mptable.c revision 76078
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/i386/i386/mptable.c 76078 2001-04-27 19:28:25Z jhb $
26 */
27
28#include "opt_cpu.h"
29
30#ifdef SMP
31#include <machine/smptests.h>
32#else
33#error
34#endif
35
36#include <sys/param.h>
37#include <sys/bus.h>
38#include <sys/systm.h>
39#include <sys/kernel.h>
40#include <sys/proc.h>
41#include <sys/sysctl.h>
42#include <sys/malloc.h>
43#include <sys/memrange.h>
44#include <sys/mutex.h>
45#include <sys/smp.h>
46#include <sys/dkstat.h>
47#include <sys/cons.h>	/* cngetc() */
48
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/pmap.h>
52#include <vm/vm_kern.h>
53#include <vm/vm_extern.h>
54#include <sys/lock.h>
55#include <vm/vm_map.h>
56#include <sys/user.h>
57#ifdef GPROF
58#include <sys/gmon.h>
59#endif
60
61#include <machine/apic.h>
62#include <machine/atomic.h>
63#include <machine/cpu.h>
64#include <machine/cpufunc.h>
65#include <machine/ipl.h>
66#include <machine/mpapic.h>
67#include <machine/psl.h>
68#include <machine/segments.h>
69#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
70#include <machine/tss.h>
71#include <machine/specialreg.h>
72#include <machine/globaldata.h>
73
74#if defined(APIC_IO)
75#include <machine/md_var.h>		/* setidt() */
76#include <i386/isa/icu.h>		/* IPIs */
77#include <i386/isa/intr_machdep.h>	/* IPIs */
78#endif	/* APIC_IO */
79
80#if defined(TEST_DEFAULT_CONFIG)
81#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
82#else
83#define MPFPS_MPFB1	mpfps->mpfb1
84#endif  /* TEST_DEFAULT_CONFIG */
85
86#define WARMBOOT_TARGET		0
87#define WARMBOOT_OFF		(KERNBASE + 0x0467)
88#define WARMBOOT_SEG		(KERNBASE + 0x0469)
89
90#ifdef PC98
91#define BIOS_BASE		(0xe8000)
92#define BIOS_SIZE		(0x18000)
93#else
94#define BIOS_BASE		(0xf0000)
95#define BIOS_SIZE		(0x10000)
96#endif
97#define BIOS_COUNT		(BIOS_SIZE/4)
98
99#define CMOS_REG		(0x70)
100#define CMOS_DATA		(0x71)
101#define BIOS_RESET		(0x0f)
102#define BIOS_WARM		(0x0a)
103
104#define PROCENTRY_FLAG_EN	0x01
105#define PROCENTRY_FLAG_BP	0x02
106#define IOAPICENTRY_FLAG_EN	0x01
107
108
109/* MP Floating Pointer Structure */
110typedef struct MPFPS {
111	char    signature[4];
112	void   *pap;
113	u_char  length;
114	u_char  spec_rev;
115	u_char  checksum;
116	u_char  mpfb1;
117	u_char  mpfb2;
118	u_char  mpfb3;
119	u_char  mpfb4;
120	u_char  mpfb5;
121}      *mpfps_t;
122
123/* MP Configuration Table Header */
124typedef struct MPCTH {
125	char    signature[4];
126	u_short base_table_length;
127	u_char  spec_rev;
128	u_char  checksum;
129	u_char  oem_id[8];
130	u_char  product_id[12];
131	void   *oem_table_pointer;
132	u_short oem_table_size;
133	u_short entry_count;
134	void   *apic_address;
135	u_short extended_table_length;
136	u_char  extended_table_checksum;
137	u_char  reserved;
138}      *mpcth_t;
139
140
141typedef struct PROCENTRY {
142	u_char  type;
143	u_char  apic_id;
144	u_char  apic_version;
145	u_char  cpu_flags;
146	u_long  cpu_signature;
147	u_long  feature_flags;
148	u_long  reserved1;
149	u_long  reserved2;
150}      *proc_entry_ptr;
151
152typedef struct BUSENTRY {
153	u_char  type;
154	u_char  bus_id;
155	char    bus_type[6];
156}      *bus_entry_ptr;
157
158typedef struct IOAPICENTRY {
159	u_char  type;
160	u_char  apic_id;
161	u_char  apic_version;
162	u_char  apic_flags;
163	void   *apic_address;
164}      *io_apic_entry_ptr;
165
166typedef struct INTENTRY {
167	u_char  type;
168	u_char  int_type;
169	u_short int_flags;
170	u_char  src_bus_id;
171	u_char  src_bus_irq;
172	u_char  dst_apic_id;
173	u_char  dst_apic_int;
174}      *int_entry_ptr;
175
176/* descriptions of MP basetable entries */
177typedef struct BASETABLE_ENTRY {
178	u_char  type;
179	u_char  length;
180	char    name[16];
181}       basetable_entry;
182
183/*
184 * this code MUST be enabled here and in mpboot.s.
185 * it follows the very early stages of AP boot by placing values in CMOS ram.
186 * it NORMALLY will never be needed and thus the primitive method for enabling.
187 *
188#define CHECK_POINTS
189 */
190
191#if defined(CHECK_POINTS) && !defined(PC98)
192#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
193#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
194
195#define CHECK_INIT(D);				\
196	CHECK_WRITE(0x34, (D));			\
197	CHECK_WRITE(0x35, (D));			\
198	CHECK_WRITE(0x36, (D));			\
199	CHECK_WRITE(0x37, (D));			\
200	CHECK_WRITE(0x38, (D));			\
201	CHECK_WRITE(0x39, (D));
202
203#define CHECK_PRINT(S);				\
204	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
205	   (S),					\
206	   CHECK_READ(0x34),			\
207	   CHECK_READ(0x35),			\
208	   CHECK_READ(0x36),			\
209	   CHECK_READ(0x37),			\
210	   CHECK_READ(0x38),			\
211	   CHECK_READ(0x39));
212
213#else				/* CHECK_POINTS */
214
215#define CHECK_INIT(D)
216#define CHECK_PRINT(S)
217
218#endif				/* CHECK_POINTS */
219
220/*
221 * Values to send to the POST hardware.
222 */
223#define MP_BOOTADDRESS_POST	0x10
224#define MP_PROBE_POST		0x11
225#define MPTABLE_PASS1_POST	0x12
226
227#define MP_START_POST		0x13
228#define MP_ENABLE_POST		0x14
229#define MPTABLE_PASS2_POST	0x15
230
231#define START_ALL_APS_POST	0x16
232#define INSTALL_AP_TRAMP_POST	0x17
233#define START_AP_POST		0x18
234
235#define MP_ANNOUNCE_POST	0x19
236
237/* used to hold the AP's until we are ready to release them */
238static struct mtx ap_boot_mtx;
239
240/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
241int	current_postcode;
242
243/** XXX FIXME: what system files declare these??? */
244extern struct region_descriptor r_gdt, r_idt;
245
246int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
247int	mp_naps;		/* # of Applications processors */
248int	mp_nbusses;		/* # of busses */
249int	mp_napics;		/* # of IO APICs */
250int	boot_cpu_id;		/* designated BSP */
251vm_offset_t cpu_apic_address;
252vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
253extern	int nkpt;
254
255u_int32_t cpu_apic_versions[MAXCPU];
256u_int32_t *io_apic_versions;
257
258#ifdef APIC_INTR_REORDER
259struct {
260	volatile int *location;
261	int bit;
262} apic_isrbit_location[32];
263#endif
264
265struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
266
267/*
268 * APIC ID logical/physical mapping structures.
269 * We oversize these to simplify boot-time config.
270 */
271int     cpu_num_to_apic_id[NAPICID];
272int     io_num_to_apic_id[NAPICID];
273int     apic_id_to_logical[NAPICID];
274
275
276/* AP uses this during bootstrap.  Do not staticize.  */
277char *bootSTK;
278static int bootAP;
279
280/* Hotwire a 0->4MB V==P mapping */
281extern pt_entry_t *KPTphys;
282
283/* SMP page table page */
284extern pt_entry_t *SMPpt;
285
286struct pcb stoppcbs[MAXCPU];
287
288int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
289SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
290
291/*
292 * Local data and functions.
293 */
294
295/* Set to 1 once we're ready to let the APs out of the pen. */
296static volatile int aps_ready = 0;
297
298static int	mp_capable;
299static u_int	boot_address;
300static u_int	base_memory;
301
302static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
303static mpfps_t	mpfps;
304static int	search_for_sig(u_int32_t target, int count);
305static void	mp_enable(u_int boot_addr);
306
307static void	mptable_pass1(void);
308static int	mptable_pass2(void);
309static void	default_mp_table(int type);
310static void	fix_mp_table(void);
311static void	setup_apic_irq_mapping(void);
312static void	init_locks(void);
313static int	start_all_aps(u_int boot_addr);
314static void	install_ap_tramp(u_int boot_addr);
315static int	start_ap(int logicalCpu, u_int boot_addr);
316void		ap_init(void);
317static int	apic_int_is_bus_type(int intr, int bus_type);
318static void	release_aps(void *dummy);
319
320/*
321 * initialize all the SMP locks
322 */
323
324/* critical region around IO APIC, apic_imen */
325struct mtx		imen_mtx;
326
327/* lock region used by kernel profiling */
328struct mtx		mcount_mtx;
329
330#ifdef USE_COMLOCK
331/* locks com (tty) data/hardware accesses: a FASTINTR() */
332struct mtx		com_mtx;
333#endif /* USE_COMLOCK */
334
335static void
336init_locks(void)
337{
338	/*
339	 * XXX The mcount mutex probably needs to be statically initialized,
340	 * since it will be used even in the function calls that get us to this
341	 * point.
342	 */
343	mtx_init(&mcount_mtx, "mcount", MTX_DEF);
344
345#ifdef USE_COMLOCK
346	mtx_init(&com_mtx, "com", MTX_SPIN);
347#endif /* USE_COMLOCK */
348}
349
350/*
351 * Calculate usable address in base memory for AP trampoline code.
352 */
353u_int
354mp_bootaddress(u_int basemem)
355{
356	POSTCODE(MP_BOOTADDRESS_POST);
357
358	base_memory = basemem * 1024;	/* convert to bytes */
359
360	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
361	if ((base_memory - boot_address) < bootMP_size)
362		boot_address -= 4096;	/* not enough, lower by 4k */
363
364	return boot_address;
365}
366
367
368/*
369 * Look for an Intel MP spec table (ie, SMP capable hardware).
370 */
371void
372i386_mp_probe(void)
373{
374	int     x;
375	u_long  segment;
376	u_int32_t target;
377
378	POSTCODE(MP_PROBE_POST);
379
380	/* see if EBDA exists */
381	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
382		/* search first 1K of EBDA */
383		target = (u_int32_t) (segment << 4);
384		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
385			goto found;
386	} else {
387		/* last 1K of base memory, effective 'top of base' passed in */
388		target = (u_int32_t) (base_memory - 0x400);
389		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
390			goto found;
391	}
392
393	/* search the BIOS */
394	target = (u_int32_t) BIOS_BASE;
395	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
396		goto found;
397
398	/* nothing found */
399	mpfps = (mpfps_t)0;
400	mp_capable = 0;
401	return;
402
403found:
404	/* calculate needed resources */
405	mpfps = (mpfps_t)x;
406	mptable_pass1();
407
408	/* flag fact that we are running multiple processors */
409	mp_capable = 1;
410}
411
412int
413cpu_mp_probe(void)
414{
415	return (mp_capable);
416}
417
418/*
419 * Initialize the SMP hardware and the APIC and start up the AP's.
420 */
421void
422cpu_mp_start(void)
423{
424	POSTCODE(MP_START_POST);
425
426	/* look for MP capable motherboard */
427	if (mp_capable)
428		mp_enable(boot_address);
429	else
430		panic("MP hardware not found!");
431
432	cpu_setregs();
433}
434
435
436/*
437 * Print various information about the SMP system hardware and setup.
438 */
439void
440cpu_mp_announce(void)
441{
442	int     x;
443
444	POSTCODE(MP_ANNOUNCE_POST);
445
446	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
447	printf(", version: 0x%08x", cpu_apic_versions[0]);
448	printf(", at 0x%08x\n", cpu_apic_address);
449	for (x = 1; x <= mp_naps; ++x) {
450		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
451		printf(", version: 0x%08x", cpu_apic_versions[x]);
452		printf(", at 0x%08x\n", cpu_apic_address);
453	}
454
455#if defined(APIC_IO)
456	for (x = 0; x < mp_napics; ++x) {
457		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
458		printf(", version: 0x%08x", io_apic_versions[x]);
459		printf(", at 0x%08x\n", io_apic_address[x]);
460	}
461#else
462	printf(" Warning: APIC I/O disabled\n");
463#endif	/* APIC_IO */
464}
465
466/*
467 * AP cpu's call this to sync up protected mode.
468 */
469void
470init_secondary(void)
471{
472	int	gsel_tss;
473	int	x, myid = bootAP;
474
475	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
476	gdt_segs[GPROC0_SEL].ssd_base =
477		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
478	SMP_prvspace[myid].globaldata.gd_prvspace =
479		&SMP_prvspace[myid].globaldata;
480
481	for (x = 0; x < NGDT; x++) {
482		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
483	}
484
485	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
486	r_gdt.rd_base = (int) &gdt[myid * NGDT];
487	lgdt(&r_gdt);			/* does magic intra-segment return */
488
489	lidt(&r_idt);
490
491	lldt(_default_ldt);
492	PCPU_SET(currentldt, _default_ldt);
493
494	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
495	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
496	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
497	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
498	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
499	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
500	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
501	ltr(gsel_tss);
502
503	pmap_set_opt();
504}
505
506
507#if defined(APIC_IO)
508/*
509 * Final configuration of the BSP's local APIC:
510 *  - disable 'pic mode'.
511 *  - disable 'virtual wire mode'.
512 *  - enable NMI.
513 */
514void
515bsp_apic_configure(void)
516{
517	u_char		byte;
518	u_int32_t	temp;
519
520	/* leave 'pic mode' if necessary */
521	if (picmode) {
522		outb(0x22, 0x70);	/* select IMCR */
523		byte = inb(0x23);	/* current contents */
524		byte |= 0x01;		/* mask external INTR */
525		outb(0x23, byte);	/* disconnect 8259s/NMI */
526	}
527
528	/* mask lint0 (the 8259 'virtual wire' connection) */
529	temp = lapic.lvt_lint0;
530	temp |= APIC_LVT_M;		/* set the mask */
531	lapic.lvt_lint0 = temp;
532
533        /* setup lint1 to handle NMI */
534        temp = lapic.lvt_lint1;
535        temp &= ~APIC_LVT_M;		/* clear the mask */
536        lapic.lvt_lint1 = temp;
537
538	if (bootverbose)
539		apic_dump("bsp_apic_configure()");
540}
541#endif  /* APIC_IO */
542
543
544/*******************************************************************
545 * local functions and data
546 */
547
548/*
549 * start the SMP system
550 */
551static void
552mp_enable(u_int boot_addr)
553{
554	int     x;
555#if defined(APIC_IO)
556	int     apic;
557	u_int   ux;
558#endif	/* APIC_IO */
559
560	POSTCODE(MP_ENABLE_POST);
561
562	/* turn on 4MB of V == P addressing so we can get to MP table */
563	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
564	invltlb();
565
566	/* examine the MP table for needed info, uses physical addresses */
567	x = mptable_pass2();
568
569	*(int *)PTD = 0;
570	invltlb();
571
572	/* can't process default configs till the CPU APIC is pmapped */
573	if (x)
574		default_mp_table(x);
575
576	/* post scan cleanup */
577	fix_mp_table();
578	setup_apic_irq_mapping();
579
580#if defined(APIC_IO)
581
582	/* fill the LOGICAL io_apic_versions table */
583	for (apic = 0; apic < mp_napics; ++apic) {
584		ux = io_apic_read(apic, IOAPIC_VER);
585		io_apic_versions[apic] = ux;
586		io_apic_set_id(apic, IO_TO_ID(apic));
587	}
588
589	/* program each IO APIC in the system */
590	for (apic = 0; apic < mp_napics; ++apic)
591		if (io_apic_setup(apic) < 0)
592			panic("IO APIC setup failure");
593
594	/* install a 'Spurious INTerrupt' vector */
595	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
596	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
597
598	/* install an inter-CPU IPI for TLB invalidation */
599	setidt(XINVLTLB_OFFSET, Xinvltlb,
600	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
601
602	/* install an inter-CPU IPI for forwarding hardclock() */
603	setidt(XHARDCLOCK_OFFSET, Xhardclock,
604	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
605
606	/* install an inter-CPU IPI for forwarding statclock() */
607	setidt(XSTATCLOCK_OFFSET, Xstatclock,
608	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
609
610	/* install an inter-CPU IPI for all-CPU rendezvous */
611	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
612	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
613
614	/* install an inter-CPU IPI for forcing an additional software trap */
615	setidt(XCPUAST_OFFSET, Xcpuast,
616	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
617
618	/* install an inter-CPU IPI for CPU stop/restart */
619	setidt(XCPUSTOP_OFFSET, Xcpustop,
620	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
621
622#if defined(TEST_TEST1)
623	/* install a "fake hardware INTerrupt" vector */
624	setidt(XTEST1_OFFSET, Xtest1,
625	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
626#endif  /** TEST_TEST1 */
627
628#endif	/* APIC_IO */
629
630	/* initialize all SMP locks */
631	init_locks();
632
633	/* start each Application Processor */
634	start_all_aps(boot_addr);
635}
636
637
638/*
639 * look for the MP spec signature
640 */
641
642/* string defined by the Intel MP Spec as identifying the MP table */
643#define MP_SIG		0x5f504d5f	/* _MP_ */
644#define NEXT(X)		((X) += 4)
645static int
646search_for_sig(u_int32_t target, int count)
647{
648	int     x;
649	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
650
651	for (x = 0; x < count; NEXT(x))
652		if (addr[x] == MP_SIG)
653			/* make array index a byte index */
654			return (target + (x * sizeof(u_int32_t)));
655
656	return -1;
657}
658
659
660static basetable_entry basetable_entry_types[] =
661{
662	{0, 20, "Processor"},
663	{1, 8, "Bus"},
664	{2, 8, "I/O APIC"},
665	{3, 8, "I/O INT"},
666	{4, 8, "Local INT"}
667};
668
669typedef struct BUSDATA {
670	u_char  bus_id;
671	enum busTypes bus_type;
672}       bus_datum;
673
674typedef struct INTDATA {
675	u_char  int_type;
676	u_short int_flags;
677	u_char  src_bus_id;
678	u_char  src_bus_irq;
679	u_char  dst_apic_id;
680	u_char  dst_apic_int;
681	u_char	int_vector;
682}       io_int, local_int;
683
684typedef struct BUSTYPENAME {
685	u_char  type;
686	char    name[7];
687}       bus_type_name;
688
689static bus_type_name bus_type_table[] =
690{
691	{CBUS, "CBUS"},
692	{CBUSII, "CBUSII"},
693	{EISA, "EISA"},
694	{MCA, "MCA"},
695	{UNKNOWN_BUSTYPE, "---"},
696	{ISA, "ISA"},
697	{MCA, "MCA"},
698	{UNKNOWN_BUSTYPE, "---"},
699	{UNKNOWN_BUSTYPE, "---"},
700	{UNKNOWN_BUSTYPE, "---"},
701	{UNKNOWN_BUSTYPE, "---"},
702	{UNKNOWN_BUSTYPE, "---"},
703	{PCI, "PCI"},
704	{UNKNOWN_BUSTYPE, "---"},
705	{UNKNOWN_BUSTYPE, "---"},
706	{UNKNOWN_BUSTYPE, "---"},
707	{UNKNOWN_BUSTYPE, "---"},
708	{XPRESS, "XPRESS"},
709	{UNKNOWN_BUSTYPE, "---"}
710};
711/* from MP spec v1.4, table 5-1 */
712static int default_data[7][5] =
713{
714/*   nbus, id0, type0, id1, type1 */
715	{1, 0, ISA, 255, 255},
716	{1, 0, EISA, 255, 255},
717	{1, 0, EISA, 255, 255},
718	{1, 0, MCA, 255, 255},
719	{2, 0, ISA, 1, PCI},
720	{2, 0, EISA, 1, PCI},
721	{2, 0, MCA, 1, PCI}
722};
723
724
725/* the bus data */
726static bus_datum *bus_data;
727
728/* the IO INT data, one entry per possible APIC INTerrupt */
729static io_int  *io_apic_ints;
730
731static int nintrs;
732
733static int processor_entry	__P((proc_entry_ptr entry, int cpu));
734static int bus_entry		__P((bus_entry_ptr entry, int bus));
735static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
736static int int_entry		__P((int_entry_ptr entry, int intr));
737static int lookup_bus_type	__P((char *name));
738
739
740/*
741 * 1st pass on motherboard's Intel MP specification table.
742 *
743 * initializes:
744 *	mp_ncpus = 1
745 *
746 * determines:
747 *	cpu_apic_address (common to all CPUs)
748 *	io_apic_address[N]
749 *	mp_naps
750 *	mp_nbusses
751 *	mp_napics
752 *	nintrs
753 */
754static void
755mptable_pass1(void)
756{
757	int	x;
758	mpcth_t	cth;
759	int	totalSize;
760	void*	position;
761	int	count;
762	int	type;
763
764	POSTCODE(MPTABLE_PASS1_POST);
765
766	/* clear various tables */
767	for (x = 0; x < NAPICID; ++x) {
768		io_apic_address[x] = ~0;	/* IO APIC address table */
769	}
770
771	/* init everything to empty */
772	mp_naps = 0;
773	mp_nbusses = 0;
774	mp_napics = 0;
775	nintrs = 0;
776
777	/* check for use of 'default' configuration */
778	if (MPFPS_MPFB1 != 0) {
779		/* use default addresses */
780		cpu_apic_address = DEFAULT_APIC_BASE;
781		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
782
783		/* fill in with defaults */
784		mp_naps = 2;		/* includes BSP */
785		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
786#if defined(APIC_IO)
787		mp_napics = 1;
788		nintrs = 16;
789#endif	/* APIC_IO */
790	}
791	else {
792		if ((cth = mpfps->pap) == 0)
793			panic("MP Configuration Table Header MISSING!");
794
795		cpu_apic_address = (vm_offset_t) cth->apic_address;
796
797		/* walk the table, recording info of interest */
798		totalSize = cth->base_table_length - sizeof(struct MPCTH);
799		position = (u_char *) cth + sizeof(struct MPCTH);
800		count = cth->entry_count;
801
802		while (count--) {
803			switch (type = *(u_char *) position) {
804			case 0: /* processor_entry */
805				if (((proc_entry_ptr)position)->cpu_flags
806					& PROCENTRY_FLAG_EN)
807					++mp_naps;
808				break;
809			case 1: /* bus_entry */
810				++mp_nbusses;
811				break;
812			case 2: /* io_apic_entry */
813				if (((io_apic_entry_ptr)position)->apic_flags
814					& IOAPICENTRY_FLAG_EN)
815					io_apic_address[mp_napics++] =
816					    (vm_offset_t)((io_apic_entry_ptr)
817						position)->apic_address;
818				break;
819			case 3: /* int_entry */
820				++nintrs;
821				break;
822			case 4:	/* int_entry */
823				break;
824			default:
825				panic("mpfps Base Table HOSED!");
826				/* NOTREACHED */
827			}
828
829			totalSize -= basetable_entry_types[type].length;
830			(u_char*)position += basetable_entry_types[type].length;
831		}
832	}
833
834	/* qualify the numbers */
835	if (mp_naps > MAXCPU) {
836		printf("Warning: only using %d of %d available CPUs!\n",
837			MAXCPU, mp_naps);
838		mp_naps = MAXCPU;
839	}
840
841	/*
842	 * Count the BSP.
843	 * This is also used as a counter while starting the APs.
844	 */
845	mp_ncpus = 1;
846
847	--mp_naps;	/* subtract the BSP */
848}
849
850
851/*
852 * 2nd pass on motherboard's Intel MP specification table.
853 *
854 * sets:
855 *	boot_cpu_id
856 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
857 *	CPU_TO_ID(N), logical CPU to APIC ID table
858 *	IO_TO_ID(N), logical IO to APIC ID table
859 *	bus_data[N]
860 *	io_apic_ints[N]
861 */
862static int
863mptable_pass2(void)
864{
865	int     x;
866	mpcth_t cth;
867	int     totalSize;
868	void*   position;
869	int     count;
870	int     type;
871	int     apic, bus, cpu, intr;
872	int	i, j;
873	int	pgeflag;
874
875	POSTCODE(MPTABLE_PASS2_POST);
876
877	pgeflag = 0;		/* XXX - Not used under SMP yet.  */
878
879	MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
880	    M_DEVBUF, M_WAITOK);
881	MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
882	    M_DEVBUF, M_WAITOK);
883	MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
884	    M_DEVBUF, M_WAITOK);
885	MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
886	    M_DEVBUF, M_WAITOK);
887
888	bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
889
890	for (i = 0; i < mp_napics; i++) {
891		for (j = 0; j < mp_napics; j++) {
892			/* same page frame as a previous IO apic? */
893			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
894			    (io_apic_address[i] & PG_FRAME)) {
895				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
896					+ (NPTEPG-2-j) * PAGE_SIZE
897					+ (io_apic_address[i] & PAGE_MASK));
898				break;
899			}
900			/* use this slot if available */
901			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
902				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
903				    pgeflag | (io_apic_address[i] & PG_FRAME));
904				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
905					+ (NPTEPG-2-j) * PAGE_SIZE
906					+ (io_apic_address[i] & PAGE_MASK));
907				break;
908			}
909		}
910	}
911
912	/* clear various tables */
913	for (x = 0; x < NAPICID; ++x) {
914		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
915		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
916		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
917	}
918
919	/* clear bus data table */
920	for (x = 0; x < mp_nbusses; ++x)
921		bus_data[x].bus_id = 0xff;
922
923	/* clear IO APIC INT table */
924	for (x = 0; x < (nintrs + 1); ++x) {
925		io_apic_ints[x].int_type = 0xff;
926		io_apic_ints[x].int_vector = 0xff;
927	}
928
929	/* setup the cpu/apic mapping arrays */
930	boot_cpu_id = -1;
931
932	/* record whether PIC or virtual-wire mode */
933	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
934
935	/* check for use of 'default' configuration */
936	if (MPFPS_MPFB1 != 0)
937		return MPFPS_MPFB1;	/* return default configuration type */
938
939	if ((cth = mpfps->pap) == 0)
940		panic("MP Configuration Table Header MISSING!");
941
942	/* walk the table, recording info of interest */
943	totalSize = cth->base_table_length - sizeof(struct MPCTH);
944	position = (u_char *) cth + sizeof(struct MPCTH);
945	count = cth->entry_count;
946	apic = bus = intr = 0;
947	cpu = 1;				/* pre-count the BSP */
948
949	while (count--) {
950		switch (type = *(u_char *) position) {
951		case 0:
952			if (processor_entry(position, cpu))
953				++cpu;
954			break;
955		case 1:
956			if (bus_entry(position, bus))
957				++bus;
958			break;
959		case 2:
960			if (io_apic_entry(position, apic))
961				++apic;
962			break;
963		case 3:
964			if (int_entry(position, intr))
965				++intr;
966			break;
967		case 4:
968			/* int_entry(position); */
969			break;
970		default:
971			panic("mpfps Base Table HOSED!");
972			/* NOTREACHED */
973		}
974
975		totalSize -= basetable_entry_types[type].length;
976		(u_char *) position += basetable_entry_types[type].length;
977	}
978
979	if (boot_cpu_id == -1)
980		panic("NO BSP found!");
981
982	/* report fact that its NOT a default configuration */
983	return 0;
984}
985
986
987void
988assign_apic_irq(int apic, int intpin, int irq)
989{
990	int x;
991
992	if (int_to_apicintpin[irq].ioapic != -1)
993		panic("assign_apic_irq: inconsistent table");
994
995	int_to_apicintpin[irq].ioapic = apic;
996	int_to_apicintpin[irq].int_pin = intpin;
997	int_to_apicintpin[irq].apic_address = ioapic[apic];
998	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
999
1000	for (x = 0; x < nintrs; x++) {
1001		if ((io_apic_ints[x].int_type == 0 ||
1002		     io_apic_ints[x].int_type == 3) &&
1003		    io_apic_ints[x].int_vector == 0xff &&
1004		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
1005		    io_apic_ints[x].dst_apic_int == intpin)
1006			io_apic_ints[x].int_vector = irq;
1007	}
1008}
1009
1010void
1011revoke_apic_irq(int irq)
1012{
1013	int x;
1014	int oldapic;
1015	int oldintpin;
1016
1017	if (int_to_apicintpin[irq].ioapic == -1)
1018		panic("assign_apic_irq: inconsistent table");
1019
1020	oldapic = int_to_apicintpin[irq].ioapic;
1021	oldintpin = int_to_apicintpin[irq].int_pin;
1022
1023	int_to_apicintpin[irq].ioapic = -1;
1024	int_to_apicintpin[irq].int_pin = 0;
1025	int_to_apicintpin[irq].apic_address = NULL;
1026	int_to_apicintpin[irq].redirindex = 0;
1027
1028	for (x = 0; x < nintrs; x++) {
1029		if ((io_apic_ints[x].int_type == 0 ||
1030		     io_apic_ints[x].int_type == 3) &&
1031		    io_apic_ints[x].int_vector == 0xff &&
1032		    io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1033		    io_apic_ints[x].dst_apic_int == oldintpin)
1034			io_apic_ints[x].int_vector = 0xff;
1035	}
1036}
1037
1038
1039static void
1040allocate_apic_irq(int intr)
1041{
1042	int apic;
1043	int intpin;
1044	int irq;
1045
1046	if (io_apic_ints[intr].int_vector != 0xff)
1047		return;		/* Interrupt handler already assigned */
1048
1049	if (io_apic_ints[intr].int_type != 0 &&
1050	    (io_apic_ints[intr].int_type != 3 ||
1051	     (io_apic_ints[intr].dst_apic_id == IO_TO_ID(0) &&
1052	      io_apic_ints[intr].dst_apic_int == 0)))
1053		return;		/* Not INT or ExtInt on != (0, 0) */
1054
1055	irq = 0;
1056	while (irq < APIC_INTMAPSIZE &&
1057	       int_to_apicintpin[irq].ioapic != -1)
1058		irq++;
1059
1060	if (irq >= APIC_INTMAPSIZE)
1061		return;		/* No free interrupt handlers */
1062
1063	apic = ID_TO_IO(io_apic_ints[intr].dst_apic_id);
1064	intpin = io_apic_ints[intr].dst_apic_int;
1065
1066	assign_apic_irq(apic, intpin, irq);
1067	io_apic_setup_intpin(apic, intpin);
1068}
1069
1070
1071static void
1072swap_apic_id(int apic, int oldid, int newid)
1073{
1074	int x;
1075	int oapic;
1076
1077
1078	if (oldid == newid)
1079		return;			/* Nothing to do */
1080
1081	printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
1082	       apic, oldid, newid);
1083
1084	/* Swap physical APIC IDs in interrupt entries */
1085	for (x = 0; x < nintrs; x++) {
1086		if (io_apic_ints[x].dst_apic_id == oldid)
1087			io_apic_ints[x].dst_apic_id = newid;
1088		else if (io_apic_ints[x].dst_apic_id == newid)
1089			io_apic_ints[x].dst_apic_id = oldid;
1090	}
1091
1092	/* Swap physical APIC IDs in IO_TO_ID mappings */
1093	for (oapic = 0; oapic < mp_napics; oapic++)
1094		if (IO_TO_ID(oapic) == newid)
1095			break;
1096
1097	if (oapic < mp_napics) {
1098		printf("Changing APIC ID for IO APIC #%d from "
1099		       "%d to %d in MP table\n",
1100		       oapic, newid, oldid);
1101		IO_TO_ID(oapic) = oldid;
1102	}
1103	IO_TO_ID(apic) = newid;
1104}
1105
1106
1107static void
1108fix_id_to_io_mapping(void)
1109{
1110	int x;
1111
1112	for (x = 0; x < NAPICID; x++)
1113		ID_TO_IO(x) = -1;
1114
1115	for (x = 0; x <= mp_naps; x++)
1116		if (CPU_TO_ID(x) < NAPICID)
1117			ID_TO_IO(CPU_TO_ID(x)) = x;
1118
1119	for (x = 0; x < mp_napics; x++)
1120		if (IO_TO_ID(x) < NAPICID)
1121			ID_TO_IO(IO_TO_ID(x)) = x;
1122}
1123
1124
1125static int
1126first_free_apic_id(void)
1127{
1128	int freeid, x;
1129
1130	for (freeid = 0; freeid < NAPICID; freeid++) {
1131		for (x = 0; x <= mp_naps; x++)
1132			if (CPU_TO_ID(x) == freeid)
1133				break;
1134		if (x <= mp_naps)
1135			continue;
1136		for (x = 0; x < mp_napics; x++)
1137			if (IO_TO_ID(x) == freeid)
1138				break;
1139		if (x < mp_napics)
1140			continue;
1141		return freeid;
1142	}
1143	return freeid;
1144}
1145
1146
1147static int
1148io_apic_id_acceptable(int apic, int id)
1149{
1150	int cpu;		/* Logical CPU number */
1151	int oapic;		/* Logical IO APIC number for other IO APIC */
1152
1153	if (id >= NAPICID)
1154		return 0;	/* Out of range */
1155
1156	for (cpu = 0; cpu <= mp_naps; cpu++)
1157		if (CPU_TO_ID(cpu) == id)
1158			return 0;	/* Conflict with CPU */
1159
1160	for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
1161		if (IO_TO_ID(oapic) == id)
1162			return 0;	/* Conflict with other APIC */
1163
1164	return 1;		/* ID is acceptable for IO APIC */
1165}
1166
1167
1168/*
1169 * parse an Intel MP specification table
1170 */
1171static void
1172fix_mp_table(void)
1173{
1174	int	x;
1175	int	id;
1176	int	bus_0 = 0;	/* Stop GCC warning */
1177	int	bus_pci = 0;	/* Stop GCC warning */
1178	int	num_pci_bus;
1179	int	apic;		/* IO APIC unit number */
1180	int     freeid;		/* Free physical APIC ID */
1181	int	physid;		/* Current physical IO APIC ID */
1182
1183	/*
1184	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1185	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1186	 * exists the BIOS must begin with bus entries for the PCI bus and use
1187	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1188	 * exists the BIOS can choose to ignore this ordering, and indeed many
1189	 * MP motherboards do ignore it.  This causes a problem when the PCI
1190	 * sub-system makes requests of the MP sub-system based on PCI bus
1191	 * numbers.	So here we look for the situation and renumber the
1192	 * busses and associated INTs in an effort to "make it right".
1193	 */
1194
1195	/* find bus 0, PCI bus, count the number of PCI busses */
1196	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1197		if (bus_data[x].bus_id == 0) {
1198			bus_0 = x;
1199		}
1200		if (bus_data[x].bus_type == PCI) {
1201			++num_pci_bus;
1202			bus_pci = x;
1203		}
1204	}
1205	/*
1206	 * bus_0 == slot of bus with ID of 0
1207	 * bus_pci == slot of last PCI bus encountered
1208	 */
1209
1210	/* check the 1 PCI bus case for sanity */
1211	/* if it is number 0 all is well */
1212	if (num_pci_bus == 1 &&
1213	    bus_data[bus_pci].bus_id != 0) {
1214
1215		/* mis-numbered, swap with whichever bus uses slot 0 */
1216
1217		/* swap the bus entry types */
1218		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1219		bus_data[bus_0].bus_type = PCI;
1220
1221		/* swap each relavant INTerrupt entry */
1222		id = bus_data[bus_pci].bus_id;
1223		for (x = 0; x < nintrs; ++x) {
1224			if (io_apic_ints[x].src_bus_id == id) {
1225				io_apic_ints[x].src_bus_id = 0;
1226			}
1227			else if (io_apic_ints[x].src_bus_id == 0) {
1228				io_apic_ints[x].src_bus_id = id;
1229			}
1230		}
1231	}
1232
1233	/* Assign IO APIC IDs.
1234	 *
1235	 * First try the existing ID. If a conflict is detected, try
1236	 * the ID in the MP table.  If a conflict is still detected, find
1237	 * a free id.
1238	 *
1239	 * We cannot use the ID_TO_IO table before all conflicts has been
1240	 * resolved and the table has been corrected.
1241	 */
1242	for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
1243
1244		/* First try to use the value set by the BIOS */
1245		physid = io_apic_get_id(apic);
1246		if (io_apic_id_acceptable(apic, physid)) {
1247			if (IO_TO_ID(apic) != physid)
1248				swap_apic_id(apic, IO_TO_ID(apic), physid);
1249			continue;
1250		}
1251
1252		/* Then check if the value in the MP table is acceptable */
1253		if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
1254			continue;
1255
1256		/* Last resort, find a free APIC ID and use it */
1257		freeid = first_free_apic_id();
1258		if (freeid >= NAPICID)
1259			panic("No free physical APIC IDs found");
1260
1261		if (io_apic_id_acceptable(apic, freeid)) {
1262			swap_apic_id(apic, IO_TO_ID(apic), freeid);
1263			continue;
1264		}
1265		panic("Free physical APIC ID not usable");
1266	}
1267	fix_id_to_io_mapping();
1268
1269	/* detect and fix broken Compaq MP table */
1270	if (apic_int_type(0, 0) == -1) {
1271		printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
1272		io_apic_ints[nintrs].int_type = 3;	/* ExtInt */
1273		io_apic_ints[nintrs].int_vector = 0xff;	/* Unassigned */
1274		/* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
1275		io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
1276		io_apic_ints[nintrs].dst_apic_int = 0;	/* Pin 0 */
1277		nintrs++;
1278	}
1279}
1280
1281
1282/* Assign low level interrupt handlers */
1283static void
1284setup_apic_irq_mapping(void)
1285{
1286	int	x;
1287	int	int_vector;
1288
1289	/* Clear array */
1290	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1291		int_to_apicintpin[x].ioapic = -1;
1292		int_to_apicintpin[x].int_pin = 0;
1293		int_to_apicintpin[x].apic_address = NULL;
1294		int_to_apicintpin[x].redirindex = 0;
1295	}
1296
1297	/* First assign ISA/EISA interrupts */
1298	for (x = 0; x < nintrs; x++) {
1299		int_vector = io_apic_ints[x].src_bus_irq;
1300		if (int_vector < APIC_INTMAPSIZE &&
1301		    io_apic_ints[x].int_vector == 0xff &&
1302		    int_to_apicintpin[int_vector].ioapic == -1 &&
1303		    (apic_int_is_bus_type(x, ISA) ||
1304		     apic_int_is_bus_type(x, EISA)) &&
1305		    io_apic_ints[x].int_type == 0) {
1306			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1307					io_apic_ints[x].dst_apic_int,
1308					int_vector);
1309		}
1310	}
1311
1312	/* Assign ExtInt entry if no ISA/EISA interrupt 0 entry */
1313	for (x = 0; x < nintrs; x++) {
1314		if (io_apic_ints[x].dst_apic_int == 0 &&
1315		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1316		    io_apic_ints[x].int_vector == 0xff &&
1317		    int_to_apicintpin[0].ioapic == -1 &&
1318		    io_apic_ints[x].int_type == 3) {
1319			assign_apic_irq(0, 0, 0);
1320			break;
1321		}
1322	}
1323	/* PCI interrupt assignment is deferred */
1324}
1325
1326
1327static int
1328processor_entry(proc_entry_ptr entry, int cpu)
1329{
1330	/* check for usability */
1331	if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1332		return 0;
1333
1334	if(entry->apic_id >= NAPICID)
1335		panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
1336	/* check for BSP flag */
1337	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1338		boot_cpu_id = entry->apic_id;
1339		CPU_TO_ID(0) = entry->apic_id;
1340		ID_TO_CPU(entry->apic_id) = 0;
1341		return 0;	/* its already been counted */
1342	}
1343
1344	/* add another AP to list, if less than max number of CPUs */
1345	else if (cpu < MAXCPU) {
1346		CPU_TO_ID(cpu) = entry->apic_id;
1347		ID_TO_CPU(entry->apic_id) = cpu;
1348		return 1;
1349	}
1350
1351	return 0;
1352}
1353
1354
1355static int
1356bus_entry(bus_entry_ptr entry, int bus)
1357{
1358	int     x;
1359	char    c, name[8];
1360
1361	/* encode the name into an index */
1362	for (x = 0; x < 6; ++x) {
1363		if ((c = entry->bus_type[x]) == ' ')
1364			break;
1365		name[x] = c;
1366	}
1367	name[x] = '\0';
1368
1369	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1370		panic("unknown bus type: '%s'", name);
1371
1372	bus_data[bus].bus_id = entry->bus_id;
1373	bus_data[bus].bus_type = x;
1374
1375	return 1;
1376}
1377
1378
1379static int
1380io_apic_entry(io_apic_entry_ptr entry, int apic)
1381{
1382	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1383		return 0;
1384
1385	IO_TO_ID(apic) = entry->apic_id;
1386	if (entry->apic_id < NAPICID)
1387		ID_TO_IO(entry->apic_id) = apic;
1388
1389	return 1;
1390}
1391
1392
1393static int
1394lookup_bus_type(char *name)
1395{
1396	int     x;
1397
1398	for (x = 0; x < MAX_BUSTYPE; ++x)
1399		if (strcmp(bus_type_table[x].name, name) == 0)
1400			return bus_type_table[x].type;
1401
1402	return UNKNOWN_BUSTYPE;
1403}
1404
1405
1406static int
1407int_entry(int_entry_ptr entry, int intr)
1408{
1409	int apic;
1410
1411	io_apic_ints[intr].int_type = entry->int_type;
1412	io_apic_ints[intr].int_flags = entry->int_flags;
1413	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1414	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1415	if (entry->dst_apic_id == 255) {
1416		/* This signal goes to all IO APICS.  Select an IO APIC
1417		   with sufficient number of interrupt pins */
1418		for (apic = 0; apic < mp_napics; apic++)
1419			if (((io_apic_read(apic, IOAPIC_VER) &
1420			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1421			    entry->dst_apic_int)
1422				break;
1423		if (apic < mp_napics)
1424			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1425		else
1426			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1427	} else
1428		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1429	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1430
1431	return 1;
1432}
1433
1434
1435static int
1436apic_int_is_bus_type(int intr, int bus_type)
1437{
1438	int     bus;
1439
1440	for (bus = 0; bus < mp_nbusses; ++bus)
1441		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1442		    && ((int) bus_data[bus].bus_type == bus_type))
1443			return 1;
1444
1445	return 0;
1446}
1447
1448
1449/*
1450 * Given a traditional ISA INT mask, return an APIC mask.
1451 */
1452u_int
1453isa_apic_mask(u_int isa_mask)
1454{
1455	int isa_irq;
1456	int apic_pin;
1457
1458#if defined(SKIP_IRQ15_REDIRECT)
1459	if (isa_mask == (1 << 15)) {
1460		printf("skipping ISA IRQ15 redirect\n");
1461		return isa_mask;
1462	}
1463#endif  /* SKIP_IRQ15_REDIRECT */
1464
1465	isa_irq = ffs(isa_mask);		/* find its bit position */
1466	if (isa_irq == 0)			/* doesn't exist */
1467		return 0;
1468	--isa_irq;				/* make it zero based */
1469
1470	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1471	if (apic_pin == -1)
1472		return 0;
1473
1474	return (1 << apic_pin);			/* convert pin# to a mask */
1475}
1476
1477
1478/*
1479 * Determine which APIC pin an ISA/EISA INT is attached to.
1480 */
1481#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1482#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1483#define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1484#define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1485
1486#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1487int
1488isa_apic_irq(int isa_irq)
1489{
1490	int     intr;
1491
1492	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1493		if (INTTYPE(intr) == 0) {		/* standard INT */
1494			if (SRCBUSIRQ(intr) == isa_irq) {
1495				if (apic_int_is_bus_type(intr, ISA) ||
1496			            apic_int_is_bus_type(intr, EISA)) {
1497					if (INTIRQ(intr) == 0xff)
1498						return -1; /* unassigned */
1499					return INTIRQ(intr);	/* found */
1500				}
1501			}
1502		}
1503	}
1504	return -1;					/* NOT found */
1505}
1506
1507
1508/*
1509 * Determine which APIC pin a PCI INT is attached to.
1510 */
1511#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1512#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1513#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1514int
1515pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1516{
1517	int     intr;
1518
1519	--pciInt;					/* zero based */
1520
1521	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1522		if ((INTTYPE(intr) == 0)		/* standard INT */
1523		    && (SRCBUSID(intr) == pciBus)
1524		    && (SRCBUSDEVICE(intr) == pciDevice)
1525		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1526			if (apic_int_is_bus_type(intr, PCI)) {
1527				if (INTIRQ(intr) == 0xff)
1528					allocate_apic_irq(intr);
1529				if (INTIRQ(intr) == 0xff)
1530					return -1;	/* unassigned */
1531				return INTIRQ(intr);	/* exact match */
1532			}
1533
1534	return -1;					/* NOT found */
1535}
1536
1537int
1538next_apic_irq(int irq)
1539{
1540	int intr, ointr;
1541	int bus, bustype;
1542
1543	bus = 0;
1544	bustype = 0;
1545	for (intr = 0; intr < nintrs; intr++) {
1546		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1547			continue;
1548		bus = SRCBUSID(intr);
1549		bustype = apic_bus_type(bus);
1550		if (bustype != ISA &&
1551		    bustype != EISA &&
1552		    bustype != PCI)
1553			continue;
1554		break;
1555	}
1556	if (intr >= nintrs) {
1557		return -1;
1558	}
1559	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1560		if (INTTYPE(ointr) != 0)
1561			continue;
1562		if (bus != SRCBUSID(ointr))
1563			continue;
1564		if (bustype == PCI) {
1565			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1566				continue;
1567			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1568				continue;
1569		}
1570		if (bustype == ISA || bustype == EISA) {
1571			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1572				continue;
1573		}
1574		if (INTPIN(intr) == INTPIN(ointr))
1575			continue;
1576		break;
1577	}
1578	if (ointr >= nintrs) {
1579		return -1;
1580	}
1581	return INTIRQ(ointr);
1582}
1583#undef SRCBUSLINE
1584#undef SRCBUSDEVICE
1585#undef SRCBUSID
1586#undef SRCBUSIRQ
1587
1588#undef INTPIN
1589#undef INTIRQ
1590#undef INTAPIC
1591#undef INTTYPE
1592
1593
1594/*
1595 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1596 *
1597 * XXX FIXME:
1598 *  Exactly what this means is unclear at this point.  It is a solution
1599 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1600 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1601 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1602 *  option.
1603 */
1604int
1605undirect_isa_irq(int rirq)
1606{
1607#if defined(READY)
1608	if (bootverbose)
1609	    printf("Freeing redirected ISA irq %d.\n", rirq);
1610	/** FIXME: tickle the MB redirector chip */
1611	return -1;
1612#else
1613	if (bootverbose)
1614	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1615	return 0;
1616#endif  /* READY */
1617}
1618
1619
1620/*
1621 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1622 */
1623int
1624undirect_pci_irq(int rirq)
1625{
1626#if defined(READY)
1627	if (bootverbose)
1628		printf("Freeing redirected PCI irq %d.\n", rirq);
1629
1630	/** FIXME: tickle the MB redirector chip */
1631	return -1;
1632#else
1633	if (bootverbose)
1634		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1635		       rirq);
1636	return 0;
1637#endif  /* READY */
1638}
1639
1640
1641/*
1642 * given a bus ID, return:
1643 *  the bus type if found
1644 *  -1 if NOT found
1645 */
1646int
1647apic_bus_type(int id)
1648{
1649	int     x;
1650
1651	for (x = 0; x < mp_nbusses; ++x)
1652		if (bus_data[x].bus_id == id)
1653			return bus_data[x].bus_type;
1654
1655	return -1;
1656}
1657
1658
1659/*
1660 * given a LOGICAL APIC# and pin#, return:
1661 *  the associated src bus ID if found
1662 *  -1 if NOT found
1663 */
1664int
1665apic_src_bus_id(int apic, int pin)
1666{
1667	int     x;
1668
1669	/* search each of the possible INTerrupt sources */
1670	for (x = 0; x < nintrs; ++x)
1671		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1672		    (pin == io_apic_ints[x].dst_apic_int))
1673			return (io_apic_ints[x].src_bus_id);
1674
1675	return -1;		/* NOT found */
1676}
1677
1678
1679/*
1680 * given a LOGICAL APIC# and pin#, return:
1681 *  the associated src bus IRQ if found
1682 *  -1 if NOT found
1683 */
1684int
1685apic_src_bus_irq(int apic, int pin)
1686{
1687	int     x;
1688
1689	for (x = 0; x < nintrs; x++)
1690		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1691		    (pin == io_apic_ints[x].dst_apic_int))
1692			return (io_apic_ints[x].src_bus_irq);
1693
1694	return -1;		/* NOT found */
1695}
1696
1697
1698/*
1699 * given a LOGICAL APIC# and pin#, return:
1700 *  the associated INTerrupt type if found
1701 *  -1 if NOT found
1702 */
1703int
1704apic_int_type(int apic, int pin)
1705{
1706	int     x;
1707
1708	/* search each of the possible INTerrupt sources */
1709	for (x = 0; x < nintrs; ++x)
1710		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1711		    (pin == io_apic_ints[x].dst_apic_int))
1712			return (io_apic_ints[x].int_type);
1713
1714	return -1;		/* NOT found */
1715}
1716
1717int
1718apic_irq(int apic, int pin)
1719{
1720	int x;
1721	int res;
1722
1723	for (x = 0; x < nintrs; ++x)
1724		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1725		    (pin == io_apic_ints[x].dst_apic_int)) {
1726			res = io_apic_ints[x].int_vector;
1727			if (res == 0xff)
1728				return -1;
1729			if (apic != int_to_apicintpin[res].ioapic)
1730				panic("apic_irq: inconsistent table");
1731			if (pin != int_to_apicintpin[res].int_pin)
1732				panic("apic_irq inconsistent table (2)");
1733			return res;
1734		}
1735	return -1;
1736}
1737
1738
1739/*
1740 * given a LOGICAL APIC# and pin#, return:
1741 *  the associated trigger mode if found
1742 *  -1 if NOT found
1743 */
1744int
1745apic_trigger(int apic, int pin)
1746{
1747	int     x;
1748
1749	/* search each of the possible INTerrupt sources */
1750	for (x = 0; x < nintrs; ++x)
1751		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1752		    (pin == io_apic_ints[x].dst_apic_int))
1753			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1754
1755	return -1;		/* NOT found */
1756}
1757
1758
1759/*
1760 * given a LOGICAL APIC# and pin#, return:
1761 *  the associated 'active' level if found
1762 *  -1 if NOT found
1763 */
1764int
1765apic_polarity(int apic, int pin)
1766{
1767	int     x;
1768
1769	/* search each of the possible INTerrupt sources */
1770	for (x = 0; x < nintrs; ++x)
1771		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1772		    (pin == io_apic_ints[x].dst_apic_int))
1773			return (io_apic_ints[x].int_flags & 0x03);
1774
1775	return -1;		/* NOT found */
1776}
1777
1778
1779/*
1780 * set data according to MP defaults
1781 * FIXME: probably not complete yet...
1782 */
1783static void
1784default_mp_table(int type)
1785{
1786	int     ap_cpu_id;
1787#if defined(APIC_IO)
1788	int     io_apic_id;
1789	int     pin;
1790#endif	/* APIC_IO */
1791
1792#if 0
1793	printf("  MP default config type: %d\n", type);
1794	switch (type) {
1795	case 1:
1796		printf("   bus: ISA, APIC: 82489DX\n");
1797		break;
1798	case 2:
1799		printf("   bus: EISA, APIC: 82489DX\n");
1800		break;
1801	case 3:
1802		printf("   bus: EISA, APIC: 82489DX\n");
1803		break;
1804	case 4:
1805		printf("   bus: MCA, APIC: 82489DX\n");
1806		break;
1807	case 5:
1808		printf("   bus: ISA+PCI, APIC: Integrated\n");
1809		break;
1810	case 6:
1811		printf("   bus: EISA+PCI, APIC: Integrated\n");
1812		break;
1813	case 7:
1814		printf("   bus: MCA+PCI, APIC: Integrated\n");
1815		break;
1816	default:
1817		printf("   future type\n");
1818		break;
1819		/* NOTREACHED */
1820	}
1821#endif	/* 0 */
1822
1823	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1824	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1825
1826	/* BSP */
1827	CPU_TO_ID(0) = boot_cpu_id;
1828	ID_TO_CPU(boot_cpu_id) = 0;
1829
1830	/* one and only AP */
1831	CPU_TO_ID(1) = ap_cpu_id;
1832	ID_TO_CPU(ap_cpu_id) = 1;
1833
1834#if defined(APIC_IO)
1835	/* one and only IO APIC */
1836	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1837
1838	/*
1839	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1840	 * necessary as some hardware isn't properly setting up the IO APIC
1841	 */
1842#if defined(REALLY_ANAL_IOAPICID_VALUE)
1843	if (io_apic_id != 2) {
1844#else
1845	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1846#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1847		io_apic_set_id(0, 2);
1848		io_apic_id = 2;
1849	}
1850	IO_TO_ID(0) = io_apic_id;
1851	ID_TO_IO(io_apic_id) = 0;
1852#endif	/* APIC_IO */
1853
1854	/* fill out bus entries */
1855	switch (type) {
1856	case 1:
1857	case 2:
1858	case 3:
1859	case 4:
1860	case 5:
1861	case 6:
1862	case 7:
1863		bus_data[0].bus_id = default_data[type - 1][1];
1864		bus_data[0].bus_type = default_data[type - 1][2];
1865		bus_data[1].bus_id = default_data[type - 1][3];
1866		bus_data[1].bus_type = default_data[type - 1][4];
1867		break;
1868
1869	/* case 4: case 7:		   MCA NOT supported */
1870	default:		/* illegal/reserved */
1871		panic("BAD default MP config: %d", type);
1872		/* NOTREACHED */
1873	}
1874
1875#if defined(APIC_IO)
1876	/* general cases from MP v1.4, table 5-2 */
1877	for (pin = 0; pin < 16; ++pin) {
1878		io_apic_ints[pin].int_type = 0;
1879		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1880		io_apic_ints[pin].src_bus_id = 0;
1881		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1882		io_apic_ints[pin].dst_apic_id = io_apic_id;
1883		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1884	}
1885
1886	/* special cases from MP v1.4, table 5-2 */
1887	if (type == 2) {
1888		io_apic_ints[2].int_type = 0xff;	/* N/C */
1889		io_apic_ints[13].int_type = 0xff;	/* N/C */
1890#if !defined(APIC_MIXED_MODE)
1891		/** FIXME: ??? */
1892		panic("sorry, can't support type 2 default yet");
1893#endif	/* APIC_MIXED_MODE */
1894	}
1895	else
1896		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1897
1898	if (type == 7)
1899		io_apic_ints[0].int_type = 0xff;	/* N/C */
1900	else
1901		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1902#endif	/* APIC_IO */
1903}
1904
1905
1906/*
1907 * start each AP in our list
1908 */
1909static int
1910start_all_aps(u_int boot_addr)
1911{
1912	int     x, i, pg;
1913	u_char  mpbiosreason;
1914	u_long  mpbioswarmvec;
1915	struct globaldata *gd;
1916	char *stack;
1917	uintptr_t kptbase;
1918
1919	POSTCODE(START_ALL_APS_POST);
1920
1921	mtx_init(&ap_boot_mtx, "ap boot", MTX_SPIN);
1922
1923	/* initialize BSP's local APIC */
1924	apic_initialize();
1925	bsp_apic_ready = 1;
1926
1927	/* install the AP 1st level boot code */
1928	install_ap_tramp(boot_addr);
1929
1930
1931	/* save the current value of the warm-start vector */
1932	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1933#ifndef PC98
1934	outb(CMOS_REG, BIOS_RESET);
1935	mpbiosreason = inb(CMOS_DATA);
1936#endif
1937
1938	/* record BSP in CPU map */
1939	all_cpus = 1;
1940
1941	/* set up temporary P==V mapping for AP boot */
1942	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
1943	kptbase = (uintptr_t)(void *)KPTphys;
1944	for (x = 0; x < NKPT; x++)
1945		PTD[x] = (pd_entry_t)(PG_V | PG_RW |
1946		    ((kptbase + x * PAGE_SIZE) & PG_FRAME));
1947	invltlb();
1948
1949	/* start each AP */
1950	for (x = 1; x <= mp_naps; ++x) {
1951
1952		/* This is a bit verbose, it will go away soon.  */
1953
1954		/* first page of AP's private space */
1955		pg = x * i386_btop(sizeof(struct privatespace));
1956
1957		/* allocate a new private data page */
1958		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1959
1960		/* wire it into the private page table page */
1961		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1962
1963		/* allocate and set up an idle stack data page */
1964		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1965		for (i = 0; i < UPAGES; i++)
1966			SMPpt[pg + 1 + i] = (pt_entry_t)
1967			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1968
1969		/* prime data page for it to use */
1970		gd->gd_cpuid = x;
1971		globaldata_register(gd);
1972
1973		/* setup a vector to our boot code */
1974		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1975		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1976#ifndef PC98
1977		outb(CMOS_REG, BIOS_RESET);
1978		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1979#endif
1980
1981		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
1982		bootAP = x;
1983
1984		/* attempt to start the Application Processor */
1985		CHECK_INIT(99);	/* setup checkpoints */
1986		if (!start_ap(x, boot_addr)) {
1987			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1988			CHECK_PRINT("trace");	/* show checkpoints */
1989			/* better panic as the AP may be running loose */
1990			printf("panic y/n? [y] ");
1991			if (cngetc() != 'n')
1992				panic("bye-bye");
1993		}
1994		CHECK_PRINT("trace");		/* show checkpoints */
1995
1996		/* record its version info */
1997		cpu_apic_versions[x] = cpu_apic_versions[0];
1998
1999		all_cpus |= (1 << x);		/* record AP in CPU map */
2000	}
2001
2002	/* build our map of 'other' CPUs */
2003	PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2004
2005	/* fill in our (BSP) APIC version */
2006	cpu_apic_versions[0] = lapic.version;
2007
2008	/* restore the warmstart vector */
2009	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
2010#ifndef PC98
2011	outb(CMOS_REG, BIOS_RESET);
2012	outb(CMOS_DATA, mpbiosreason);
2013#endif
2014
2015	/*
2016	 * Set up the idle context for the BSP.  Similar to above except
2017	 * that some was done by locore, some by pmap.c and some is implicit
2018	 * because the BSP is cpu#0 and the page is initially zero, and also
2019	 * because we can refer to variables by name on the BSP..
2020	 */
2021
2022	/* Allocate and setup BSP idle stack */
2023	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
2024	for (i = 0; i < UPAGES; i++)
2025		SMPpt[1 + i] = (pt_entry_t)
2026		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
2027
2028	for (x = 0; x < NKPT; x++)
2029		PTD[x] = 0;
2030	pmap_set_opt();
2031
2032	/* number of APs actually started */
2033	return mp_ncpus - 1;
2034}
2035
2036
2037/*
2038 * load the 1st level AP boot code into base memory.
2039 */
2040
2041/* targets for relocation */
2042extern void bigJump(void);
2043extern void bootCodeSeg(void);
2044extern void bootDataSeg(void);
2045extern void MPentry(void);
2046extern u_int MP_GDT;
2047extern u_int mp_gdtbase;
2048
2049static void
2050install_ap_tramp(u_int boot_addr)
2051{
2052	int     x;
2053	int     size = *(int *) ((u_long) & bootMP_size);
2054	u_char *src = (u_char *) ((u_long) bootMP);
2055	u_char *dst = (u_char *) boot_addr + KERNBASE;
2056	u_int   boot_base = (u_int) bootMP;
2057	u_int8_t *dst8;
2058	u_int16_t *dst16;
2059	u_int32_t *dst32;
2060
2061	POSTCODE(INSTALL_AP_TRAMP_POST);
2062
2063	for (x = 0; x < size; ++x)
2064		*dst++ = *src++;
2065
2066	/*
2067	 * modify addresses in code we just moved to basemem. unfortunately we
2068	 * need fairly detailed info about mpboot.s for this to work.  changes
2069	 * to mpboot.s might require changes here.
2070	 */
2071
2072	/* boot code is located in KERNEL space */
2073	dst = (u_char *) boot_addr + KERNBASE;
2074
2075	/* modify the lgdt arg */
2076	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
2077	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
2078
2079	/* modify the ljmp target for MPentry() */
2080	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
2081	*dst32 = ((u_int) MPentry - KERNBASE);
2082
2083	/* modify the target for boot code segment */
2084	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
2085	dst8 = (u_int8_t *) (dst16 + 1);
2086	*dst16 = (u_int) boot_addr & 0xffff;
2087	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2088
2089	/* modify the target for boot data segment */
2090	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
2091	dst8 = (u_int8_t *) (dst16 + 1);
2092	*dst16 = (u_int) boot_addr & 0xffff;
2093	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2094}
2095
2096
2097/*
2098 * this function starts the AP (application processor) identified
2099 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
2100 * to accomplish this.  This is necessary because of the nuances
2101 * of the different hardware we might encounter.  It ain't pretty,
2102 * but it seems to work.
2103 */
2104static int
2105start_ap(int logical_cpu, u_int boot_addr)
2106{
2107	int     physical_cpu;
2108	int     vector;
2109	int     cpus;
2110	u_long  icr_lo, icr_hi;
2111
2112	POSTCODE(START_AP_POST);
2113
2114	/* get the PHYSICAL APIC ID# */
2115	physical_cpu = CPU_TO_ID(logical_cpu);
2116
2117	/* calculate the vector */
2118	vector = (boot_addr >> 12) & 0xff;
2119
2120	/* used as a watchpoint to signal AP startup */
2121	cpus = mp_ncpus;
2122
2123	/*
2124	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2125	 * and running the target CPU. OR this INIT IPI might be latched (P5
2126	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2127	 * ignored.
2128	 */
2129
2130	/* setup the address for the target AP */
2131	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2132	icr_hi |= (physical_cpu << 24);
2133	lapic.icr_hi = icr_hi;
2134
2135	/* do an INIT IPI: assert RESET */
2136	icr_lo = lapic.icr_lo & 0xfff00000;
2137	lapic.icr_lo = icr_lo | 0x0000c500;
2138
2139	/* wait for pending status end */
2140	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2141		 /* spin */ ;
2142
2143	/* do an INIT IPI: deassert RESET */
2144	lapic.icr_lo = icr_lo | 0x00008500;
2145
2146	/* wait for pending status end */
2147	u_sleep(10000);		/* wait ~10mS */
2148	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2149		 /* spin */ ;
2150
2151	/*
2152	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2153	 * latched, (P5 bug) this 1st STARTUP would then terminate
2154	 * immediately, and the previously started INIT IPI would continue. OR
2155	 * the previous INIT IPI has already run. and this STARTUP IPI will
2156	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2157	 * will run.
2158	 */
2159
2160	/* do a STARTUP IPI */
2161	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2162	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2163		 /* spin */ ;
2164	u_sleep(200);		/* wait ~200uS */
2165
2166	/*
2167	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2168	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2169	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2170	 * recognized after hardware RESET or INIT IPI.
2171	 */
2172
2173	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2174	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2175		 /* spin */ ;
2176	u_sleep(200);		/* wait ~200uS */
2177
2178	/* wait for it to start */
2179	set_apic_timer(5000000);/* == 5 seconds */
2180	while (read_apic_timer())
2181		if (mp_ncpus > cpus)
2182			return 1;	/* return SUCCESS */
2183
2184	return 0;		/* return FAILURE */
2185}
2186
2187/*
2188 * Flush the TLB on all other CPU's
2189 *
2190 * XXX: Needs to handshake and wait for completion before proceding.
2191 */
2192void
2193smp_invltlb(void)
2194{
2195#if defined(APIC_IO)
2196	if (smp_started && invltlb_ok)
2197		ipi_all_but_self(IPI_INVLTLB);
2198#endif  /* APIC_IO */
2199}
2200
2201void
2202invlpg(u_int addr)
2203{
2204	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2205
2206	/* send a message to the other CPUs */
2207	smp_invltlb();
2208}
2209
2210void
2211invltlb(void)
2212{
2213	u_long  temp;
2214
2215	/*
2216	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2217	 * inlined.
2218	 */
2219	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2220
2221	/* send a message to the other CPUs */
2222	smp_invltlb();
2223}
2224
2225
2226/*
2227 * This is called once the rest of the system is up and running and we're
2228 * ready to let the AP's out of the pen.
2229 */
2230void
2231ap_init(void)
2232{
2233	u_int	apic_id;
2234
2235	/* spin until all the AP's are ready */
2236	while (!aps_ready)
2237		/* spin */ ;
2238
2239	/*
2240	 * Set curproc to our per-cpu idleproc so that mutexes have
2241	 * something unique to lock with.
2242	 */
2243	PCPU_SET(curproc, PCPU_GET(idleproc));
2244	PCPU_SET(spinlocks, NULL);
2245
2246	/* lock against other AP's that are waking up */
2247	mtx_lock_spin(&ap_boot_mtx);
2248
2249	/* BSP may have changed PTD while we're waiting for the lock */
2250	cpu_invltlb();
2251
2252	smp_cpus++;
2253
2254#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2255	lidt(&r_idt);
2256#endif
2257
2258	/* Build our map of 'other' CPUs. */
2259	PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2260
2261	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
2262
2263	/* set up CPU registers and state */
2264	cpu_setregs();
2265
2266	/* set up FPU state on the AP */
2267	npxinit(__INITIAL_NPXCW__);
2268
2269	/* A quick check from sanity claus */
2270	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2271	if (PCPU_GET(cpuid) != apic_id) {
2272		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
2273		printf("SMP: apic_id = %d\n", apic_id);
2274		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2275		panic("cpuid mismatch! boom!!");
2276	}
2277
2278	/* Init local apic for irq's */
2279	apic_initialize();
2280
2281	/* Set memory range attributes for this CPU to match the BSP */
2282	mem_range_AP_init();
2283
2284	/*
2285	 * Activate smp_invltlb, although strictly speaking, this isn't
2286	 * quite correct yet.  We should have a bitfield for cpus willing
2287	 * to accept TLB flush IPI's or something and sync them.
2288	 */
2289	if (smp_cpus == mp_ncpus) {
2290		invltlb_ok = 1;
2291		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2292		smp_active = 1;	 /* historic */
2293	}
2294
2295	/* let other AP's wake up now */
2296	mtx_unlock_spin(&ap_boot_mtx);
2297
2298	/* wait until all the AP's are up */
2299	while (smp_started == 0)
2300		; /* nothing */
2301
2302	microuptime(PCPU_PTR(switchtime));
2303	PCPU_SET(switchticks, ticks);
2304
2305	/* ok, now grab sched_lock and enter the scheduler */
2306	enable_intr();
2307	mtx_lock_spin(&sched_lock);
2308	cpu_throw();	/* doesn't return */
2309
2310	panic("scheduler returned us to ap_init");
2311}
2312
2313/*
2314 * For statclock, we send an IPI to all CPU's to have them call this
2315 * function.
2316 */
2317void
2318forwarded_statclock(struct trapframe frame)
2319{
2320
2321	mtx_lock_spin(&sched_lock);
2322	statclock_process(curproc, TRAPF_PC(&frame), TRAPF_USERMODE(&frame));
2323	mtx_unlock_spin(&sched_lock);
2324}
2325
2326void
2327forward_statclock(void)
2328{
2329	int map;
2330
2331	CTR0(KTR_SMP, "forward_statclock");
2332
2333	if (!smp_started || !invltlb_ok || cold || panicstr)
2334		return;
2335
2336	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2337	if (map != 0)
2338		ipi_selected(map, IPI_STATCLOCK);
2339}
2340
2341/*
2342 * For each hardclock(), we send an IPI to all other CPU's to have them
2343 * execute this function.  It would be nice to reduce contention on
2344 * sched_lock if we could simply peek at the CPU to determine the user/kernel
2345 * state and call hardclock_process() on the CPU receiving the clock interrupt
2346 * and then just use a simple IPI to handle any ast's if needed.
2347 */
2348void
2349forwarded_hardclock(struct trapframe frame)
2350{
2351
2352	mtx_lock_spin(&sched_lock);
2353	hardclock_process(curproc, TRAPF_USERMODE(&frame));
2354	mtx_unlock_spin(&sched_lock);
2355}
2356
2357void
2358forward_hardclock(void)
2359{
2360	u_int map;
2361
2362	CTR0(KTR_SMP, "forward_hardclock");
2363
2364	if (!smp_started || !invltlb_ok || cold || panicstr)
2365		return;
2366
2367	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2368	if (map != 0)
2369		ipi_selected(map, IPI_HARDCLOCK);
2370}
2371
2372#ifdef APIC_INTR_REORDER
2373/*
2374 *	Maintain mapping from softintr vector to isr bit in local apic.
2375 */
2376void
2377set_lapic_isrloc(int intr, int vector)
2378{
2379	if (intr < 0 || intr > 32)
2380		panic("set_apic_isrloc: bad intr argument: %d",intr);
2381	if (vector < ICU_OFFSET || vector > 255)
2382		panic("set_apic_isrloc: bad vector argument: %d",vector);
2383	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2384	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2385}
2386#endif
2387
2388/*
2389 * send an IPI to a set of cpus.
2390 */
2391void
2392ipi_selected(u_int32_t cpus, u_int ipi)
2393{
2394
2395	CTR2(KTR_SMP, __func__ ": cpus: %x ipi: %x", cpus, ipi);
2396	selected_apic_ipi(cpus, ipi, APIC_DELMODE_FIXED);
2397}
2398
2399/*
2400 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
2401 */
2402void
2403ipi_all(u_int ipi)
2404{
2405
2406	CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2407	apic_ipi(APIC_DEST_ALLISELF, ipi, APIC_DELMODE_FIXED);
2408}
2409
2410/*
2411 * send an IPI to all CPUs EXCEPT myself
2412 */
2413void
2414ipi_all_but_self(u_int ipi)
2415{
2416
2417	CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2418	apic_ipi(APIC_DEST_ALLESELF, ipi, APIC_DELMODE_FIXED);
2419}
2420
2421/*
2422 * send an IPI to myself
2423 */
2424void
2425ipi_self(u_int ipi)
2426{
2427
2428	CTR1(KTR_SMP, __func__ ": ipi: %x", ipi);
2429	apic_ipi(APIC_DEST_SELF, ipi, APIC_DELMODE_FIXED);
2430}
2431
2432void
2433release_aps(void *dummy __unused)
2434{
2435	atomic_store_rel_int(&aps_ready, 1);
2436}
2437
2438SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
2439