT:
706		break;
707	default:
708		break;
709	}
710	STAILQ_INIT(&buf->src_list);
711
712	return (buf);
713
714bailout_error:
715	free(data_ptr);
716
717	return (NULL);
718}
719
720void
721camdd_release_buf(struct camdd_buf *buf)
722{
723	struct camdd_dev *dev;
724
725	dev = buf->dev;
726
727	switch (buf->buf_type) {
728	case CAMDD_BUF_DATA: {
729		struct camdd_buf_data *data;
730
731		data = &buf->buf_type_spec.data;
732
733		if (data->segs != NULL) {
734			if (data->extra_buf != 0) {
735				void *extra_buf;
736
737				extra_buf = (void *)
738				    data->segs[data->sg_count - 1].ds_addr;
739				free(extra_buf);
740				data->extra_buf = 0;
741			}
742			free(data->segs);
743			data->segs = NULL;
744			data->sg_count = 0;
745		} else if (data->iovec != NULL) {
746			if (data->extra_buf != 0) {
747				free(data->iovec[data->sg_count - 1].iov_base);
748				data->extra_buf = 0;
749			}
750			free(data->iovec);
751			data->iovec = NULL;
752			data->sg_count = 0;
753		}
754		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
755		break;
756	}
757	case CAMDD_BUF_INDIRECT:
758		STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
759		break;
760	default:
761		err(1, "%s: Invalid buffer type %d for released buffer",
762		    __func__, buf->buf_type);
763		break;
764	}
765}
766
767struct camdd_buf *
768camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
769{
770	struct camdd_buf *buf = NULL;
771
772	switch (buf_type) {
773	case CAMDD_BUF_DATA:
774		buf = STAILQ_FIRST(&dev->free_queue);
775		if (buf != NULL) {
776			struct camdd_buf_data *data;
777			uint8_t *data_ptr;
778			uint32_t alloc_len;
779
780			STAILQ_REMOVE_HEAD(&dev->free_queue, links);
781			data = &buf->buf_type_spec.data;
782			data_ptr = data->buf;
783			alloc_len = data->alloc_len;
784			bzero(buf, sizeof(*buf));
785			data->buf = data_ptr;
786			data->alloc_len = alloc_len;
787		}
788		break;
789	case CAMDD_BUF_INDIRECT:
790		buf = STAILQ_FIRST(&dev->free_indirect_queue);
791		if (buf != NULL) {
792			STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
793
794			bzero(buf, sizeof(*buf));
795		}
796		break;
797	default:
798		warnx("Unknown buffer type %d requested", buf_type);
799		break;
800	}
801
802
803	if (buf == NULL)
804		return (camdd_alloc_buf(dev, buf_type));
805	else {
806		STAILQ_INIT(&buf->src_list);
807		buf->dev = dev;
808		buf->buf_type = buf_type;
809
810		return (buf);
811	}
812}
813
814int
815camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
816		    uint32_t *num_sectors_used, int *double_buf_needed)
817{
818	struct camdd_buf *tmp_buf;
819	struct camdd_buf_data *data;
820	uint8_t *extra_buf = NULL;
821	size_t extra_buf_len = 0;
822	int i, retval = 0;
823
824	data = &buf->buf_type_spec.data;
825
826	data->sg_count = buf->src_count;
827	/*
828	 * Compose a scatter/gather list from all of the buffers in the list.
829	 * If the length of the buffer isn't a multiple of the sector size,
830	 * we'll have to add an extra buffer.  This should only happen
831	 * at the end of a transfer.
832	 */
833	if ((data->fill_len % sector_size) != 0) {
834		extra_buf_len = sector_size - (data->fill_len % sector_size);
835		extra_buf = calloc(extra_buf_len, 1);
836		if (extra_buf == NULL) {
837			warn("%s: unable to allocate %zu bytes for extra "
838			    "buffer space", __func__, extra_buf_len);
839			retval = 1;
840			goto bailout;
841		}
842		data->extra_buf = 1;
843		data->sg_count++;
844	}
845	if (iovec == 0) {
846		data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
847		if (data->segs == NULL) {
848			warn("%s: unable to allocate %zu bytes for S/G list",
849			    __func__, sizeof(bus_dma_segment_t) *
850			    data->sg_count);
851			retval = 1;
852			goto bailout;
853		}
854
855	} else {
856		data->iovec = calloc(data->sg_count, sizeof(struct iovec));
857		if (data->iovec == NULL) {
858			warn("%s: unable to allocate %zu bytes for S/G list",
859			    __func__, sizeof(struct iovec) * data->sg_count);
860			retval = 1;
861			goto bailout;
862		}
863	}
864
865	for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
866	     i < buf->src_count && tmp_buf != NULL; i++,
867	     tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
868
869		if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
870			struct camdd_buf_data *tmp_data;
871
872			tmp_data = &tmp_buf->buf_type_spec.data;
873			if (iovec == 0) {
874				data->segs[i].ds_addr =
875				    (bus_addr_t) tmp_data->buf;
876				data->segs[i].ds_len = tmp_data->fill_len -
877				    tmp_data->resid;
878			} else {
879				data->iovec[i].iov_base = tmp_data->buf;
880				data->iovec[i].iov_len = tmp_data->fill_len -
881				    tmp_data->resid;
882			}
883			if (((tmp_data->fill_len - tmp_data->resid) %
884			     sector_size) != 0)
885				*double_buf_needed = 1;
886		} else {
887			struct camdd_buf_indirect *tmp_ind;
888
889			tmp_ind = &tmp_buf->buf_type_spec.indirect;
890			if (iovec == 0) {
891				data->segs[i].ds_addr =
892				    (bus_addr_t)tmp_ind->start_ptr;
893				data->segs[i].ds_len = tmp_ind->len;
894			} else {
895				data->iovec[i].iov_base = tmp_ind->start_ptr;
896				data->iovec[i].iov_len = tmp_ind->len;
897			}
898			if ((tmp_ind->len % sector_size) != 0)
899				*double_buf_needed = 1;
900		}
901	}
902
903	if (extra_buf != NULL) {
904		if (iovec == 0) {
905			data->segs[i].ds_addr = (bus_addr_t)extra_buf;
906			data->segs[i].ds_len = extra_buf_len;
907		} else {
908			data->iovec[i].iov_base = extra_buf;
909			data->iovec[i].iov_len = extra_buf_len;
910		}
911		i++;
912	}
913	if ((tmp_buf != NULL) || (i != data->sg_count)) {
914		warnx("buffer source count does not match "
915		      "number of buffers in list!");
916		retval = 1;
917		goto bailout;
918	}
919
920bailout:
921	if (retval == 0) {
922		*num_sectors_used = (data->fill_len + extra_buf_len) /
923		    sector_size;
924	}
925	return (retval);
926}
927
928uint32_t
929camdd_buf_get_len(struct camdd_buf *buf)
930{
931	uint32_t len = 0;
932
933	if (buf->buf_type != CAMDD_BUF_DATA) {
934		struct camdd_buf_indirect *indirect;
935
936		indirect = &buf->buf_type_spec.indirect;
937		len = indirect->len;
938	} else {
939		struct camdd_buf_data *data;
940
941		data = &buf->buf_type_spec.data;
942		len = data->fill_len;
943	}
944
945	return (len);
946}
947
948void
949camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
950{
951	struct camdd_buf_data *data;
952
953	assert(buf->buf_type == CAMDD_BUF_DATA);
954
955	data = &buf->buf_type_spec.data;
956
957	STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
958	buf->src_count++;
959
960	data->fill_len += camdd_buf_get_len(child_buf);
961}
962
963typedef enum {
964	CAMDD_TS_MAX_BLK,
965	CAMDD_TS_MIN_BLK,
966	CAMDD_TS_BLK_GRAN,
967	CAMDD_TS_EFF_IOSIZE
968} camdd_status_item_index;
969
970static struct camdd_status_items {
971	const char *name;
972	struct mt_status_entry *entry;
973} req_status_items[] = {
974	{ "max_blk", NULL },
975	{ "min_blk", NULL },
976	{ "blk_gran", NULL },
977	{ "max_effective_iosize", NULL }
978};
979
980int
981camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
982		 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
983{
984	struct mt_status_data status_data;
985	char *xml_str = NULL;
986	unsigned int i;
987	int retval = 0;
988
989	retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
990	if (retval != 0)
991		err(1, "Couldn't get XML string from %s", filename);
992
993	retval = mt_get_status(xml_str, &status_data);
994	if (retval != XML_STATUS_OK) {
995		warn("couldn't get status for %s", filename);
996		retval = 1;
997		goto bailout;
998	} else
999		retval = 0;
1000
1001	if (status_data.error != 0) {
1002		warnx("%s", status_data.error_str);
1003		retval = 1;
1004		goto bailout;
1005	}
1006
1007	for (i = 0; i < nitems(req_status_items); i++) {
1008                char *name;
1009
1010		name = __DECONST(char *, req_status_items[i].name);
1011		req_status_items[i].entry = mt_status_entry_find(&status_data,
1012		    name);
1013		if (req_status_items[i].entry == NULL) {
1014			errx(1, "Cannot find status entry %s",
1015			    req_status_items[i].name);
1016		}
1017	}
1018
1019	*max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1020	*max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1021	*min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1022	*blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1023bailout:
1024
1025	free(xml_str);
1026	mt_status_free(&status_data);
1027
1028	return (retval);
1029}
1030
1031struct camdd_dev *
1032camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1033    int timeout)
1034{
1035	struct camdd_dev *dev = NULL;
1036	struct camdd_dev_file *file_dev;
1037	uint64_t blocksize = io_opts->blocksize;
1038
1039	dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1040	if (dev == NULL)
1041		goto bailout;
1042
1043	file_dev = &dev->dev_spec.file;
1044	file_dev->fd = fd;
1045	strlcpy(file_dev->filename, io_opts->dev_name,
1046	    sizeof(file_dev->filename));
1047	strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1048	if (blocksize == 0)
1049		dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1050	else
1051		dev->blocksize = blocksize;
1052
1053	if ((io_opts->queue_depth != 0)
1054	 && (io_opts->queue_depth != 1)) {
1055		warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1056		    "command supported", (uintmax_t)io_opts->queue_depth,
1057		    io_opts->dev_name);
1058	}
1059	dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1060	dev->run = camdd_file_run;
1061	dev->fetch = NULL;
1062
1063	/*
1064	 * We can effectively access files on byte boundaries.  We'll reset
1065	 * this for devices like disks that can be accessed on sector
1066	 * boundaries.
1067	 */
1068	dev->sector_size = 1;
1069
1070	if ((fd != STDIN_FILENO)
1071	 && (fd != STDOUT_FILENO)) {
1072		int retval;
1073
1074		retval = fstat(fd, &file_dev->sb);
1075		if (retval != 0) {
1076			warn("Cannot stat %s", dev->device_name);
1077			goto bailout_error;
1078		}
1079		if (S_ISREG(file_dev->sb.st_mode)) {
1080			file_dev->file_type = CAMDD_FILE_REG;
1081		} else if (S_ISCHR(file_dev->sb.st_mode)) {
1082			int type;
1083
1084			if (ioctl(fd, FIODTYPE, &type) == -1)
1085				err(1, "FIODTYPE ioctl failed on %s",
1086				    dev->device_name);
1087			else {
1088				if (type & D_TAPE)
1089					file_dev->file_type = CAMDD_FILE_TAPE;
1090				else if (type & D_DISK)
1091					file_dev->file_type = CAMDD_FILE_DISK;
1092				else if (type & D_MEM)
1093					file_dev->file_type = CAMDD_FILE_MEM;
1094				else if (type & D_TTY)
1095					file_dev->file_type = CAMDD_FILE_TTY;
1096			}
1097		} else if (S_ISDIR(file_dev->sb.st_mode)) {
1098			errx(1, "cannot operate on directory %s",
1099			    dev->device_name);
1100		} else if (S_ISFIFO(file_dev->sb.st_mode)) {
1101			file_dev->file_type = CAMDD_FILE_PIPE;
1102		} else
1103			errx(1, "Cannot determine file type for %s",
1104			    dev->device_name);
1105
1106		switch (file_dev->file_type) {
1107		case CAMDD_FILE_REG:
1108			if (file_dev->sb.st_size != 0)
1109				dev->max_sector = file_dev->sb.st_size - 1;
1110			else
1111				dev->max_sector = 0;
1112			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1113			break;
1114		case CAMDD_FILE_TAPE: {
1115			uint64_t max_iosize, max_blk, min_blk, blk_gran;
1116			/*
1117			 * Check block limits and maximum effective iosize.
1118			 * Make sure the blocksize is within the block
1119			 * limits (and a multiple of the minimum blocksize)
1120			 * and that the blocksize is <= maximum effective
1121			 * iosize.
1122			 */
1123			retval = camdd_probe_tape(fd, dev->device_name,
1124			    &max_iosize, &max_blk, &min_blk, &blk_gran);
1125			if (retval != 0)
1126				errx(1, "Unable to probe tape %s",
1127				    dev->device_name);
1128
1129			/*
1130			 * The blocksize needs to be <= the maximum
1131			 * effective I/O size of the tape device.  Note
1132			 * that this also takes into account the maximum
1133			 * blocksize reported by READ BLOCK LIMITS.
1134			 */
1135			if (dev->blocksize > max_iosize) {
1136				warnx("Blocksize %u too big for %s, limiting "
1137				    "to %ju", dev->blocksize, dev->device_name,
1138				    max_iosize);
1139				dev->blocksize = max_iosize;
1140			}
1141
1142			/*
1143			 * The blocksize needs to be at least min_blk;
1144			 */
1145			if (dev->blocksize < min_blk) {
1146				warnx("Blocksize %u too small for %s, "
1147				    "increasing to %ju", dev->blocksize,
1148				    dev->device_name, min_blk);
1149				dev->blocksize = min_blk;
1150			}
1151
1152			/*
1153			 * And the blocksize needs to be a multiple of
1154			 * the block granularity.
1155			 */
1156			if ((blk_gran != 0)
1157			 && (dev->blocksize % (1 << blk_gran))) {
1158				warnx("Blocksize %u for %s not a multiple of "
1159				    "%d, adjusting to %d", dev->blocksize,
1160				    dev->device_name, (1 << blk_gran),
1161				    dev->blocksize & ~((1 << blk_gran) - 1));
1162				dev->blocksize &= ~((1 << blk_gran) - 1);
1163			}
1164
1165			if (dev->blocksize == 0) {
1166				errx(1, "Unable to derive valid blocksize for "
1167				    "%s", dev->device_name);
1168			}
1169
1170			/*
1171			 * For tape drives, set the sector size to the
1172			 * blocksize so that we make sure not to write
1173			 * less than the blocksize out to the drive.
1174			 */
1175			dev->sector_size = dev->blocksize;
1176			break;
1177		}
1178		case CAMDD_FILE_DISK: {
1179			off_t media_size;
1180			unsigned int sector_size;
1181
1182			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1183
1184			if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1185				err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1186				    dev->device_name);
1187			}
1188
1189			if (sector_size == 0) {
1190				errx(1, "DIOCGSECTORSIZE ioctl returned "
1191				    "invalid sector size %u for %s",
1192				    sector_size, dev->device_name);
1193			}
1194
1195			if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1196				err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1197				    dev->device_name);
1198			}
1199
1200			if (media_size == 0) {
1201				errx(1, "DIOCGMEDIASIZE ioctl returned "
1202				    "invalid media size %ju for %s",
1203				    (uintmax_t)media_size, dev->device_name);
1204			}
1205
1206			if (dev->blocksize % sector_size) {
1207				errx(1, "%s blocksize %u not a multiple of "
1208				    "sector size %u", dev->device_name,
1209				    dev->blocksize, sector_size);
1210			}
1211
1212			dev->sector_size = sector_size;
1213			dev->max_sector = (media_size / sector_size) - 1;
1214			break;
1215		}
1216		case CAMDD_FILE_MEM:
1217			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1218			break;
1219		default:
1220			break;
1221		}
1222	}
1223
1224	if ((io_opts->offset != 0)
1225	 && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1226		warnx("Offset %ju specified for %s, but we cannot seek on %s",
1227		    io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1228		goto bailout_error;
1229	}
1230#if 0
1231	else if ((io_opts->offset != 0)
1232		&& ((io_opts->offset % dev->sector_size) != 0)) {
1233		warnx("Offset %ju for %s is not a multiple of the "
1234		      "sector size %u", io_opts->offset,
1235		      io_opts->dev_name, dev->sector_size);
1236		goto bailout_error;
1237	} else {
1238		dev->start_offset_bytes = io_opts->offset;
1239	}
1240#endif
1241
1242bailout:
1243	return (dev);
1244
1245bailout_error:
1246	camdd_free_dev(dev);
1247	return (NULL);
1248}
1249
1250/*
1251 * Need to implement this.  Do a basic probe:
1252 * - Check the inquiry data, make sure we're talking to a device that we
1253 *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1254 * - Send a test unit ready, make sure the device is available.
1255 * - Get the capacity and block size.
1256 */
1257struct camdd_dev *
1258camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1259		 camdd_argmask arglist, int probe_retry_count,
1260		 int probe_timeout, int io_retry_count, int io_timeout)
1261{
1262	union ccb *ccb;
1263	uint64_t maxsector;
1264	uint32_t cpi_maxio, max_iosize, pass_numblocks;
1265	uint32_t block_len;
1266	struct scsi_read_capacity_data rcap;
1267	struct scsi_read_capacity_data_long rcaplong;
1268	struct camdd_dev *dev;
1269	struct camdd_dev_pass *pass_dev;
1270	struct kevent ke;
1271	int scsi_dev_type;
1272
1273	dev = NULL;
1274
1275	scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1276	maxsector = 0;
1277	block_len = 0;
1278
1279	/*
1280	 * For devices that support READ CAPACITY, we'll attempt to get the
1281	 * capacity.  Otherwise, we really don't support tape or other
1282	 * devices via SCSI passthrough, so just return an error in that case.
1283	 */
1284	switch (scsi_dev_type) {
1285	case T_DIRECT:
1286	case T_WORM:
1287	case T_CDROM:
1288	case T_OPTICAL:
1289	case T_RBC:
1290	case T_ZBC_HM:
1291		break;
1292	default:
1293		errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1294		break; /*NOTREACHED*/
1295	}
1296
1297	ccb = cam_getccb(cam_dev);
1298
1299	if (ccb == NULL) {
1300		warnx("%s: error allocating ccb", __func__);
1301		goto bailout;
1302	}
1303
1304	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
1305
1306	scsi_read_capacity(&ccb->csio,
1307			   /*retries*/ probe_retry_count,
1308			   /*cbfcnp*/ NULL,
1309			   /*tag_action*/ MSG_SIMPLE_Q_TAG,
1310			   &rcap,
1311			   SSD_FULL_SIZE,
1312			   /*timeout*/ probe_timeout ? probe_timeout : 5000);
1313
1314	/* Disable freezing the device queue */
1315	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1316
1317	if (arglist & CAMDD_ARG_ERR_RECOVER)
1318		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1319
1320	if (cam_send_ccb(cam_dev, ccb) < 0) {
1321		warn("error sending READ CAPACITY command");
1322
1323		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1324				CAM_EPF_ALL, stderr);
1325
1326		goto bailout;
1327	}
1328
1329	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1330		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1331		goto bailout;
1332	}
1333
1334	maxsector = scsi_4btoul(rcap.addr);
1335	block_len = scsi_4btoul(rcap.length);
1336
1337	/*
1338	 * A last block of 2^32-1 means that the true capacity is over 2TB,
1339	 * and we need to issue the long READ CAPACITY to get the real
1340	 * capacity.  Otherwise, we're all set.
1341	 */
1342	if (maxsector != 0xffffffff)
1343		goto rcap_done;
1344
1345	scsi_read_capacity_16(&ccb->csio,
1346			      /*retries*/ probe_retry_count,
1347			      /*cbfcnp*/ NULL,
1348			      /*tag_action*/ MSG_SIMPLE_Q_TAG,
1349			      /*lba*/ 0,
1350			      /*reladdr*/ 0,
1351			      /*pmi*/ 0,
1352			      (uint8_t *)&rcaplong,
1353			      sizeof(rcaplong),
1354			      /*sense_len*/ SSD_FULL_SIZE,
1355			      /*timeout*/ probe_timeout ? probe_timeout : 5000);
1356
1357	/* Disable freezing the device queue */
1358	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1359
1360	if (arglist & CAMDD_ARG_ERR_RECOVER)
1361		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1362
1363	if (cam_send_ccb(cam_dev, ccb) < 0) {
1364		warn("error sending READ CAPACITY (16) command");
1365		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1366				CAM_EPF_ALL, stderr);
1367		goto bailout;
1368	}
1369
1370	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1371		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1372		goto bailout;
1373	}
1374
1375	maxsector = scsi_8btou64(rcaplong.addr);
1376	block_len = scsi_4btoul(rcaplong.length);
1377
1378rcap_done:
1379	if (block_len == 0) {
1380		warnx("Sector size for %s%u is 0, cannot continue",
1381		    cam_dev->device_name, cam_dev->dev_unit_num);
1382		goto bailout_error;
1383	}
1384
1385	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi);
1386
1387	ccb->ccb_h.func_code = XPT_PATH_INQ;
1388	ccb->ccb_h.flags = CAM_DIR_NONE;
1389	ccb->ccb_h.retry_count = 1;
1390
1391	if (cam_send_ccb(cam_dev, ccb) < 0) {
1392		warn("error sending XPT_PATH_INQ CCB");
1393
1394		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1395				CAM_EPF_ALL, stderr);
1396		goto bailout;
1397	}
1398
1399	EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1400
1401	dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1402			      io_timeout);
1403	if (dev == NULL)
1404		goto bailout;
1405
1406	pass_dev = &dev->dev_spec.pass;
1407	pass_dev->scsi_dev_type = scsi_dev_type;
1408	pass_dev->dev = cam_dev;
1409	pass_dev->max_sector = maxsector;
1410	pass_dev->block_len = block_len;
1411	pass_dev->cpi_maxio = ccb->cpi.maxio;
1412	snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1413		 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1414	dev->sector_size = block_len;
1415	dev->max_sector = maxsector;
1416
1417
1418	/*
1419	 * Determine the optimal blocksize to use for this device.
1420	 */
1421
1422	/*
1423	 * If the controller has not specified a maximum I/O size,
1424	 * just go with 128K as a somewhat conservative value.
1425	 */
1426	if (pass_dev->cpi_maxio == 0)
1427		cpi_maxio = 131072;
1428	else
1429		cpi_maxio = pass_dev->cpi_maxio;
1430
1431	/*
1432	 * If the controller has a large maximum I/O size, limit it
1433	 * to something smaller so that the kernel doesn't have trouble
1434	 * allocating buffers to copy data in and out for us.
1435	 * XXX KDM this is until we have unmapped I/O support in the kernel.
1436	 */
1437	max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1438
1439	/*
1440	 * If we weren't able to get a block size for some reason,
1441	 * default to 512 bytes.
1442	 */
1443	block_len = pass_dev->block_len;
1444	if (block_len == 0)
1445		block_len = 512;
1446
1447	/*
1448	 * Figure out how many blocksize chunks will fit in the
1449	 * maximum I/O size.
1450	 */
1451	pass_numblocks = max_iosize / block_len;
1452
1453	/*
1454	 * And finally, multiple the number of blocks by the LBA
1455	 * length to get our maximum block size;
1456	 */
1457	dev->blocksize = pass_numblocks * block_len;
1458
1459	if (io_opts->blocksize != 0) {
1460		if ((io_opts->blocksize % dev->sector_size) != 0) {
1461			warnx("Blocksize %ju for %s is not a multiple of "
1462			      "sector size %u", (uintmax_t)io_opts->blocksize,
1463			      dev->device_name, dev->sector_size);
1464			goto bailout_error;
1465		}
1466		dev->blocksize = io_opts->blocksize;
1467	}
1468	dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1469	if (io_opts->queue_depth != 0)
1470		dev->target_queue_depth = io_opts->queue_depth;
1471
1472	if (io_opts->offset != 0) {
1473		if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1474			warnx("Offset %ju is past the end of device %s",
1475			    io_opts->offset, dev->device_name);
1476			goto bailout_error;
1477		}
1478#if 0
1479		else if ((io_opts->offset % dev->sector_size) != 0) {
1480			warnx("Offset %ju for %s is not a multiple of the "
1481			      "sector size %u", io_opts->offset,
1482			      dev->device_name, dev->sector_size);
1483			goto bailout_error;
1484		}
1485		dev->start_offset_bytes = io_opts->offset;
1486#endif
1487	}
1488
1489	dev->min_cmd_size = io_opts->min_cmd_size;
1490
1491	dev->run = camdd_pass_run;
1492	dev->fetch = camdd_pass_fetch;
1493
1494bailout:
1495	cam_freeccb(ccb);
1496
1497	return (dev);
1498
1499bailout_error:
1500	cam_freeccb(ccb);
1501
1502	camdd_free_dev(dev);
1503
1504	return (NULL);
1505}
1506
1507void *
1508camdd_worker(void *arg)
1509{
1510	struct camdd_dev *dev = arg;
1511	struct camdd_buf *buf;
1512	struct timespec ts, *kq_ts;
1513
1514	ts.tv_sec = 0;
1515	ts.tv_nsec = 0;
1516
1517	pthread_mutex_lock(&dev->mutex);
1518
1519	dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1520
1521	for (;;) {
1522		struct kevent ke;
1523		int retval = 0;
1524
1525		/*
1526		 * XXX KDM check the reorder queue depth?
1527		 */
1528		if (dev->write_dev == 0) {
1529			uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1530			uint32_t target_depth = dev->target_queue_depth;
1531			uint32_t peer_target_depth =
1532			    dev->peer_dev->target_queue_depth;
1533			uint32_t peer_blocksize = dev->peer_dev->blocksize;
1534
1535			camdd_get_depth(dev, &our_depth, &peer_depth,
1536					&our_bytes, &peer_bytes);
1537
1538#if 0
1539			while (((our_depth < target_depth)
1540			     && (peer_depth < peer_target_depth))
1541			    || ((peer_bytes + our_bytes) <
1542				 (peer_blocksize * 2))) {
1543#endif
1544			while (((our_depth + peer_depth) <
1545			        (target_depth + peer_target_depth))
1546			    || ((peer_bytes + our_bytes) <
1547				(peer_blocksize * 3))) {
1548
1549				retval = camdd_queue(dev, NULL);
1550				if (retval == 1)
1551					break;
1552				else if (retval != 0) {
1553					error_exit = 1;
1554					goto bailout;
1555				}
1556
1557				camdd_get_depth(dev, &our_depth, &peer_depth,
1558						&our_bytes, &peer_bytes);
1559			}
1560		}
1561		/*
1562		 * See if we have any I/O that is ready to execute.
1563		 */
1564		buf = STAILQ_FIRST(&dev->run_queue);
1565		if (buf != NULL) {
1566			while (dev->target_queue_depth > dev->cur_active_io) {
1567				retval = dev->run(dev);
1568				if (retval == -1) {
1569					dev->flags |= CAMDD_DEV_FLAG_EOF;
1570					error_exit = 1;
1571					break;
1572				} else if (retval != 0) {
1573					break;
1574				}
1575			}
1576		}
1577
1578		/*
1579		 * We've reached EOF, or our partner has reached EOF.
1580		 */
1581		if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1582		 || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1583			if (dev->write_dev != 0) {
1584			 	if ((STAILQ_EMPTY(&dev->work_queue))
1585				 && (dev->num_run_queue == 0)
1586				 && (dev->cur_active_io == 0)) {
1587					goto bailout;
1588				}
1589			} else {
1590				/*
1591				 * If we're the reader, and the writer
1592				 * got EOF, he is already done.  If we got
1593				 * the EOF, then we need to wait until
1594				 * everything is flushed out for the writer.
1595				 */
1596				if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1597					goto bailout;
1598				} else if ((dev->num_peer_work_queue == 0)
1599					&& (dev->num_peer_done_queue == 0)
1600					&& (dev->cur_active_io == 0)
1601					&& (dev->num_run_queue == 0)) {
1602					goto bailout;
1603				}
1604			}
1605			/*
1606			 * XXX KDM need to do something about the pending
1607			 * queue and cleanup resources.
1608			 */
1609		}
1610
1611		if ((dev->write_dev == 0)
1612		 && (dev->cur_active_io == 0)
1613		 && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1614			kq_ts = &ts;
1615		else
1616			kq_ts = NULL;
1617
1618		/*
1619		 * Run kevent to see if there are events to process.
1620		 */
1621		pthread_mutex_unlock(&dev->mutex);
1622		retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1623		pthread_mutex_lock(&dev->mutex);
1624		if (retval == -1) {
1625			warn("%s: error returned from kevent",__func__);
1626			goto bailout;
1627		} else if (retval != 0) {
1628			switch (ke.filter) {
1629			case EVFILT_READ:
1630				if (dev->fetch != NULL) {
1631					retval = dev->fetch(dev);
1632					if (retval == -1) {
1633						error_exit = 1;
1634						goto bailout;
1635					}
1636				}
1637				break;
1638			case EVFILT_SIGNAL:
1639				/*
1640				 * We register for this so we don't get
1641				 * an error as a result of a SIGINFO or a
1642				 * SIGINT.  It will actually get handled
1643				 * by the signal handler.  If we get a
1644				 * SIGINT, bail out without printing an
1645				 * error message.  Any other signals
1646				 * will result in the error message above.
1647				 */
1648				if (ke.ident == SIGINT)
1649					goto bailout;
1650				break;
1651			case EVFILT_USER:
1652				retval = 0;
1653				/*
1654				 * Check to see if the other thread has
1655				 * queued any I/O for us to do.  (In this
1656				 * case we're the writer.)
1657				 */
1658				for (buf = STAILQ_FIRST(&dev->work_queue);
1659				     buf != NULL;
1660				     buf = STAILQ_FIRST(&dev->work_queue)) {
1661					STAILQ_REMOVE_HEAD(&dev->work_queue,
1662							   work_links);
1663					retval = camdd_queue(dev, buf);
1664					/*
1665					 * We keep going unless we get an
1666					 * actual error.  If we get EOF, we
1667					 * still want to remove the buffers
1668					 * from the queue and send the back
1669					 * to the reader thread.
1670					 */
1671					if (retval == -1) {
1672						error_exit = 1;
1673						goto bailout;
1674					} else
1675						retval = 0;
1676				}
1677
1678				/*
1679				 * Next check to see if the other thread has
1680				 * queued any completed buffers back to us.
1681				 * (In this case we're the reader.)
1682				 */
1683				for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1684				     buf != NULL;
1685				     buf = STAILQ_FIRST(&dev->peer_done_queue)){
1686					STAILQ_REMOVE_HEAD(
1687					    &dev->peer_done_queue, work_links);
1688					dev->num_peer_done_queue--;
1689					camdd_peer_done(buf);
1690				}
1691				break;
1692			default:
1693				warnx("%s: unknown kevent filter %d",
1694				      __func__, ke.filter);
1695				break;
1696			}
1697		}
1698	}
1699
1700bailout:
1701
1702	dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1703
1704	/* XXX KDM cleanup resources here? */
1705
1706	pthread_mutex_unlock(&dev->mutex);
1707
1708	need_exit = 1;
1709	sem_post(&camdd_sem);
1710
1711	return (NULL);
1712}
1713
1714/*
1715 * Simplistic translation of CCB status to our local status.
1716 */
1717camdd_buf_status
1718camdd_ccb_status(union ccb *ccb)
1719{
1720	camdd_buf_status status = CAMDD_STATUS_NONE;
1721	cam_status ccb_status;
1722
1723	ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1724
1725	switch (ccb_status) {
1726	case CAM_REQ_CMP: {
1727		if (ccb->csio.resid == 0) {
1728			status = CAMDD_STATUS_OK;
1729		} else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1730			status = CAMDD_STATUS_SHORT_IO;
1731		} else {
1732			status = CAMDD_STATUS_EOF;
1733		}
1734		break;
1735	}
1736	case CAM_SCSI_STATUS_ERROR: {
1737		switch (ccb->csio.scsi_status) {
1738		case SCSI_STATUS_OK:
1739		case SCSI_STATUS_COND_MET:
1740		case SCSI_STATUS_INTERMED:
1741		case SCSI_STATUS_INTERMED_COND_MET:
1742			status = CAMDD_STATUS_OK;
1743			break;
1744		case SCSI_STATUS_CMD_TERMINATED:
1745		case SCSI_STATUS_CHECK_COND:
1746		case SCSI_STATUS_QUEUE_FULL:
1747		case SCSI_STATUS_BUSY:
1748		case SCSI_STATUS_RESERV_CONFLICT:
1749		default:
1750			status = CAMDD_STATUS_ERROR;
1751			break;
1752		}
1753		break;
1754	}
1755	default:
1756		status = CAMDD_STATUS_ERROR;
1757		break;
1758	}
1759
1760	return (status);
1761}
1762
1763/*
1764 * Queue a buffer to our peer's work thread for writing.
1765 *
1766 * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1767 */
1768int
1769camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1770{
1771	struct kevent ke;
1772	STAILQ_HEAD(, camdd_buf) local_queue;
1773	struct camdd_buf *buf1, *buf2;
1774	struct camdd_buf_data *data = NULL;
1775	uint64_t peer_bytes_queued = 0;
1776	int active = 1;
1777	int retval = 0;
1778
1779	STAILQ_INIT(&local_queue);
1780
1781	/*
1782	 * Since we're the reader, we need to queue our I/O to the writer
1783	 * in sequential order in order to make sure it gets written out
1784	 * in sequential order.
1785	 *
1786	 * Check the next expected I/O starting offset.  If this doesn't
1787	 * match, put it on the reorder queue.
1788	 */
1789	if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1790
1791		/*
1792		 * If there is nothing on the queue, there is no sorting
1793		 * needed.
1794		 */
1795		if (STAILQ_EMPTY(&dev->reorder_queue)) {
1796			STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1797			dev->num_reorder_queue++;
1798			goto bailout;
1799		}
1800
1801		/*
1802		 * Sort in ascending order by starting LBA.  There should
1803		 * be no identical LBAs.
1804		 */
1805		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1806		     buf1 = buf2) {
1807			buf2 = STAILQ_NEXT(buf1, links);
1808			if (buf->lba < buf1->lba) {
1809				/*
1810				 * If we're less than the first one, then
1811				 * we insert at the head of the list
1812				 * because this has to be the first element
1813				 * on the list.
1814				 */
1815				STAILQ_INSERT_HEAD(&dev->reorder_queue,
1816						   buf, links);
1817				dev->num_reorder_queue++;
1818				break;
1819			} else if (buf->lba > buf1->lba) {
1820				if (buf2 == NULL) {
1821					STAILQ_INSERT_TAIL(&dev->reorder_queue,
1822					    buf, links);
1823					dev->num_reorder_queue++;
1824					break;
1825				} else if (buf->lba < buf2->lba) {
1826					STAILQ_INSERT_AFTER(&dev->reorder_queue,
1827					    buf1, buf, links);
1828					dev->num_reorder_queue++;
1829					break;
1830				}
1831			} else {
1832				errx(1, "Found buffers with duplicate LBA %ju!",
1833				     buf->lba);
1834			}
1835		}
1836		goto bailout;
1837	} else {
1838
1839		/*
1840		 * We're the next expected I/O completion, so put ourselves
1841		 * on the local queue to be sent to the writer.  We use
1842		 * work_links here so that we can queue this to the
1843		 * peer_work_queue before taking the buffer off of the
1844		 * local_queue.
1845		 */
1846		dev->next_completion_pos_bytes += buf->len;
1847		STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1848
1849		/*
1850		 * Go through the reorder queue looking for more sequential
1851		 * I/O and add it to the local queue.
1852		 */
1853		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1854		     buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1855			/*
1856			 * As soon as we see an I/O that is out of sequence,
1857			 * we're done.
1858			 */
1859			if ((buf1->lba * dev->sector_size) !=
1860			     dev->next_completion_pos_bytes)
1861				break;
1862
1863			STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1864			dev->num_reorder_queue--;
1865			STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1866			dev->next_completion_pos_bytes += buf1->len;
1867		}
1868	}
1869
1870	/*
1871	 * Setup the event to let the other thread know that it has work
1872	 * pending.
1873	 */
1874	EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1875	       NOTE_TRIGGER, 0, NULL);
1876
1877	/*
1878	 * Put this on our shadow queue so that we know what we've queued
1879	 * to the other thread.
1880	 */
1881	STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1882		if (buf1->buf_type != CAMDD_BUF_DATA) {
1883			errx(1, "%s: should have a data buffer, not an "
1884			    "indirect buffer", __func__);
1885		}
1886		data = &buf1->buf_type_spec.data;
1887
1888		/*
1889		 * We only need to send one EOF to the writer, and don't
1890		 * need to continue sending EOFs after that.
1891		 */
1892		if (buf1->status == CAMDD_STATUS_EOF) {
1893			if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1894				STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1895				    work_links);
1896				camdd_release_buf(buf1);
1897				retval = 1;
1898				continue;
1899			}
1900			dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1901		}
1902
1903
1904		STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
1905		peer_bytes_queued += (data->fill_len - data->resid);
1906		dev->peer_bytes_queued += (data->fill_len - data->resid);
1907		dev->num_peer_work_queue++;
1908	}
1909
1910	if (STAILQ_FIRST(&local_queue) == NULL)
1911		goto bailout;
1912
1913	/*
1914	 * Drop our mutex and pick up the other thread's mutex.  We need to
1915	 * do this to avoid deadlocks.
1916	 */
1917	pthread_mutex_unlock(&dev->mutex);
1918	pthread_mutex_lock(&dev->peer_dev->mutex);
1919
1920	if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
1921		/*
1922		 * Put the buffers on the other thread's incoming work queue.
1923		 */
1924		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1925		     buf1 = STAILQ_FIRST(&local_queue)) {
1926			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1927			STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
1928					   work_links);
1929		}
1930		/*
1931		 * Send an event to the other thread's kqueue to let it know
1932		 * that there is something on the work queue.
1933		 */
1934		retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
1935		if (retval == -1)
1936			warn("%s: unable to add peer work_queue kevent",
1937			     __func__);
1938		else
1939			retval = 0;
1940	} else
1941		active = 0;
1942
1943	pthread_mutex_unlock(&dev->peer_dev->mutex);
1944	pthread_mutex_lock(&dev->mutex);
1945
1946	/*
1947	 * If the other side isn't active, run through the queue and
1948	 * release all of the buffers.
1949	 */
1950	if (active == 0) {
1951		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1952		     buf1 = STAILQ_FIRST(&local_queue)) {
1953			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1954			STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
1955				      links);
1956			dev->num_peer_work_queue--;
1957			camdd_release_buf(buf1);
1958		}
1959		dev->peer_bytes_queued -= peer_bytes_queued;
1960		retval = 1;
1961	}
1962
1963bailout:
1964	return (retval);
1965}
1966
1967/*
1968 * Return a buffer to the reader thread when we have completed writing it.
1969 */
1970int
1971camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
1972{
1973	struct kevent ke;
1974	int retval = 0;
1975
1976	/*
1977	 * Setup the event to let the other thread know that we have
1978	 * completed a buffer.
1979	 */
1980	EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
1981	       NOTE_TRIGGER, 0, NULL);
1982
1983	/*
1984	 * Drop our lock and acquire the other thread's lock before
1985	 * manipulating
1986	 */
1987	pthread_mutex_unlock(&dev->mutex);
1988	pthread_mutex_lock(&dev->peer_dev->mutex);
1989
1990	/*
1991	 * Put the buffer on the reader thread's peer done queue now that
1992	 * we have completed it.
1993	 */
1994	STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
1995			   work_links);
1996	dev->peer_dev->num_peer_done_queue++;
1997
1998	/*
1999	 * Send an event to the peer thread to let it know that we've added
2000	 * something to its peer done queue.
2001	 */
2002	retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2003	if (retval == -1)
2004		warn("%s: unable to add peer_done_queue kevent", __func__);
2005	else
2006		retval = 0;
2007
2008	/*
2009	 * Drop the other thread's lock and reacquire ours.
2010	 */
2011	pthread_mutex_unlock(&dev->peer_dev->mutex);
2012	pthread_mutex_lock(&dev->mutex);
2013
2014	return (retval);
2015}
2016
2017/*
2018 * Free a buffer that was written out by the writer thread and returned to
2019 * the reader thread.
2020 */
2021void
2022camdd_peer_done(struct camdd_buf *buf)
2023{
2024	struct camdd_dev *dev;
2025	struct camdd_buf_data *data;
2026
2027	dev = buf->dev;
2028	if (buf->buf_type != CAMDD_BUF_DATA) {
2029		errx(1, "%s: should have a data buffer, not an "
2030		    "indirect buffer", __func__);
2031	}
2032
2033	data = &buf->buf_type_spec.data;
2034
2035	STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2036	dev->num_peer_work_queue--;
2037	dev->peer_bytes_queued -= (data->fill_len - data->resid);
2038
2039	if (buf->status == CAMDD_STATUS_EOF)
2040		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2041
2042	STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2043}
2044
2045/*
2046 * Assumes caller holds the lock for this device.
2047 */
2048void
2049camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2050		   int *error_count)
2051{
2052	int retval = 0;
2053
2054	/*
2055	 * If we're the reader, we need to send the completed I/O
2056	 * to the writer.  If we're the writer, we need to just
2057	 * free up resources, or let the reader know if we've
2058	 * encountered an error.
2059	 */
2060	if (dev->write_dev == 0) {
2061		retval = camdd_queue_peer_buf(dev, buf);
2062		if (retval != 0)
2063			(*error_count)++;
2064	} else {
2065		struct camdd_buf *tmp_buf, *next_buf;
2066
2067		STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2068				    next_buf) {
2069			struct camdd_buf *src_buf;
2070			struct camdd_buf_indirect *indirect;
2071
2072			STAILQ_REMOVE(&buf->src_list, tmp_buf,
2073				      camdd_buf, src_links);
2074
2075			tmp_buf->status = buf->status;
2076
2077			if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2078				camdd_complete_peer_buf(dev, tmp_buf);
2079				continue;
2080			}
2081
2082			indirect = &tmp_buf->buf_type_spec.indirect;
2083			src_buf = indirect->src_buf;
2084			src_buf->refcount--;
2085			/*
2086			 * XXX KDM we probably need to account for
2087			 * exactly how many bytes we were able to
2088			 * write.  Allocate the residual to the
2089			 * first N buffers?  Or just track the
2090			 * number of bytes written?  Right now the reader
2091			 * doesn't do anything with a residual.
2092			 */
2093			src_buf->status = buf->status;
2094			if (src_buf->refcount <= 0)
2095				camdd_complete_peer_buf(dev, src_buf);
2096			STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2097					   tmp_buf, links);
2098		}
2099
2100		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2101	}
2102}
2103
2104/*
2105 * Fetch all completed commands from the pass(4) device.
2106 *
2107 * Returns the number of commands received, or -1 if any of the commands
2108 * completed with an error.  Returns 0 if no commands are available.
2109 */
2110int
2111camdd_pass_fetch(struct camdd_dev *dev)
2112{
2113	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2114	union ccb ccb;
2115	int retval = 0, num_fetched = 0, error_count = 0;
2116
2117	pthread_mutex_unlock(&dev->mutex);
2118	/*
2119	 * XXX KDM we don't distinguish between EFAULT and ENOENT.
2120	 */
2121	while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2122		struct camdd_buf *buf;
2123		struct camdd_buf_data *data;
2124		cam_status ccb_status;
2125		union ccb *buf_ccb;
2126
2127		buf = ccb.ccb_h.ccb_buf;
2128		data = &buf->buf_type_spec.data;
2129		buf_ccb = &data->ccb;
2130
2131		num_fetched++;
2132
2133		/*
2134		 * Copy the CCB back out so we get status, sense data, etc.
2135		 */
2136		bcopy(&ccb, buf_ccb, sizeof(ccb));
2137
2138		pthread_mutex_lock(&dev->mutex);
2139
2140		/*
2141		 * We're now done, so take this off the active queue.
2142		 */
2143		STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2144		dev->cur_active_io--;
2145
2146		ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2147		if (ccb_status != CAM_REQ_CMP) {
2148			cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2149					CAM_EPF_ALL, stderr);
2150		}
2151
2152		data->resid = ccb.csio.resid;
2153		dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2154
2155		if (buf->status == CAMDD_STATUS_NONE)
2156			buf->status = camdd_ccb_status(&ccb);
2157		if (buf->status == CAMDD_STATUS_ERROR)
2158			error_count++;
2159		else if (buf->status == CAMDD_STATUS_EOF) {
2160			/*
2161			 * Once we queue this buffer to our partner thread,
2162			 * he will know that we've hit EOF.
2163			 */
2164			dev->flags |= CAMDD_DEV_FLAG_EOF;
2165		}
2166
2167		camdd_complete_buf(dev, buf, &error_count);
2168
2169		/*
2170		 * Unlock in preparation for the ioctl call.
2171		 */
2172		pthread_mutex_unlock(&dev->mutex);
2173	}
2174
2175	pthread_mutex_lock(&dev->mutex);
2176
2177	if (error_count > 0)
2178		return (-1);
2179	else
2180		return (num_fetched);
2181}
2182
2183/*
2184 * Returns -1 for error, 0 for success/continue, and 1 for resource
2185 * shortage/stop processing.
2186 */
2187int
2188camdd_file_run(struct camdd_dev *dev)
2189{
2190	struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2191	struct camdd_buf_data *data;
2192	struct camdd_buf *buf;
2193	off_t io_offset;
2194	int retval = 0, write_dev = dev->write_dev;
2195	int error_count = 0, no_resources = 0, double_buf_needed = 0;
2196	uint32_t num_sectors = 0, db_len = 0;
2197
2198	buf = STAILQ_FIRST(&dev->run_queue);
2199	if (buf == NULL) {
2200		no_resources = 1;
2201		goto bailout;
2202	} else if ((dev->write_dev == 0)
2203		&& (dev->flags & (CAMDD_DEV_FLAG_EOF |
2204				  CAMDD_DEV_FLAG_EOF_SENT))) {
2205		STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2206		dev->num_run_queue--;
2207		buf->status = CAMDD_STATUS_EOF;
2208		error_count++;
2209		goto bailout;
2210	}
2211
2212	/*
2213	 * If we're writing, we need to go through the source buffer list
2214	 * and create an S/G list.
2215	 */
2216	if (write_dev != 0) {
2217		retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2218		    dev->sector_size, &num_sectors, &double_buf_needed);
2219		if (retval != 0) {
2220			no_resources = 1;
2221			goto bailout;
2222		}
2223	}
2224
2225	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2226	dev->num_run_queue--;
2227
2228	data = &buf->buf_type_spec.data;
2229
2230	/*
2231	 * pread(2) and pwrite(2) offsets are byte offsets.
2232	 */
2233	io_offset = buf->lba * dev->sector_size;
2234
2235	/*
2236	 * Unlock the mutex while we read or write.
2237	 */
2238	pthread_mutex_unlock(&dev->mutex);
2239
2240	/*
2241	 * Note that we don't need to double buffer if we're the reader
2242	 * because in that case, we have allocated a single buffer of
2243	 * sufficient size to do the read.  This copy is necessary on
2244	 * writes because if one of the components of the S/G list is not
2245	 * a sector size multiple, the kernel will reject the write.  This
2246	 * is unfortunate but not surprising.  So this will make sure that
2247	 * we're using a single buffer that is a multiple of the sector size.
2248	 */
2249	if ((double_buf_needed != 0)
2250	 && (data->sg_count > 1)
2251	 && (write_dev != 0)) {
2252		uint32_t cur_offset;
2253		int i;
2254
2255		if (file_dev->tmp_buf == NULL)
2256			file_dev->tmp_buf = calloc(dev->blocksize, 1);
2257		if (file_dev->tmp_buf == NULL) {
2258			buf->status = CAMDD_STATUS_ERROR;
2259			error_count++;
2260			pthread_mutex_lock(&dev->mutex);
2261			goto bailout;
2262		}
2263		for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2264			bcopy(data->iovec[i].iov_base,
2265			    &file_dev->tmp_buf[cur_offset],
2266			    data->iovec[i].iov_len);
2267			cur_offset += data->iovec[i].iov_len;
2268		}
2269		db_len = cur_offset;
2270	}
2271
2272	if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2273		if (write_dev == 0) {
2274			/*
2275			 * XXX KDM is there any way we would need a S/G
2276			 * list here?
2277			 */
2278			retval = pread(file_dev->fd, data->buf,
2279			    buf->len, io_offset);
2280		} else {
2281			if (double_buf_needed != 0) {
2282				retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2283				    db_len, io_offset);
2284			} else if (data->sg_count == 0) {
2285				retval = pwrite(file_dev->fd, data->buf,
2286				    data->fill_len, io_offset);
2287			} else {
2288				retval = pwritev(file_dev->fd, data->iovec,
2289				    data->sg_count, io_offset);
2290			}
2291		}
2292	} else {
2293		if (write_dev == 0) {
2294			/*
2295			 * XXX KDM is there any way we would need a S/G
2296			 * list here?
2297			 */
2298			retval = read(file_dev->fd, data->buf, buf->len);
2299		} else {
2300			if (double_buf_needed != 0) {
2301				retval = write(file_dev->fd, file_dev->tmp_buf,
2302				    db_len);
2303			} else if (data->sg_count == 0) {
2304				retval = write(file_dev->fd, data->buf,
2305				    data->fill_len);
2306			} else {
2307				retval = writev(file_dev->fd, data->iovec,
2308				    data->sg_count);
2309			}
2310		}
2311	}
2312
2313	/* We're done, re-acquire the lock */
2314	pthread_mutex_lock(&dev->mutex);
2315
2316	if (retval >= (ssize_t)data->fill_len) {
2317		/*
2318		 * If the bytes transferred is more than the request size,
2319		 * that indicates an overrun, which should only happen at
2320		 * the end of a transfer if we have to round up to a sector
2321		 * boundary.
2322		 */
2323		if (buf->status == CAMDD_STATUS_NONE)
2324			buf->status = CAMDD_STATUS_OK;
2325		data->resid = 0;
2326		dev->bytes_transferred += retval;
2327	} else if (retval == -1) {
2328		warn("Error %s %s", (write_dev) ? "writing to" :
2329		    "reading from", file_dev->filename);
2330
2331		buf->status = CAMDD_STATUS_ERROR;
2332		data->resid = data->fill_len;
2333		error_count++;
2334
2335		if (dev->debug == 0)
2336			goto bailout;
2337
2338		if ((double_buf_needed != 0)
2339		 && (write_dev != 0)) {
2340			fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2341			    "offset %ju\n", __func__, file_dev->fd,
2342			    file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2343			    (uintmax_t)io_offset);
2344		} else if (data->sg_count == 0) {
2345			fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2346			    "offset %ju\n", __func__, file_dev->fd, data->buf,
2347			    data->fill_len, (uintmax_t)buf->lba,
2348			    (uintmax_t)io_offset);
2349		} else {
2350			int i;
2351
2352			fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2353			    "offset %ju\n", __func__, file_dev->fd,
2354			    data->fill_len, (uintmax_t)buf->lba,
2355			    (uintmax_t)io_offset);
2356
2357			for (i = 0; i < data->sg_count; i++) {
2358				fprintf(stderr, "index %d ptr %p len %zu\n",
2359				    i, data->iovec[i].iov_base,
2360				    data->iovec[i].iov_len);
2361			}
2362		}
2363	} else if (retval == 0) {
2364		buf->status = CAMDD_STATUS_EOF;
2365		if (dev->debug != 0)
2366			printf("%s: got EOF from %s!\n", __func__,
2367			    file_dev->filename);
2368		data->resid = data->fill_len;
2369		error_count++;
2370	} else if (retval < (ssize_t)data->fill_len) {
2371		if (buf->status == CAMDD_STATUS_NONE)
2372			buf->status = CAMDD_STATUS_SHORT_IO;
2373		data->resid = data->fill_len - retval;
2374		dev->bytes_transferred += retval;
2375	}
2376
2377bailout:
2378	if (buf != NULL) {
2379		if (buf->status == CAMDD_STATUS_EOF) {
2380			struct camdd_buf *buf2;
2381			dev->flags |= CAMDD_DEV_FLAG_EOF;
2382			STAILQ_FOREACH(buf2, &dev->run_queue, links)
2383				buf2->status = CAMDD_STATUS_EOF;
2384		}
2385
2386		camdd_complete_buf(dev, buf, &error_count);
2387	}
2388
2389	if (error_count != 0)
2390		return (-1);
2391	else if (no_resources != 0)
2392		return (1);
2393	else
2394		return (0);
2395}
2396
2397/*
2398 * Execute one command from the run queue.  Returns 0 for success, 1 for
2399 * stop processing, and -1 for error.
2400 */
2401int
2402camdd_pass_run(struct camdd_dev *dev)
2403{
2404	struct camdd_buf *buf = NULL;
2405	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2406	struct camdd_buf_data *data;
2407	uint32_t num_blocks, sectors_used = 0;
2408	union ccb *ccb;
2409	int retval = 0, is_write = dev->write_dev;
2410	int double_buf_needed = 0;
2411
2412	buf = STAILQ_FIRST(&dev->run_queue);
2413	if (buf == NULL) {
2414		retval = 1;
2415		goto bailout;
2416	}
2417
2418	/*
2419	 * If we're writing, we need to go through the source buffer list
2420	 * and create an S/G list.
2421	 */
2422	if (is_write != 0) {
2423		retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2424		    &sectors_used, &double_buf_needed);
2425		if (retval != 0) {
2426			retval = -1;
2427			goto bailout;
2428		}
2429	}
2430
2431	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2432	dev->num_run_queue--;
2433
2434	data = &buf->buf_type_spec.data;
2435
2436	ccb = &data->ccb;
2437	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
2438
2439	/*
2440	 * In almost every case the number of blocks should be the device
2441	 * block size.  The exception may be at the end of an I/O stream
2442	 * for a partial block or at the end of a device.
2443	 */
2444	if (is_write != 0)
2445		num_blocks = sectors_used;
2446	else
2447		num_blocks = data->fill_len / pass_dev->block_len;
2448
2449	scsi_read_write(&ccb->csio,
2450			/*retries*/ dev->retry_count,
2451			/*cbfcnp*/ NULL,
2452			/*tag_action*/ MSG_SIMPLE_Q_TAG,
2453			/*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2454				   SCSI_RW_WRITE,
2455			/*byte2*/ 0,
2456			/*minimum_cmd_size*/ dev->min_cmd_size,
2457			/*lba*/ buf->lba,
2458			/*block_count*/ num_blocks,
2459			/*data_ptr*/ (data->sg_count != 0) ?
2460				     (uint8_t *)data->segs : data->buf,
2461			/*dxfer_len*/ (num_blocks * pass_dev->block_len),
2462			/*sense_len*/ SSD_FULL_SIZE,
2463			/*timeout*/ dev->io_timeout);
2464
2465	/* Disable freezing the device queue */
2466	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2467
2468	if (dev->retry_count != 0)
2469		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2470
2471	if (data->sg_count != 0) {
2472		ccb->csio.sglist_cnt = data->sg_count;
2473		ccb->ccb_h.flags |= CAM_DATA_SG;
2474	}
2475
2476	/*
2477	 * Store a pointer to the buffer in the CCB.  The kernel will
2478	 * restore this when we get it back, and we'll use it to identify
2479	 * the buffer this CCB came from.
2480	 */
2481	ccb->ccb_h.ccb_buf = buf;
2482
2483	/*
2484	 * Unlock our mutex in preparation for issuing the ioctl.
2485	 */
2486	pthread_mutex_unlock(&dev->mutex);
2487	/*
2488	 * Queue the CCB to the pass(4) driver.
2489	 */
2490	if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2491		pthread_mutex_lock(&dev->mutex);
2492
2493		warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2494		     pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2495		warn("%s: CCB address is %p", __func__, ccb);
2496		retval = -1;
2497
2498		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2499	} else {
2500		pthread_mutex_lock(&dev->mutex);
2501
2502		dev->cur_active_io++;
2503		STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2504	}
2505
2506bailout:
2507	return (retval);
2508}
2509
2510int
2511camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2512{
2513	struct camdd_dev_pass *pass_dev;
2514	uint32_t num_blocks;
2515	int retval = 0;
2516
2517	pass_dev = &dev->dev_spec.pass;
2518
2519	*lba = dev->next_io_pos_bytes / dev->sector_size;
2520	*len = dev->blocksize;
2521	num_blocks = *len / dev->sector_size;
2522
2523	/*
2524	 * If max_sector is 0, then we have no set limit.  This can happen
2525	 * if we're writing to a file in a filesystem, or reading from
2526	 * something like /dev/zero.
2527	 */
2528	if ((dev->max_sector != 0)
2529	 || (dev->sector_io_limit != 0)) {
2530		uint64_t max_sector;
2531
2532		if ((dev->max_sector != 0)
2533		 && (dev->sector_io_limit != 0))
2534			max_sector = min(dev->sector_io_limit, dev->max_sector);
2535		else if (dev->max_sector != 0)
2536			max_sector = dev->max_sector;
2537		else
2538			max_sector = dev->sector_io_limit;
2539
2540
2541		/*
2542		 * Check to see whether we're starting off past the end of
2543		 * the device.  If so, we need to just send an EOF
2544		 * notification to the writer.
2545		 */
2546		if (*lba > max_sector) {
2547			*len = 0;
2548			retval = 1;
2549		} else if (((*lba + num_blocks) > max_sector + 1)
2550			|| ((*lba + num_blocks) < *lba)) {
2551			/*
2552			 * If we get here (but pass the first check), we
2553			 * can trim the request length down to go to the
2554			 * end of the device.
2555			 */
2556			num_blocks = (max_sector + 1) - *lba;
2557			*len = num_blocks * dev->sector_size;
2558			retval = 1;
2559		}
2560	}
2561
2562	dev->next_io_pos_bytes += *len;
2563
2564	return (retval);
2565}
2566
2567/*
2568 * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2569 */
2570int
2571camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2572{
2573	struct camdd_buf *buf = NULL;
2574	struct camdd_buf_data *data;
2575	struct camdd_dev_pass *pass_dev;
2576	size_t new_len;
2577	struct camdd_buf_data *rb_data;
2578	int is_write = dev->write_dev;
2579	int eof_flush_needed = 0;
2580	int retval = 0;
2581	int error;
2582
2583	pass_dev = &dev->dev_spec.pass;
2584
2585	/*
2586	 * If we've gotten EOF or our partner has, we should not continue
2587	 * queueing I/O.  If we're a writer, though, we should continue
2588	 * to write any buffers that don't have EOF status.
2589	 */
2590	if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2591	 || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2592	  && (is_write == 0))) {
2593		/*
2594		 * Tell the worker thread that we have seen EOF.
2595		 */
2596		retval = 1;
2597
2598		/*
2599		 * If we're the writer, send the buffer back with EOF status.
2600		 */
2601		if (is_write) {
2602			read_buf->status = CAMDD_STATUS_EOF;
2603
2604			error = camdd_complete_peer_buf(dev, read_buf);
2605		}
2606		goto bailout;
2607	}
2608
2609	if (is_write == 0) {
2610		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2611		if (buf == NULL) {
2612			retval = -1;
2613			goto bailout;
2614		}
2615		data = &buf->buf_type_spec.data;
2616
2617		retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2618		if (retval != 0) {
2619			buf->status = CAMDD_STATUS_EOF;
2620
2621		 	if ((buf->len == 0)
2622			 && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2623			     CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2624				camdd_release_buf(buf);
2625				goto bailout;
2626			}
2627			dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2628		}
2629
2630		data->fill_len = buf->len;
2631		data->src_start_offset = buf->lba * dev->sector_size;
2632
2633		/*
2634		 * Put this on the run queue.
2635		 */
2636		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2637		dev->num_run_queue++;
2638
2639		/* We're done. */
2640		goto bailout;
2641	}
2642
2643	/*
2644	 * Check for new EOF status from the reader.
2645	 */
2646	if ((read_buf->status == CAMDD_STATUS_EOF)
2647	 || (read_buf->status == CAMDD_STATUS_ERROR)) {
2648		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2649		if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2650		 && (read_buf->len == 0)) {
2651			camdd_complete_peer_buf(dev, read_buf);
2652			retval = 1;
2653			goto bailout;
2654		} else
2655			eof_flush_needed = 1;
2656	}
2657
2658	/*
2659	 * See if we have a buffer we're composing with pieces from our
2660	 * partner thread.
2661	 */
2662	buf = STAILQ_FIRST(&dev->pending_queue);
2663	if (buf == NULL) {
2664		uint64_t lba;
2665		ssize_t len;
2666
2667		retval = camdd_get_next_lba_len(dev, &lba, &len);
2668		if (retval != 0) {
2669			read_buf->status = CAMDD_STATUS_EOF;
2670
2671			if (len == 0) {
2672				dev->flags |= CAMDD_DEV_FLAG_EOF;
2673				error = camdd_complete_peer_buf(dev, read_buf);
2674				goto bailout;
2675			}
2676		}
2677
2678		/*
2679		 * If we don't have a pending buffer, we need to grab a new
2680		 * one from the free list or allocate another one.
2681		 */
2682		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2683		if (buf == NULL) {
2684			retval = 1;
2685			goto bailout;
2686		}
2687
2688		buf->lba = lba;
2689		buf->len = len;
2690
2691		STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2692		dev->num_pending_queue++;
2693	}
2694
2695	data = &buf->buf_type_spec.data;
2696
2697	rb_data = &read_buf->buf_type_spec.data;
2698
2699	if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2700	 && (dev->debug != 0)) {
2701		printf("%s: WARNING: reader offset %#jx != expected offset "
2702		    "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2703		    (uintmax_t)dev->next_peer_pos_bytes);
2704	}
2705	dev->next_peer_pos_bytes = rb_data->src_start_offset +
2706	    (rb_data->fill_len - rb_data->resid);
2707
2708	new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2709	if (new_len < buf->len) {
2710		/*
2711		 * There are three cases here:
2712		 * 1. We need more data to fill up a block, so we put
2713		 *    this I/O on the queue and wait for more I/O.
2714		 * 2. We have a pending buffer in the queue that is
2715		 *    smaller than our blocksize, but we got an EOF.  So we
2716		 *    need to go ahead and flush the write out.
2717		 * 3. We got an error.
2718		 */
2719
2720		/*
2721		 * Increment our fill length.
2722		 */
2723		data->fill_len += (rb_data->fill_len - rb_data->resid);
2724
2725		/*
2726		 * Add the new read buffer to the list for writing.
2727		 */
2728		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2729
2730		/* Increment the count */
2731		buf->src_count++;
2732
2733		if (eof_flush_needed == 0) {
2734			/*
2735			 * We need to exit, because we don't have enough
2736			 * data yet.
2737			 */
2738			goto bailout;
2739		} else {
2740			/*
2741			 * Take the buffer off of the pending queue.
2742			 */
2743			STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2744				      links);
2745			dev->num_pending_queue--;
2746
2747			/*
2748			 * If we need an EOF flush, but there is no data
2749			 * to flush, go ahead and return this buffer.
2750			 */
2751			if (data->fill_len == 0) {
2752				camdd_complete_buf(dev, buf, /*error_count*/0);
2753				retval = 1;
2754				goto bailout;
2755			}
2756
2757			/*
2758			 * Put this on the next queue for execution.
2759			 */
2760			STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2761			dev->num_run_queue++;
2762		}
2763	} else if (new_len == buf->len) {
2764		/*
2765		 * We have enough data to completey fill one block,
2766		 * so we're ready to issue the I/O.
2767		 */
2768
2769		/*
2770		 * Take the buffer off of the pending queue.
2771		 */
2772		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2773		dev->num_pending_queue--;
2774
2775		/*
2776		 * Add the new read buffer to the list for writing.
2777		 */
2778		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2779
2780		/* Increment the count */
2781		buf->src_count++;
2782
2783		/*
2784		 * Increment our fill length.
2785		 */
2786		data->fill_len += (rb_data->fill_len - rb_data->resid);
2787
2788		/*
2789		 * Put this on the next queue for execution.
2790		 */
2791		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2792		dev->num_run_queue++;
2793	} else {
2794		struct camdd_buf *idb;
2795		struct camdd_buf_indirect *indirect;
2796		uint32_t len_to_go, cur_offset;
2797
2798
2799		idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2800		if (idb == NULL) {
2801			retval = 1;
2802			goto bailout;
2803		}
2804		indirect = &idb->buf_type_spec.indirect;
2805		indirect->src_buf = read_buf;
2806		read_buf->refcount++;
2807		indirect->offset = 0;
2808		indirect->start_ptr = rb_data->buf;
2809		/*
2810		 * We've already established that there is more
2811		 * data in read_buf than we have room for in our
2812		 * current write request.  So this particular chunk
2813		 * of the request should just be the remainder
2814		 * needed to fill up a block.
2815		 */
2816		indirect->len = buf->len - (data->fill_len - data->resid);
2817
2818		camdd_buf_add_child(buf, idb);
2819
2820		/*
2821		 * This buffer is ready to execute, so we can take
2822		 * it off the pending queue and put it on the run
2823		 * queue.
2824		 */
2825		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2826			      links);
2827		dev->num_pending_queue--;
2828		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2829		dev->num_run_queue++;
2830
2831		cur_offset = indirect->offset + indirect->len;
2832
2833		/*
2834		 * The resulting I/O would be too large to fit in
2835		 * one block.  We need to split this I/O into
2836		 * multiple pieces.  Allocate as many buffers as needed.
2837		 */
2838		for (len_to_go = rb_data->fill_len - rb_data->resid -
2839		     indirect->len; len_to_go > 0;) {
2840			struct camdd_buf *new_buf;
2841			struct camdd_buf_data *new_data;
2842			uint64_t lba;
2843			ssize_t len;
2844
2845			retval = camdd_get_next_lba_len(dev, &lba, &len);
2846			if ((retval != 0)
2847			 && (len == 0)) {
2848				/*
2849				 * The device has already been marked
2850				 * as EOF, and there is no space left.
2851				 */
2852				goto bailout;
2853			}
2854
2855			new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2856			if (new_buf == NULL) {
2857				retval = 1;
2858				goto bailout;
2859			}
2860
2861			new_buf->lba = lba;
2862			new_buf->len = len;
2863
2864			idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2865			if (idb == NULL) {
2866				retval = 1;
2867				goto bailout;
2868			}
2869
2870			indirect = &idb->buf_type_spec.indirect;
2871
2872			indirect->src_buf = read_buf;
2873			read_buf->refcount++;
2874			indirect->offset = cur_offset;
2875			indirect->start_ptr = rb_data->buf + cur_offset;
2876			indirect->len = min(len_to_go, new_buf->len);
2877#if 0
2878			if (((indirect->len % dev->sector_size) != 0)
2879			 || ((indirect->offset % dev->sector_size) != 0)) {
2880				warnx("offset %ju len %ju not aligned with "
2881				    "sector size %u", indirect->offset,
2882				    (uintmax_t)indirect->len, dev->sector_size);
2883			}
2884#endif
2885			cur_offset += indirect->len;
2886			len_to_go -= indirect->len;
2887
2888			camdd_buf_add_child(new_buf, idb);
2889
2890			new_data = &new_buf->buf_type_spec.data;
2891
2892			if ((new_data->fill_len == new_buf->len)
2893			 || (eof_flush_needed != 0)) {
2894				STAILQ_INSERT_TAIL(&dev->run_queue,
2895						   new_buf, links);
2896				dev->num_run_queue++;
2897			} else if (new_data->fill_len < buf->len) {
2898				STAILQ_INSERT_TAIL(&dev->pending_queue,
2899					   	new_buf, links);
2900				dev->num_pending_queue++;
2901			} else {
2902				warnx("%s: too much data in new "
2903				      "buffer!", __func__);
2904				retval = 1;
2905				goto bailout;
2906			}
2907		}
2908	}
2909
2910bailout:
2911	return (retval);
2912}
2913
2914void
2915camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
2916		uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
2917{
2918	*our_depth = dev->cur_active_io + dev->num_run_queue;
2919	if (dev->num_peer_work_queue >
2920	    dev->num_peer_done_queue)
2921		*peer_depth = dev->num_peer_work_queue -
2922			      dev->num_peer_done_queue;
2923	else
2924		*peer_depth = 0;
2925	*our_bytes = *our_depth * dev->blocksize;
2926	*peer_bytes = dev->peer_bytes_queued;
2927}
2928
2929void
2930camdd_sig_handler(int sig)
2931{
2932	if (sig == SIGINFO)
2933		need_status = 1;
2934	else {
2935		need_exit = 1;
2936		error_exit = 1;
2937	}
2938
2939	sem_post(&camdd_sem);
2940}
2941
2942void
2943camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev,
2944		   struct timespec *start_time)
2945{
2946	struct timespec done_time;
2947	uint64_t total_ns;
2948	long double mb_sec, total_sec;
2949	int error = 0;
2950
2951	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
2952	if (error != 0) {
2953		warn("Unable to get done time");
2954		return;
2955	}
2956
2957	timespecsub(&done_time, start_time);
2958
2959	total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
2960	total_sec = total_ns;
2961	total_sec /= 1000000000;
2962
2963	fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
2964		"%.4Lf seconds elapsed\n",
2965		(uintmax_t)camdd_dev->bytes_transferred,
2966		(camdd_dev->write_dev == 0) ?  "read from" : "written to",
2967		camdd_dev->device_name,
2968		(uintmax_t)other_dev->bytes_transferred,
2969		(other_dev->write_dev == 0) ? "read from" : "written to",
2970		other_dev->device_name, total_sec);
2971
2972	mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
2973	mb_sec /= 1024 * 1024;
2974	mb_sec *= 1000000000;
2975	mb_sec /= total_ns;
2976	fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
2977}
2978
2979int
2980camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
2981	 int retry_count, int timeout)
2982{
2983	struct cam_device *new_cam_dev = NULL;
2984	struct camdd_dev *devs[2];
2985	struct timespec start_time;
2986	pthread_t threads[2];
2987	int unit = 0;
2988	int error = 0;
2989	int i;
2990
2991	if (num_io_opts != 2) {
2992		warnx("Must have one input and one output path");
2993		error = 1;
2994		goto bailout;
2995	}
2996
2997	bzero(devs, sizeof(devs));
2998
2999	for (i = 0; i < num_io_opts; i++) {
3000		switch (io_opts[i].dev_type) {
3001		case CAMDD_DEV_PASS: {
3002			if (isdigit(io_opts[i].dev_name[0])) {
3003				camdd_argmask new_arglist = CAMDD_ARG_NONE;
3004				int bus = 0, target = 0, lun = 0;
3005				int rv;
3006
3007				/* device specified as bus:target[:lun] */
3008				rv = parse_btl(io_opts[i].dev_name, &bus,
3009				    &target, &lun, &new_arglist);
3010				if (rv < 2) {
3011					warnx("numeric device specification "
3012					     "must be either bus:target, or "
3013					     "bus:target:lun");
3014					error = 1;
3015					goto bailout;
3016				}
3017				/* default to 0 if lun was not specified */
3018				if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3019					lun = 0;
3020					new_arglist |= CAMDD_ARG_LUN;
3021				}
3022				new_cam_dev = cam_open_btl(bus, target, lun,
3023				    O_RDWR, NULL);
3024			} else {
3025				char name[30];
3026
3027				if (cam_get_device(io_opts[i].dev_name, name,
3028						   sizeof name, &unit) == -1) {
3029					warnx("%s", cam_errbuf);
3030					error = 1;
3031					goto bailout;
3032				}
3033				new_cam_dev = cam_open_spec_device(name, unit,
3034				    O_RDWR, NULL);
3035			}
3036
3037			if (new_cam_dev == NULL) {
3038				warnx("%s", cam_errbuf);
3039				error = 1;
3040				goto bailout;
3041			}
3042
3043			devs[i] = camdd_probe_pass(new_cam_dev,
3044			    /*io_opts*/ &io_opts[i],
3045			    CAMDD_ARG_ERR_RECOVER,
3046			    /*probe_retry_count*/ 3,
3047			    /*probe_timeout*/ 5000,
3048			    /*io_retry_count*/ retry_count,
3049			    /*io_timeout*/ timeout);
3050			if (devs[i] == NULL) {
3051				warn("Unable to probe device %s%u",
3052				     new_cam_dev->device_name,
3053				     new_cam_dev->dev_unit_num);
3054				error = 1;
3055				goto bailout;
3056			}
3057			break;
3058		}
3059		case CAMDD_DEV_FILE: {
3060			int fd = -1;
3061
3062			if (io_opts[i].dev_name[0] == '-') {
3063				if (io_opts[i].write_dev != 0)
3064					fd = STDOUT_FILENO;
3065				else
3066					fd = STDIN_FILENO;
3067			} else {
3068				if (io_opts[i].write_dev != 0) {
3069					fd = open(io_opts[i].dev_name,
3070					    O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3071				} else {
3072					fd = open(io_opts[i].dev_name,
3073					    O_RDONLY);
3074				}
3075			}
3076			if (fd == -1) {
3077				warn("error opening file %s",
3078				    io_opts[i].dev_name);
3079				error = 1;
3080				goto bailout;
3081			}
3082
3083			devs[i] = camdd_probe_file(fd, &io_opts[i],
3084			    retry_count, timeout);
3085			if (devs[i] == NULL) {
3086				error = 1;
3087				goto bailout;
3088			}
3089
3090			break;
3091		}
3092		default:
3093			warnx("Unknown device type %d (%s)",
3094			    io_opts[i].dev_type, io_opts[i].dev_name);
3095			error = 1;
3096			goto bailout;
3097			break; /*NOTREACHED */
3098		}
3099
3100		devs[i]->write_dev = io_opts[i].write_dev;
3101
3102		devs[i]->start_offset_bytes = io_opts[i].offset;
3103
3104		if (max_io != 0) {
3105			devs[i]->sector_io_limit =
3106			    (devs[i]->start_offset_bytes /
3107			    devs[i]->sector_size) +
3108			    (max_io / devs[i]->sector_size) - 1;
3109			devs[i]->sector_io_limit =
3110			    (devs[i]->start_offset_bytes /
3111			    devs[i]->sector_size) +
3112			    (max_io / devs[i]->sector_size) - 1;
3113		}
3114
3115		devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3116		devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3117	}
3118
3119	devs[0]->peer_dev = devs[1];
3120	devs[1]->peer_dev = devs[0];
3121	devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3122	devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3123
3124	sem_init(&camdd_sem, /*pshared*/ 0, 0);
3125
3126	signal(SIGINFO, camdd_sig_handler);
3127	signal(SIGINT, camdd_sig_handler);
3128
3129	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3130	if (error != 0) {
3131		warn("Unable to get start time");
3132		goto bailout;
3133	}
3134
3135	for (i = 0; i < num_io_opts; i++) {
3136		error = pthread_create(&threads[i], NULL, camdd_worker,
3137				       (void *)devs[i]);
3138		if (error != 0) {
3139			warnc(error, "pthread_create() failed");
3140			goto bailout;
3141		}
3142	}
3143
3144	for (;;) {
3145		if ((sem_wait(&camdd_sem) == -1)
3146		 || (need_exit != 0)) {
3147			struct kevent ke;
3148
3149			for (i = 0; i < num_io_opts; i++) {
3150				EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3151				    EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3152
3153				devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3154
3155				error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3156						NULL);
3157				if (error == -1)
3158					warn("%s: unable to wake up thread",
3159					    __func__);
3160				error = 0;
3161			}
3162			break;
3163		} else if (need_status != 0) {
3164			camdd_print_status(devs[0], devs[1], &start_time);
3165			need_status = 0;
3166		}
3167	}
3168	for (i = 0; i < num_io_opts; i++) {
3169		pthread_join(threads[i], NULL);
3170	}
3171
3172	camdd_print_status(devs[0], devs[1], &start_time);
3173
3174bailout:
3175
3176	for (i = 0; i < num_io_opts; i++)
3177		camdd_free_dev(devs[i]);
3178
3179	return (error + error_exit);
3180}
3181
3182void
3183usage(void)
3184{
3185	fprintf(stderr,
3186"usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3187"              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3188"              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3189"              <-i|-o file=/dev/nsa0,bs=512K>\n"
3190"              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3191"Option description\n"
3192"-i <arg=val>  Specify input device/file and parameters\n"
3193"-o <arg=val>  Specify output device/file and parameters\n"
3194"Input and Output parameters\n"
3195"pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3196"file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3197"              or - for stdin/stdout\n"
3198"bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3199"offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3200"              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3201"depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3202"mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3203"Optional arguments\n"
3204"-C retry_cnt  Specify a retry count for pass(4) devices\n"
3205"-E            Enable CAM error recovery for pass(4) devices\n"
3206"-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3207"              using K, G, M, etc. suffixes\n"
3208"-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3209"-v            Enable verbose error recovery\n"
3210"-h            Print this message\n");
3211}
3212
3213
3214int
3215camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3216{
3217	char *tmpstr, *tmpstr2;
3218	char *orig_tmpstr = NULL;
3219	int retval = 0;
3220
3221	io_opts->write_dev = is_write;
3222
3223	tmpstr = strdup(args);
3224	if (tmpstr == NULL) {
3225		warn("strdup failed");
3226		retval = 1;
3227		goto bailout;
3228	}
3229	orig_tmpstr = tmpstr;
3230	while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3231		char *name, *value;
3232
3233		/*
3234		 * If the user creates an empty parameter by putting in two
3235		 * commas, skip over it and look for the next field.
3236		 */
3237		if (*tmpstr2 == '\0')
3238			continue;
3239
3240		name = strsep(&tmpstr2, "=");
3241		if (*name == '\0') {
3242			warnx("Got empty I/O parameter name");
3243			retval = 1;
3244			goto bailout;
3245		}
3246		value = strsep(&tmpstr2, "=");
3247		if ((value == NULL)
3248		 || (*value == '\0')) {
3249			warnx("Empty I/O parameter value for %s", name);
3250			retval = 1;
3251			goto bailout;
3252		}
3253		if (strncasecmp(name, "file", 4) == 0) {
3254			io_opts->dev_type = CAMDD_DEV_FILE;
3255			io_opts->dev_name = strdup(value);
3256			if (io_opts->dev_name == NULL) {
3257				warn("Error allocating memory");
3258				retval = 1;
3259				goto bailout;
3260			}
3261		} else if (strncasecmp(name, "pass", 4) == 0) {
3262			io_opts->dev_type = CAMDD_DEV_PASS;
3263			io_opts->dev_name = strdup(value);
3264			if (io_opts->dev_name == NULL) {
3265				warn("Error allocating memory");
3266				retval = 1;
3267				goto bailout;
3268			}
3269		} else if ((strncasecmp(name, "bs", 2) == 0)
3270			|| (strncasecmp(name, "blocksize", 9) == 0)) {
3271			retval = expand_number(value, &io_opts->blocksize);
3272			if (retval == -1) {
3273				warn("expand_number(3) failed on %s=%s", name,
3274				    value);
3275				retval = 1;
3276				goto bailout;
3277			}
3278		} else if (strncasecmp(name, "depth", 5) == 0) {
3279			char *endptr;
3280
3281			io_opts->queue_depth = strtoull(value, &endptr, 0);
3282			if (*endptr != '\0') {
3283				warnx("invalid queue depth %s", value);
3284				retval = 1;
3285				goto bailout;
3286			}
3287		} else if (strncasecmp(name, "mcs", 3) == 0) {
3288			char *endptr;
3289
3290			io_opts->min_cmd_size = strtol(value, &endptr, 0);
3291			if ((*endptr != '\0')
3292			 || ((io_opts->min_cmd_size > 16)
3293			  || (io_opts->min_cmd_size < 0))) {
3294				warnx("invalid minimum cmd size %s", value);
3295				retval = 1;
3296				goto bailout;
3297			}
3298		} else if (strncasecmp(name, "offset", 6) == 0) {
3299			retval = expand_number(value, &io_opts->offset);
3300			if (retval == -1) {
3301				warn("expand_number(3) failed on %s=%s", name,
3302				    value);
3303				retval = 1;
3304				goto bailout;
3305			}
3306		} else if (strncasecmp(name, "debug", 5) == 0) {
3307			char *endptr;
3308
3309			io_opts->debug = strtoull(value, &endptr, 0);
3310			if (*endptr != '\0') {
3311				warnx("invalid debug level %s", value);
3312				retval = 1;
3313				goto bailout;
3314			}
3315		} else {
3316			warnx("Unrecognized parameter %s=%s", name, value);
3317		}
3318	}
3319bailout:
3320	free(orig_tmpstr);
3321
3322	return (retval);
3323}
3324
3325int
3326main(int argc, char **argv)
3327{
3328	int c;
3329	camdd_argmask arglist = CAMDD_ARG_NONE;
3330	int timeout = 0, retry_count = 1;
3331	int error = 0;
3332	uint64_t max_io = 0;
3333	struct camdd_io_opts *opt_list = NULL;
3334
3335	if (argc == 1) {
3336		usage();
3337		exit(1);
3338	}
3339
3340	opt_list = calloc(2, sizeof(struct camdd_io_opts));
3341	if (opt_list == NULL) {
3342		warn("Unable to allocate option list");
3343		error = 1;
3344		goto bailout;
3345	}
3346
3347	while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3348		switch (c) {
3349		case 'C':
3350			retry_count = strtol(optarg, NULL, 0);
3351			if (retry_count < 0)
3352				errx(1, "retry count %d is < 0",
3353				     retry_count);
3354			arglist |= CAMDD_ARG_RETRIES;
3355			break;
3356		case 'E':
3357			arglist |= CAMDD_ARG_ERR_RECOVER;
3358			break;
3359		case 'i':
3360		case 'o':
3361			if (((c == 'i')
3362			  && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3363			 || ((c == 'o')
3364			  && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3365				errx(1, "Only one input and output path "
3366				    "allowed");
3367			}
3368			error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3369			    (c == 'o') ? &opt_list[1] : &opt_list[0]);
3370			if (error != 0)
3371				goto bailout;
3372			break;
3373		case 'm':
3374			error = expand_number(optarg, &max_io);
3375			if (error == -1) {
3376				warn("invalid maximum I/O amount %s", optarg);
3377				error = 1;
3378				goto bailout;
3379			}
3380			break;
3381		case 't':
3382			timeout = strtol(optarg, NULL, 0);
3383			if (timeout < 0)
3384				errx(1, "invalid timeout %d", timeout);
3385			/* Convert the timeout from seconds to ms */
3386			timeout *= 1000;
3387			arglist |= CAMDD_ARG_TIMEOUT;
3388			break;
3389		case 'v':
3390			arglist |= CAMDD_ARG_VERBOSE;
3391			break;
3392		case 'h':
3393		default:
3394			usage();
3395			exit(1);
3396			break; /*NOTREACHED*/
3397		}
3398	}
3399
3400	if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3401	 || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3402		errx(1, "Must specify both -i and -o");
3403
3404	/*
3405	 * Set the timeout if the user hasn't specified one.
3406	 */
3407	if (timeout == 0)
3408		timeout = CAMDD_PASS_RW_TIMEOUT;
3409
3410	error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3411
3412bailout:
3413	free(opt_list);
3414
3415	exit(error);
3416}
3417