tsc.c revision 50823
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/i386/i386/tsc.c 50823 1999-09-03 02:04:28Z mdodd $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51#include "opt_clock.h"
52#include "apm.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#ifndef SMP
59#include <sys/lock.h>
60#endif
61#include <sys/sysctl.h>
62#include <sys/cons.h>
63
64#include <machine/clock.h>
65#ifdef CLK_CALIBRATION_LOOP
66#endif
67#include <machine/cputypes.h>
68#include <machine/frame.h>
69#include <machine/ipl.h>
70#include <machine/limits.h>
71#include <machine/md_var.h>
72#include <machine/psl.h>
73#ifdef APIC_IO
74#include <machine/segments.h>
75#endif
76#if defined(SMP) || defined(APIC_IO)
77#include <machine/smp.h>
78#endif /* SMP || APIC_IO */
79#include <machine/specialreg.h>
80
81#include <i386/isa/icu.h>
82#include <i386/isa/isa.h>
83#include <isa/rtc.h>
84#include <i386/isa/timerreg.h>
85
86#include <i386/isa/intr_machdep.h>
87
88#include "mca.h"
89#if NMCA > 0
90#include <i386/isa/mca_machdep.h>
91#endif
92
93#ifdef SMP
94#define disable_intr()	CLOCK_DISABLE_INTR()
95#define enable_intr()	CLOCK_ENABLE_INTR()
96
97#ifdef APIC_IO
98#include <i386/isa/intr_machdep.h>
99/* The interrupt triggered by the 8254 (timer) chip */
100int apic_8254_intr;
101static u_long read_intr_count __P((int vec));
102static void setup_8254_mixed_mode __P((void));
103#endif
104#endif /* SMP */
105
106/*
107 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
108 * can use a simple formula for leap years.
109 */
110#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
111#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
112
113#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
114
115/*
116 * Time in timer cycles that it takes for microtime() to disable interrupts
117 * and latch the count.  microtime() currently uses "cli; outb ..." so it
118 * normally takes less than 2 timer cycles.  Add a few for cache misses.
119 * Add a few more to allow for latency in bogus calls to microtime() with
120 * interrupts already disabled.
121 */
122#define	TIMER0_LATCH_COUNT	20
123
124/*
125 * Maximum frequency that we are willing to allow for timer0.  Must be
126 * low enough to guarantee that the timer interrupt handler returns
127 * before the next timer interrupt.
128 */
129#define	TIMER0_MAX_FREQ		20000
130
131int	adjkerntz;		/* local offset from GMT in seconds */
132int	clkintr_pending;
133int	disable_rtc_set;	/* disable resettodr() if != 0 */
134volatile u_int	idelayed;
135int	statclock_disable;
136u_int	stat_imask = SWI_CLOCK_MASK;
137#ifndef TIMER_FREQ
138#define TIMER_FREQ   1193182
139#endif
140u_int	timer_freq = TIMER_FREQ;
141int	timer0_max_count;
142u_int	tsc_freq;
143int	tsc_is_broken;
144int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
145
146static	int	beeping = 0;
147static	u_int	clk_imask = HWI_MASK | SWI_MASK;
148static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
149static	u_int	hardclock_max_count;
150static	u_int32_t i8254_lastcount;
151static	u_int32_t i8254_offset;
152static	int	i8254_ticked;
153/*
154 * XXX new_function and timer_func should not handle clockframes, but
155 * timer_func currently needs to hold hardclock to handle the
156 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
157 * to switch between clkintr() and a slightly different timerintr().
158 */
159static	void	(*new_function) __P((struct clockframe *frame));
160static	u_int	new_rate;
161static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
162static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
163static	u_int	timer0_prescaler_count;
164
165/* Values for timerX_state: */
166#define	RELEASED	0
167#define	RELEASE_PENDING	1
168#define	ACQUIRED	2
169#define	ACQUIRE_PENDING	3
170
171static	u_char	timer0_state;
172static	u_char	timer2_state;
173static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
174static	u_int	tsc_present;
175
176static	unsigned i8254_get_timecount __P((struct timecounter *tc));
177static	unsigned tsc_get_timecount __P((struct timecounter *tc));
178static	void	set_timer_freq(u_int freq, int intr_freq);
179
180static struct timecounter tsc_timecounter = {
181	tsc_get_timecount,	/* get_timecount */
182	0,			/* no poll_pps */
183 	~0u,			/* counter_mask */
184	0,			/* frequency */
185	 "TSC"			/* name */
186};
187
188SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
189	&tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
190
191static struct timecounter i8254_timecounter = {
192	i8254_get_timecount,	/* get_timecount */
193	0,			/* no poll_pps */
194	~0u,			/* counter_mask */
195	0,			/* frequency */
196	"i8254"			/* name */
197};
198
199SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
200	&i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
201
202static void
203clkintr(struct clockframe frame)
204{
205	if (timecounter->tc_get_timecount == i8254_get_timecount) {
206		disable_intr();
207		if (i8254_ticked)
208			i8254_ticked = 0;
209		else {
210			i8254_offset += timer0_max_count;
211			i8254_lastcount = 0;
212		}
213		clkintr_pending = 0;
214		enable_intr();
215	}
216	timer_func(&frame);
217	switch (timer0_state) {
218
219	case RELEASED:
220		setdelayed();
221		break;
222
223	case ACQUIRED:
224		if ((timer0_prescaler_count += timer0_max_count)
225		    >= hardclock_max_count) {
226			timer0_prescaler_count -= hardclock_max_count;
227			hardclock(&frame);
228			setdelayed();
229		}
230		break;
231
232	case ACQUIRE_PENDING:
233		disable_intr();
234		i8254_offset = i8254_get_timecount(NULL);
235		i8254_lastcount = 0;
236		timer0_max_count = TIMER_DIV(new_rate);
237		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
238		outb(TIMER_CNTR0, timer0_max_count & 0xff);
239		outb(TIMER_CNTR0, timer0_max_count >> 8);
240		enable_intr();
241		timer_func = new_function;
242		timer0_state = ACQUIRED;
243		setdelayed();
244		break;
245
246	case RELEASE_PENDING:
247		if ((timer0_prescaler_count += timer0_max_count)
248		    >= hardclock_max_count) {
249			disable_intr();
250			i8254_offset = i8254_get_timecount(NULL);
251			i8254_lastcount = 0;
252			timer0_max_count = hardclock_max_count;
253			outb(TIMER_MODE,
254			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
255			outb(TIMER_CNTR0, timer0_max_count & 0xff);
256			outb(TIMER_CNTR0, timer0_max_count >> 8);
257			enable_intr();
258			timer0_prescaler_count = 0;
259			timer_func = hardclock;
260			timer0_state = RELEASED;
261			hardclock(&frame);
262			setdelayed();
263		}
264		break;
265	}
266#if NMCA > 0
267	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
268	if (MCA_system)
269		outb(0x61, inb(0x61) | 0x80);
270#endif
271}
272
273/*
274 * The acquire and release functions must be called at ipl >= splclock().
275 */
276int
277acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
278{
279	static int old_rate;
280
281	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
282		return (-1);
283	switch (timer0_state) {
284
285	case RELEASED:
286		timer0_state = ACQUIRE_PENDING;
287		break;
288
289	case RELEASE_PENDING:
290		if (rate != old_rate)
291			return (-1);
292		/*
293		 * The timer has been released recently, but is being
294		 * re-acquired before the release completed.  In this
295		 * case, we simply reclaim it as if it had not been
296		 * released at all.
297		 */
298		timer0_state = ACQUIRED;
299		break;
300
301	default:
302		return (-1);	/* busy */
303	}
304	new_function = function;
305	old_rate = new_rate = rate;
306	return (0);
307}
308
309int
310acquire_timer2(int mode)
311{
312
313	if (timer2_state != RELEASED)
314		return (-1);
315	timer2_state = ACQUIRED;
316
317	/*
318	 * This access to the timer registers is as atomic as possible
319	 * because it is a single instruction.  We could do better if we
320	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
321	 * and this is probably good enough for timer2, so we aren't as
322	 * careful with it as with timer0.
323	 */
324	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
325
326	return (0);
327}
328
329int
330release_timer0()
331{
332	switch (timer0_state) {
333
334	case ACQUIRED:
335		timer0_state = RELEASE_PENDING;
336		break;
337
338	case ACQUIRE_PENDING:
339		/* Nothing happened yet, release quickly. */
340		timer0_state = RELEASED;
341		break;
342
343	default:
344		return (-1);
345	}
346	return (0);
347}
348
349int
350release_timer2()
351{
352
353	if (timer2_state != ACQUIRED)
354		return (-1);
355	timer2_state = RELEASED;
356	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
357	return (0);
358}
359
360/*
361 * This routine receives statistical clock interrupts from the RTC.
362 * As explained above, these occur at 128 interrupts per second.
363 * When profiling, we receive interrupts at a rate of 1024 Hz.
364 *
365 * This does not actually add as much overhead as it sounds, because
366 * when the statistical clock is active, the hardclock driver no longer
367 * needs to keep (inaccurate) statistics on its own.  This decouples
368 * statistics gathering from scheduling interrupts.
369 *
370 * The RTC chip requires that we read status register C (RTC_INTR)
371 * to acknowledge an interrupt, before it will generate the next one.
372 * Under high interrupt load, rtcintr() can be indefinitely delayed and
373 * the clock can tick immediately after the read from RTC_INTR.  In this
374 * case, the mc146818A interrupt signal will not drop for long enough
375 * to register with the 8259 PIC.  If an interrupt is missed, the stat
376 * clock will halt, considerably degrading system performance.  This is
377 * why we use 'while' rather than a more straightforward 'if' below.
378 * Stat clock ticks can still be lost, causing minor loss of accuracy
379 * in the statistics, but the stat clock will no longer stop.
380 */
381static void
382rtcintr(struct clockframe frame)
383{
384	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
385		statclock(&frame);
386}
387
388#include "opt_ddb.h"
389#ifdef DDB
390#include <ddb/ddb.h>
391
392DB_SHOW_COMMAND(rtc, rtc)
393{
394	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
395	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
396	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
397	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
398}
399#endif /* DDB */
400
401static int
402getit(void)
403{
404	u_long ef;
405	int high, low;
406
407	ef = read_eflags();
408	disable_intr();
409
410	/* Select timer0 and latch counter value. */
411	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
412
413	low = inb(TIMER_CNTR0);
414	high = inb(TIMER_CNTR0);
415
416	CLOCK_UNLOCK();
417	write_eflags(ef);
418	return ((high << 8) | low);
419}
420
421/*
422 * Wait "n" microseconds.
423 * Relies on timer 1 counting down from (timer_freq / hz)
424 * Note: timer had better have been programmed before this is first used!
425 */
426void
427DELAY(int n)
428{
429	int delta, prev_tick, tick, ticks_left;
430
431#ifdef DELAYDEBUG
432	int getit_calls = 1;
433	int n1;
434	static int state = 0;
435
436	if (state == 0) {
437		state = 1;
438		for (n1 = 1; n1 <= 10000000; n1 *= 10)
439			DELAY(n1);
440		state = 2;
441	}
442	if (state == 1)
443		printf("DELAY(%d)...", n);
444#endif
445	/*
446	 * Guard against the timer being uninitialized if we are called
447	 * early for console i/o.
448	 */
449	if (timer0_max_count == 0)
450		set_timer_freq(timer_freq, hz);
451
452	/*
453	 * Read the counter first, so that the rest of the setup overhead is
454	 * counted.  Guess the initial overhead is 20 usec (on most systems it
455	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
456	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
457	 * multiplications and divisions to scale the count take a while).
458	 */
459	prev_tick = getit();
460	n -= 0;			/* XXX actually guess no initial overhead */
461	/*
462	 * Calculate (n * (timer_freq / 1e6)) without using floating point
463	 * and without any avoidable overflows.
464	 */
465	if (n <= 0)
466		ticks_left = 0;
467	else if (n < 256)
468		/*
469		 * Use fixed point to avoid a slow division by 1000000.
470		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
471		 * 2^15 is the first power of 2 that gives exact results
472		 * for n between 0 and 256.
473		 */
474		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
475	else
476		/*
477		 * Don't bother using fixed point, although gcc-2.7.2
478		 * generates particularly poor code for the long long
479		 * division, since even the slow way will complete long
480		 * before the delay is up (unless we're interrupted).
481		 */
482		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
483			     / 1000000;
484
485	while (ticks_left > 0) {
486		tick = getit();
487#ifdef DELAYDEBUG
488		++getit_calls;
489#endif
490		delta = prev_tick - tick;
491		prev_tick = tick;
492		if (delta < 0) {
493			delta += timer0_max_count;
494			/*
495			 * Guard against timer0_max_count being wrong.
496			 * This shouldn't happen in normal operation,
497			 * but it may happen if set_timer_freq() is
498			 * traced.
499			 */
500			if (delta < 0)
501				delta = 0;
502		}
503		ticks_left -= delta;
504	}
505#ifdef DELAYDEBUG
506	if (state == 1)
507		printf(" %d calls to getit() at %d usec each\n",
508		       getit_calls, (n + 5) / getit_calls);
509#endif
510}
511
512static void
513sysbeepstop(void *chan)
514{
515	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
516	release_timer2();
517	beeping = 0;
518}
519
520int
521sysbeep(int pitch, int period)
522{
523	int x = splclock();
524
525	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
526		if (!beeping) {
527			/* Something else owns it. */
528			splx(x);
529			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
530		}
531	disable_intr();
532	outb(TIMER_CNTR2, pitch);
533	outb(TIMER_CNTR2, (pitch>>8));
534	enable_intr();
535	if (!beeping) {
536		/* enable counter2 output to speaker */
537		outb(IO_PPI, inb(IO_PPI) | 3);
538		beeping = period;
539		timeout(sysbeepstop, (void *)NULL, period);
540	}
541	splx(x);
542	return (0);
543}
544
545/*
546 * RTC support routines
547 */
548
549int
550rtcin(reg)
551	int reg;
552{
553	u_char val;
554
555	outb(IO_RTC, reg);
556	inb(0x84);
557	val = inb(IO_RTC + 1);
558	inb(0x84);
559	return (val);
560}
561
562static __inline void
563writertc(u_char reg, u_char val)
564{
565	inb(0x84);
566	outb(IO_RTC, reg);
567	inb(0x84);
568	outb(IO_RTC + 1, val);
569	inb(0x84);		/* XXX work around wrong order in rtcin() */
570}
571
572static __inline int
573readrtc(int port)
574{
575	return(bcd2bin(rtcin(port)));
576}
577
578static u_int
579calibrate_clocks(void)
580{
581	u_int64_t old_tsc;
582	u_int count, prev_count, tot_count;
583	int sec, start_sec, timeout;
584
585	if (bootverbose)
586	        printf("Calibrating clock(s) ... ");
587	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
588		goto fail;
589	timeout = 100000000;
590
591	/* Read the mc146818A seconds counter. */
592	for (;;) {
593		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
594			sec = rtcin(RTC_SEC);
595			break;
596		}
597		if (--timeout == 0)
598			goto fail;
599	}
600
601	/* Wait for the mC146818A seconds counter to change. */
602	start_sec = sec;
603	for (;;) {
604		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
605			sec = rtcin(RTC_SEC);
606			if (sec != start_sec)
607				break;
608		}
609		if (--timeout == 0)
610			goto fail;
611	}
612
613	/* Start keeping track of the i8254 counter. */
614	prev_count = getit();
615	if (prev_count == 0 || prev_count > timer0_max_count)
616		goto fail;
617	tot_count = 0;
618
619	if (tsc_present)
620		old_tsc = rdtsc();
621	else
622		old_tsc = 0;		/* shut up gcc */
623
624	/*
625	 * Wait for the mc146818A seconds counter to change.  Read the i8254
626	 * counter for each iteration since this is convenient and only
627	 * costs a few usec of inaccuracy. The timing of the final reads
628	 * of the counters almost matches the timing of the initial reads,
629	 * so the main cause of inaccuracy is the varying latency from
630	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
631	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
632	 * maximum inaccuracy from this cause is < 10 usec on 486's.
633	 */
634	start_sec = sec;
635	for (;;) {
636		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
637			sec = rtcin(RTC_SEC);
638		count = getit();
639		if (count == 0 || count > timer0_max_count)
640			goto fail;
641		if (count > prev_count)
642			tot_count += prev_count - (count - timer0_max_count);
643		else
644			tot_count += prev_count - count;
645		prev_count = count;
646		if (sec != start_sec)
647			break;
648		if (--timeout == 0)
649			goto fail;
650	}
651
652	/*
653	 * Read the cpu cycle counter.  The timing considerations are
654	 * similar to those for the i8254 clock.
655	 */
656	if (tsc_present)
657		tsc_freq = rdtsc() - old_tsc;
658
659	if (bootverbose) {
660		if (tsc_present)
661		        printf("TSC clock: %u Hz, ", tsc_freq);
662	        printf("i8254 clock: %u Hz\n", tot_count);
663	}
664	return (tot_count);
665
666fail:
667	if (bootverbose)
668	        printf("failed, using default i8254 clock of %u Hz\n",
669		       timer_freq);
670	return (timer_freq);
671}
672
673static void
674set_timer_freq(u_int freq, int intr_freq)
675{
676	u_long ef;
677	int new_timer0_max_count;
678
679	ef = read_eflags();
680	disable_intr();
681	timer_freq = freq;
682	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
683	if (new_timer0_max_count != timer0_max_count) {
684		timer0_max_count = new_timer0_max_count;
685		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
686		outb(TIMER_CNTR0, timer0_max_count & 0xff);
687		outb(TIMER_CNTR0, timer0_max_count >> 8);
688	}
689	CLOCK_UNLOCK();
690	write_eflags(ef);
691}
692
693/*
694 * Initialize 8254 timer 0 early so that it can be used in DELAY().
695 * XXX initialization of other timers is unintentionally left blank.
696 */
697void
698startrtclock()
699{
700	u_int delta, freq;
701
702	if (cpu_feature & CPUID_TSC)
703		tsc_present = 1;
704	else
705		tsc_present = 0;
706
707	writertc(RTC_STATUSA, rtc_statusa);
708	writertc(RTC_STATUSB, RTCSB_24HR);
709
710	set_timer_freq(timer_freq, hz);
711	freq = calibrate_clocks();
712#ifdef CLK_CALIBRATION_LOOP
713	if (bootverbose) {
714		printf(
715		"Press a key on the console to abort clock calibration\n");
716		while (cncheckc() == -1)
717			calibrate_clocks();
718	}
719#endif
720
721	/*
722	 * Use the calibrated i8254 frequency if it seems reasonable.
723	 * Otherwise use the default, and don't use the calibrated i586
724	 * frequency.
725	 */
726	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
727	if (delta < timer_freq / 100) {
728#ifndef CLK_USE_I8254_CALIBRATION
729		if (bootverbose)
730			printf(
731"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
732		freq = timer_freq;
733#endif
734		timer_freq = freq;
735	} else {
736		if (bootverbose)
737			printf(
738		    "%d Hz differs from default of %d Hz by more than 1%%\n",
739			       freq, timer_freq);
740		tsc_freq = 0;
741	}
742
743	set_timer_freq(timer_freq, hz);
744	i8254_timecounter.tc_frequency = timer_freq;
745	init_timecounter(&i8254_timecounter);
746
747#ifndef CLK_USE_TSC_CALIBRATION
748	if (tsc_freq != 0) {
749		if (bootverbose)
750			printf(
751"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
752		tsc_freq = 0;
753	}
754#endif
755	if (tsc_present && tsc_freq == 0) {
756		/*
757		 * Calibration of the i586 clock relative to the mc146818A
758		 * clock failed.  Do a less accurate calibration relative
759		 * to the i8254 clock.
760		 */
761		u_int64_t old_tsc = rdtsc();
762
763		DELAY(1000000);
764		tsc_freq = rdtsc() - old_tsc;
765#ifdef CLK_USE_TSC_CALIBRATION
766		if (bootverbose)
767			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
768#endif
769	}
770
771#if !defined(SMP)
772	/*
773	 * We can not use the TSC in SMP mode, until we figure out a
774	 * cheap (impossible), reliable and precise (yeah right!)  way
775	 * to synchronize the TSCs of all the CPUs.
776	 * Curse Intel for leaving the counter out of the I/O APIC.
777	 */
778
779#if NAPM > 0
780	/*
781	 * We can not use the TSC if we support APM. Precise timekeeping
782	 * on an APM'ed machine is at best a fools pursuit, since
783	 * any and all of the time spent in various SMM code can't
784	 * be reliably accounted for.  Reading the RTC is your only
785	 * source of reliable time info.  The i8254 looses too of course
786	 * but we need to have some kind of time...
787	 * We don't know at this point whether APM is going to be used
788	 * or not, nor when it might be activated.  Play it safe.
789	 */
790	return;
791#endif /* NAPM > 0 */
792
793	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
794		tsc_timecounter.tc_frequency = tsc_freq;
795		init_timecounter(&tsc_timecounter);
796	}
797
798#endif /* !defined(SMP) */
799}
800
801/*
802 * Initialize the time of day register, based on the time base which is, e.g.
803 * from a filesystem.
804 */
805void
806inittodr(time_t base)
807{
808	unsigned long	sec, days;
809	int		yd;
810	int		year, month;
811	int		y, m, s;
812	struct timespec ts;
813
814	if (base) {
815		s = splclock();
816		ts.tv_sec = base;
817		ts.tv_nsec = 0;
818		set_timecounter(&ts);
819		splx(s);
820	}
821
822	/* Look if we have a RTC present and the time is valid */
823	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
824		goto wrong_time;
825
826	/* wait for time update to complete */
827	/* If RTCSA_TUP is zero, we have at least 244us before next update */
828	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
829
830	days = 0;
831#ifdef USE_RTC_CENTURY
832	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
833#else
834	year = readrtc(RTC_YEAR) + 1900;
835	if (year < 1970)
836		year += 100;
837#endif
838	if (year < 1970)
839		goto wrong_time;
840	month = readrtc(RTC_MONTH);
841	for (m = 1; m < month; m++)
842		days += daysinmonth[m-1];
843	if ((month > 2) && LEAPYEAR(year))
844		days ++;
845	days += readrtc(RTC_DAY) - 1;
846	yd = days;
847	for (y = 1970; y < year; y++)
848		days += DAYSPERYEAR + LEAPYEAR(y);
849	sec = ((( days * 24 +
850		  readrtc(RTC_HRS)) * 60 +
851		  readrtc(RTC_MIN)) * 60 +
852		  readrtc(RTC_SEC));
853	/* sec now contains the number of seconds, since Jan 1 1970,
854	   in the local time zone */
855
856	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
857
858	y = time_second - sec;
859	if (y <= -2 || y >= 2) {
860		/* badly off, adjust it */
861		s = splclock();
862		ts.tv_sec = sec;
863		ts.tv_nsec = 0;
864		set_timecounter(&ts);
865		splx(s);
866	}
867	return;
868
869wrong_time:
870	printf("Invalid time in real time clock.\n");
871	printf("Check and reset the date immediately!\n");
872}
873
874/*
875 * Write system time back to RTC
876 */
877void
878resettodr()
879{
880	unsigned long	tm;
881	int		y, m, s;
882
883	if (disable_rtc_set)
884		return;
885
886	s = splclock();
887	tm = time_second;
888	splx(s);
889
890	/* Disable RTC updates and interrupts. */
891	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
892
893	/* Calculate local time to put in RTC */
894
895	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
896
897	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
898	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
899	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
900
901	/* We have now the days since 01-01-1970 in tm */
902	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
903	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
904	     tm >= m;
905	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
906	     tm -= m;
907
908	/* Now we have the years in y and the day-of-the-year in tm */
909	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
910#ifdef USE_RTC_CENTURY
911	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
912#endif
913	for (m = 0; ; m++) {
914		int ml;
915
916		ml = daysinmonth[m];
917		if (m == 1 && LEAPYEAR(y))
918			ml++;
919		if (tm < ml)
920			break;
921		tm -= ml;
922	}
923
924	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
925	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
926
927	/* Reenable RTC updates and interrupts. */
928	writertc(RTC_STATUSB, rtc_statusb);
929}
930
931
932/*
933 * Start both clocks running.
934 */
935void
936cpu_initclocks()
937{
938	int diag;
939#ifdef APIC_IO
940	int apic_8254_trial;
941	struct intrec *clkdesc;
942#endif /* APIC_IO */
943
944	if (statclock_disable) {
945		/*
946		 * The stat interrupt mask is different without the
947		 * statistics clock.  Also, don't set the interrupt
948		 * flag which would normally cause the RTC to generate
949		 * interrupts.
950		 */
951		stat_imask = HWI_MASK | SWI_MASK;
952		rtc_statusb = RTCSB_24HR;
953	} else {
954	        /* Setting stathz to nonzero early helps avoid races. */
955		stathz = RTC_NOPROFRATE;
956		profhz = RTC_PROFRATE;
957        }
958
959	/* Finish initializing 8253 timer 0. */
960#ifdef APIC_IO
961
962	apic_8254_intr = isa_apic_irq(0);
963	apic_8254_trial = 0;
964	if (apic_8254_intr >= 0 ) {
965		if (apic_int_type(0, 0) == 3)
966			apic_8254_trial = 1;
967	} else {
968		/* look for ExtInt on pin 0 */
969		if (apic_int_type(0, 0) == 3) {
970			apic_8254_intr = 0;
971			setup_8254_mixed_mode();
972		} else
973			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
974	}
975
976	clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
977			      NULL, &clk_imask, INTR_EXCL);
978	INTREN(1 << apic_8254_intr);
979
980#else /* APIC_IO */
981
982	inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
983		    INTR_EXCL);
984	INTREN(IRQ0);
985
986#endif /* APIC_IO */
987
988	/* Initialize RTC. */
989	writertc(RTC_STATUSA, rtc_statusa);
990	writertc(RTC_STATUSB, RTCSB_24HR);
991
992	/* Don't bother enabling the statistics clock. */
993	if (statclock_disable)
994		return;
995	diag = rtcin(RTC_DIAG);
996	if (diag != 0)
997		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
998
999#ifdef APIC_IO
1000	if (isa_apic_irq(8) != 8)
1001		panic("APIC RTC != 8");
1002#endif /* APIC_IO */
1003
1004	inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
1005		    INTR_EXCL);
1006
1007#ifdef APIC_IO
1008	INTREN(APIC_IRQ8);
1009#else
1010	INTREN(IRQ8);
1011#endif /* APIC_IO */
1012
1013	writertc(RTC_STATUSB, rtc_statusb);
1014
1015#ifdef APIC_IO
1016	if (apic_8254_trial) {
1017
1018		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1019		while (read_intr_count(8) < 6)
1020			;	/* nothing */
1021		if (read_intr_count(apic_8254_intr) < 3) {
1022			/*
1023			 * The MP table is broken.
1024			 * The 8254 was not connected to the specified pin
1025			 * on the IO APIC.
1026			 * Workaround: Limited variant of mixed mode.
1027			 */
1028			INTRDIS(1 << apic_8254_intr);
1029			inthand_remove(clkdesc);
1030			printf("APIC_IO: Broken MP table detected: "
1031			       "8254 is not connected to IO APIC int pin %d\n",
1032			       apic_8254_intr);
1033
1034			apic_8254_intr = 0;
1035			setup_8254_mixed_mode();
1036			inthand_add("clk", apic_8254_intr,(inthand2_t *)clkintr,
1037				    NULL, &clk_imask, INTR_EXCL);
1038			INTREN(1 << apic_8254_intr);
1039		}
1040
1041	}
1042	if (apic_8254_intr)
1043		printf("APIC_IO: routing 8254 via pin %d\n",apic_8254_intr);
1044	else
1045		printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
1046#endif
1047
1048}
1049
1050#ifdef APIC_IO
1051static u_long
1052read_intr_count(int vec)
1053{
1054	u_long *up;
1055	up = intr_countp[vec];
1056	if (up)
1057		return *up;
1058	return 0UL;
1059}
1060
1061static void
1062setup_8254_mixed_mode()
1063{
1064	/*
1065	 * Allow 8254 timer to INTerrupt 8259:
1066	 *  re-initialize master 8259:
1067	 *   reset; prog 4 bytes, single ICU, edge triggered
1068	 */
1069	outb(IO_ICU1, 0x13);
1070	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1071	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1072	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1073	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1074
1075	/* program IO APIC for type 3 INT on INT0 */
1076	if (ext_int_setup(0, 0) < 0)
1077		panic("8254 redirect via APIC pin0 impossible!");
1078}
1079#endif
1080
1081void
1082setstatclockrate(int newhz)
1083{
1084	if (newhz == RTC_PROFRATE)
1085		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1086	else
1087		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1088	writertc(RTC_STATUSA, rtc_statusa);
1089}
1090
1091static int
1092sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1093{
1094	int error;
1095	u_int freq;
1096
1097	/*
1098	 * Use `i8254' instead of `timer' in external names because `timer'
1099	 * is is too generic.  Should use it everywhere.
1100	 */
1101	freq = timer_freq;
1102	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1103	if (error == 0 && req->newptr != NULL) {
1104		if (timer0_state != RELEASED)
1105			return (EBUSY);	/* too much trouble to handle */
1106		set_timer_freq(freq, hz);
1107		i8254_timecounter.tc_frequency = freq;
1108		update_timecounter(&i8254_timecounter);
1109	}
1110	return (error);
1111}
1112
1113SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1114    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1115
1116static int
1117sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1118{
1119	int error;
1120	u_int freq;
1121
1122	if (tsc_timecounter.tc_frequency == 0)
1123		return (EOPNOTSUPP);
1124	freq = tsc_freq;
1125	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1126	if (error == 0 && req->newptr != NULL) {
1127		tsc_freq = freq;
1128		tsc_timecounter.tc_frequency = tsc_freq;
1129		update_timecounter(&tsc_timecounter);
1130	}
1131	return (error);
1132}
1133
1134SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1135    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1136
1137static unsigned
1138i8254_get_timecount(struct timecounter *tc)
1139{
1140	u_int count;
1141	u_long ef;
1142	u_int high, low;
1143
1144	ef = read_eflags();
1145	disable_intr();
1146
1147	/* Select timer0 and latch counter value. */
1148	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1149
1150	low = inb(TIMER_CNTR0);
1151	high = inb(TIMER_CNTR0);
1152	count = timer0_max_count - ((high << 8) | low);
1153	if (count < i8254_lastcount ||
1154	    (!i8254_ticked && (clkintr_pending ||
1155	    ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
1156#ifdef APIC_IO
1157#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1158	    /* XXX this assumes that apic_8254_intr is < 24. */
1159	    (lapic_irr1 & (1 << apic_8254_intr))))
1160#else
1161	    (inb(IO_ICU1) & 1)))
1162#endif
1163	    )) {
1164		i8254_ticked = 1;
1165		i8254_offset += timer0_max_count;
1166	}
1167	i8254_lastcount = count;
1168	count += i8254_offset;
1169	CLOCK_UNLOCK();
1170	write_eflags(ef);
1171	return (count);
1172}
1173
1174static unsigned
1175tsc_get_timecount(struct timecounter *tc)
1176{
1177	return (rdtsc());
1178}
1179