machine.c revision 310120
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: stable/11/usr.bin/top/machine.c 310120 2016-12-15 16:51:33Z vangyzen $
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <err.h>
39#include <kvm.h>
40#include <math.h>
41#include <nlist.h>
42#include <paths.h>
43#include <pwd.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <strings.h>
48#include <unistd.h>
49#include <vis.h>
50
51#include "top.h"
52#include "machine.h"
53#include "screen.h"
54#include "utils.h"
55#include "layout.h"
56
57#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
58#define	SMPUNAMELEN	13
59#define	UPUNAMELEN	15
60
61extern struct process_select ps;
62extern char* printable(char *);
63static int smpmode;
64enum displaymodes displaymode;
65#ifdef TOP_USERNAME_LEN
66static int namelength = TOP_USERNAME_LEN;
67#else
68static int namelength = 8;
69#endif
70/* TOP_JID_LEN based on max of 999999 */
71#define TOP_JID_LEN 7
72#define TOP_SWAP_LEN 6
73static int jidlength;
74static int swaplength;
75static int cmdlengthdelta;
76
77/* Prototypes for top internals */
78void quit(int);
79
80/* get_process_info passes back a handle.  This is what it looks like: */
81
82struct handle {
83	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
84	int remaining;			/* number of pointers remaining */
85};
86
87/* declarations for load_avg */
88#include "loadavg.h"
89
90/* define what weighted cpu is.  */
91#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
92			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
93
94/* what we consider to be process size: */
95#define PROCSIZE(pp) ((pp)->ki_size / 1024)
96
97#define RU(pp)	(&(pp)->ki_rusage)
98#define RUTOT(pp) \
99	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
100
101#define	PCTCPU(pp) (pcpu[pp - pbase])
102
103/* definitions for indices in the nlist array */
104
105/*
106 *  These definitions control the format of the per-process area
107 */
108
109static char io_header[] =
110    "  PID%*s %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
111
112#define io_Proc_format \
113    "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
114
115static char smp_header_thr[] =
116    "  PID%*s %-*.*s  THR PRI NICE   SIZE    RES%*s STATE   C   TIME %7s COMMAND";
117static char smp_header[] =
118    "  PID%*s %-*.*s "   "PRI NICE   SIZE    RES%*s STATE   C   TIME %7s COMMAND";
119
120#define smp_Proc_format \
121    "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"
122
123static char up_header_thr[] =
124    "  PID%*s %-*.*s  THR PRI NICE   SIZE    RES%*s STATE    TIME %7s COMMAND";
125static char up_header[] =
126    "  PID%*s %-*.*s "   "PRI NICE   SIZE    RES%*s STATE    TIME %7s COMMAND";
127
128#define up_Proc_format \
129    "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"
130
131
132/* process state names for the "STATE" column of the display */
133/* the extra nulls in the string "run" are for adding a slash and
134   the processor number when needed */
135
136char *state_abbrev[] = {
137	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
138};
139
140
141static kvm_t *kd;
142
143/* values that we stash away in _init and use in later routines */
144
145static double logcpu;
146
147/* these are retrieved from the kernel in _init */
148
149static load_avg  ccpu;
150
151/* these are used in the get_ functions */
152
153static int lastpid;
154
155/* these are for calculating cpu state percentages */
156
157static long cp_time[CPUSTATES];
158static long cp_old[CPUSTATES];
159static long cp_diff[CPUSTATES];
160
161/* these are for detailing the process states */
162
163int process_states[8];
164char *procstatenames[] = {
165	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
166	" zombie, ", " waiting, ", " lock, ",
167	NULL
168};
169
170/* these are for detailing the cpu states */
171
172int cpu_states[CPUSTATES];
173char *cpustatenames[] = {
174	"user", "nice", "system", "interrupt", "idle", NULL
175};
176
177/* these are for detailing the memory statistics */
178
179int memory_stats[7];
180char *memorynames[] = {
181	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
182	"K Free", NULL
183};
184
185int arc_stats[7];
186char *arcnames[] = {
187	"K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
188	NULL
189};
190
191int swap_stats[7];
192char *swapnames[] = {
193	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
194	NULL
195};
196
197
198/* these are for keeping track of the proc array */
199
200static int nproc;
201static int onproc = -1;
202static int pref_len;
203static struct kinfo_proc *pbase;
204static struct kinfo_proc **pref;
205static struct kinfo_proc *previous_procs;
206static struct kinfo_proc **previous_pref;
207static int previous_proc_count = 0;
208static int previous_proc_count_max = 0;
209static int previous_thread;
210
211/* data used for recalculating pctcpu */
212static double *pcpu;
213static struct timespec proc_uptime;
214static struct timeval proc_wall_time;
215static struct timeval previous_wall_time;
216static uint64_t previous_interval = 0;
217
218/* total number of io operations */
219static long total_inblock;
220static long total_oublock;
221static long total_majflt;
222
223/* these are for getting the memory statistics */
224
225static int arc_enabled;
226static int pageshift;		/* log base 2 of the pagesize */
227
228/* define pagetok in terms of pageshift */
229
230#define pagetok(size) ((size) << pageshift)
231
232/* swap usage */
233#define ki_swap(kip) \
234    ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0)
235
236/* useful externals */
237long percentages();
238
239#ifdef ORDER
240/*
241 * Sorting orders.  The first element is the default.
242 */
243char *ordernames[] = {
244	"cpu", "size", "res", "time", "pri", "threads",
245	"total", "read", "write", "fault", "vcsw", "ivcsw",
246	"jid", "swap", "pid", NULL
247};
248#endif
249
250/* Per-cpu time states */
251static int maxcpu;
252static int maxid;
253static int ncpus;
254static u_long cpumask;
255static long *times;
256static long *pcpu_cp_time;
257static long *pcpu_cp_old;
258static long *pcpu_cp_diff;
259static int *pcpu_cpu_states;
260
261static int compare_swap(const void *a, const void *b);
262static int compare_jid(const void *a, const void *b);
263static int compare_pid(const void *a, const void *b);
264static int compare_tid(const void *a, const void *b);
265static const char *format_nice(const struct kinfo_proc *pp);
266static void getsysctl(const char *name, void *ptr, size_t len);
267static int swapmode(int *retavail, int *retfree);
268static void update_layout(void);
269
270void
271toggle_pcpustats(void)
272{
273
274	if (ncpus == 1)
275		return;
276	update_layout();
277}
278
279/* Adjust display based on ncpus and the ARC state. */
280static void
281update_layout(void)
282{
283
284	y_mem = 3;
285	y_arc = 4;
286	y_swap = 4 + arc_enabled;
287	y_idlecursor = 5 + arc_enabled;
288	y_message = 5 + arc_enabled;
289	y_header = 6 + arc_enabled;
290	y_procs = 7 + arc_enabled;
291	Header_lines = 7 + arc_enabled;
292
293	if (pcpu_stats) {
294		y_mem += ncpus - 1;
295		y_arc += ncpus - 1;
296		y_swap += ncpus - 1;
297		y_idlecursor += ncpus - 1;
298		y_message += ncpus - 1;
299		y_header += ncpus - 1;
300		y_procs += ncpus - 1;
301		Header_lines += ncpus - 1;
302	}
303}
304
305int
306machine_init(struct statics *statics, char do_unames)
307{
308	int i, j, empty, pagesize;
309	uint64_t arc_size;
310	size_t size;
311	struct passwd *pw;
312
313	size = sizeof(smpmode);
314	if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
315	    NULL, 0) != 0 &&
316	    sysctlbyname("kern.smp.active", &smpmode, &size,
317	    NULL, 0) != 0) ||
318	    size != sizeof(smpmode))
319		smpmode = 0;
320
321	size = sizeof(arc_size);
322	if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
323	    NULL, 0) == 0 && arc_size != 0)
324		arc_enabled = 1;
325
326	if (do_unames) {
327	    while ((pw = getpwent()) != NULL) {
328		if (strlen(pw->pw_name) > namelength)
329			namelength = strlen(pw->pw_name);
330	    }
331	}
332	if (smpmode && namelength > SMPUNAMELEN)
333		namelength = SMPUNAMELEN;
334	else if (namelength > UPUNAMELEN)
335		namelength = UPUNAMELEN;
336
337	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
338	if (kd == NULL)
339		return (-1);
340
341	GETSYSCTL("kern.ccpu", ccpu);
342
343	/* this is used in calculating WCPU -- calculate it ahead of time */
344	logcpu = log(loaddouble(ccpu));
345
346	pbase = NULL;
347	pref = NULL;
348	pcpu = NULL;
349	nproc = 0;
350	onproc = -1;
351
352	/* get the page size and calculate pageshift from it */
353	pagesize = getpagesize();
354	pageshift = 0;
355	while (pagesize > 1) {
356		pageshift++;
357		pagesize >>= 1;
358	}
359
360	/* we only need the amount of log(2)1024 for our conversion */
361	pageshift -= LOG1024;
362
363	/* fill in the statics information */
364	statics->procstate_names = procstatenames;
365	statics->cpustate_names = cpustatenames;
366	statics->memory_names = memorynames;
367	if (arc_enabled)
368		statics->arc_names = arcnames;
369	else
370		statics->arc_names = NULL;
371	statics->swap_names = swapnames;
372#ifdef ORDER
373	statics->order_names = ordernames;
374#endif
375
376	/* Allocate state for per-CPU stats. */
377	cpumask = 0;
378	ncpus = 0;
379	GETSYSCTL("kern.smp.maxcpus", maxcpu);
380	size = sizeof(long) * maxcpu * CPUSTATES;
381	times = malloc(size);
382	if (times == NULL)
383		err(1, "malloc %zu bytes", size);
384	if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
385		err(1, "sysctlbyname kern.cp_times");
386	pcpu_cp_time = calloc(1, size);
387	maxid = (size / CPUSTATES / sizeof(long)) - 1;
388	for (i = 0; i <= maxid; i++) {
389		empty = 1;
390		for (j = 0; empty && j < CPUSTATES; j++) {
391			if (times[i * CPUSTATES + j] != 0)
392				empty = 0;
393		}
394		if (!empty) {
395			cpumask |= (1ul << i);
396			ncpus++;
397		}
398	}
399	size = sizeof(long) * ncpus * CPUSTATES;
400	pcpu_cp_old = calloc(1, size);
401	pcpu_cp_diff = calloc(1, size);
402	pcpu_cpu_states = calloc(1, size);
403	statics->ncpus = ncpus;
404
405	update_layout();
406
407	/* all done! */
408	return (0);
409}
410
411char *
412format_header(char *uname_field)
413{
414	static char Header[128];
415	const char *prehead;
416
417	if (ps.jail)
418		jidlength = TOP_JID_LEN + 1;	/* +1 for extra left space. */
419	else
420		jidlength = 0;
421
422	if (ps.swap)
423		swaplength = TOP_SWAP_LEN + 1;  /* +1 for extra left space */
424	else
425		swaplength = 0;
426
427	switch (displaymode) {
428	case DISP_CPU:
429		/*
430		 * The logic of picking the right header format seems reverse
431		 * here because we only want to display a THR column when
432		 * "thread mode" is off (and threads are not listed as
433		 * separate lines).
434		 */
435		prehead = smpmode ?
436		    (ps.thread ? smp_header : smp_header_thr) :
437		    (ps.thread ? up_header : up_header_thr);
438		snprintf(Header, sizeof(Header), prehead,
439		    jidlength, ps.jail ? " JID" : "",
440		    namelength, namelength, uname_field,
441		    swaplength, ps.swap ? " SWAP" : "",
442		    ps.wcpu ? "WCPU" : "CPU");
443		break;
444	case DISP_IO:
445		prehead = io_header;
446		snprintf(Header, sizeof(Header), prehead,
447		    jidlength, ps.jail ? " JID" : "",
448		    namelength, namelength, uname_field);
449		break;
450	}
451	cmdlengthdelta = strlen(Header) - 7;
452	return (Header);
453}
454
455static int swappgsin = -1;
456static int swappgsout = -1;
457extern struct timeval timeout;
458
459
460void
461get_system_info(struct system_info *si)
462{
463	long total;
464	struct loadavg sysload;
465	int mib[2];
466	struct timeval boottime;
467	uint64_t arc_stat, arc_stat2;
468	int i, j;
469	size_t size;
470
471	/* get the CPU stats */
472	size = (maxid + 1) * CPUSTATES * sizeof(long);
473	if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
474		err(1, "sysctlbyname kern.cp_times");
475	GETSYSCTL("kern.cp_time", cp_time);
476	GETSYSCTL("vm.loadavg", sysload);
477	GETSYSCTL("kern.lastpid", lastpid);
478
479	/* convert load averages to doubles */
480	for (i = 0; i < 3; i++)
481		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
482
483	/* convert cp_time counts to percentages */
484	for (i = j = 0; i <= maxid; i++) {
485		if ((cpumask & (1ul << i)) == 0)
486			continue;
487		percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
488		    &pcpu_cp_time[j * CPUSTATES],
489		    &pcpu_cp_old[j * CPUSTATES],
490		    &pcpu_cp_diff[j * CPUSTATES]);
491		j++;
492	}
493	percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
494
495	/* sum memory & swap statistics */
496	{
497		static unsigned int swap_delay = 0;
498		static int swapavail = 0;
499		static int swapfree = 0;
500		static long bufspace = 0;
501		static int nspgsin, nspgsout;
502
503		GETSYSCTL("vfs.bufspace", bufspace);
504		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
505		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
506		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
507		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
508		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
509		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
510		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
511		/* convert memory stats to Kbytes */
512		memory_stats[0] = pagetok(memory_stats[0]);
513		memory_stats[1] = pagetok(memory_stats[1]);
514		memory_stats[2] = pagetok(memory_stats[2]);
515		memory_stats[3] = pagetok(memory_stats[3]);
516		memory_stats[4] = bufspace / 1024;
517		memory_stats[5] = pagetok(memory_stats[5]);
518		memory_stats[6] = -1;
519
520		/* first interval */
521		if (swappgsin < 0) {
522			swap_stats[4] = 0;
523			swap_stats[5] = 0;
524		}
525
526		/* compute differences between old and new swap statistic */
527		else {
528			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
529			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
530		}
531
532		swappgsin = nspgsin;
533		swappgsout = nspgsout;
534
535		/* call CPU heavy swapmode() only for changes */
536		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
537			swap_stats[3] = swapmode(&swapavail, &swapfree);
538			swap_stats[0] = swapavail;
539			swap_stats[1] = swapavail - swapfree;
540			swap_stats[2] = swapfree;
541		}
542		swap_delay = 1;
543		swap_stats[6] = -1;
544	}
545
546	if (arc_enabled) {
547		GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
548		arc_stats[0] = arc_stat >> 10;
549		GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
550		arc_stats[1] = arc_stat >> 10;
551		GETSYSCTL("vfs.zfs.mru_size", arc_stat);
552		arc_stats[2] = arc_stat >> 10;
553		GETSYSCTL("vfs.zfs.anon_size", arc_stat);
554		arc_stats[3] = arc_stat >> 10;
555		GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
556		GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
557		arc_stats[4] = arc_stat + arc_stat2 >> 10;
558		GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat);
559		arc_stats[5] = arc_stat >> 10;
560		si->arc = arc_stats;
561	}
562
563	/* set arrays and strings */
564	if (pcpu_stats) {
565		si->cpustates = pcpu_cpu_states;
566		si->ncpus = ncpus;
567	} else {
568		si->cpustates = cpu_states;
569		si->ncpus = 1;
570	}
571	si->memory = memory_stats;
572	si->swap = swap_stats;
573
574
575	if (lastpid > 0) {
576		si->last_pid = lastpid;
577	} else {
578		si->last_pid = -1;
579	}
580
581	/*
582	 * Print how long system has been up.
583	 * (Found by looking getting "boottime" from the kernel)
584	 */
585	mib[0] = CTL_KERN;
586	mib[1] = KERN_BOOTTIME;
587	size = sizeof(boottime);
588	if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 &&
589	    boottime.tv_sec != 0) {
590		si->boottime = boottime;
591	} else {
592		si->boottime.tv_sec = -1;
593	}
594}
595
596#define NOPROC	((void *)-1)
597
598/*
599 * We need to compare data from the old process entry with the new
600 * process entry.
601 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
602 * structure to cache the mapping.  We also use a negative cache pointer
603 * of NOPROC to avoid duplicate lookups.
604 * XXX: this could be done when the actual processes are fetched, we do
605 * it here out of laziness.
606 */
607const struct kinfo_proc *
608get_old_proc(struct kinfo_proc *pp)
609{
610	struct kinfo_proc **oldpp, *oldp;
611
612	/*
613	 * If this is the first fetch of the kinfo_procs then we don't have
614	 * any previous entries.
615	 */
616	if (previous_proc_count == 0)
617		return (NULL);
618	/* negative cache? */
619	if (pp->ki_udata == NOPROC)
620		return (NULL);
621	/* cached? */
622	if (pp->ki_udata != NULL)
623		return (pp->ki_udata);
624	/*
625	 * Not cached,
626	 * 1) look up based on pid.
627	 * 2) compare process start.
628	 * If we fail here, then setup a negative cache entry, otherwise
629	 * cache it.
630	 */
631	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
632	    sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
633	if (oldpp == NULL) {
634		pp->ki_udata = NOPROC;
635		return (NULL);
636	}
637	oldp = *oldpp;
638	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
639		pp->ki_udata = NOPROC;
640		return (NULL);
641	}
642	pp->ki_udata = oldp;
643	return (oldp);
644}
645
646/*
647 * Return the total amount of IO done in blocks in/out and faults.
648 * store the values individually in the pointers passed in.
649 */
650long
651get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
652    long *vcsw, long *ivcsw)
653{
654	const struct kinfo_proc *oldp;
655	static struct kinfo_proc dummy;
656	long ret;
657
658	oldp = get_old_proc(pp);
659	if (oldp == NULL) {
660		bzero(&dummy, sizeof(dummy));
661		oldp = &dummy;
662	}
663	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
664	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
665	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
666	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
667	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
668	ret =
669	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
670	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
671	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
672	return (ret);
673}
674
675/*
676 * If there was a previous update, use the delta in ki_runtime over
677 * the previous interval to calculate pctcpu.  Otherwise, fall back
678 * to using the kernel's ki_pctcpu.
679 */
680static double
681proc_calc_pctcpu(struct kinfo_proc *pp)
682{
683	const struct kinfo_proc *oldp;
684
685	if (previous_interval != 0) {
686		oldp = get_old_proc(pp);
687		if (oldp != NULL)
688			return ((double)(pp->ki_runtime - oldp->ki_runtime)
689			    / previous_interval);
690
691		/*
692		 * If this process/thread was created during the previous
693		 * interval, charge it's total runtime to the previous
694		 * interval.
695		 */
696		else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
697		    (pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
698		    pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
699			return ((double)pp->ki_runtime / previous_interval);
700	}
701	return (pctdouble(pp->ki_pctcpu));
702}
703
704/*
705 * Return true if this process has used any CPU time since the
706 * previous update.
707 */
708static int
709proc_used_cpu(struct kinfo_proc *pp)
710{
711	const struct kinfo_proc *oldp;
712
713	oldp = get_old_proc(pp);
714	if (oldp == NULL)
715		return (PCTCPU(pp) != 0);
716	return (pp->ki_runtime != oldp->ki_runtime ||
717	    RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
718	    RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
719}
720
721/*
722 * Return the total number of block in/out and faults by a process.
723 */
724long
725get_io_total(struct kinfo_proc *pp)
726{
727	long dummy;
728
729	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
730}
731
732static struct handle handle;
733
734caddr_t
735get_process_info(struct system_info *si, struct process_select *sel,
736    int (*compare)(const void *, const void *))
737{
738	int i;
739	int total_procs;
740	long p_io;
741	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
742	long nsec;
743	int active_procs;
744	struct kinfo_proc **prefp;
745	struct kinfo_proc *pp;
746	struct timespec previous_proc_uptime;
747
748	/* these are copied out of sel for speed */
749	int show_idle;
750	int show_jid;
751	int show_self;
752	int show_system;
753	int show_uid;
754	int show_command;
755	int show_kidle;
756
757	/*
758	 * If thread state was toggled, don't cache the previous processes.
759	 */
760	if (previous_thread != sel->thread)
761		nproc = 0;
762	previous_thread = sel->thread;
763
764	/*
765	 * Save the previous process info.
766	 */
767	if (previous_proc_count_max < nproc) {
768		free(previous_procs);
769		previous_procs = malloc(nproc * sizeof(*previous_procs));
770		free(previous_pref);
771		previous_pref = malloc(nproc * sizeof(*previous_pref));
772		if (previous_procs == NULL || previous_pref == NULL) {
773			(void) fprintf(stderr, "top: Out of memory.\n");
774			quit(23);
775		}
776		previous_proc_count_max = nproc;
777	}
778	if (nproc) {
779		for (i = 0; i < nproc; i++)
780			previous_pref[i] = &previous_procs[i];
781		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
782		qsort(previous_pref, nproc, sizeof(*previous_pref),
783		    ps.thread ? compare_tid : compare_pid);
784	}
785	previous_proc_count = nproc;
786	previous_proc_uptime = proc_uptime;
787	previous_wall_time = proc_wall_time;
788	previous_interval = 0;
789
790	pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
791	    0, &nproc);
792	(void)gettimeofday(&proc_wall_time, NULL);
793	if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
794		memset(&proc_uptime, 0, sizeof(proc_uptime));
795	else if (previous_proc_uptime.tv_sec != 0 &&
796	    previous_proc_uptime.tv_nsec != 0) {
797		previous_interval = (proc_uptime.tv_sec -
798		    previous_proc_uptime.tv_sec) * 1000000;
799		nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
800		if (nsec < 0) {
801			previous_interval -= 1000000;
802			nsec += 1000000000;
803		}
804		previous_interval += nsec / 1000;
805	}
806	if (nproc > onproc) {
807		pref = realloc(pref, sizeof(*pref) * nproc);
808		pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
809		onproc = nproc;
810	}
811	if (pref == NULL || pbase == NULL || pcpu == NULL) {
812		(void) fprintf(stderr, "top: Out of memory.\n");
813		quit(23);
814	}
815	/* get a pointer to the states summary array */
816	si->procstates = process_states;
817
818	/* set up flags which define what we are going to select */
819	show_idle = sel->idle;
820	show_jid = sel->jid != -1;
821	show_self = sel->self == -1;
822	show_system = sel->system;
823	show_uid = sel->uid != -1;
824	show_command = sel->command != NULL;
825	show_kidle = sel->kidle;
826
827	/* count up process states and get pointers to interesting procs */
828	total_procs = 0;
829	active_procs = 0;
830	total_inblock = 0;
831	total_oublock = 0;
832	total_majflt = 0;
833	memset((char *)process_states, 0, sizeof(process_states));
834	prefp = pref;
835	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
836
837		if (pp->ki_stat == 0)
838			/* not in use */
839			continue;
840
841		if (!show_self && pp->ki_pid == sel->self)
842			/* skip self */
843			continue;
844
845		if (!show_system && (pp->ki_flag & P_SYSTEM))
846			/* skip system process */
847			continue;
848
849		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
850		    &p_vcsw, &p_ivcsw);
851		total_inblock += p_inblock;
852		total_oublock += p_oublock;
853		total_majflt += p_majflt;
854		total_procs++;
855		process_states[pp->ki_stat]++;
856
857		if (pp->ki_stat == SZOMB)
858			/* skip zombies */
859			continue;
860
861		if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
862			/* skip kernel idle process */
863			continue;
864
865		PCTCPU(pp) = proc_calc_pctcpu(pp);
866		if (sel->thread && PCTCPU(pp) > 1.0)
867			PCTCPU(pp) = 1.0;
868		if (displaymode == DISP_CPU && !show_idle &&
869		    (!proc_used_cpu(pp) ||
870		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
871			/* skip idle or non-running processes */
872			continue;
873
874		if (displaymode == DISP_IO && !show_idle && p_io == 0)
875			/* skip processes that aren't doing I/O */
876			continue;
877
878		if (show_jid && pp->ki_jid != sel->jid)
879			/* skip proc. that don't belong to the selected JID */
880			continue;
881
882		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
883			/* skip proc. that don't belong to the selected UID */
884			continue;
885
886		*prefp++ = pp;
887		active_procs++;
888	}
889
890	/* if requested, sort the "interesting" processes */
891	if (compare != NULL)
892		qsort(pref, active_procs, sizeof(*pref), compare);
893
894	/* remember active and total counts */
895	si->p_total = total_procs;
896	si->p_active = pref_len = active_procs;
897
898	/* pass back a handle */
899	handle.next_proc = pref;
900	handle.remaining = active_procs;
901	return ((caddr_t)&handle);
902}
903
904static char fmt[512];	/* static area where result is built */
905
906char *
907format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
908{
909	struct kinfo_proc *pp;
910	const struct kinfo_proc *oldp;
911	long cputime;
912	double pct;
913	struct handle *hp;
914	char status[16];
915	int cpu, state;
916	struct rusage ru, *rup;
917	long p_tot, s_tot;
918	char *proc_fmt, thr_buf[6];
919	char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1];
920	char *cmdbuf = NULL;
921	char **args;
922	const int cmdlen = 128;
923
924	/* find and remember the next proc structure */
925	hp = (struct handle *)handle;
926	pp = *(hp->next_proc++);
927	hp->remaining--;
928
929	/* get the process's command name */
930	if ((pp->ki_flag & P_INMEM) == 0) {
931		/*
932		 * Print swapped processes as <pname>
933		 */
934		size_t len;
935
936		len = strlen(pp->ki_comm);
937		if (len > sizeof(pp->ki_comm) - 3)
938			len = sizeof(pp->ki_comm) - 3;
939		memmove(pp->ki_comm + 1, pp->ki_comm, len);
940		pp->ki_comm[0] = '<';
941		pp->ki_comm[len + 1] = '>';
942		pp->ki_comm[len + 2] = '\0';
943	}
944
945	/*
946	 * Convert the process's runtime from microseconds to seconds.  This
947	 * time includes the interrupt time although that is not wanted here.
948	 * ps(1) is similarly sloppy.
949	 */
950	cputime = (pp->ki_runtime + 500000) / 1000000;
951
952	/* calculate the base for cpu percentages */
953	pct = PCTCPU(pp);
954
955	/* generate "STATE" field */
956	switch (state = pp->ki_stat) {
957	case SRUN:
958		if (smpmode && pp->ki_oncpu != NOCPU)
959			sprintf(status, "CPU%d", pp->ki_oncpu);
960		else
961			strcpy(status, "RUN");
962		break;
963	case SLOCK:
964		if (pp->ki_kiflag & KI_LOCKBLOCK) {
965			sprintf(status, "*%.6s", pp->ki_lockname);
966			break;
967		}
968		/* fall through */
969	case SSLEEP:
970		if (pp->ki_wmesg != NULL) {
971			sprintf(status, "%.6s", pp->ki_wmesg);
972			break;
973		}
974		/* FALLTHROUGH */
975	default:
976
977		if (state >= 0 &&
978		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
979			sprintf(status, "%.6s", state_abbrev[state]);
980		else
981			sprintf(status, "?%5d", state);
982		break;
983	}
984
985	cmdbuf = (char *)malloc(cmdlen + 1);
986	if (cmdbuf == NULL) {
987		warn("malloc(%d)", cmdlen + 1);
988		return NULL;
989	}
990
991	if (!(flags & FMT_SHOWARGS)) {
992		if (ps.thread && pp->ki_flag & P_HADTHREADS &&
993		    pp->ki_tdname[0]) {
994			snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm,
995			    pp->ki_tdname, pp->ki_moretdname);
996		} else {
997			snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm);
998		}
999	} else {
1000		if (pp->ki_flag & P_SYSTEM ||
1001		    pp->ki_args == NULL ||
1002		    (args = kvm_getargv(kd, pp, cmdlen)) == NULL ||
1003		    !(*args)) {
1004			if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1005		    	    pp->ki_tdname[0]) {
1006				snprintf(cmdbuf, cmdlen,
1007				    "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname,
1008				    pp->ki_moretdname);
1009			} else {
1010				snprintf(cmdbuf, cmdlen,
1011				    "[%s]", pp->ki_comm);
1012			}
1013		} else {
1014			char *src, *dst, *argbuf;
1015			char *cmd;
1016			size_t argbuflen;
1017			size_t len;
1018
1019			argbuflen = cmdlen * 4;
1020			argbuf = (char *)malloc(argbuflen + 1);
1021			if (argbuf == NULL) {
1022				warn("malloc(%zu)", argbuflen + 1);
1023				free(cmdbuf);
1024				return NULL;
1025			}
1026
1027			dst = argbuf;
1028
1029			/* Extract cmd name from argv */
1030			cmd = strrchr(*args, '/');
1031			if (cmd == NULL)
1032				cmd = *args;
1033			else
1034				cmd++;
1035
1036			for (; (src = *args++) != NULL; ) {
1037				if (*src == '\0')
1038					continue;
1039				len = (argbuflen - (dst - argbuf) - 1) / 4;
1040				strvisx(dst, src,
1041				    MIN(strlen(src), len),
1042				    VIS_NL | VIS_CSTYLE);
1043				while (*dst != '\0')
1044					dst++;
1045				if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
1046					*dst++ = ' '; /* add delimiting space */
1047			}
1048			if (dst != argbuf && dst[-1] == ' ')
1049				dst--;
1050			*dst = '\0';
1051
1052			if (strcmp(cmd, pp->ki_comm) != 0) {
1053				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1054				    pp->ki_tdname[0])
1055					snprintf(cmdbuf, cmdlen,
1056					    "%s (%s){%s%s}", argbuf,
1057					    pp->ki_comm, pp->ki_tdname,
1058					    pp->ki_moretdname);
1059				else
1060					snprintf(cmdbuf, cmdlen,
1061					    "%s (%s)", argbuf, pp->ki_comm);
1062			} else {
1063				if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1064				    pp->ki_tdname[0])
1065					snprintf(cmdbuf, cmdlen,
1066					    "%s{%s%s}", argbuf, pp->ki_tdname,
1067					    pp->ki_moretdname);
1068				else
1069					strlcpy(cmdbuf, argbuf, cmdlen);
1070			}
1071			free(argbuf);
1072		}
1073	}
1074
1075	if (ps.jail == 0)
1076		jid_buf[0] = '\0';
1077	else
1078		snprintf(jid_buf, sizeof(jid_buf), "%*d",
1079		    jidlength - 1, pp->ki_jid);
1080
1081	if (ps.swap == 0)
1082		swap_buf[0] = '\0';
1083	else
1084		snprintf(swap_buf, sizeof(swap_buf), "%*s",
1085		    swaplength - 1,
1086		    format_k2(pagetok(ki_swap(pp)))); /* XXX */
1087
1088	if (displaymode == DISP_IO) {
1089		oldp = get_old_proc(pp);
1090		if (oldp != NULL) {
1091			ru.ru_inblock = RU(pp)->ru_inblock -
1092			    RU(oldp)->ru_inblock;
1093			ru.ru_oublock = RU(pp)->ru_oublock -
1094			    RU(oldp)->ru_oublock;
1095			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
1096			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
1097			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
1098			rup = &ru;
1099		} else {
1100			rup = RU(pp);
1101		}
1102		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
1103		s_tot = total_inblock + total_oublock + total_majflt;
1104
1105		snprintf(fmt, sizeof(fmt), io_Proc_format,
1106		    pp->ki_pid,
1107		    jidlength, jid_buf,
1108		    namelength, namelength, (*get_userid)(pp->ki_ruid),
1109		    rup->ru_nvcsw,
1110		    rup->ru_nivcsw,
1111		    rup->ru_inblock,
1112		    rup->ru_oublock,
1113		    rup->ru_majflt,
1114		    p_tot,
1115		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
1116		    screen_width > cmdlengthdelta ?
1117		    screen_width - cmdlengthdelta : 0,
1118		    printable(cmdbuf));
1119
1120		free(cmdbuf);
1121
1122		return (fmt);
1123	}
1124
1125	/* format this entry */
1126	if (smpmode) {
1127		if (state == SRUN && pp->ki_oncpu != NOCPU)
1128			cpu = pp->ki_oncpu;
1129		else
1130			cpu = pp->ki_lastcpu;
1131	} else
1132		cpu = 0;
1133	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
1134	if (ps.thread != 0)
1135		thr_buf[0] = '\0';
1136	else
1137		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
1138		    (int)(sizeof(thr_buf) - 2), pp->ki_numthreads);
1139
1140	snprintf(fmt, sizeof(fmt), proc_fmt,
1141	    pp->ki_pid,
1142	    jidlength, jid_buf,
1143	    namelength, namelength, (*get_userid)(pp->ki_ruid),
1144	    thr_buf,
1145	    pp->ki_pri.pri_level - PZERO,
1146	    format_nice(pp),
1147	    format_k2(PROCSIZE(pp)),
1148	    format_k2(pagetok(pp->ki_rssize)),
1149	    swaplength, swaplength, swap_buf,
1150	    status,
1151	    cpu,
1152	    format_time(cputime),
1153	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
1154	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
1155	    printable(cmdbuf));
1156
1157	free(cmdbuf);
1158
1159	/* return the result */
1160	return (fmt);
1161}
1162
1163static void
1164getsysctl(const char *name, void *ptr, size_t len)
1165{
1166	size_t nlen = len;
1167
1168	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
1169		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
1170		    strerror(errno));
1171		quit(23);
1172	}
1173	if (nlen != len) {
1174		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
1175		    name, (unsigned long)len, (unsigned long)nlen);
1176		quit(23);
1177	}
1178}
1179
1180static const char *
1181format_nice(const struct kinfo_proc *pp)
1182{
1183	const char *fifo, *kproc;
1184	int rtpri;
1185	static char nicebuf[4 + 1];
1186
1187	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1188	kproc = (pp->ki_flag & P_KPROC) ? "k" : "";
1189	switch (PRI_BASE(pp->ki_pri.pri_class)) {
1190	case PRI_ITHD:
1191		return ("-");
1192	case PRI_REALTIME:
1193		/*
1194		 * XXX: the kernel doesn't tell us the original rtprio and
1195		 * doesn't really know what it was, so to recover it we
1196		 * must be more chummy with the implementation than the
1197		 * implementation is with itself.  pri_user gives a
1198		 * constant "base" priority, but is only initialized
1199		 * properly for user threads.  pri_native gives what the
1200		 * kernel calls the "base" priority, but it isn't constant
1201		 * since it is changed by priority propagation.  pri_native
1202		 * also isn't properly initialized for all threads, but it
1203		 * is properly initialized for kernel realtime and idletime
1204		 * threads.  Thus we use pri_user for the base priority of
1205		 * user threads (it is always correct) and pri_native for
1206		 * the base priority of kernel realtime and idletime threads
1207		 * (there is nothing better, and it is usually correct).
1208		 *
1209		 * The field width and thus the buffer are too small for
1210		 * values like "kr31F", but such values shouldn't occur,
1211		 * and if they do then the tailing "F" is not displayed.
1212		 */
1213		rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1214		    pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1215		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1216		    kproc, rtpri, fifo);
1217		break;
1218	case PRI_TIMESHARE:
1219		if (pp->ki_flag & P_KPROC)
1220			return ("-");
1221		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1222		break;
1223	case PRI_IDLE:
1224		/* XXX: as above. */
1225		rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1226		    pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1227		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1228		    kproc, rtpri, fifo);
1229		break;
1230	default:
1231		return ("?");
1232	}
1233	return (nicebuf);
1234}
1235
1236/* comparison routines for qsort */
1237
1238static int
1239compare_pid(const void *p1, const void *p2)
1240{
1241	const struct kinfo_proc * const *pp1 = p1;
1242	const struct kinfo_proc * const *pp2 = p2;
1243
1244	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
1245		abort();
1246
1247	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1248}
1249
1250static int
1251compare_tid(const void *p1, const void *p2)
1252{
1253	const struct kinfo_proc * const *pp1 = p1;
1254	const struct kinfo_proc * const *pp2 = p2;
1255
1256	if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
1257		abort();
1258
1259	return ((*pp1)->ki_tid - (*pp2)->ki_tid);
1260}
1261
1262/*
1263 *  proc_compare - comparison function for "qsort"
1264 *	Compares the resource consumption of two processes using five
1265 *	distinct keys.  The keys (in descending order of importance) are:
1266 *	percent cpu, cpu ticks, state, resident set size, total virtual
1267 *	memory usage.  The process states are ordered as follows (from least
1268 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
1269 *	array declaration below maps a process state index into a number
1270 *	that reflects this ordering.
1271 */
1272
1273static int sorted_state[] = {
1274	0,	/* not used		*/
1275	3,	/* sleep		*/
1276	1,	/* ABANDONED (WAIT)	*/
1277	6,	/* run			*/
1278	5,	/* start		*/
1279	2,	/* zombie		*/
1280	4	/* stop			*/
1281};
1282
1283
1284#define ORDERKEY_PCTCPU(a, b) do { \
1285	double diff; \
1286	if (ps.wcpu) \
1287		diff = weighted_cpu(PCTCPU((b)), (b)) - \
1288		    weighted_cpu(PCTCPU((a)), (a)); \
1289	else \
1290		diff = PCTCPU((b)) - PCTCPU((a)); \
1291	if (diff != 0) \
1292		return (diff > 0 ? 1 : -1); \
1293} while (0)
1294
1295#define ORDERKEY_CPTICKS(a, b) do { \
1296	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1297	if (diff != 0) \
1298		return (diff > 0 ? 1 : -1); \
1299} while (0)
1300
1301#define ORDERKEY_STATE(a, b) do { \
1302	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1303	if (diff != 0) \
1304		return (diff > 0 ? 1 : -1); \
1305} while (0)
1306
1307#define ORDERKEY_PRIO(a, b) do { \
1308	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1309	if (diff != 0) \
1310		return (diff > 0 ? 1 : -1); \
1311} while (0)
1312
1313#define	ORDERKEY_THREADS(a, b) do { \
1314	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1315	if (diff != 0) \
1316		return (diff > 0 ? 1 : -1); \
1317} while (0)
1318
1319#define ORDERKEY_RSSIZE(a, b) do { \
1320	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1321	if (diff != 0) \
1322		return (diff > 0 ? 1 : -1); \
1323} while (0)
1324
1325#define ORDERKEY_MEM(a, b) do { \
1326	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1327	if (diff != 0) \
1328		return (diff > 0 ? 1 : -1); \
1329} while (0)
1330
1331#define ORDERKEY_JID(a, b) do { \
1332	int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1333	if (diff != 0) \
1334		return (diff > 0 ? 1 : -1); \
1335} while (0)
1336
1337#define ORDERKEY_SWAP(a, b) do { \
1338	int diff = (int)ki_swap(b) - (int)ki_swap(a); \
1339	if (diff != 0) \
1340		return (diff > 0 ? 1 : -1); \
1341} while (0)
1342
1343/* compare_cpu - the comparison function for sorting by cpu percentage */
1344
1345int
1346#ifdef ORDER
1347compare_cpu(void *arg1, void *arg2)
1348#else
1349proc_compare(void *arg1, void *arg2)
1350#endif
1351{
1352	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1353	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1354
1355	ORDERKEY_PCTCPU(p1, p2);
1356	ORDERKEY_CPTICKS(p1, p2);
1357	ORDERKEY_STATE(p1, p2);
1358	ORDERKEY_PRIO(p1, p2);
1359	ORDERKEY_RSSIZE(p1, p2);
1360	ORDERKEY_MEM(p1, p2);
1361
1362	return (0);
1363}
1364
1365#ifdef ORDER
1366/* "cpu" compare routines */
1367int compare_size(), compare_res(), compare_time(), compare_prio(),
1368    compare_threads();
1369
1370/*
1371 * "io" compare routines.  Context switches aren't i/o, but are displayed
1372 * on the "io" display.
1373 */
1374int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1375    compare_vcsw(), compare_ivcsw();
1376
1377int (*compares[])() = {
1378	compare_cpu,
1379	compare_size,
1380	compare_res,
1381	compare_time,
1382	compare_prio,
1383	compare_threads,
1384	compare_iototal,
1385	compare_ioread,
1386	compare_iowrite,
1387	compare_iofault,
1388	compare_vcsw,
1389	compare_ivcsw,
1390	compare_jid,
1391	compare_swap,
1392	NULL
1393};
1394
1395/* compare_size - the comparison function for sorting by total memory usage */
1396
1397int
1398compare_size(void *arg1, void *arg2)
1399{
1400	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1401	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1402
1403	ORDERKEY_MEM(p1, p2);
1404	ORDERKEY_RSSIZE(p1, p2);
1405	ORDERKEY_PCTCPU(p1, p2);
1406	ORDERKEY_CPTICKS(p1, p2);
1407	ORDERKEY_STATE(p1, p2);
1408	ORDERKEY_PRIO(p1, p2);
1409
1410	return (0);
1411}
1412
1413/* compare_res - the comparison function for sorting by resident set size */
1414
1415int
1416compare_res(void *arg1, void *arg2)
1417{
1418	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1419	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1420
1421	ORDERKEY_RSSIZE(p1, p2);
1422	ORDERKEY_MEM(p1, p2);
1423	ORDERKEY_PCTCPU(p1, p2);
1424	ORDERKEY_CPTICKS(p1, p2);
1425	ORDERKEY_STATE(p1, p2);
1426	ORDERKEY_PRIO(p1, p2);
1427
1428	return (0);
1429}
1430
1431/* compare_time - the comparison function for sorting by total cpu time */
1432
1433int
1434compare_time(void *arg1, void *arg2)
1435{
1436	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1437	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1438
1439	ORDERKEY_CPTICKS(p1, p2);
1440	ORDERKEY_PCTCPU(p1, p2);
1441	ORDERKEY_STATE(p1, p2);
1442	ORDERKEY_PRIO(p1, p2);
1443	ORDERKEY_RSSIZE(p1, p2);
1444	ORDERKEY_MEM(p1, p2);
1445
1446	return (0);
1447}
1448
1449/* compare_prio - the comparison function for sorting by priority */
1450
1451int
1452compare_prio(void *arg1, void *arg2)
1453{
1454	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1455	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1456
1457	ORDERKEY_PRIO(p1, p2);
1458	ORDERKEY_CPTICKS(p1, p2);
1459	ORDERKEY_PCTCPU(p1, p2);
1460	ORDERKEY_STATE(p1, p2);
1461	ORDERKEY_RSSIZE(p1, p2);
1462	ORDERKEY_MEM(p1, p2);
1463
1464	return (0);
1465}
1466
1467/* compare_threads - the comparison function for sorting by threads */
1468int
1469compare_threads(void *arg1, void *arg2)
1470{
1471	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1472	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1473
1474	ORDERKEY_THREADS(p1, p2);
1475	ORDERKEY_PCTCPU(p1, p2);
1476	ORDERKEY_CPTICKS(p1, p2);
1477	ORDERKEY_STATE(p1, p2);
1478	ORDERKEY_PRIO(p1, p2);
1479	ORDERKEY_RSSIZE(p1, p2);
1480	ORDERKEY_MEM(p1, p2);
1481
1482	return (0);
1483}
1484
1485/* compare_jid - the comparison function for sorting by jid */
1486static int
1487compare_jid(const void *arg1, const void *arg2)
1488{
1489	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1490	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1491
1492	ORDERKEY_JID(p1, p2);
1493	ORDERKEY_PCTCPU(p1, p2);
1494	ORDERKEY_CPTICKS(p1, p2);
1495	ORDERKEY_STATE(p1, p2);
1496	ORDERKEY_PRIO(p1, p2);
1497	ORDERKEY_RSSIZE(p1, p2);
1498	ORDERKEY_MEM(p1, p2);
1499
1500	return (0);
1501}
1502
1503/* compare_swap - the comparison function for sorting by swap */
1504static int
1505compare_swap(const void *arg1, const void *arg2)
1506{
1507	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1508	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1509
1510	ORDERKEY_SWAP(p1, p2);
1511	ORDERKEY_PCTCPU(p1, p2);
1512	ORDERKEY_CPTICKS(p1, p2);
1513	ORDERKEY_STATE(p1, p2);
1514	ORDERKEY_PRIO(p1, p2);
1515	ORDERKEY_RSSIZE(p1, p2);
1516	ORDERKEY_MEM(p1, p2);
1517
1518	return (0);
1519}
1520#endif /* ORDER */
1521
1522/* assorted comparison functions for sorting by i/o */
1523
1524int
1525#ifdef ORDER
1526compare_iototal(void *arg1, void *arg2)
1527#else
1528io_compare(void *arg1, void *arg2)
1529#endif
1530{
1531	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1532	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1533
1534	return (get_io_total(p2) - get_io_total(p1));
1535}
1536
1537#ifdef ORDER
1538int
1539compare_ioread(void *arg1, void *arg2)
1540{
1541	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1542	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1543	long dummy, inp1, inp2;
1544
1545	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1546	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1547
1548	return (inp2 - inp1);
1549}
1550
1551int
1552compare_iowrite(void *arg1, void *arg2)
1553{
1554	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1555	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1556	long dummy, oup1, oup2;
1557
1558	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1559	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1560
1561	return (oup2 - oup1);
1562}
1563
1564int
1565compare_iofault(void *arg1, void *arg2)
1566{
1567	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1568	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1569	long dummy, flp1, flp2;
1570
1571	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1572	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1573
1574	return (flp2 - flp1);
1575}
1576
1577int
1578compare_vcsw(void *arg1, void *arg2)
1579{
1580	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1581	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1582	long dummy, flp1, flp2;
1583
1584	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1585	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1586
1587	return (flp2 - flp1);
1588}
1589
1590int
1591compare_ivcsw(void *arg1, void *arg2)
1592{
1593	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1594	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1595	long dummy, flp1, flp2;
1596
1597	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1598	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1599
1600	return (flp2 - flp1);
1601}
1602#endif /* ORDER */
1603
1604/*
1605 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1606 *		the process does not exist.
1607 *		It is EXTREMELY IMPORTANT that this function work correctly.
1608 *		If top runs setuid root (as in SVR4), then this function
1609 *		is the only thing that stands in the way of a serious
1610 *		security problem.  It validates requests for the "kill"
1611 *		and "renice" commands.
1612 */
1613
1614int
1615proc_owner(int pid)
1616{
1617	int cnt;
1618	struct kinfo_proc **prefp;
1619	struct kinfo_proc *pp;
1620
1621	prefp = pref;
1622	cnt = pref_len;
1623	while (--cnt >= 0) {
1624		pp = *prefp++;
1625		if (pp->ki_pid == (pid_t)pid)
1626			return ((int)pp->ki_ruid);
1627	}
1628	return (-1);
1629}
1630
1631static int
1632swapmode(int *retavail, int *retfree)
1633{
1634	int n;
1635	int pagesize = getpagesize();
1636	struct kvm_swap swapary[1];
1637
1638	*retavail = 0;
1639	*retfree = 0;
1640
1641#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1642
1643	n = kvm_getswapinfo(kd, swapary, 1, 0);
1644	if (n < 0 || swapary[0].ksw_total == 0)
1645		return (0);
1646
1647	*retavail = CONVERT(swapary[0].ksw_total);
1648	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1649
1650	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1651	return (n);
1652}
1653