tsc.c revision 92765
138032Speter/*-
238032Speter * Copyright (c) 1990 The Regents of the University of California.
364562Sgshapiro * All rights reserved.
464562Sgshapiro *
538032Speter * This code is derived from software contributed to Berkeley by
638032Speter * William Jolitz and Don Ahn.
738032Speter *
838032Speter * Redistribution and use in source and binary forms, with or without
938032Speter * modification, are permitted provided that the following conditions
1038032Speter * are met:
1138032Speter * 1. Redistributions of source code must retain the above copyright
1238032Speter *    notice, this list of conditions and the following disclaimer.
1338032Speter * 2. Redistributions in binary form must reproduce the above copyright
1438032Speter *    notice, this list of conditions and the following disclaimer in the
1538032Speter *    documentation and/or other materials provided with the distribution.
1638032Speter * 3. All advertising materials mentioning features or use of this software
1738032Speter *    must display the following acknowledgement:
1838032Speter *	This product includes software developed by the University of
1938032Speter *	California, Berkeley and its contributors.
2038032Speter * 4. Neither the name of the University nor the names of its contributors
2138032Speter *    may be used to endorse or promote products derived from this software
2238032Speter *    without specific prior written permission.
2338032Speter *
2438032Speter * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2564562Sgshapiro * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2638032Speter * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2738032Speter * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2838032Speter * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2938032Speter * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3038032Speter * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3138032Speter * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3238032Speter * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3338032Speter * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3438032Speter * SUCH DAMAGE.
3538032Speter *
3638032Speter *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
3738032Speter * $FreeBSD: head/sys/i386/i386/tsc.c 92765 2002-03-20 07:51:46Z alfred $
3838032Speter */
3938032Speter
4038032Speter/*
4138032Speter * Routines to handle clock hardware.
4238032Speter */
4338032Speter
4438032Speter/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51#include "opt_clock.h"
52#include "opt_isa.h"
53#include "opt_mca.h"
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/lock.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/time.h>
62#include <sys/timetc.h>
63#include <sys/kernel.h>
64#include <sys/sysctl.h>
65#include <sys/cons.h>
66#include <sys/power.h>
67
68#include <machine/clock.h>
69#ifdef CLK_CALIBRATION_LOOP
70#endif
71#include <machine/cputypes.h>
72#include <machine/frame.h>
73#include <machine/limits.h>
74#include <machine/md_var.h>
75#include <machine/psl.h>
76#ifdef APIC_IO
77#include <machine/segments.h>
78#endif
79#if defined(SMP) || defined(APIC_IO)
80#include <machine/smp.h>
81#endif /* SMP || APIC_IO */
82#include <machine/specialreg.h>
83
84#include <i386/isa/icu.h>
85#include <i386/isa/isa.h>
86#include <isa/rtc.h>
87#ifdef DEV_ISA
88#include <isa/isavar.h>
89#endif
90#include <i386/isa/timerreg.h>
91
92#include <i386/isa/intr_machdep.h>
93
94#ifdef DEV_MCA
95#include <i386/isa/mca_machdep.h>
96#endif
97
98#ifdef APIC_IO
99#include <i386/isa/intr_machdep.h>
100/* The interrupt triggered by the 8254 (timer) chip */
101int apic_8254_intr;
102static u_long read_intr_count(int vec);
103static void setup_8254_mixed_mode(void);
104#endif
105
106/*
107 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
108 * can use a simple formula for leap years.
109 */
110#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
111#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
112
113#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
114
115/*
116 * Time in timer cycles that it takes for microtime() to disable interrupts
117 * and latch the count.  microtime() currently uses "cli; outb ..." so it
118 * normally takes less than 2 timer cycles.  Add a few for cache misses.
119 * Add a few more to allow for latency in bogus calls to microtime() with
120 * interrupts already disabled.
121 */
122#define	TIMER0_LATCH_COUNT	20
123
124/*
125 * Maximum frequency that we are willing to allow for timer0.  Must be
126 * low enough to guarantee that the timer interrupt handler returns
127 * before the next timer interrupt.
128 */
129#define	TIMER0_MAX_FREQ		20000
130
131int	adjkerntz;		/* local offset from GMT in seconds */
132int	clkintr_pending;
133int	disable_rtc_set;	/* disable resettodr() if != 0 */
134int	statclock_disable;
135#ifndef TIMER_FREQ
136#define TIMER_FREQ   1193182
137#endif
138u_int	timer_freq = TIMER_FREQ;
139int	timer0_max_count;
140u_int	tsc_freq;
141int	tsc_is_broken;
142u_int	tsc_present;
143int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
144struct mtx clock_lock;
145
146static	int	beeping = 0;
147static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
148static	u_int	hardclock_max_count;
149static	u_int32_t i8254_lastcount;
150static	u_int32_t i8254_offset;
151static	int	i8254_ticked;
152/*
153 * XXX new_function and timer_func should not handle clockframes, but
154 * timer_func currently needs to hold hardclock to handle the
155 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
156 * to switch between clkintr() and a slightly different timerintr().
157 */
158static	void	(*new_function)(struct clockframe *frame);
159static	u_int	new_rate;
160static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
161static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
162static	u_int	timer0_prescaler_count;
163
164/* Values for timerX_state: */
165#define	RELEASED	0
166#define	RELEASE_PENDING	1
167#define	ACQUIRED	2
168#define	ACQUIRE_PENDING	3
169
170static	u_char	timer0_state;
171static	u_char	timer2_state;
172static	void	(*timer_func)(struct clockframe *frame) = hardclock;
173
174static	unsigned i8254_get_timecount(struct timecounter *tc);
175static	unsigned tsc_get_timecount(struct timecounter *tc);
176static	void	set_timer_freq(u_int freq, int intr_freq);
177
178static struct timecounter tsc_timecounter = {
179	tsc_get_timecount,	/* get_timecount */
180	0,			/* no poll_pps */
181 	~0u,			/* counter_mask */
182	0,			/* frequency */
183	 "TSC"			/* name */
184};
185
186SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
187	&tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
188
189static struct timecounter i8254_timecounter = {
190	i8254_get_timecount,	/* get_timecount */
191	0,			/* no poll_pps */
192	~0u,			/* counter_mask */
193	0,			/* frequency */
194	"i8254"			/* name */
195};
196
197SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
198	&i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
199
200static void
201clkintr(struct clockframe frame)
202{
203
204	if (timecounter->tc_get_timecount == i8254_get_timecount) {
205		mtx_lock_spin(&clock_lock);
206		if (i8254_ticked)
207			i8254_ticked = 0;
208		else {
209			i8254_offset += timer0_max_count;
210			i8254_lastcount = 0;
211		}
212		clkintr_pending = 0;
213		mtx_unlock_spin(&clock_lock);
214	}
215	timer_func(&frame);
216#ifdef SMP
217	if (timer_func == hardclock)
218		forward_hardclock();
219#endif
220	switch (timer0_state) {
221
222	case RELEASED:
223		break;
224
225	case ACQUIRED:
226		if ((timer0_prescaler_count += timer0_max_count)
227		    >= hardclock_max_count) {
228			timer0_prescaler_count -= hardclock_max_count;
229			hardclock(&frame);
230#ifdef SMP
231			forward_hardclock();
232#endif
233		}
234		break;
235
236	case ACQUIRE_PENDING:
237		mtx_lock_spin(&clock_lock);
238		i8254_offset = i8254_get_timecount(NULL);
239		i8254_lastcount = 0;
240		timer0_max_count = TIMER_DIV(new_rate);
241		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
242		outb(TIMER_CNTR0, timer0_max_count & 0xff);
243		outb(TIMER_CNTR0, timer0_max_count >> 8);
244		mtx_unlock_spin(&clock_lock);
245		timer_func = new_function;
246		timer0_state = ACQUIRED;
247		break;
248
249	case RELEASE_PENDING:
250		if ((timer0_prescaler_count += timer0_max_count)
251		    >= hardclock_max_count) {
252			mtx_lock_spin(&clock_lock);
253			i8254_offset = i8254_get_timecount(NULL);
254			i8254_lastcount = 0;
255			timer0_max_count = hardclock_max_count;
256			outb(TIMER_MODE,
257			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
258			outb(TIMER_CNTR0, timer0_max_count & 0xff);
259			outb(TIMER_CNTR0, timer0_max_count >> 8);
260			mtx_unlock_spin(&clock_lock);
261			timer0_prescaler_count = 0;
262			timer_func = hardclock;
263			timer0_state = RELEASED;
264			hardclock(&frame);
265#ifdef SMP
266			forward_hardclock();
267#endif
268		}
269		break;
270	}
271#ifdef DEV_MCA
272	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
273	if (MCA_system)
274		outb(0x61, inb(0x61) | 0x80);
275#endif
276}
277
278/*
279 * The acquire and release functions must be called at ipl >= splclock().
280 */
281int
282acquire_timer0(int rate, void (*function)(struct clockframe *frame))
283{
284	static int old_rate;
285
286	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
287		return (-1);
288	switch (timer0_state) {
289
290	case RELEASED:
291		timer0_state = ACQUIRE_PENDING;
292		break;
293
294	case RELEASE_PENDING:
295		if (rate != old_rate)
296			return (-1);
297		/*
298		 * The timer has been released recently, but is being
299		 * re-acquired before the release completed.  In this
300		 * case, we simply reclaim it as if it had not been
301		 * released at all.
302		 */
303		timer0_state = ACQUIRED;
304		break;
305
306	default:
307		return (-1);	/* busy */
308	}
309	new_function = function;
310	old_rate = new_rate = rate;
311	return (0);
312}
313
314int
315acquire_timer2(int mode)
316{
317
318	if (timer2_state != RELEASED)
319		return (-1);
320	timer2_state = ACQUIRED;
321
322	/*
323	 * This access to the timer registers is as atomic as possible
324	 * because it is a single instruction.  We could do better if we
325	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
326	 * and this is probably good enough for timer2, so we aren't as
327	 * careful with it as with timer0.
328	 */
329	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
330
331	return (0);
332}
333
334int
335release_timer0()
336{
337	switch (timer0_state) {
338
339	case ACQUIRED:
340		timer0_state = RELEASE_PENDING;
341		break;
342
343	case ACQUIRE_PENDING:
344		/* Nothing happened yet, release quickly. */
345		timer0_state = RELEASED;
346		break;
347
348	default:
349		return (-1);
350	}
351	return (0);
352}
353
354int
355release_timer2()
356{
357
358	if (timer2_state != ACQUIRED)
359		return (-1);
360	timer2_state = RELEASED;
361	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
362	return (0);
363}
364
365/*
366 * This routine receives statistical clock interrupts from the RTC.
367 * As explained above, these occur at 128 interrupts per second.
368 * When profiling, we receive interrupts at a rate of 1024 Hz.
369 *
370 * This does not actually add as much overhead as it sounds, because
371 * when the statistical clock is active, the hardclock driver no longer
372 * needs to keep (inaccurate) statistics on its own.  This decouples
373 * statistics gathering from scheduling interrupts.
374 *
375 * The RTC chip requires that we read status register C (RTC_INTR)
376 * to acknowledge an interrupt, before it will generate the next one.
377 * Under high interrupt load, rtcintr() can be indefinitely delayed and
378 * the clock can tick immediately after the read from RTC_INTR.  In this
379 * case, the mc146818A interrupt signal will not drop for long enough
380 * to register with the 8259 PIC.  If an interrupt is missed, the stat
381 * clock will halt, considerably degrading system performance.  This is
382 * why we use 'while' rather than a more straightforward 'if' below.
383 * Stat clock ticks can still be lost, causing minor loss of accuracy
384 * in the statistics, but the stat clock will no longer stop.
385 */
386static void
387rtcintr(struct clockframe frame)
388{
389	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
390		statclock(&frame);
391#ifdef SMP
392		forward_statclock();
393#endif
394	}
395}
396
397#include "opt_ddb.h"
398#ifdef DDB
399#include <ddb/ddb.h>
400
401DB_SHOW_COMMAND(rtc, rtc)
402{
403	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
404	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
405	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
406	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
407}
408#endif /* DDB */
409
410static int
411getit(void)
412{
413	int high, low;
414
415	mtx_lock_spin(&clock_lock);
416
417	/* Select timer0 and latch counter value. */
418	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
419
420	low = inb(TIMER_CNTR0);
421	high = inb(TIMER_CNTR0);
422
423	mtx_unlock_spin(&clock_lock);
424	return ((high << 8) | low);
425}
426
427/*
428 * Wait "n" microseconds.
429 * Relies on timer 1 counting down from (timer_freq / hz)
430 * Note: timer had better have been programmed before this is first used!
431 */
432void
433DELAY(int n)
434{
435	int delta, prev_tick, tick, ticks_left;
436
437#ifdef DELAYDEBUG
438	int getit_calls = 1;
439	int n1;
440	static int state = 0;
441
442	if (state == 0) {
443		state = 1;
444		for (n1 = 1; n1 <= 10000000; n1 *= 10)
445			DELAY(n1);
446		state = 2;
447	}
448	if (state == 1)
449		printf("DELAY(%d)...", n);
450#endif
451	/*
452	 * Guard against the timer being uninitialized if we are called
453	 * early for console i/o.
454	 */
455	if (timer0_max_count == 0)
456		set_timer_freq(timer_freq, hz);
457
458	/*
459	 * Read the counter first, so that the rest of the setup overhead is
460	 * counted.  Guess the initial overhead is 20 usec (on most systems it
461	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
462	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
463	 * multiplications and divisions to scale the count take a while).
464	 */
465	prev_tick = getit();
466	n -= 0;			/* XXX actually guess no initial overhead */
467	/*
468	 * Calculate (n * (timer_freq / 1e6)) without using floating point
469	 * and without any avoidable overflows.
470	 */
471	if (n <= 0)
472		ticks_left = 0;
473	else if (n < 256)
474		/*
475		 * Use fixed point to avoid a slow division by 1000000.
476		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
477		 * 2^15 is the first power of 2 that gives exact results
478		 * for n between 0 and 256.
479		 */
480		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
481	else
482		/*
483		 * Don't bother using fixed point, although gcc-2.7.2
484		 * generates particularly poor code for the long long
485		 * division, since even the slow way will complete long
486		 * before the delay is up (unless we're interrupted).
487		 */
488		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
489			     / 1000000;
490
491	while (ticks_left > 0) {
492		tick = getit();
493#ifdef DELAYDEBUG
494		++getit_calls;
495#endif
496		delta = prev_tick - tick;
497		prev_tick = tick;
498		if (delta < 0) {
499			delta += timer0_max_count;
500			/*
501			 * Guard against timer0_max_count being wrong.
502			 * This shouldn't happen in normal operation,
503			 * but it may happen if set_timer_freq() is
504			 * traced.
505			 */
506			if (delta < 0)
507				delta = 0;
508		}
509		ticks_left -= delta;
510	}
511#ifdef DELAYDEBUG
512	if (state == 1)
513		printf(" %d calls to getit() at %d usec each\n",
514		       getit_calls, (n + 5) / getit_calls);
515#endif
516}
517
518static void
519sysbeepstop(void *chan)
520{
521	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
522	release_timer2();
523	beeping = 0;
524}
525
526int
527sysbeep(int pitch, int period)
528{
529	int x = splclock();
530
531	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
532		if (!beeping) {
533			/* Something else owns it. */
534			splx(x);
535			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
536		}
537	mtx_lock_spin(&clock_lock);
538	outb(TIMER_CNTR2, pitch);
539	outb(TIMER_CNTR2, (pitch>>8));
540	mtx_unlock_spin(&clock_lock);
541	if (!beeping) {
542		/* enable counter2 output to speaker */
543		outb(IO_PPI, inb(IO_PPI) | 3);
544		beeping = period;
545		timeout(sysbeepstop, (void *)NULL, period);
546	}
547	splx(x);
548	return (0);
549}
550
551/*
552 * RTC support routines
553 */
554
555int
556rtcin(reg)
557	int reg;
558{
559	int s;
560	u_char val;
561
562	s = splhigh();
563	outb(IO_RTC, reg);
564	inb(0x84);
565	val = inb(IO_RTC + 1);
566	inb(0x84);
567	splx(s);
568	return (val);
569}
570
571static __inline void
572writertc(u_char reg, u_char val)
573{
574	int s;
575
576	s = splhigh();
577	inb(0x84);
578	outb(IO_RTC, reg);
579	inb(0x84);
580	outb(IO_RTC + 1, val);
581	inb(0x84);		/* XXX work around wrong order in rtcin() */
582	splx(s);
583}
584
585static __inline int
586readrtc(int port)
587{
588	return(bcd2bin(rtcin(port)));
589}
590
591static u_int
592calibrate_clocks(void)
593{
594	u_int64_t old_tsc;
595	u_int count, prev_count, tot_count;
596	int sec, start_sec, timeout;
597
598	if (bootverbose)
599	        printf("Calibrating clock(s) ... ");
600	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
601		goto fail;
602	timeout = 100000000;
603
604	/* Read the mc146818A seconds counter. */
605	for (;;) {
606		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
607			sec = rtcin(RTC_SEC);
608			break;
609		}
610		if (--timeout == 0)
611			goto fail;
612	}
613
614	/* Wait for the mC146818A seconds counter to change. */
615	start_sec = sec;
616	for (;;) {
617		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
618			sec = rtcin(RTC_SEC);
619			if (sec != start_sec)
620				break;
621		}
622		if (--timeout == 0)
623			goto fail;
624	}
625
626	/* Start keeping track of the i8254 counter. */
627	prev_count = getit();
628	if (prev_count == 0 || prev_count > timer0_max_count)
629		goto fail;
630	tot_count = 0;
631
632	if (tsc_present)
633		old_tsc = rdtsc();
634	else
635		old_tsc = 0;		/* shut up gcc */
636
637	/*
638	 * Wait for the mc146818A seconds counter to change.  Read the i8254
639	 * counter for each iteration since this is convenient and only
640	 * costs a few usec of inaccuracy. The timing of the final reads
641	 * of the counters almost matches the timing of the initial reads,
642	 * so the main cause of inaccuracy is the varying latency from
643	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
644	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
645	 * maximum inaccuracy from this cause is < 10 usec on 486's.
646	 */
647	start_sec = sec;
648	for (;;) {
649		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
650			sec = rtcin(RTC_SEC);
651		count = getit();
652		if (count == 0 || count > timer0_max_count)
653			goto fail;
654		if (count > prev_count)
655			tot_count += prev_count - (count - timer0_max_count);
656		else
657			tot_count += prev_count - count;
658		prev_count = count;
659		if (sec != start_sec)
660			break;
661		if (--timeout == 0)
662			goto fail;
663	}
664
665	/*
666	 * Read the cpu cycle counter.  The timing considerations are
667	 * similar to those for the i8254 clock.
668	 */
669	if (tsc_present)
670		tsc_freq = rdtsc() - old_tsc;
671
672	if (bootverbose) {
673		if (tsc_present)
674		        printf("TSC clock: %u Hz, ", tsc_freq);
675	        printf("i8254 clock: %u Hz\n", tot_count);
676	}
677	return (tot_count);
678
679fail:
680	if (bootverbose)
681	        printf("failed, using default i8254 clock of %u Hz\n",
682		       timer_freq);
683	return (timer_freq);
684}
685
686static void
687set_timer_freq(u_int freq, int intr_freq)
688{
689	int new_timer0_max_count;
690
691	mtx_lock_spin(&clock_lock);
692	timer_freq = freq;
693	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
694	if (new_timer0_max_count != timer0_max_count) {
695		timer0_max_count = new_timer0_max_count;
696		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
697		outb(TIMER_CNTR0, timer0_max_count & 0xff);
698		outb(TIMER_CNTR0, timer0_max_count >> 8);
699	}
700	mtx_unlock_spin(&clock_lock);
701}
702
703/*
704 * i8254_restore is called from apm_default_resume() to reload
705 * the countdown register.
706 * this should not be necessary but there are broken laptops that
707 * do not restore the countdown register on resume.
708 * when it happnes, it messes up the hardclock interval and system clock,
709 * which leads to the infamous "calcru: negative time" problem.
710 */
711static void
712i8254_restore(void)
713{
714
715	mtx_lock_spin(&clock_lock);
716	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
717	outb(TIMER_CNTR0, timer0_max_count & 0xff);
718	outb(TIMER_CNTR0, timer0_max_count >> 8);
719	mtx_unlock_spin(&clock_lock);
720}
721
722static void
723rtc_restore(void)
724{
725
726	/* Reenable RTC updates and interrupts. */
727	/* XXX locking is needed for RTC access? */
728	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
729	writertc(RTC_STATUSB, rtc_statusb);
730}
731
732/*
733 * Restore all the timers atomically.
734 */
735void
736timer_restore(void)
737{
738
739	i8254_restore();		/* restore timer_freq and hz */
740	rtc_restore();			/* reenable RTC interrupts */
741}
742
743/*
744 * Initialize 8254 timer 0 early so that it can be used in DELAY().
745 * XXX initialization of other timers is unintentionally left blank.
746 */
747void
748startrtclock()
749{
750	u_int delta, freq;
751
752	if (cpu_feature & CPUID_TSC)
753		tsc_present = 1;
754	else
755		tsc_present = 0;
756
757	writertc(RTC_STATUSA, rtc_statusa);
758	writertc(RTC_STATUSB, RTCSB_24HR);
759
760	set_timer_freq(timer_freq, hz);
761	freq = calibrate_clocks();
762#ifdef CLK_CALIBRATION_LOOP
763	if (bootverbose) {
764		printf(
765		"Press a key on the console to abort clock calibration\n");
766		while (cncheckc() == -1)
767			calibrate_clocks();
768	}
769#endif
770
771	/*
772	 * Use the calibrated i8254 frequency if it seems reasonable.
773	 * Otherwise use the default, and don't use the calibrated i586
774	 * frequency.
775	 */
776	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
777	if (delta < timer_freq / 100) {
778#ifndef CLK_USE_I8254_CALIBRATION
779		if (bootverbose)
780			printf(
781"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
782		freq = timer_freq;
783#endif
784		timer_freq = freq;
785	} else {
786		if (bootverbose)
787			printf(
788		    "%d Hz differs from default of %d Hz by more than 1%%\n",
789			       freq, timer_freq);
790		tsc_freq = 0;
791	}
792
793	set_timer_freq(timer_freq, hz);
794	i8254_timecounter.tc_frequency = timer_freq;
795	tc_init(&i8254_timecounter);
796
797#ifndef CLK_USE_TSC_CALIBRATION
798	if (tsc_freq != 0) {
799		if (bootverbose)
800			printf(
801"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
802		tsc_freq = 0;
803	}
804#endif
805	if (tsc_present && tsc_freq == 0) {
806		/*
807		 * Calibration of the i586 clock relative to the mc146818A
808		 * clock failed.  Do a less accurate calibration relative
809		 * to the i8254 clock.
810		 */
811		u_int64_t old_tsc = rdtsc();
812
813		DELAY(1000000);
814		tsc_freq = rdtsc() - old_tsc;
815#ifdef CLK_USE_TSC_CALIBRATION
816		if (bootverbose)
817			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
818#endif
819	}
820
821#if !defined(SMP)
822	/*
823	 * We can not use the TSC in SMP mode, until we figure out a
824	 * cheap (impossible), reliable and precise (yeah right!)  way
825	 * to synchronize the TSCs of all the CPUs.
826	 * Curse Intel for leaving the counter out of the I/O APIC.
827	 */
828
829	/*
830	 * We can not use the TSC if we support APM. Precise timekeeping
831	 * on an APM'ed machine is at best a fools pursuit, since
832	 * any and all of the time spent in various SMM code can't
833	 * be reliably accounted for.  Reading the RTC is your only
834	 * source of reliable time info.  The i8254 looses too of course
835	 * but we need to have some kind of time...
836	 * We don't know at this point whether APM is going to be used
837	 * or not, nor when it might be activated.  Play it safe.
838	 */
839	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
840		if (bootverbose)
841			printf("TSC initialization skipped: APM enabled.\n");
842		return;
843	}
844
845	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
846		tsc_timecounter.tc_frequency = tsc_freq;
847		tc_init(&tsc_timecounter);
848	}
849
850#endif /* !defined(SMP) */
851}
852
853/*
854 * Initialize the time of day register, based on the time base which is, e.g.
855 * from a filesystem.
856 */
857void
858inittodr(time_t base)
859{
860	unsigned long	sec, days;
861	int		year, month;
862	int		y, m, s;
863	struct timespec ts;
864
865	if (base) {
866		s = splclock();
867		ts.tv_sec = base;
868		ts.tv_nsec = 0;
869		tc_setclock(&ts);
870		splx(s);
871	}
872
873	/* Look if we have a RTC present and the time is valid */
874	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
875		goto wrong_time;
876
877	/* wait for time update to complete */
878	/* If RTCSA_TUP is zero, we have at least 244us before next update */
879	s = splhigh();
880	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
881		splx(s);
882		s = splhigh();
883	}
884
885	days = 0;
886#ifdef USE_RTC_CENTURY
887	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
888#else
889	year = readrtc(RTC_YEAR) + 1900;
890	if (year < 1970)
891		year += 100;
892#endif
893	if (year < 1970) {
894		splx(s);
895		goto wrong_time;
896	}
897	month = readrtc(RTC_MONTH);
898	for (m = 1; m < month; m++)
899		days += daysinmonth[m-1];
900	if ((month > 2) && LEAPYEAR(year))
901		days ++;
902	days += readrtc(RTC_DAY) - 1;
903	for (y = 1970; y < year; y++)
904		days += DAYSPERYEAR + LEAPYEAR(y);
905	sec = ((( days * 24 +
906		  readrtc(RTC_HRS)) * 60 +
907		  readrtc(RTC_MIN)) * 60 +
908		  readrtc(RTC_SEC));
909	/* sec now contains the number of seconds, since Jan 1 1970,
910	   in the local time zone */
911
912	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
913
914	y = time_second - sec;
915	if (y <= -2 || y >= 2) {
916		/* badly off, adjust it */
917		ts.tv_sec = sec;
918		ts.tv_nsec = 0;
919		tc_setclock(&ts);
920	}
921	splx(s);
922	return;
923
924wrong_time:
925	printf("Invalid time in real time clock.\n");
926	printf("Check and reset the date immediately!\n");
927}
928
929/*
930 * Write system time back to RTC
931 */
932void
933resettodr()
934{
935	unsigned long	tm;
936	int		y, m, s;
937
938	if (disable_rtc_set)
939		return;
940
941	s = splclock();
942	tm = time_second;
943	splx(s);
944
945	/* Disable RTC updates and interrupts. */
946	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
947
948	/* Calculate local time to put in RTC */
949
950	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
951
952	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
953	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
954	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
955
956	/* We have now the days since 01-01-1970 in tm */
957	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
958	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
959	     tm >= m;
960	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
961	     tm -= m;
962
963	/* Now we have the years in y and the day-of-the-year in tm */
964	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
965#ifdef USE_RTC_CENTURY
966	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
967#endif
968	for (m = 0; ; m++) {
969		int ml;
970
971		ml = daysinmonth[m];
972		if (m == 1 && LEAPYEAR(y))
973			ml++;
974		if (tm < ml)
975			break;
976		tm -= ml;
977	}
978
979	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
980	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
981
982	/* Reenable RTC updates and interrupts. */
983	writertc(RTC_STATUSB, rtc_statusb);
984}
985
986
987/*
988 * Start both clocks running.
989 */
990void
991cpu_initclocks()
992{
993	int diag;
994#ifdef APIC_IO
995	int apic_8254_trial;
996	void *clkdesc;
997#endif /* APIC_IO */
998
999	if (statclock_disable) {
1000		/*
1001		 * The stat interrupt mask is different without the
1002		 * statistics clock.  Also, don't set the interrupt
1003		 * flag which would normally cause the RTC to generate
1004		 * interrupts.
1005		 */
1006		rtc_statusb = RTCSB_24HR;
1007	} else {
1008	        /* Setting stathz to nonzero early helps avoid races. */
1009		stathz = RTC_NOPROFRATE;
1010		profhz = RTC_PROFRATE;
1011        }
1012
1013	/* Finish initializing 8253 timer 0. */
1014#ifdef APIC_IO
1015
1016	apic_8254_intr = isa_apic_irq(0);
1017	apic_8254_trial = 0;
1018	if (apic_8254_intr >= 0 ) {
1019		if (apic_int_type(0, 0) == 3)
1020			apic_8254_trial = 1;
1021	} else {
1022		/* look for ExtInt on pin 0 */
1023		if (apic_int_type(0, 0) == 3) {
1024			apic_8254_intr = apic_irq(0, 0);
1025			setup_8254_mixed_mode();
1026		} else
1027			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1028	}
1029
1030	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
1031	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
1032	mtx_lock_spin(&icu_lock);
1033	INTREN(1 << apic_8254_intr);
1034	mtx_unlock_spin(&icu_lock);
1035
1036#else /* APIC_IO */
1037
1038	/*
1039	 * XXX Check the priority of this interrupt handler.  I
1040	 * couldn't find anything suitable in the BSD/OS code (grog,
1041	 * 19 July 2000).
1042	 */
1043	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
1044	    INTR_TYPE_CLK | INTR_FAST, NULL);
1045	mtx_lock_spin(&icu_lock);
1046	INTREN(IRQ0);
1047	mtx_unlock_spin(&icu_lock);
1048
1049#endif /* APIC_IO */
1050
1051	/* Initialize RTC. */
1052	writertc(RTC_STATUSA, rtc_statusa);
1053	writertc(RTC_STATUSB, RTCSB_24HR);
1054
1055	/* Don't bother enabling the statistics clock. */
1056	if (statclock_disable)
1057		return;
1058	diag = rtcin(RTC_DIAG);
1059	if (diag != 0)
1060		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1061
1062#ifdef APIC_IO
1063	if (isa_apic_irq(8) != 8)
1064		panic("APIC RTC != 8");
1065#endif /* APIC_IO */
1066
1067	inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
1068	    INTR_TYPE_CLK | INTR_FAST, NULL);
1069
1070	mtx_lock_spin(&icu_lock);
1071#ifdef APIC_IO
1072	INTREN(APIC_IRQ8);
1073#else
1074	INTREN(IRQ8);
1075#endif /* APIC_IO */
1076	mtx_unlock_spin(&icu_lock);
1077
1078	writertc(RTC_STATUSB, rtc_statusb);
1079
1080#ifdef APIC_IO
1081	if (apic_8254_trial) {
1082
1083		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1084		while (read_intr_count(8) < 6)
1085			;	/* nothing */
1086		if (read_intr_count(apic_8254_intr) < 3) {
1087			/*
1088			 * The MP table is broken.
1089			 * The 8254 was not connected to the specified pin
1090			 * on the IO APIC.
1091			 * Workaround: Limited variant of mixed mode.
1092			 */
1093			mtx_lock_spin(&icu_lock);
1094			INTRDIS(1 << apic_8254_intr);
1095			mtx_unlock_spin(&icu_lock);
1096			inthand_remove(clkdesc);
1097			printf("APIC_IO: Broken MP table detected: "
1098			       "8254 is not connected to "
1099			       "IOAPIC #%d intpin %d\n",
1100			       int_to_apicintpin[apic_8254_intr].ioapic,
1101			       int_to_apicintpin[apic_8254_intr].int_pin);
1102			/*
1103			 * Revoke current ISA IRQ 0 assignment and
1104			 * configure a fallback interrupt routing from
1105			 * the 8254 Timer via the 8259 PIC to the
1106			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1107			 * We reuse the low level interrupt handler number.
1108			 */
1109			if (apic_irq(0, 0) < 0) {
1110				revoke_apic_irq(apic_8254_intr);
1111				assign_apic_irq(0, 0, apic_8254_intr);
1112			}
1113			apic_8254_intr = apic_irq(0, 0);
1114			setup_8254_mixed_mode();
1115			inthand_add("clk", apic_8254_intr,
1116				    (driver_intr_t *)clkintr, NULL,
1117				    INTR_TYPE_CLK | INTR_FAST, NULL);
1118			mtx_lock_spin(&icu_lock);
1119			INTREN(1 << apic_8254_intr);
1120			mtx_unlock_spin(&icu_lock);
1121		}
1122
1123	}
1124	if (apic_int_type(0, 0) != 3 ||
1125	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1126	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1127		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1128		       int_to_apicintpin[apic_8254_intr].ioapic,
1129		       int_to_apicintpin[apic_8254_intr].int_pin);
1130	else
1131		printf("APIC_IO: "
1132		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1133#endif
1134
1135}
1136
1137#ifdef APIC_IO
1138static u_long
1139read_intr_count(int vec)
1140{
1141	u_long *up;
1142	up = intr_countp[vec];
1143	if (up)
1144		return *up;
1145	return 0UL;
1146}
1147
1148static void
1149setup_8254_mixed_mode()
1150{
1151	/*
1152	 * Allow 8254 timer to INTerrupt 8259:
1153	 *  re-initialize master 8259:
1154	 *   reset; prog 4 bytes, single ICU, edge triggered
1155	 */
1156	outb(IO_ICU1, 0x13);
1157	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1158	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1159	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1160	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1161
1162	/* program IO APIC for type 3 INT on INT0 */
1163	if (ext_int_setup(0, 0) < 0)
1164		panic("8254 redirect via APIC pin0 impossible!");
1165}
1166#endif
1167
1168void
1169setstatclockrate(int newhz)
1170{
1171	if (newhz == RTC_PROFRATE)
1172		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1173	else
1174		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1175	writertc(RTC_STATUSA, rtc_statusa);
1176}
1177
1178static int
1179sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1180{
1181	int error;
1182	u_int freq;
1183
1184	/*
1185	 * Use `i8254' instead of `timer' in external names because `timer'
1186	 * is is too generic.  Should use it everywhere.
1187	 */
1188	freq = timer_freq;
1189	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1190	if (error == 0 && req->newptr != NULL) {
1191		if (timer0_state != RELEASED)
1192			return (EBUSY);	/* too much trouble to handle */
1193		set_timer_freq(freq, hz);
1194		i8254_timecounter.tc_frequency = freq;
1195		tc_update(&i8254_timecounter);
1196	}
1197	return (error);
1198}
1199
1200SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1201    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1202
1203static int
1204sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
1205{
1206	int error;
1207	u_int freq;
1208
1209	if (tsc_timecounter.tc_frequency == 0)
1210		return (EOPNOTSUPP);
1211	freq = tsc_freq;
1212	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1213	if (error == 0 && req->newptr != NULL) {
1214		tsc_freq = freq;
1215		tsc_timecounter.tc_frequency = tsc_freq;
1216		tc_update(&tsc_timecounter);
1217	}
1218	return (error);
1219}
1220
1221SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1222    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1223
1224static unsigned
1225i8254_get_timecount(struct timecounter *tc)
1226{
1227	u_int count;
1228	u_int high, low;
1229	u_int eflags;
1230
1231	eflags = read_eflags();
1232	mtx_lock_spin(&clock_lock);
1233
1234	/* Select timer0 and latch counter value. */
1235	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1236
1237	low = inb(TIMER_CNTR0);
1238	high = inb(TIMER_CNTR0);
1239	count = timer0_max_count - ((high << 8) | low);
1240	if (count < i8254_lastcount ||
1241	    (!i8254_ticked && (clkintr_pending ||
1242	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1243#ifdef APIC_IO
1244#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1245	    /* XXX this assumes that apic_8254_intr is < 24. */
1246	    (lapic_irr1 & (1 << apic_8254_intr))))
1247#else
1248	    (inb(IO_ICU1) & 1)))
1249#endif
1250	    )) {
1251		i8254_ticked = 1;
1252		i8254_offset += timer0_max_count;
1253	}
1254	i8254_lastcount = count;
1255	count += i8254_offset;
1256	mtx_unlock_spin(&clock_lock);
1257	return (count);
1258}
1259
1260static unsigned
1261tsc_get_timecount(struct timecounter *tc)
1262{
1263	return (rdtsc());
1264}
1265
1266#ifdef DEV_ISA
1267/*
1268 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1269 */
1270static struct isa_pnp_id attimer_ids[] = {
1271	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1272	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1273	{ 0 }
1274};
1275
1276static int
1277attimer_probe(device_t dev)
1278{
1279	int result;
1280
1281	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1282		device_quiet(dev);
1283	return(result);
1284}
1285
1286static int
1287attimer_attach(device_t dev)
1288{
1289	return(0);
1290}
1291
1292static device_method_t attimer_methods[] = {
1293	/* Device interface */
1294	DEVMETHOD(device_probe,		attimer_probe),
1295	DEVMETHOD(device_attach,	attimer_attach),
1296	DEVMETHOD(device_detach,	bus_generic_detach),
1297	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1298	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1299	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1300	{ 0, 0 }
1301};
1302
1303static driver_t attimer_driver = {
1304	"attimer",
1305	attimer_methods,
1306	1,		/* no softc */
1307};
1308
1309static devclass_t attimer_devclass;
1310
1311DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1312DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
1313#endif /* DEV_ISA */
1314