pci_e82545.c revision 336161
1/*
2 * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
3 * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
4 * Copyright (c) 2013 Jeremiah Lott, Avere Systems
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer
12 *    in this position and unchanged.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/usr.sbin/bhyve/pci_e82545.c 336161 2018-07-10 04:26:32Z araujo $");
32
33#include <sys/types.h>
34#ifndef WITHOUT_CAPSICUM
35#include <sys/capsicum.h>
36#endif
37#include <sys/limits.h>
38#include <sys/ioctl.h>
39#include <sys/uio.h>
40#include <net/ethernet.h>
41#include <netinet/in.h>
42#include <netinet/tcp.h>
43
44#include <err.h>
45#include <errno.h>
46#include <fcntl.h>
47#include <md5.h>
48#include <stdio.h>
49#include <stdlib.h>
50#include <string.h>
51#include <sysexits.h>
52#include <unistd.h>
53#include <pthread.h>
54#include <pthread_np.h>
55
56#include "e1000_regs.h"
57#include "e1000_defines.h"
58#include "mii.h"
59
60#include "bhyverun.h"
61#include "pci_emul.h"
62#include "mevent.h"
63
64/* Hardware/register definitions XXX: move some to common code. */
65#define E82545_VENDOR_ID_INTEL			0x8086
66#define E82545_DEV_ID_82545EM_COPPER		0x100F
67#define E82545_SUBDEV_ID			0x1008
68
69#define E82545_REVISION_4			4
70
71#define E82545_MDIC_DATA_MASK			0x0000FFFF
72#define E82545_MDIC_OP_MASK			0x0c000000
73#define E82545_MDIC_IE				0x20000000
74
75#define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
76#define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
77#define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
78
79#define E82545_BAR_REGISTER			0
80#define E82545_BAR_REGISTER_LEN			(128*1024)
81#define E82545_BAR_FLASH			1
82#define E82545_BAR_FLASH_LEN			(64*1024)
83#define E82545_BAR_IO				2
84#define E82545_BAR_IO_LEN			8
85
86#define E82545_IOADDR				0x00000000
87#define E82545_IODATA				0x00000004
88#define E82545_IO_REGISTER_MAX			0x0001FFFF
89#define E82545_IO_FLASH_BASE			0x00080000
90#define E82545_IO_FLASH_MAX			0x000FFFFF
91
92#define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
93#define E82545_RAR_MAX				15
94#define E82545_MTA_MAX				127
95#define E82545_VFTA_MAX				127
96
97/* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
98 * followed by 6 address bits.
99 * TODO: make opcode bits and addr bits configurable?
100 * NVM Commands - Microwire */
101#define E82545_NVM_OPCODE_BITS	3
102#define E82545_NVM_ADDR_BITS	6
103#define E82545_NVM_DATA_BITS	16
104#define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
105#define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
106#define E82545_NVM_OPCODE_MASK	\
107    (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
108#define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
109#define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
110#define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
111#define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
112
113#define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
114
115#define E1000_ICR_SRPD		0x00010000
116
117/* This is an arbitrary number.  There is no hard limit on the chip. */
118#define I82545_MAX_TXSEGS	64
119
120/* Legacy receive descriptor */
121struct e1000_rx_desc {
122	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
123	uint16_t length;	/* Length of data DMAed into data buffer */
124	uint16_t csum;		/* Packet checksum */
125	uint8_t	 status;       	/* Descriptor status */
126	uint8_t  errors;	/* Descriptor Errors */
127	uint16_t special;
128};
129
130/* Transmit descriptor types */
131#define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
132#define E1000_TXD_TYP_L		(0)
133#define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
134#define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
135
136/* Legacy transmit descriptor */
137struct e1000_tx_desc {
138	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
139	union {
140		uint32_t data;
141		struct {
142			uint16_t length;  /* Data buffer length */
143			uint8_t  cso;  /* Checksum offset */
144			uint8_t  cmd;  /* Descriptor control */
145		} flags;
146	} lower;
147	union {
148		uint32_t data;
149		struct {
150			uint8_t status; /* Descriptor status */
151			uint8_t css;  /* Checksum start */
152			uint16_t special;
153		} fields;
154	} upper;
155};
156
157/* Context descriptor */
158struct e1000_context_desc {
159	union {
160		uint32_t ip_config;
161		struct {
162			uint8_t ipcss;  /* IP checksum start */
163			uint8_t ipcso;  /* IP checksum offset */
164			uint16_t ipcse;  /* IP checksum end */
165		} ip_fields;
166	} lower_setup;
167	union {
168		uint32_t tcp_config;
169		struct {
170			uint8_t tucss;  /* TCP checksum start */
171			uint8_t tucso;  /* TCP checksum offset */
172			uint16_t tucse;  /* TCP checksum end */
173		} tcp_fields;
174	} upper_setup;
175	uint32_t cmd_and_length;
176	union {
177		uint32_t data;
178		struct {
179			uint8_t status;  /* Descriptor status */
180			uint8_t hdr_len;  /* Header length */
181			uint16_t mss;  /* Maximum segment size */
182		} fields;
183	} tcp_seg_setup;
184};
185
186/* Data descriptor */
187struct e1000_data_desc {
188	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
189	union {
190		uint32_t data;
191		struct {
192			uint16_t length;  /* Data buffer length */
193			uint8_t typ_len_ext;
194			uint8_t cmd;
195		} flags;
196	} lower;
197	union {
198		uint32_t data;
199		struct {
200			uint8_t status;  /* Descriptor status */
201			uint8_t popts;  /* Packet Options */
202			uint16_t special;
203		} fields;
204	} upper;
205};
206
207union e1000_tx_udesc {
208	struct e1000_tx_desc td;
209	struct e1000_context_desc cd;
210	struct e1000_data_desc dd;
211};
212
213/* Tx checksum info for a packet. */
214struct ck_info {
215	int	ck_valid;	/* ck_info is valid */
216	uint8_t	ck_start;	/* start byte of cksum calcuation */
217	uint8_t	ck_off;		/* offset of cksum insertion */
218	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
219};
220
221/*
222 * Debug printf
223 */
224static int e82545_debug = 0;
225#define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
226#define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
227
228#define	MIN(a,b) (((a)<(b))?(a):(b))
229#define	MAX(a,b) (((a)>(b))?(a):(b))
230
231/* s/w representation of the RAL/RAH regs */
232struct  eth_uni {
233	int		eu_valid;
234	int		eu_addrsel;
235	struct ether_addr eu_eth;
236};
237
238
239struct e82545_softc {
240	struct pci_devinst *esc_pi;
241	struct vmctx	*esc_ctx;
242	struct mevent   *esc_mevp;
243	struct mevent   *esc_mevpitr;
244	pthread_mutex_t	esc_mtx;
245	struct ether_addr esc_mac;
246	int		esc_tapfd;
247
248	/* General */
249	uint32_t	esc_CTRL;	/* x0000 device ctl */
250	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
251	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
252	uint32_t	esc_FCT;	/* x0030 flow ctl type */
253	uint32_t	esc_VET;	/* x0038 VLAN eth type */
254	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
255	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
256	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
257
258	/* Interrupt control */
259	int		esc_irq_asserted;
260	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
261	uint32_t	esc_ITR;	/* x00C4 intr throttling */
262	uint32_t	esc_ICS;	/* x00C8 cause set */
263	uint32_t	esc_IMS;	/* x00D0 mask set/read */
264	uint32_t	esc_IMC;	/* x00D8 mask clear */
265
266	/* Transmit */
267	union e1000_tx_udesc *esc_txdesc;
268	struct e1000_context_desc esc_txctx;
269	pthread_t	esc_tx_tid;
270	pthread_cond_t	esc_tx_cond;
271	int		esc_tx_enabled;
272	int		esc_tx_active;
273	uint32_t	esc_TXCW;	/* x0178 transmit config */
274	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
275	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
276	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
277	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
278	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
279	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
280	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
281	uint16_t	esc_TDH;	/* x3810 desc table head idx */
282	uint16_t	esc_TDHr;	/* internal read version of TDH */
283	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
284	uint32_t	esc_TIDV;	/* x3820 intr delay */
285	uint32_t	esc_TXDCTL;	/* x3828 desc control */
286	uint32_t	esc_TADV;	/* x382C intr absolute delay */
287
288	/* L2 frame acceptance */
289	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
290	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
291	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
292
293	/* Receive */
294	struct e1000_rx_desc *esc_rxdesc;
295	pthread_cond_t	esc_rx_cond;
296	int		esc_rx_enabled;
297	int		esc_rx_active;
298	int		esc_rx_loopback;
299	uint32_t	esc_RCTL;	/* x0100 receive ctl */
300	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
301	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
302	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
303	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
304	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
305	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
306	uint16_t	esc_RDH;	/* x2810 desc table head idx */
307	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
308	uint32_t	esc_RDTR;	/* x2820 intr delay */
309	uint32_t	esc_RXDCTL;	/* x2828 desc control */
310	uint32_t	esc_RADV;	/* x282C intr absolute delay */
311	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
312	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
313
314	/* IO Port register access */
315	uint32_t io_addr;
316
317	/* Shadow copy of MDIC */
318	uint32_t mdi_control;
319	/* Shadow copy of EECD */
320	uint32_t eeprom_control;
321	/* Latest NVM in/out */
322	uint16_t nvm_data;
323	uint16_t nvm_opaddr;
324	/* stats */
325	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
326	uint32_t pkt_rx_by_size[6];
327	uint32_t pkt_tx_by_size[6];
328	uint32_t good_pkt_rx_count;
329	uint32_t bcast_pkt_rx_count;
330	uint32_t mcast_pkt_rx_count;
331	uint32_t good_pkt_tx_count;
332	uint32_t bcast_pkt_tx_count;
333	uint32_t mcast_pkt_tx_count;
334	uint32_t oversize_rx_count;
335	uint32_t tso_tx_count;
336	uint64_t good_octets_rx;
337	uint64_t good_octets_tx;
338	uint64_t missed_octets; /* counts missed and oversized */
339
340	uint8_t nvm_bits:6; /* number of bits remaining in/out */
341	uint8_t nvm_mode:2;
342#define E82545_NVM_MODE_OPADDR  0x0
343#define E82545_NVM_MODE_DATAIN  0x1
344#define E82545_NVM_MODE_DATAOUT 0x2
345	/* EEPROM data */
346	uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
347};
348
349static void e82545_reset(struct e82545_softc *sc, int dev);
350static void e82545_rx_enable(struct e82545_softc *sc);
351static void e82545_rx_disable(struct e82545_softc *sc);
352static void e82545_tap_callback(int fd, enum ev_type type, void *param);
353static void e82545_tx_start(struct e82545_softc *sc);
354static void e82545_tx_enable(struct e82545_softc *sc);
355static void e82545_tx_disable(struct e82545_softc *sc);
356
357static inline int
358e82545_size_stat_index(uint32_t size)
359{
360	if (size <= 64) {
361		return 0;
362	} else if (size >= 1024) {
363		return 5;
364	} else {
365		/* should be 1-4 */
366		return (ffs(size) - 6);
367	}
368}
369
370static void
371e82545_init_eeprom(struct e82545_softc *sc)
372{
373	uint16_t checksum, i;
374
375        /* mac addr */
376	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
377		(((uint16_t)sc->esc_mac.octet[1]) << 8);
378	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
379		(((uint16_t)sc->esc_mac.octet[3]) << 8);
380	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
381		(((uint16_t)sc->esc_mac.octet[5]) << 8);
382
383	/* pci ids */
384	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
385	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
386	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
387	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
388
389	/* fill in the checksum */
390        checksum = 0;
391	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
392		checksum += sc->eeprom_data[i];
393	}
394	checksum = NVM_SUM - checksum;
395	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
396	DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
397}
398
399static void
400e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
401			uint8_t phy_addr, uint32_t data)
402{
403	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
404}
405
406static uint32_t
407e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
408			uint8_t phy_addr)
409{
410	//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
411	switch (reg_addr) {
412	case PHY_STATUS:
413		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
414			MII_SR_AUTONEG_COMPLETE);
415	case PHY_AUTONEG_ADV:
416		return NWAY_AR_SELECTOR_FIELD;
417	case PHY_LP_ABILITY:
418		return 0;
419	case PHY_1000T_STATUS:
420		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
421			SR_1000T_LOCAL_RX_STATUS);
422	case PHY_ID1:
423		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
424	case PHY_ID2:
425		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
426	default:
427		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
428		return 0;
429	}
430	/* not reached */
431}
432
433static void
434e82545_eecd_strobe(struct e82545_softc *sc)
435{
436	/* Microwire state machine */
437	/*
438	DPRINTF("eeprom state machine srtobe "
439		"0x%x 0x%x 0x%x 0x%x\r\n",
440		sc->nvm_mode, sc->nvm_bits,
441		sc->nvm_opaddr, sc->nvm_data);*/
442
443	if (sc->nvm_bits == 0) {
444		DPRINTF("eeprom state machine not expecting data! "
445			"0x%x 0x%x 0x%x 0x%x\r\n",
446			sc->nvm_mode, sc->nvm_bits,
447			sc->nvm_opaddr, sc->nvm_data);
448		return;
449	}
450	sc->nvm_bits--;
451	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
452		/* shifting out */
453		if (sc->nvm_data & 0x8000) {
454			sc->eeprom_control |= E1000_EECD_DO;
455		} else {
456			sc->eeprom_control &= ~E1000_EECD_DO;
457		}
458		sc->nvm_data <<= 1;
459		if (sc->nvm_bits == 0) {
460			/* read done, back to opcode mode. */
461			sc->nvm_opaddr = 0;
462			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
463			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
464		}
465	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
466		/* shifting in */
467		sc->nvm_data <<= 1;
468		if (sc->eeprom_control & E1000_EECD_DI) {
469			sc->nvm_data |= 1;
470		}
471		if (sc->nvm_bits == 0) {
472			/* eeprom write */
473			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
474			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
475			if (op != E82545_NVM_OPCODE_WRITE) {
476				DPRINTF("Illegal eeprom write op 0x%x\r\n",
477					sc->nvm_opaddr);
478			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
479				DPRINTF("Illegal eeprom write addr 0x%x\r\n",
480					sc->nvm_opaddr);
481			} else {
482				DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
483				addr, sc->nvm_data);
484				sc->eeprom_data[addr] = sc->nvm_data;
485			}
486			/* back to opcode mode */
487			sc->nvm_opaddr = 0;
488			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
489			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
490		}
491	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
492		sc->nvm_opaddr <<= 1;
493		if (sc->eeprom_control & E1000_EECD_DI) {
494			sc->nvm_opaddr |= 1;
495		}
496		if (sc->nvm_bits == 0) {
497			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
498			switch (op) {
499			case E82545_NVM_OPCODE_EWEN:
500				DPRINTF("eeprom write enable: 0x%x\r\n",
501					sc->nvm_opaddr);
502				/* back to opcode mode */
503				sc->nvm_opaddr = 0;
504				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
505				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
506				break;
507			case E82545_NVM_OPCODE_READ:
508			{
509				uint16_t addr = sc->nvm_opaddr &
510					E82545_NVM_ADDR_MASK;
511				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
512				sc->nvm_bits = E82545_NVM_DATA_BITS;
513				if (addr < E82545_NVM_EEPROM_SIZE) {
514					sc->nvm_data = sc->eeprom_data[addr];
515					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
516						addr, sc->nvm_data);
517				} else {
518					DPRINTF("eeprom illegal read: 0x%x\r\n",
519						sc->nvm_opaddr);
520					sc->nvm_data = 0;
521				}
522				break;
523			}
524			case E82545_NVM_OPCODE_WRITE:
525				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
526				sc->nvm_bits = E82545_NVM_DATA_BITS;
527				sc->nvm_data = 0;
528				break;
529			default:
530				DPRINTF("eeprom unknown op: 0x%x\r\r",
531					sc->nvm_opaddr);
532				/* back to opcode mode */
533				sc->nvm_opaddr = 0;
534				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
535				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
536			}
537		}
538	} else {
539		DPRINTF("eeprom state machine wrong state! "
540			"0x%x 0x%x 0x%x 0x%x\r\n",
541			sc->nvm_mode, sc->nvm_bits,
542			sc->nvm_opaddr, sc->nvm_data);
543	}
544}
545
546static void
547e82545_itr_callback(int fd, enum ev_type type, void *param)
548{
549	uint32_t new;
550	struct e82545_softc *sc = param;
551
552	pthread_mutex_lock(&sc->esc_mtx);
553	new = sc->esc_ICR & sc->esc_IMS;
554	if (new && !sc->esc_irq_asserted) {
555		DPRINTF("itr callback: lintr assert %x\r\n", new);
556		sc->esc_irq_asserted = 1;
557		pci_lintr_assert(sc->esc_pi);
558	} else {
559		mevent_delete(sc->esc_mevpitr);
560		sc->esc_mevpitr = NULL;
561	}
562	pthread_mutex_unlock(&sc->esc_mtx);
563}
564
565static void
566e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
567{
568	uint32_t new;
569
570	DPRINTF("icr assert: 0x%x\r\n", bits);
571
572	/*
573	 * An interrupt is only generated if bits are set that
574	 * aren't already in the ICR, these bits are unmasked,
575	 * and there isn't an interrupt already pending.
576	 */
577	new = bits & ~sc->esc_ICR & sc->esc_IMS;
578	sc->esc_ICR |= bits;
579
580	if (new == 0) {
581		DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
582	} else if (sc->esc_mevpitr != NULL) {
583		DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
584	} else if (!sc->esc_irq_asserted) {
585		DPRINTF("icr assert: lintr assert %x\r\n", new);
586		sc->esc_irq_asserted = 1;
587		pci_lintr_assert(sc->esc_pi);
588		if (sc->esc_ITR != 0) {
589			sc->esc_mevpitr = mevent_add(
590			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
591			    EVF_TIMER, e82545_itr_callback, sc);
592		}
593	}
594}
595
596static void
597e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
598{
599	uint32_t new;
600
601	/*
602	 * Changing the mask may allow previously asserted
603	 * but masked interrupt requests to generate an interrupt.
604	 */
605	new = bits & sc->esc_ICR & ~sc->esc_IMS;
606	sc->esc_IMS |= bits;
607
608	if (new == 0) {
609		DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
610	} else if (sc->esc_mevpitr != NULL) {
611		DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
612	} else if (!sc->esc_irq_asserted) {
613		DPRINTF("ims change: lintr assert %x\n\r", new);
614		sc->esc_irq_asserted = 1;
615		pci_lintr_assert(sc->esc_pi);
616		if (sc->esc_ITR != 0) {
617			sc->esc_mevpitr = mevent_add(
618			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
619			    EVF_TIMER, e82545_itr_callback, sc);
620		}
621	}
622}
623
624static void
625e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
626{
627
628	DPRINTF("icr deassert: 0x%x\r\n", bits);
629	sc->esc_ICR &= ~bits;
630
631	/*
632	 * If there are no longer any interrupt sources and there
633	 * was an asserted interrupt, clear it
634	 */
635	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
636		DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
637		pci_lintr_deassert(sc->esc_pi);
638		sc->esc_irq_asserted = 0;
639	}
640}
641
642static void
643e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
644{
645
646	DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
647
648	switch (offset) {
649	case E1000_ICR:
650		e82545_icr_deassert(sc, value);
651		break;
652	case E1000_ITR:
653		sc->esc_ITR = value;
654		break;
655	case E1000_ICS:
656		sc->esc_ICS = value;	/* not used: store for debug */
657		e82545_icr_assert(sc, value);
658		break;
659	case E1000_IMS:
660		e82545_ims_change(sc, value);
661		break;
662	case E1000_IMC:
663		sc->esc_IMC = value;	/* for debug */
664		sc->esc_IMS &= ~value;
665		// XXX clear interrupts if all ICR bits now masked
666		// and interrupt was pending ?
667		break;
668	default:
669		break;
670	}
671}
672
673static uint32_t
674e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
675{
676	uint32_t retval;
677
678	retval = 0;
679
680	DPRINTF("intr_read: off %x\n\r", offset);
681
682	switch (offset) {
683	case E1000_ICR:
684		retval = sc->esc_ICR;
685		sc->esc_ICR = 0;
686		e82545_icr_deassert(sc, ~0);
687		break;
688	case E1000_ITR:
689		retval = sc->esc_ITR;
690		break;
691	case E1000_ICS:
692		/* write-only register */
693		break;
694	case E1000_IMS:
695		retval = sc->esc_IMS;
696		break;
697	case E1000_IMC:
698		/* write-only register */
699		break;
700	default:
701		break;
702	}
703
704	return (retval);
705}
706
707static void
708e82545_devctl(struct e82545_softc *sc, uint32_t val)
709{
710
711	sc->esc_CTRL = val & ~E1000_CTRL_RST;
712
713	if (val & E1000_CTRL_RST) {
714		DPRINTF("e1k: s/w reset, ctl %x\n", val);
715		e82545_reset(sc, 1);
716	}
717	/* XXX check for phy reset ? */
718}
719
720static void
721e82545_rx_update_rdba(struct e82545_softc *sc)
722{
723
724	/* XXX verify desc base/len within phys mem range */
725	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
726	    sc->esc_RDBAL;
727
728	/* Cache host mapping of guest descriptor array */
729	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
730	    sc->esc_rdba, sc->esc_RDLEN);
731}
732
733static void
734e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
735{
736	int on;
737
738	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
739
740	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
741	sc->esc_RCTL = val & ~0xF9204c01;
742
743	DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
744		on ? "on" : "off", sc->esc_RCTL, val);
745
746	/* state change requested */
747	if (on != sc->esc_rx_enabled) {
748		if (on) {
749			/* Catch disallowed/unimplemented settings */
750			//assert(!(val & E1000_RCTL_LBM_TCVR));
751
752			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
753				sc->esc_rx_loopback = 1;
754			} else {
755				sc->esc_rx_loopback = 0;
756			}
757
758			e82545_rx_update_rdba(sc);
759			e82545_rx_enable(sc);
760		} else {
761			e82545_rx_disable(sc);
762			sc->esc_rx_loopback = 0;
763			sc->esc_rdba = 0;
764			sc->esc_rxdesc = NULL;
765		}
766	}
767}
768
769static void
770e82545_tx_update_tdba(struct e82545_softc *sc)
771{
772
773	/* XXX verify desc base/len within phys mem range */
774	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
775
776	/* Cache host mapping of guest descriptor array */
777	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
778            sc->esc_TDLEN);
779}
780
781static void
782e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
783{
784	int on;
785
786	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
787
788	/* ignore TCTL_EN settings that don't change state */
789	if (on == sc->esc_tx_enabled)
790		return;
791
792	if (on) {
793		e82545_tx_update_tdba(sc);
794		e82545_tx_enable(sc);
795	} else {
796		e82545_tx_disable(sc);
797		sc->esc_tdba = 0;
798		sc->esc_txdesc = NULL;
799	}
800
801	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
802	sc->esc_TCTL = val & ~0xFE800005;
803}
804
805int
806e82545_bufsz(uint32_t rctl)
807{
808
809	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
810	case (E1000_RCTL_SZ_2048): return (2048);
811	case (E1000_RCTL_SZ_1024): return (1024);
812	case (E1000_RCTL_SZ_512): return (512);
813	case (E1000_RCTL_SZ_256): return (256);
814	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
815	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
816	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
817	}
818	return (256);	/* Forbidden value. */
819}
820
821static uint8_t dummybuf[2048];
822
823/* XXX one packet at a time until this is debugged */
824static void
825e82545_tap_callback(int fd, enum ev_type type, void *param)
826{
827	struct e82545_softc *sc = param;
828	struct e1000_rx_desc *rxd;
829	struct iovec vec[64];
830	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
831	uint32_t cause = 0;
832	uint16_t *tp, tag, head;
833
834	pthread_mutex_lock(&sc->esc_mtx);
835	DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
836
837	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
838		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
839		    sc->esc_rx_enabled, sc->esc_rx_loopback);
840		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
841		}
842		goto done1;
843	}
844	bufsz = e82545_bufsz(sc->esc_RCTL);
845	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
846	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
847	size = sc->esc_RDLEN / 16;
848	head = sc->esc_RDH;
849	left = (size + sc->esc_RDT - head) % size;
850	if (left < maxpktdesc) {
851		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
852		    left, maxpktdesc);
853		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
854		}
855		goto done1;
856	}
857
858	sc->esc_rx_active = 1;
859	pthread_mutex_unlock(&sc->esc_mtx);
860
861	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
862
863		/* Grab rx descriptor pointed to by the head pointer */
864		for (i = 0; i < maxpktdesc; i++) {
865			rxd = &sc->esc_rxdesc[(head + i) % size];
866			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
867			    rxd->buffer_addr, bufsz);
868			vec[i].iov_len = bufsz;
869		}
870		len = readv(sc->esc_tapfd, vec, maxpktdesc);
871		if (len <= 0) {
872			DPRINTF("tap: readv() returned %d\n", len);
873			goto done;
874		}
875
876		/*
877		 * Adjust the packet length based on whether the CRC needs
878		 * to be stripped or if the packet is less than the minimum
879		 * eth packet size.
880		 */
881		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
882			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
883		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
884			len += ETHER_CRC_LEN;
885		n = (len + bufsz - 1) / bufsz;
886
887		DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
888		    len, n, head);
889
890		/* Apply VLAN filter. */
891		tp = (uint16_t *)vec[0].iov_base + 6;
892		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
893		    (ntohs(tp[0]) == sc->esc_VET)) {
894			tag = ntohs(tp[1]) & 0x0fff;
895			if ((sc->esc_fvlan[tag >> 5] &
896			    (1 << (tag & 0x1f))) != 0) {
897				DPRINTF("known VLAN %d\r\n", tag);
898			} else {
899				DPRINTF("unknown VLAN %d\r\n", tag);
900				n = 0;
901				continue;
902			}
903		}
904
905		/* Update all consumed descriptors. */
906		for (i = 0; i < n - 1; i++) {
907			rxd = &sc->esc_rxdesc[(head + i) % size];
908			rxd->length = bufsz;
909			rxd->csum = 0;
910			rxd->errors = 0;
911			rxd->special = 0;
912			rxd->status = E1000_RXD_STAT_DD;
913		}
914		rxd = &sc->esc_rxdesc[(head + i) % size];
915		rxd->length = len % bufsz;
916		rxd->csum = 0;
917		rxd->errors = 0;
918		rxd->special = 0;
919		/* XXX signal no checksum for now */
920		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
921		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
922
923		/* Schedule receive interrupts. */
924		if (len <= sc->esc_RSRPD) {
925			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
926		} else {
927			/* XXX: RDRT and RADV timers should be here. */
928			cause |= E1000_ICR_RXT0;
929		}
930
931		head = (head + n) % size;
932		left -= n;
933	}
934
935done:
936	pthread_mutex_lock(&sc->esc_mtx);
937	sc->esc_rx_active = 0;
938	if (sc->esc_rx_enabled == 0)
939		pthread_cond_signal(&sc->esc_rx_cond);
940
941	sc->esc_RDH = head;
942	/* Respect E1000_RCTL_RDMTS */
943	left = (size + sc->esc_RDT - head) % size;
944	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
945		cause |= E1000_ICR_RXDMT0;
946	/* Assert all accumulated interrupts. */
947	if (cause != 0)
948		e82545_icr_assert(sc, cause);
949done1:
950	DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
951	pthread_mutex_unlock(&sc->esc_mtx);
952}
953
954static uint16_t
955e82545_carry(uint32_t sum)
956{
957
958	sum = (sum & 0xFFFF) + (sum >> 16);
959	if (sum > 0xFFFF)
960		sum -= 0xFFFF;
961	return (sum);
962}
963
964static uint16_t
965e82545_buf_checksum(uint8_t *buf, int len)
966{
967	int i;
968	uint32_t sum = 0;
969
970	/* Checksum all the pairs of bytes first... */
971	for (i = 0; i < (len & ~1U); i += 2)
972		sum += *((u_int16_t *)(buf + i));
973
974	/*
975	 * If there's a single byte left over, checksum it, too.
976	 * Network byte order is big-endian, so the remaining byte is
977	 * the high byte.
978	 */
979	if (i < len)
980		sum += htons(buf[i] << 8);
981
982	return (e82545_carry(sum));
983}
984
985static uint16_t
986e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
987{
988	int now, odd;
989	uint32_t sum = 0, s;
990
991	/* Skip completely unneeded vectors. */
992	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
993		off -= iov->iov_len;
994		iov++;
995		iovcnt--;
996	}
997
998	/* Calculate checksum of requested range. */
999	odd = 0;
1000	while (len > 0 && iovcnt > 0) {
1001		now = MIN(len, iov->iov_len - off);
1002		s = e82545_buf_checksum(iov->iov_base + off, now);
1003		sum += odd ? (s << 8) : s;
1004		odd ^= (now & 1);
1005		len -= now;
1006		off = 0;
1007		iov++;
1008		iovcnt--;
1009	}
1010
1011	return (e82545_carry(sum));
1012}
1013
1014/*
1015 * Return the transmit descriptor type.
1016 */
1017int
1018e82545_txdesc_type(uint32_t lower)
1019{
1020	int type;
1021
1022	type = 0;
1023
1024	if (lower & E1000_TXD_CMD_DEXT)
1025		type = lower & E1000_TXD_MASK;
1026
1027	return (type);
1028}
1029
1030static void
1031e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1032{
1033	uint16_t cksum;
1034	int cklen;
1035
1036	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
1037	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1038	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1039	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1040	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1041}
1042
1043static void
1044e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1045{
1046
1047	if (sc->esc_tapfd == -1)
1048		return;
1049
1050	(void) writev(sc->esc_tapfd, iov, iovcnt);
1051}
1052
1053static void
1054e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1055    uint16_t dsize, int *tdwb)
1056{
1057	union e1000_tx_udesc *dsc;
1058
1059	for ( ; head != tail; head = (head + 1) % dsize) {
1060		dsc = &sc->esc_txdesc[head];
1061		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1062			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1063			*tdwb = 1;
1064		}
1065	}
1066}
1067
1068static int
1069e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1070    uint16_t dsize, uint16_t *rhead, int *tdwb)
1071{
1072	uint8_t *hdr, *hdrp;
1073	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1074	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1075	struct e1000_context_desc *cd;
1076	struct ck_info ckinfo[2];
1077	struct iovec *iov;
1078	union  e1000_tx_udesc *dsc;
1079	int desc, dtype, len, ntype, iovcnt, tlen, hdrlen, vlen, tcp, tso;
1080	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1081	uint32_t tcpsum, tcpseq;
1082	uint16_t ipcs, tcpcs, ipid, ohead;
1083
1084	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1085	iovcnt = 0;
1086	tlen = 0;
1087	ntype = 0;
1088	tso = 0;
1089	ohead = head;
1090
1091	/* iovb[0/1] may be used for writable copy of headers. */
1092	iov = &iovb[2];
1093
1094	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1095		if (head == tail) {
1096			*rhead = head;
1097			return (0);
1098		}
1099		dsc = &sc->esc_txdesc[head];
1100		dtype = e82545_txdesc_type(dsc->td.lower.data);
1101
1102		if (desc == 0) {
1103			switch (dtype) {
1104			case E1000_TXD_TYP_C:
1105				DPRINTF("tx ctxt desc idx %d: %016jx "
1106				    "%08x%08x\r\n",
1107				    head, dsc->td.buffer_addr,
1108				    dsc->td.upper.data, dsc->td.lower.data);
1109				/* Save context and return */
1110				sc->esc_txctx = dsc->cd;
1111				goto done;
1112			case E1000_TXD_TYP_L:
1113				DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
1114				    head, dsc->td.upper.data, dsc->td.lower.data);
1115				/*
1116				 * legacy cksum start valid in first descriptor
1117				 */
1118				ntype = dtype;
1119				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1120				break;
1121			case E1000_TXD_TYP_D:
1122				DPRINTF("tx data desc idx %d: %08x%08x\r\n",
1123				    head, dsc->td.upper.data, dsc->td.lower.data);
1124				ntype = dtype;
1125				break;
1126			default:
1127				break;
1128			}
1129		} else {
1130			/* Descriptor type must be consistent */
1131			assert(dtype == ntype);
1132			DPRINTF("tx next desc idx %d: %08x%08x\r\n",
1133			    head, dsc->td.upper.data, dsc->td.lower.data);
1134		}
1135
1136		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1137		    dsc->dd.lower.data & 0xFFFFF;
1138
1139		if (len > 0) {
1140			/* Strip checksum supplied by guest. */
1141			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1142			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1143				len -= 2;
1144			tlen += len;
1145			if (iovcnt < I82545_MAX_TXSEGS) {
1146				iov[iovcnt].iov_base = paddr_guest2host(
1147				    sc->esc_ctx, dsc->td.buffer_addr, len);
1148				iov[iovcnt].iov_len = len;
1149			}
1150			iovcnt++;
1151		}
1152
1153		/*
1154		 * Pull out info that is valid in the final descriptor
1155		 * and exit descriptor loop.
1156		 */
1157		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1158			if (dtype == E1000_TXD_TYP_L) {
1159				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1160					ckinfo[0].ck_valid = 1;
1161					ckinfo[0].ck_off =
1162					    dsc->td.lower.flags.cso;
1163					ckinfo[0].ck_len = 0;
1164				}
1165			} else {
1166				cd = &sc->esc_txctx;
1167				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1168					tso = 1;
1169				if (dsc->dd.upper.fields.popts &
1170				    E1000_TXD_POPTS_IXSM)
1171					ckinfo[0].ck_valid = 1;
1172				if (dsc->dd.upper.fields.popts &
1173				    E1000_TXD_POPTS_IXSM || tso) {
1174					ckinfo[0].ck_start =
1175					    cd->lower_setup.ip_fields.ipcss;
1176					ckinfo[0].ck_off =
1177					    cd->lower_setup.ip_fields.ipcso;
1178					ckinfo[0].ck_len =
1179					    cd->lower_setup.ip_fields.ipcse;
1180				}
1181				if (dsc->dd.upper.fields.popts &
1182				    E1000_TXD_POPTS_TXSM)
1183					ckinfo[1].ck_valid = 1;
1184				if (dsc->dd.upper.fields.popts &
1185				    E1000_TXD_POPTS_TXSM || tso) {
1186					ckinfo[1].ck_start =
1187					    cd->upper_setup.tcp_fields.tucss;
1188					ckinfo[1].ck_off =
1189					    cd->upper_setup.tcp_fields.tucso;
1190					ckinfo[1].ck_len =
1191					    cd->upper_setup.tcp_fields.tucse;
1192				}
1193			}
1194			break;
1195		}
1196	}
1197
1198	if (iovcnt > I82545_MAX_TXSEGS) {
1199		WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
1200		    iovcnt, I82545_MAX_TXSEGS);
1201		goto done;
1202	}
1203
1204	hdrlen = vlen = 0;
1205	/* Estimate writable space for VLAN header insertion. */
1206	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1207	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1208		hdrlen = ETHER_ADDR_LEN*2;
1209		vlen = ETHER_VLAN_ENCAP_LEN;
1210	}
1211	if (!tso) {
1212		/* Estimate required writable space for checksums. */
1213		if (ckinfo[0].ck_valid)
1214			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1215		if (ckinfo[1].ck_valid)
1216			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1217		/* Round up writable space to the first vector. */
1218		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1219		    iov[0].iov_len < hdrlen + 100)
1220			hdrlen = iov[0].iov_len;
1221	} else {
1222		/* In case of TSO header length provided by software. */
1223		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1224	}
1225
1226	/* Allocate, fill and prepend writable header vector. */
1227	if (hdrlen != 0) {
1228		hdr = __builtin_alloca(hdrlen + vlen);
1229		hdr += vlen;
1230		for (left = hdrlen, hdrp = hdr; left > 0;
1231		    left -= now, hdrp += now) {
1232			now = MIN(left, iov->iov_len);
1233			memcpy(hdrp, iov->iov_base, now);
1234			iov->iov_base += now;
1235			iov->iov_len -= now;
1236			if (iov->iov_len == 0) {
1237				iov++;
1238				iovcnt--;
1239			}
1240		}
1241		iov--;
1242		iovcnt++;
1243		iov->iov_base = hdr;
1244		iov->iov_len = hdrlen;
1245	}
1246
1247	/* Insert VLAN tag. */
1248	if (vlen != 0) {
1249		hdr -= ETHER_VLAN_ENCAP_LEN;
1250		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1251		hdrlen += ETHER_VLAN_ENCAP_LEN;
1252		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1253		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1254		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1255		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1256		iov->iov_base = hdr;
1257		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1258		/* Correct checksum offsets after VLAN tag insertion. */
1259		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1260		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1261		if (ckinfo[0].ck_len != 0)
1262			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1263		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1264		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1265		if (ckinfo[1].ck_len != 0)
1266			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1267	}
1268
1269	/* Simple non-TSO case. */
1270	if (!tso) {
1271		/* Calculate checksums and transmit. */
1272		if (ckinfo[0].ck_valid)
1273			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1274		if (ckinfo[1].ck_valid)
1275			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1276		e82545_transmit_backend(sc, iov, iovcnt);
1277		goto done;
1278	}
1279
1280	/* Doing TSO. */
1281	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1282	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1283	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1284	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
1285	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1286	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1287	tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1288	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1289	tcpcs = 0;
1290	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1291		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1292	pv = 1;
1293	pvoff = 0;
1294	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1295		now = MIN(left, mss);
1296
1297		/* Construct IOVs for the segment. */
1298		/* Include whole original header. */
1299		tiov[0].iov_base = hdr;
1300		tiov[0].iov_len = hdrlen;
1301		tiovcnt = 1;
1302		/* Include respective part of payload IOV. */
1303		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1304			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1305			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1306			tiov[tiovcnt++].iov_len = nnow;
1307			if (pvoff + nnow == iov[pv].iov_len) {
1308				pv++;
1309				pvoff = 0;
1310			} else
1311				pvoff += nnow;
1312		}
1313		DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
1314		    seg, hdrlen, now, tiovcnt);
1315
1316		/* Update IP header. */
1317		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1318			/* IPv4 -- set length and ID */
1319			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1320			    htons(hdrlen - ckinfo[0].ck_start + now);
1321			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1322			    htons(ipid + seg);
1323		} else {
1324			/* IPv6 -- set length */
1325			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1326			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1327				  now);
1328		}
1329
1330		/* Update pseudo-header checksum. */
1331		tcpsum = tcpcs;
1332		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1333
1334		/* Update TCP/UDP headers. */
1335		if (tcp) {
1336			/* Update sequence number and FIN/PUSH flags. */
1337			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1338			    htonl(tcpseq + paylen - left);
1339			if (now < left) {
1340				hdr[ckinfo[1].ck_start + 13] &=
1341				    ~(TH_FIN | TH_PUSH);
1342			}
1343		} else {
1344			/* Update payload length. */
1345			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1346			    hdrlen - ckinfo[1].ck_start + now;
1347		}
1348
1349		/* Calculate checksums and transmit. */
1350		if (ckinfo[0].ck_valid) {
1351			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1352			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1353		}
1354		if (ckinfo[1].ck_valid) {
1355			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1356			    e82545_carry(tcpsum);
1357			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1358		}
1359		e82545_transmit_backend(sc, tiov, tiovcnt);
1360	}
1361
1362done:
1363	head = (head + 1) % dsize;
1364	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1365
1366	*rhead = head;
1367	return (desc + 1);
1368}
1369
1370static void
1371e82545_tx_run(struct e82545_softc *sc)
1372{
1373	uint32_t cause;
1374	uint16_t head, rhead, tail, size;
1375	int lim, tdwb, sent;
1376
1377	head = sc->esc_TDH;
1378	tail = sc->esc_TDT;
1379	size = sc->esc_TDLEN / 16;
1380	DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
1381	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1382
1383	pthread_mutex_unlock(&sc->esc_mtx);
1384	rhead = head;
1385	tdwb = 0;
1386	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1387		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1388		if (sent == 0)
1389			break;
1390		head = rhead;
1391	}
1392	pthread_mutex_lock(&sc->esc_mtx);
1393
1394	sc->esc_TDH = head;
1395	sc->esc_TDHr = rhead;
1396	cause = 0;
1397	if (tdwb)
1398		cause |= E1000_ICR_TXDW;
1399	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1400		cause |= E1000_ICR_TXQE;
1401	if (cause)
1402		e82545_icr_assert(sc, cause);
1403
1404	DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
1405	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1406}
1407
1408static _Noreturn void *
1409e82545_tx_thread(void *param)
1410{
1411	struct e82545_softc *sc = param;
1412
1413	pthread_mutex_lock(&sc->esc_mtx);
1414	for (;;) {
1415		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1416			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1417				break;
1418			sc->esc_tx_active = 0;
1419			if (sc->esc_tx_enabled == 0)
1420				pthread_cond_signal(&sc->esc_tx_cond);
1421			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1422		}
1423		sc->esc_tx_active = 1;
1424
1425		/* Process some tx descriptors.  Lock dropped inside. */
1426		e82545_tx_run(sc);
1427	}
1428}
1429
1430static void
1431e82545_tx_start(struct e82545_softc *sc)
1432{
1433
1434	if (sc->esc_tx_active == 0)
1435		pthread_cond_signal(&sc->esc_tx_cond);
1436}
1437
1438static void
1439e82545_tx_enable(struct e82545_softc *sc)
1440{
1441
1442	sc->esc_tx_enabled = 1;
1443}
1444
1445static void
1446e82545_tx_disable(struct e82545_softc *sc)
1447{
1448
1449	sc->esc_tx_enabled = 0;
1450	while (sc->esc_tx_active)
1451		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1452}
1453
1454static void
1455e82545_rx_enable(struct e82545_softc *sc)
1456{
1457
1458	sc->esc_rx_enabled = 1;
1459}
1460
1461static void
1462e82545_rx_disable(struct e82545_softc *sc)
1463{
1464
1465	sc->esc_rx_enabled = 0;
1466	while (sc->esc_rx_active)
1467		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1468}
1469
1470static void
1471e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1472{
1473	struct eth_uni *eu;
1474	int idx;
1475
1476	idx = reg >> 1;
1477	assert(idx < 15);
1478
1479	eu = &sc->esc_uni[idx];
1480
1481	if (reg & 0x1) {
1482		/* RAH */
1483		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1484		eu->eu_addrsel = (wval >> 16) & 0x3;
1485		eu->eu_eth.octet[5] = wval >> 8;
1486		eu->eu_eth.octet[4] = wval;
1487	} else {
1488		/* RAL */
1489		eu->eu_eth.octet[3] = wval >> 24;
1490		eu->eu_eth.octet[2] = wval >> 16;
1491		eu->eu_eth.octet[1] = wval >> 8;
1492		eu->eu_eth.octet[0] = wval;
1493	}
1494}
1495
1496static uint32_t
1497e82545_read_ra(struct e82545_softc *sc, int reg)
1498{
1499	struct eth_uni *eu;
1500	uint32_t retval;
1501	int idx;
1502
1503	idx = reg >> 1;
1504	assert(idx < 15);
1505
1506	eu = &sc->esc_uni[idx];
1507
1508	if (reg & 0x1) {
1509		/* RAH */
1510		retval = (eu->eu_valid << 31) |
1511			 (eu->eu_addrsel << 16) |
1512			 (eu->eu_eth.octet[5] << 8) |
1513			 eu->eu_eth.octet[4];
1514	} else {
1515		/* RAL */
1516		retval = (eu->eu_eth.octet[3] << 24) |
1517			 (eu->eu_eth.octet[2] << 16) |
1518			 (eu->eu_eth.octet[1] << 8) |
1519			 eu->eu_eth.octet[0];
1520	}
1521
1522	return (retval);
1523}
1524
1525static void
1526e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1527{
1528	int ridx;
1529
1530	if (offset & 0x3) {
1531		DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
1532		return;
1533	}
1534	DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
1535
1536	switch (offset) {
1537	case E1000_CTRL:
1538	case E1000_CTRL_DUP:
1539		e82545_devctl(sc, value);
1540		break;
1541	case E1000_FCAL:
1542		sc->esc_FCAL = value;
1543		break;
1544	case E1000_FCAH:
1545		sc->esc_FCAH = value & ~0xFFFF0000;
1546		break;
1547	case E1000_FCT:
1548		sc->esc_FCT = value & ~0xFFFF0000;
1549		break;
1550	case E1000_VET:
1551		sc->esc_VET = value & ~0xFFFF0000;
1552		break;
1553	case E1000_FCTTV:
1554		sc->esc_FCTTV = value & ~0xFFFF0000;
1555		break;
1556	case E1000_LEDCTL:
1557		sc->esc_LEDCTL = value & ~0x30303000;
1558		break;
1559	case E1000_PBA:
1560		sc->esc_PBA = value & 0x0000FF80;
1561		break;
1562	case E1000_ICR:
1563	case E1000_ITR:
1564	case E1000_ICS:
1565	case E1000_IMS:
1566	case E1000_IMC:
1567		e82545_intr_write(sc, offset, value);
1568		break;
1569	case E1000_RCTL:
1570		e82545_rx_ctl(sc, value);
1571		break;
1572	case E1000_FCRTL:
1573		sc->esc_FCRTL = value & ~0xFFFF0007;
1574		break;
1575	case E1000_FCRTH:
1576		sc->esc_FCRTH = value & ~0xFFFF0007;
1577		break;
1578	case E1000_RDBAL(0):
1579		sc->esc_RDBAL = value & ~0xF;
1580		if (sc->esc_rx_enabled) {
1581			/* Apparently legal: update cached address */
1582			e82545_rx_update_rdba(sc);
1583		}
1584		break;
1585	case E1000_RDBAH(0):
1586		assert(!sc->esc_rx_enabled);
1587		sc->esc_RDBAH = value;
1588		break;
1589	case E1000_RDLEN(0):
1590		assert(!sc->esc_rx_enabled);
1591		sc->esc_RDLEN = value & ~0xFFF0007F;
1592		break;
1593	case E1000_RDH(0):
1594		/* XXX should only ever be zero ? Range check ? */
1595		sc->esc_RDH = value;
1596		break;
1597	case E1000_RDT(0):
1598		/* XXX if this opens up the rx ring, do something ? */
1599		sc->esc_RDT = value;
1600		break;
1601	case E1000_RDTR:
1602		/* ignore FPD bit 31 */
1603		sc->esc_RDTR = value & ~0xFFFF0000;
1604		break;
1605	case E1000_RXDCTL(0):
1606		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1607		break;
1608	case E1000_RADV:
1609		sc->esc_RADV = value & ~0xFFFF0000;
1610		break;
1611	case E1000_RSRPD:
1612		sc->esc_RSRPD = value & ~0xFFFFF000;
1613		break;
1614	case E1000_RXCSUM:
1615		sc->esc_RXCSUM = value & ~0xFFFFF800;
1616		break;
1617	case E1000_TXCW:
1618		sc->esc_TXCW = value & ~0x3FFF0000;
1619		break;
1620	case E1000_TCTL:
1621		e82545_tx_ctl(sc, value);
1622		break;
1623	case E1000_TIPG:
1624		sc->esc_TIPG = value;
1625		break;
1626	case E1000_AIT:
1627		sc->esc_AIT = value;
1628		break;
1629	case E1000_TDBAL(0):
1630		sc->esc_TDBAL = value & ~0xF;
1631		if (sc->esc_tx_enabled) {
1632			/* Apparently legal */
1633			e82545_tx_update_tdba(sc);
1634		}
1635		break;
1636	case E1000_TDBAH(0):
1637		//assert(!sc->esc_tx_enabled);
1638		sc->esc_TDBAH = value;
1639		break;
1640	case E1000_TDLEN(0):
1641		//assert(!sc->esc_tx_enabled);
1642		sc->esc_TDLEN = value & ~0xFFF0007F;
1643		break;
1644	case E1000_TDH(0):
1645		//assert(!sc->esc_tx_enabled);
1646		/* XXX should only ever be zero ? Range check ? */
1647		sc->esc_TDHr = sc->esc_TDH = value;
1648		break;
1649	case E1000_TDT(0):
1650		/* XXX range check ? */
1651		sc->esc_TDT = value;
1652		if (sc->esc_tx_enabled)
1653			e82545_tx_start(sc);
1654		break;
1655	case E1000_TIDV:
1656		sc->esc_TIDV = value & ~0xFFFF0000;
1657		break;
1658	case E1000_TXDCTL(0):
1659		//assert(!sc->esc_tx_enabled);
1660		sc->esc_TXDCTL = value & ~0xC0C0C0;
1661		break;
1662	case E1000_TADV:
1663		sc->esc_TADV = value & ~0xFFFF0000;
1664		break;
1665	case E1000_RAL(0) ... E1000_RAH(15):
1666		/* convert to u32 offset */
1667		ridx = (offset - E1000_RAL(0)) >> 2;
1668		e82545_write_ra(sc, ridx, value);
1669		break;
1670	case E1000_MTA ... (E1000_MTA + (127*4)):
1671		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1672		break;
1673	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1674		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1675		break;
1676	case E1000_EECD:
1677	{
1678		//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
1679		/* edge triggered low->high */
1680		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1681			0 : (value & E1000_EECD_SK));
1682		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1683					E1000_EECD_DI|E1000_EECD_REQ);
1684		sc->eeprom_control &= ~eecd_mask;
1685		sc->eeprom_control |= (value & eecd_mask);
1686		/* grant/revoke immediately */
1687		if (value & E1000_EECD_REQ) {
1688			sc->eeprom_control |= E1000_EECD_GNT;
1689		} else {
1690                        sc->eeprom_control &= ~E1000_EECD_GNT;
1691		}
1692		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1693			e82545_eecd_strobe(sc);
1694		}
1695		return;
1696	}
1697	case E1000_MDIC:
1698	{
1699		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1700						E1000_MDIC_REG_SHIFT);
1701		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1702						E1000_MDIC_PHY_SHIFT);
1703		sc->mdi_control =
1704			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1705		if ((value & E1000_MDIC_READY) != 0) {
1706			DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
1707			return;
1708		}
1709		switch (value & E82545_MDIC_OP_MASK) {
1710		case E1000_MDIC_OP_READ:
1711			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1712			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1713			break;
1714		case E1000_MDIC_OP_WRITE:
1715			e82545_write_mdi(sc, reg_addr, phy_addr,
1716				value & E82545_MDIC_DATA_MASK);
1717			break;
1718		default:
1719			DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
1720			return;
1721		}
1722		/* TODO: barrier? */
1723		sc->mdi_control |= E1000_MDIC_READY;
1724		if (value & E82545_MDIC_IE) {
1725			// TODO: generate interrupt
1726		}
1727		return;
1728	}
1729	case E1000_MANC:
1730	case E1000_STATUS:
1731		return;
1732	default:
1733		DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
1734		return;
1735	}
1736}
1737
1738static uint32_t
1739e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1740{
1741	uint32_t retval;
1742	int ridx;
1743
1744	if (offset & 0x3) {
1745		DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
1746		return 0;
1747	}
1748
1749	DPRINTF("Register read: 0x%x\r\n", offset);
1750
1751	switch (offset) {
1752	case E1000_CTRL:
1753		retval = sc->esc_CTRL;
1754		break;
1755	case E1000_STATUS:
1756		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1757		    E1000_STATUS_SPEED_1000;
1758		break;
1759	case E1000_FCAL:
1760		retval = sc->esc_FCAL;
1761		break;
1762	case E1000_FCAH:
1763		retval = sc->esc_FCAH;
1764		break;
1765	case E1000_FCT:
1766		retval = sc->esc_FCT;
1767		break;
1768	case E1000_VET:
1769		retval = sc->esc_VET;
1770		break;
1771	case E1000_FCTTV:
1772		retval = sc->esc_FCTTV;
1773		break;
1774	case E1000_LEDCTL:
1775		retval = sc->esc_LEDCTL;
1776		break;
1777	case E1000_PBA:
1778		retval = sc->esc_PBA;
1779		break;
1780	case E1000_ICR:
1781	case E1000_ITR:
1782	case E1000_ICS:
1783	case E1000_IMS:
1784	case E1000_IMC:
1785		retval = e82545_intr_read(sc, offset);
1786		break;
1787	case E1000_RCTL:
1788		retval = sc->esc_RCTL;
1789		break;
1790	case E1000_FCRTL:
1791		retval = sc->esc_FCRTL;
1792		break;
1793	case E1000_FCRTH:
1794		retval = sc->esc_FCRTH;
1795		break;
1796	case E1000_RDBAL(0):
1797		retval = sc->esc_RDBAL;
1798		break;
1799	case E1000_RDBAH(0):
1800		retval = sc->esc_RDBAH;
1801		break;
1802	case E1000_RDLEN(0):
1803		retval = sc->esc_RDLEN;
1804		break;
1805	case E1000_RDH(0):
1806		retval = sc->esc_RDH;
1807		break;
1808	case E1000_RDT(0):
1809		retval = sc->esc_RDT;
1810		break;
1811	case E1000_RDTR:
1812		retval = sc->esc_RDTR;
1813		break;
1814	case E1000_RXDCTL(0):
1815		retval = sc->esc_RXDCTL;
1816		break;
1817	case E1000_RADV:
1818		retval = sc->esc_RADV;
1819		break;
1820	case E1000_RSRPD:
1821		retval = sc->esc_RSRPD;
1822		break;
1823	case E1000_RXCSUM:
1824		retval = sc->esc_RXCSUM;
1825		break;
1826	case E1000_TXCW:
1827		retval = sc->esc_TXCW;
1828		break;
1829	case E1000_TCTL:
1830		retval = sc->esc_TCTL;
1831		break;
1832	case E1000_TIPG:
1833		retval = sc->esc_TIPG;
1834		break;
1835	case E1000_AIT:
1836		retval = sc->esc_AIT;
1837		break;
1838	case E1000_TDBAL(0):
1839		retval = sc->esc_TDBAL;
1840		break;
1841	case E1000_TDBAH(0):
1842		retval = sc->esc_TDBAH;
1843		break;
1844	case E1000_TDLEN(0):
1845		retval = sc->esc_TDLEN;
1846		break;
1847	case E1000_TDH(0):
1848		retval = sc->esc_TDH;
1849		break;
1850	case E1000_TDT(0):
1851		retval = sc->esc_TDT;
1852		break;
1853	case E1000_TIDV:
1854		retval = sc->esc_TIDV;
1855		break;
1856	case E1000_TXDCTL(0):
1857		retval = sc->esc_TXDCTL;
1858		break;
1859	case E1000_TADV:
1860		retval = sc->esc_TADV;
1861		break;
1862	case E1000_RAL(0) ... E1000_RAH(15):
1863		/* convert to u32 offset */
1864		ridx = (offset - E1000_RAL(0)) >> 2;
1865		retval = e82545_read_ra(sc, ridx);
1866		break;
1867	case E1000_MTA ... (E1000_MTA + (127*4)):
1868		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1869		break;
1870	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1871		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1872		break;
1873	case E1000_EECD:
1874		//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
1875		retval = sc->eeprom_control;
1876		break;
1877	case E1000_MDIC:
1878		retval = sc->mdi_control;
1879		break;
1880	case E1000_MANC:
1881		retval = 0;
1882		break;
1883	/* stats that we emulate. */
1884	case E1000_MPC:
1885		retval = sc->missed_pkt_count;
1886		break;
1887	case E1000_PRC64:
1888		retval = sc->pkt_rx_by_size[0];
1889		break;
1890	case E1000_PRC127:
1891		retval = sc->pkt_rx_by_size[1];
1892		break;
1893	case E1000_PRC255:
1894		retval = sc->pkt_rx_by_size[2];
1895		break;
1896	case E1000_PRC511:
1897		retval = sc->pkt_rx_by_size[3];
1898		break;
1899	case E1000_PRC1023:
1900		retval = sc->pkt_rx_by_size[4];
1901		break;
1902	case E1000_PRC1522:
1903		retval = sc->pkt_rx_by_size[5];
1904		break;
1905	case E1000_GPRC:
1906		retval = sc->good_pkt_rx_count;
1907		break;
1908	case E1000_BPRC:
1909		retval = sc->bcast_pkt_rx_count;
1910		break;
1911	case E1000_MPRC:
1912		retval = sc->mcast_pkt_rx_count;
1913		break;
1914	case E1000_GPTC:
1915	case E1000_TPT:
1916		retval = sc->good_pkt_tx_count;
1917		break;
1918	case E1000_GORCL:
1919		retval = (uint32_t)sc->good_octets_rx;
1920		break;
1921	case E1000_GORCH:
1922		retval = (uint32_t)(sc->good_octets_rx >> 32);
1923		break;
1924	case E1000_TOTL:
1925	case E1000_GOTCL:
1926		retval = (uint32_t)sc->good_octets_tx;
1927		break;
1928	case E1000_TOTH:
1929	case E1000_GOTCH:
1930		retval = (uint32_t)(sc->good_octets_tx >> 32);
1931		break;
1932	case E1000_ROC:
1933		retval = sc->oversize_rx_count;
1934		break;
1935	case E1000_TORL:
1936		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
1937		break;
1938	case E1000_TORH:
1939		retval = (uint32_t)((sc->good_octets_rx +
1940		    sc->missed_octets) >> 32);
1941		break;
1942	case E1000_TPR:
1943		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
1944		    sc->oversize_rx_count;
1945		break;
1946	case E1000_PTC64:
1947		retval = sc->pkt_tx_by_size[0];
1948		break;
1949	case E1000_PTC127:
1950		retval = sc->pkt_tx_by_size[1];
1951		break;
1952	case E1000_PTC255:
1953		retval = sc->pkt_tx_by_size[2];
1954		break;
1955	case E1000_PTC511:
1956		retval = sc->pkt_tx_by_size[3];
1957		break;
1958	case E1000_PTC1023:
1959		retval = sc->pkt_tx_by_size[4];
1960		break;
1961	case E1000_PTC1522:
1962		retval = sc->pkt_tx_by_size[5];
1963		break;
1964	case E1000_MPTC:
1965		retval = sc->mcast_pkt_tx_count;
1966		break;
1967	case E1000_BPTC:
1968		retval = sc->bcast_pkt_tx_count;
1969		break;
1970	case E1000_TSCTC:
1971		retval = sc->tso_tx_count;
1972		break;
1973	/* stats that are always 0. */
1974	case E1000_CRCERRS:
1975	case E1000_ALGNERRC:
1976	case E1000_SYMERRS:
1977	case E1000_RXERRC:
1978	case E1000_SCC:
1979	case E1000_ECOL:
1980	case E1000_MCC:
1981	case E1000_LATECOL:
1982	case E1000_COLC:
1983	case E1000_DC:
1984	case E1000_TNCRS:
1985	case E1000_SEC:
1986	case E1000_CEXTERR:
1987	case E1000_RLEC:
1988	case E1000_XONRXC:
1989	case E1000_XONTXC:
1990	case E1000_XOFFRXC:
1991	case E1000_XOFFTXC:
1992	case E1000_FCRUC:
1993	case E1000_RNBC:
1994	case E1000_RUC:
1995	case E1000_RFC:
1996	case E1000_RJC:
1997	case E1000_MGTPRC:
1998	case E1000_MGTPDC:
1999	case E1000_MGTPTC:
2000	case E1000_TSCTFC:
2001		retval = 0;
2002		break;
2003	default:
2004		DPRINTF("Unknown read register: 0x%x\r\n", offset);
2005		retval = 0;
2006		break;
2007	}
2008
2009	return (retval);
2010}
2011
2012static void
2013e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2014	     uint64_t offset, int size, uint64_t value)
2015{
2016	struct e82545_softc *sc;
2017
2018	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
2019
2020	sc = pi->pi_arg;
2021
2022	pthread_mutex_lock(&sc->esc_mtx);
2023
2024	switch (baridx) {
2025	case E82545_BAR_IO:
2026		switch (offset) {
2027		case E82545_IOADDR:
2028			if (size != 4) {
2029				DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
2030			} else
2031				sc->io_addr = (uint32_t)value;
2032			break;
2033		case E82545_IODATA:
2034			if (size != 4) {
2035				DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
2036			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2037				DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
2038			} else
2039				e82545_write_register(sc, sc->io_addr,
2040						      (uint32_t)value);
2041			break;
2042		default:
2043			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
2044			break;
2045		}
2046		break;
2047	case E82545_BAR_REGISTER:
2048		if (size != 4) {
2049			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
2050		} else
2051			e82545_write_register(sc, (uint32_t)offset,
2052					      (uint32_t)value);
2053		break;
2054	default:
2055		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
2056			baridx, offset, value, size);
2057	}
2058
2059	pthread_mutex_unlock(&sc->esc_mtx);
2060}
2061
2062static uint64_t
2063e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2064	    uint64_t offset, int size)
2065{
2066	struct e82545_softc *sc;
2067	uint64_t retval;
2068
2069	//DPRINTF("Read  bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
2070	sc = pi->pi_arg;
2071	retval = 0;
2072
2073	pthread_mutex_lock(&sc->esc_mtx);
2074
2075	switch (baridx) {
2076	case E82545_BAR_IO:
2077		switch (offset) {
2078		case E82545_IOADDR:
2079			if (size != 4) {
2080				DPRINTF("Wrong io addr read sz:%d\r\n", size);
2081			} else
2082				retval = sc->io_addr;
2083			break;
2084		case E82545_IODATA:
2085			if (size != 4) {
2086				DPRINTF("Wrong io data read sz:%d\r\n", size);
2087			}
2088			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2089				DPRINTF("Non-register io read addr:0x%x\r\n",
2090					sc->io_addr);
2091			} else
2092				retval = e82545_read_register(sc, sc->io_addr);
2093			break;
2094		default:
2095			DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
2096				offset, size);
2097			break;
2098		}
2099		break;
2100	case E82545_BAR_REGISTER:
2101		if (size != 4) {
2102			DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
2103				size, offset);
2104		} else
2105			retval = e82545_read_register(sc, (uint32_t)offset);
2106		break;
2107	default:
2108		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
2109			baridx, offset, size);
2110		break;
2111	}
2112
2113	pthread_mutex_unlock(&sc->esc_mtx);
2114
2115	return (retval);
2116}
2117
2118static void
2119e82545_reset(struct e82545_softc *sc, int drvr)
2120{
2121	int i;
2122
2123	e82545_rx_disable(sc);
2124	e82545_tx_disable(sc);
2125
2126	/* clear outstanding interrupts */
2127	if (sc->esc_irq_asserted)
2128		pci_lintr_deassert(sc->esc_pi);
2129
2130	/* misc */
2131	if (!drvr) {
2132		sc->esc_FCAL = 0;
2133		sc->esc_FCAH = 0;
2134		sc->esc_FCT = 0;
2135		sc->esc_VET = 0;
2136		sc->esc_FCTTV = 0;
2137	}
2138	sc->esc_LEDCTL = 0x07061302;
2139	sc->esc_PBA = 0x00100030;
2140
2141	/* start nvm in opcode mode. */
2142	sc->nvm_opaddr = 0;
2143	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2144	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2145	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2146	e82545_init_eeprom(sc);
2147
2148	/* interrupt */
2149	sc->esc_ICR = 0;
2150	sc->esc_ITR = 250;
2151	sc->esc_ICS = 0;
2152	sc->esc_IMS = 0;
2153	sc->esc_IMC = 0;
2154
2155	/* L2 filters */
2156	if (!drvr) {
2157		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2158		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2159		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2160
2161		/* XXX not necessary on 82545 ?? */
2162		sc->esc_uni[0].eu_valid = 1;
2163		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2164		    ETHER_ADDR_LEN);
2165	} else {
2166		/* Clear RAH valid bits */
2167		for (i = 0; i < 16; i++)
2168			sc->esc_uni[i].eu_valid = 0;
2169	}
2170
2171	/* receive */
2172	if (!drvr) {
2173		sc->esc_RDBAL = 0;
2174		sc->esc_RDBAH = 0;
2175	}
2176	sc->esc_RCTL = 0;
2177	sc->esc_FCRTL = 0;
2178	sc->esc_FCRTH = 0;
2179	sc->esc_RDLEN = 0;
2180	sc->esc_RDH = 0;
2181	sc->esc_RDT = 0;
2182	sc->esc_RDTR = 0;
2183	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2184	sc->esc_RADV = 0;
2185	sc->esc_RXCSUM = 0;
2186
2187	/* transmit */
2188	if (!drvr) {
2189		sc->esc_TDBAL = 0;
2190		sc->esc_TDBAH = 0;
2191		sc->esc_TIPG = 0;
2192		sc->esc_AIT = 0;
2193		sc->esc_TIDV = 0;
2194		sc->esc_TADV = 0;
2195	}
2196	sc->esc_tdba = 0;
2197	sc->esc_txdesc = NULL;
2198	sc->esc_TXCW = 0;
2199	sc->esc_TCTL = 0;
2200	sc->esc_TDLEN = 0;
2201	sc->esc_TDT = 0;
2202	sc->esc_TDHr = sc->esc_TDH = 0;
2203	sc->esc_TXDCTL = 0;
2204}
2205
2206static void
2207e82545_open_tap(struct e82545_softc *sc, char *opts)
2208{
2209	char tbuf[80];
2210#ifndef WITHOUT_CAPSICUM
2211	cap_rights_t rights;
2212#endif
2213
2214	if (opts == NULL) {
2215		sc->esc_tapfd = -1;
2216		return;
2217	}
2218
2219	strcpy(tbuf, "/dev/");
2220	strlcat(tbuf, opts, sizeof(tbuf));
2221
2222	sc->esc_tapfd = open(tbuf, O_RDWR);
2223	if (sc->esc_tapfd == -1) {
2224		DPRINTF("unable to open tap device %s\n", opts);
2225		exit(1);
2226	}
2227
2228	/*
2229	 * Set non-blocking and register for read
2230	 * notifications with the event loop
2231	 */
2232	int opt = 1;
2233	if (ioctl(sc->esc_tapfd, FIONBIO, &opt) < 0) {
2234		WPRINTF("tap device O_NONBLOCK failed: %d\n", errno);
2235		close(sc->esc_tapfd);
2236		sc->esc_tapfd = -1;
2237	}
2238
2239#ifndef WITHOUT_CAPSICUM
2240	cap_rights_init(&rights, CAP_EVENT, CAP_READ, CAP_WRITE);
2241	if (cap_rights_limit(sc->esc_tapfd, &rights) == -1 && errno != ENOSYS)
2242		errx(EX_OSERR, "Unable to apply rights for sandbox");
2243#endif
2244
2245	sc->esc_mevp = mevent_add(sc->esc_tapfd,
2246				  EVF_READ,
2247				  e82545_tap_callback,
2248				  sc);
2249	if (sc->esc_mevp == NULL) {
2250		DPRINTF("Could not register mevent %d\n", EVF_READ);
2251		close(sc->esc_tapfd);
2252		sc->esc_tapfd = -1;
2253	}
2254}
2255
2256static int
2257e82545_parsemac(char *mac_str, uint8_t *mac_addr)
2258{
2259	struct ether_addr *ea;
2260	char *tmpstr;
2261	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2262
2263	tmpstr = strsep(&mac_str,"=");
2264	if ((mac_str != NULL) && (!strcmp(tmpstr,"mac"))) {
2265		ea = ether_aton(mac_str);
2266		if (ea == NULL || ETHER_IS_MULTICAST(ea->octet) ||
2267		    memcmp(ea->octet, zero_addr, ETHER_ADDR_LEN) == 0) {
2268			fprintf(stderr, "Invalid MAC %s\n", mac_str);
2269			return (1);
2270		} else
2271			memcpy(mac_addr, ea->octet, ETHER_ADDR_LEN);
2272	}
2273	return (0);
2274}
2275
2276static int
2277e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2278{
2279	DPRINTF("Loading with options: %s\r\n", opts);
2280
2281	MD5_CTX mdctx;
2282	unsigned char digest[16];
2283	char nstr[80];
2284	struct e82545_softc *sc;
2285	char *devname;
2286	char *vtopts;
2287	int mac_provided;
2288
2289	/* Setup our softc */
2290	sc = calloc(1, sizeof(*sc));
2291
2292	pi->pi_arg = sc;
2293	sc->esc_pi = pi;
2294	sc->esc_ctx = ctx;
2295
2296	pthread_mutex_init(&sc->esc_mtx, NULL);
2297	pthread_cond_init(&sc->esc_rx_cond, NULL);
2298	pthread_cond_init(&sc->esc_tx_cond, NULL);
2299	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2300	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2301	    pi->pi_func);
2302        pthread_set_name_np(sc->esc_tx_tid, nstr);
2303
2304	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2305	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2306	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2307	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2308	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2309	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2310
2311	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2312	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2313
2314	/* TODO: this card also supports msi, but the freebsd driver for it
2315	 * does not, so I have not implemented it. */
2316	pci_lintr_request(pi);
2317
2318	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2319		E82545_BAR_REGISTER_LEN);
2320	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2321		E82545_BAR_FLASH_LEN);
2322	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2323		E82545_BAR_IO_LEN);
2324
2325	/*
2326	 * Attempt to open the tap device and read the MAC address
2327	 * if specified.  Copied from virtio-net, slightly modified.
2328	 */
2329	mac_provided = 0;
2330	sc->esc_tapfd = -1;
2331	if (opts != NULL) {
2332		int err;
2333
2334		devname = vtopts = strdup(opts);
2335		(void) strsep(&vtopts, ",");
2336
2337		if (vtopts != NULL) {
2338			err = e82545_parsemac(vtopts, sc->esc_mac.octet);
2339			if (err != 0) {
2340				free(devname);
2341				return (err);
2342			}
2343			mac_provided = 1;
2344		}
2345
2346		if (strncmp(devname, "tap", 3) == 0 ||
2347		    strncmp(devname, "vmnet", 5) == 0)
2348			e82545_open_tap(sc, devname);
2349
2350		free(devname);
2351	}
2352
2353	/*
2354	 * The default MAC address is the standard NetApp OUI of 00-a0-98,
2355	 * followed by an MD5 of the PCI slot/func number and dev name
2356	 */
2357	if (!mac_provided) {
2358		snprintf(nstr, sizeof(nstr), "%d-%d-%s", pi->pi_slot,
2359		    pi->pi_func, vmname);
2360
2361		MD5Init(&mdctx);
2362		MD5Update(&mdctx, nstr, strlen(nstr));
2363		MD5Final(digest, &mdctx);
2364
2365		sc->esc_mac.octet[0] = 0x00;
2366		sc->esc_mac.octet[1] = 0xa0;
2367		sc->esc_mac.octet[2] = 0x98;
2368		sc->esc_mac.octet[3] = digest[0];
2369		sc->esc_mac.octet[4] = digest[1];
2370		sc->esc_mac.octet[5] = digest[2];
2371	}
2372
2373	/* H/w initiated reset */
2374	e82545_reset(sc, 0);
2375
2376	return (0);
2377}
2378
2379struct pci_devemu pci_de_e82545 = {
2380	.pe_emu = 	"e1000",
2381	.pe_init =	e82545_init,
2382	.pe_barwrite =	e82545_write,
2383	.pe_barread =	e82545_read
2384};
2385PCI_EMUL_SET(pci_de_e82545);
2386
2387