mptable.c revision 71818
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/i386/i386/mptable.c 71818 2001-01-30 04:02:28Z peter $
26 */
27
28#include "opt_cpu.h"
29#include "opt_user_ldt.h"
30
31#ifdef SMP
32#include <machine/smptests.h>
33#else
34#error
35#endif
36
37#include <sys/param.h>
38#include <sys/bus.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/sysctl.h>
43#include <sys/malloc.h>
44#include <sys/memrange.h>
45#include <sys/mutex.h>
46#ifdef BETTER_CLOCK
47#include <sys/dkstat.h>
48#endif
49#include <sys/cons.h>	/* cngetc() */
50
51#include <vm/vm.h>
52#include <vm/vm_param.h>
53#include <vm/pmap.h>
54#include <vm/vm_kern.h>
55#include <vm/vm_extern.h>
56#ifdef BETTER_CLOCK
57#include <sys/lock.h>
58#include <vm/vm_map.h>
59#include <sys/user.h>
60#ifdef GPROF
61#include <sys/gmon.h>
62#endif
63#endif
64
65#include <machine/smp.h>
66#include <machine/apic.h>
67#include <machine/atomic.h>
68#include <machine/cpufunc.h>
69#include <machine/mpapic.h>
70#include <machine/psl.h>
71#include <machine/segments.h>
72#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
73#include <machine/tss.h>
74#include <machine/specialreg.h>
75#include <machine/globaldata.h>
76
77#if defined(APIC_IO)
78#include <machine/md_var.h>		/* setidt() */
79#include <i386/isa/icu.h>		/* IPIs */
80#include <i386/isa/intr_machdep.h>	/* IPIs */
81#endif	/* APIC_IO */
82
83#if defined(TEST_DEFAULT_CONFIG)
84#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
85#else
86#define MPFPS_MPFB1	mpfps->mpfb1
87#endif  /* TEST_DEFAULT_CONFIG */
88
89#define WARMBOOT_TARGET		0
90#define WARMBOOT_OFF		(KERNBASE + 0x0467)
91#define WARMBOOT_SEG		(KERNBASE + 0x0469)
92
93#ifdef PC98
94#define BIOS_BASE		(0xe8000)
95#define BIOS_SIZE		(0x18000)
96#else
97#define BIOS_BASE		(0xf0000)
98#define BIOS_SIZE		(0x10000)
99#endif
100#define BIOS_COUNT		(BIOS_SIZE/4)
101
102#define CMOS_REG		(0x70)
103#define CMOS_DATA		(0x71)
104#define BIOS_RESET		(0x0f)
105#define BIOS_WARM		(0x0a)
106
107#define PROCENTRY_FLAG_EN	0x01
108#define PROCENTRY_FLAG_BP	0x02
109#define IOAPICENTRY_FLAG_EN	0x01
110
111
112/* MP Floating Pointer Structure */
113typedef struct MPFPS {
114	char    signature[4];
115	void   *pap;
116	u_char  length;
117	u_char  spec_rev;
118	u_char  checksum;
119	u_char  mpfb1;
120	u_char  mpfb2;
121	u_char  mpfb3;
122	u_char  mpfb4;
123	u_char  mpfb5;
124}      *mpfps_t;
125
126/* MP Configuration Table Header */
127typedef struct MPCTH {
128	char    signature[4];
129	u_short base_table_length;
130	u_char  spec_rev;
131	u_char  checksum;
132	u_char  oem_id[8];
133	u_char  product_id[12];
134	void   *oem_table_pointer;
135	u_short oem_table_size;
136	u_short entry_count;
137	void   *apic_address;
138	u_short extended_table_length;
139	u_char  extended_table_checksum;
140	u_char  reserved;
141}      *mpcth_t;
142
143
144typedef struct PROCENTRY {
145	u_char  type;
146	u_char  apic_id;
147	u_char  apic_version;
148	u_char  cpu_flags;
149	u_long  cpu_signature;
150	u_long  feature_flags;
151	u_long  reserved1;
152	u_long  reserved2;
153}      *proc_entry_ptr;
154
155typedef struct BUSENTRY {
156	u_char  type;
157	u_char  bus_id;
158	char    bus_type[6];
159}      *bus_entry_ptr;
160
161typedef struct IOAPICENTRY {
162	u_char  type;
163	u_char  apic_id;
164	u_char  apic_version;
165	u_char  apic_flags;
166	void   *apic_address;
167}      *io_apic_entry_ptr;
168
169typedef struct INTENTRY {
170	u_char  type;
171	u_char  int_type;
172	u_short int_flags;
173	u_char  src_bus_id;
174	u_char  src_bus_irq;
175	u_char  dst_apic_id;
176	u_char  dst_apic_int;
177}      *int_entry_ptr;
178
179/* descriptions of MP basetable entries */
180typedef struct BASETABLE_ENTRY {
181	u_char  type;
182	u_char  length;
183	char    name[16];
184}       basetable_entry;
185
186/*
187 * this code MUST be enabled here and in mpboot.s.
188 * it follows the very early stages of AP boot by placing values in CMOS ram.
189 * it NORMALLY will never be needed and thus the primitive method for enabling.
190 *
191#define CHECK_POINTS
192 */
193
194#if defined(CHECK_POINTS) && !defined(PC98)
195#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
196#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
197
198#define CHECK_INIT(D);				\
199	CHECK_WRITE(0x34, (D));			\
200	CHECK_WRITE(0x35, (D));			\
201	CHECK_WRITE(0x36, (D));			\
202	CHECK_WRITE(0x37, (D));			\
203	CHECK_WRITE(0x38, (D));			\
204	CHECK_WRITE(0x39, (D));
205
206#define CHECK_PRINT(S);				\
207	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
208	   (S),					\
209	   CHECK_READ(0x34),			\
210	   CHECK_READ(0x35),			\
211	   CHECK_READ(0x36),			\
212	   CHECK_READ(0x37),			\
213	   CHECK_READ(0x38),			\
214	   CHECK_READ(0x39));
215
216#else				/* CHECK_POINTS */
217
218#define CHECK_INIT(D)
219#define CHECK_PRINT(S)
220
221#endif				/* CHECK_POINTS */
222
223/*
224 * Values to send to the POST hardware.
225 */
226#define MP_BOOTADDRESS_POST	0x10
227#define MP_PROBE_POST		0x11
228#define MPTABLE_PASS1_POST	0x12
229
230#define MP_START_POST		0x13
231#define MP_ENABLE_POST		0x14
232#define MPTABLE_PASS2_POST	0x15
233
234#define START_ALL_APS_POST	0x16
235#define INSTALL_AP_TRAMP_POST	0x17
236#define START_AP_POST		0x18
237
238#define MP_ANNOUNCE_POST	0x19
239
240/* used to hold the AP's until we are ready to release them */
241struct mtx			ap_boot_mtx;
242
243/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
244int	current_postcode;
245
246/** XXX FIXME: what system files declare these??? */
247extern struct region_descriptor r_gdt, r_idt;
248
249int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
250int	mp_ncpus;		/* # of CPUs, including BSP */
251int	mp_naps;		/* # of Applications processors */
252int	mp_nbusses;		/* # of busses */
253int	mp_napics;		/* # of IO APICs */
254int	boot_cpu_id;		/* designated BSP */
255vm_offset_t cpu_apic_address;
256vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
257extern	int nkpt;
258
259u_int32_t cpu_apic_versions[MAXCPU];
260u_int32_t *io_apic_versions;
261
262#ifdef APIC_INTR_REORDER
263struct {
264	volatile int *location;
265	int bit;
266} apic_isrbit_location[32];
267#endif
268
269struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
270
271/*
272 * APIC ID logical/physical mapping structures.
273 * We oversize these to simplify boot-time config.
274 */
275int     cpu_num_to_apic_id[NAPICID];
276int     io_num_to_apic_id[NAPICID];
277int     apic_id_to_logical[NAPICID];
278
279
280/* Bitmap of all available CPUs */
281u_int	all_cpus;
282
283/* AP uses this during bootstrap.  Do not staticize.  */
284char *bootSTK;
285static int bootAP;
286
287/* Hotwire a 0->4MB V==P mapping */
288extern pt_entry_t *KPTphys;
289
290/* SMP page table page */
291extern pt_entry_t *SMPpt;
292
293struct pcb stoppcbs[MAXCPU];
294
295int smp_started;		/* has the system started? */
296int smp_active = 0;		/* are the APs allowed to run? */
297SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
298
299/* XXX maybe should be hw.ncpu */
300static int smp_cpus = 1;	/* how many cpu's running */
301SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
302
303int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
304SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
305
306/* Enable forwarding of a signal to a process running on a different CPU */
307static int forward_signal_enabled = 1;
308SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
309	   &forward_signal_enabled, 0, "");
310
311/* Enable forwarding of roundrobin to all other cpus */
312static int forward_roundrobin_enabled = 1;
313SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
314	   &forward_roundrobin_enabled, 0, "");
315
316
317/*
318 * Local data and functions.
319 */
320
321/* Set to 1 once we're ready to let the APs out of the pen. */
322static volatile int aps_ready = 0;
323
324static int	mp_capable;
325static u_int	boot_address;
326static u_int	base_memory;
327
328static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
329static mpfps_t	mpfps;
330static int	search_for_sig(u_int32_t target, int count);
331static void	mp_enable(u_int boot_addr);
332
333static void	mptable_pass1(void);
334static int	mptable_pass2(void);
335static void	default_mp_table(int type);
336static void	fix_mp_table(void);
337static void	setup_apic_irq_mapping(void);
338static void	init_locks(void);
339static int	start_all_aps(u_int boot_addr);
340static void	install_ap_tramp(u_int boot_addr);
341static int	start_ap(int logicalCpu, u_int boot_addr);
342void		ap_init(void);
343static int	apic_int_is_bus_type(int intr, int bus_type);
344static void	release_aps(void *dummy);
345
346/*
347 * initialize all the SMP locks
348 */
349
350/* critical region around IO APIC, apic_imen */
351struct mtx		imen_mtx;
352
353/* lock region used by kernel profiling */
354struct mtx		mcount_mtx;
355
356#ifdef USE_COMLOCK
357/* locks com (tty) data/hardware accesses: a FASTINTR() */
358struct mtx		com_mtx;
359#endif /* USE_COMLOCK */
360
361/* lock around the MP rendezvous */
362static struct mtx	smp_rv_mtx;
363
364/* only 1 CPU can panic at a time :) */
365struct mtx		panic_mtx;
366
367static void
368init_locks(void)
369{
370	/*
371	 * XXX The mcount mutex probably needs to be statically initialized,
372	 * since it will be used even in the function calls that get us to this
373	 * point.
374	 */
375	mtx_init(&mcount_mtx, "mcount", MTX_DEF);
376
377	mtx_init(&smp_rv_mtx, "smp rendezvous", MTX_SPIN);
378	mtx_init(&panic_mtx, "panic", MTX_DEF);
379
380#ifdef USE_COMLOCK
381	mtx_init(&com_mtx, "com", MTX_SPIN);
382#endif /* USE_COMLOCK */
383
384	mtx_init(&ap_boot_mtx, "ap boot", MTX_SPIN);
385}
386
387/*
388 * Calculate usable address in base memory for AP trampoline code.
389 */
390u_int
391mp_bootaddress(u_int basemem)
392{
393	POSTCODE(MP_BOOTADDRESS_POST);
394
395	base_memory = basemem * 1024;	/* convert to bytes */
396
397	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
398	if ((base_memory - boot_address) < bootMP_size)
399		boot_address -= 4096;	/* not enough, lower by 4k */
400
401	return boot_address;
402}
403
404
405/*
406 * Look for an Intel MP spec table (ie, SMP capable hardware).
407 */
408int
409mp_probe(void)
410{
411	int     x;
412	u_long  segment;
413	u_int32_t target;
414
415	POSTCODE(MP_PROBE_POST);
416
417	/* see if EBDA exists */
418	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
419		/* search first 1K of EBDA */
420		target = (u_int32_t) (segment << 4);
421		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
422			goto found;
423	} else {
424		/* last 1K of base memory, effective 'top of base' passed in */
425		target = (u_int32_t) (base_memory - 0x400);
426		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
427			goto found;
428	}
429
430	/* search the BIOS */
431	target = (u_int32_t) BIOS_BASE;
432	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
433		goto found;
434
435	/* nothing found */
436	mpfps = (mpfps_t)0;
437	mp_capable = 0;
438	return 0;
439
440found:
441	/* calculate needed resources */
442	mpfps = (mpfps_t)x;
443	mptable_pass1();
444
445	/* flag fact that we are running multiple processors */
446	mp_capable = 1;
447	return 1;
448}
449
450
451/*
452 * Initialize the SMP hardware and the APIC and start up the AP's.
453 */
454void
455mp_start(void)
456{
457	POSTCODE(MP_START_POST);
458
459	/* look for MP capable motherboard */
460	if (mp_capable)
461		mp_enable(boot_address);
462	else
463		panic("MP hardware not found!");
464}
465
466
467/*
468 * Print various information about the SMP system hardware and setup.
469 */
470void
471mp_announce(void)
472{
473	int     x;
474
475	POSTCODE(MP_ANNOUNCE_POST);
476
477	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
478	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
479	printf(", version: 0x%08x", cpu_apic_versions[0]);
480	printf(", at 0x%08x\n", cpu_apic_address);
481	for (x = 1; x <= mp_naps; ++x) {
482		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
483		printf(", version: 0x%08x", cpu_apic_versions[x]);
484		printf(", at 0x%08x\n", cpu_apic_address);
485	}
486
487#if defined(APIC_IO)
488	for (x = 0; x < mp_napics; ++x) {
489		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
490		printf(", version: 0x%08x", io_apic_versions[x]);
491		printf(", at 0x%08x\n", io_apic_address[x]);
492	}
493#else
494	printf(" Warning: APIC I/O disabled\n");
495#endif	/* APIC_IO */
496}
497
498/*
499 * AP cpu's call this to sync up protected mode.
500 */
501void
502init_secondary(void)
503{
504	int	gsel_tss;
505	int	x, myid = bootAP;
506
507	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
508	gdt_segs[GPROC0_SEL].ssd_base =
509		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
510	SMP_prvspace[myid].globaldata.gd_prvspace =
511		&SMP_prvspace[myid].globaldata;
512
513	for (x = 0; x < NGDT; x++) {
514		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
515	}
516
517	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
518	r_gdt.rd_base = (int) &gdt[myid * NGDT];
519	lgdt(&r_gdt);			/* does magic intra-segment return */
520
521	lidt(&r_idt);
522
523	lldt(_default_ldt);
524#ifdef USER_LDT
525	PCPU_SET(currentldt, _default_ldt);
526#endif
527
528	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
529	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
530	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
531	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
532	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
533	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
534	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
535	ltr(gsel_tss);
536
537	pmap_set_opt();
538}
539
540
541#if defined(APIC_IO)
542/*
543 * Final configuration of the BSP's local APIC:
544 *  - disable 'pic mode'.
545 *  - disable 'virtual wire mode'.
546 *  - enable NMI.
547 */
548void
549bsp_apic_configure(void)
550{
551	u_char		byte;
552	u_int32_t	temp;
553
554	/* leave 'pic mode' if necessary */
555	if (picmode) {
556		outb(0x22, 0x70);	/* select IMCR */
557		byte = inb(0x23);	/* current contents */
558		byte |= 0x01;		/* mask external INTR */
559		outb(0x23, byte);	/* disconnect 8259s/NMI */
560	}
561
562	/* mask lint0 (the 8259 'virtual wire' connection) */
563	temp = lapic.lvt_lint0;
564	temp |= APIC_LVT_M;		/* set the mask */
565	lapic.lvt_lint0 = temp;
566
567        /* setup lint1 to handle NMI */
568        temp = lapic.lvt_lint1;
569        temp &= ~APIC_LVT_M;		/* clear the mask */
570        lapic.lvt_lint1 = temp;
571
572	if (bootverbose)
573		apic_dump("bsp_apic_configure()");
574}
575#endif  /* APIC_IO */
576
577
578/*******************************************************************
579 * local functions and data
580 */
581
582/*
583 * start the SMP system
584 */
585static void
586mp_enable(u_int boot_addr)
587{
588	int     x;
589#if defined(APIC_IO)
590	int     apic;
591	u_int   ux;
592#endif	/* APIC_IO */
593
594	POSTCODE(MP_ENABLE_POST);
595
596	/* turn on 4MB of V == P addressing so we can get to MP table */
597	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
598	invltlb();
599
600	/* examine the MP table for needed info, uses physical addresses */
601	x = mptable_pass2();
602
603	*(int *)PTD = 0;
604	invltlb();
605
606	/* can't process default configs till the CPU APIC is pmapped */
607	if (x)
608		default_mp_table(x);
609
610	/* post scan cleanup */
611	fix_mp_table();
612	setup_apic_irq_mapping();
613
614#if defined(APIC_IO)
615
616	/* fill the LOGICAL io_apic_versions table */
617	for (apic = 0; apic < mp_napics; ++apic) {
618		ux = io_apic_read(apic, IOAPIC_VER);
619		io_apic_versions[apic] = ux;
620		io_apic_set_id(apic, IO_TO_ID(apic));
621	}
622
623	/* program each IO APIC in the system */
624	for (apic = 0; apic < mp_napics; ++apic)
625		if (io_apic_setup(apic) < 0)
626			panic("IO APIC setup failure");
627
628	/* install a 'Spurious INTerrupt' vector */
629	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
630	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
631
632	/* install an inter-CPU IPI for TLB invalidation */
633	setidt(XINVLTLB_OFFSET, Xinvltlb,
634	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
635
636#ifdef BETTER_CLOCK
637	/* install an inter-CPU IPI for reading processor state */
638	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
639	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
640#endif
641
642	/* install an inter-CPU IPI for all-CPU rendezvous */
643	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
644	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
645
646	/* install an inter-CPU IPI for forcing an additional software trap */
647	setidt(XCPUAST_OFFSET, Xcpuast,
648	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
649
650	/* install an inter-CPU IPI for CPU stop/restart */
651	setidt(XCPUSTOP_OFFSET, Xcpustop,
652	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
653
654#if defined(TEST_TEST1)
655	/* install a "fake hardware INTerrupt" vector */
656	setidt(XTEST1_OFFSET, Xtest1,
657	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
658#endif  /** TEST_TEST1 */
659
660#endif	/* APIC_IO */
661
662	/* initialize all SMP locks */
663	init_locks();
664
665	/* start each Application Processor */
666	start_all_aps(boot_addr);
667}
668
669
670/*
671 * look for the MP spec signature
672 */
673
674/* string defined by the Intel MP Spec as identifying the MP table */
675#define MP_SIG		0x5f504d5f	/* _MP_ */
676#define NEXT(X)		((X) += 4)
677static int
678search_for_sig(u_int32_t target, int count)
679{
680	int     x;
681	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
682
683	for (x = 0; x < count; NEXT(x))
684		if (addr[x] == MP_SIG)
685			/* make array index a byte index */
686			return (target + (x * sizeof(u_int32_t)));
687
688	return -1;
689}
690
691
692static basetable_entry basetable_entry_types[] =
693{
694	{0, 20, "Processor"},
695	{1, 8, "Bus"},
696	{2, 8, "I/O APIC"},
697	{3, 8, "I/O INT"},
698	{4, 8, "Local INT"}
699};
700
701typedef struct BUSDATA {
702	u_char  bus_id;
703	enum busTypes bus_type;
704}       bus_datum;
705
706typedef struct INTDATA {
707	u_char  int_type;
708	u_short int_flags;
709	u_char  src_bus_id;
710	u_char  src_bus_irq;
711	u_char  dst_apic_id;
712	u_char  dst_apic_int;
713	u_char	int_vector;
714}       io_int, local_int;
715
716typedef struct BUSTYPENAME {
717	u_char  type;
718	char    name[7];
719}       bus_type_name;
720
721static bus_type_name bus_type_table[] =
722{
723	{CBUS, "CBUS"},
724	{CBUSII, "CBUSII"},
725	{EISA, "EISA"},
726	{MCA, "MCA"},
727	{UNKNOWN_BUSTYPE, "---"},
728	{ISA, "ISA"},
729	{MCA, "MCA"},
730	{UNKNOWN_BUSTYPE, "---"},
731	{UNKNOWN_BUSTYPE, "---"},
732	{UNKNOWN_BUSTYPE, "---"},
733	{UNKNOWN_BUSTYPE, "---"},
734	{UNKNOWN_BUSTYPE, "---"},
735	{PCI, "PCI"},
736	{UNKNOWN_BUSTYPE, "---"},
737	{UNKNOWN_BUSTYPE, "---"},
738	{UNKNOWN_BUSTYPE, "---"},
739	{UNKNOWN_BUSTYPE, "---"},
740	{XPRESS, "XPRESS"},
741	{UNKNOWN_BUSTYPE, "---"}
742};
743/* from MP spec v1.4, table 5-1 */
744static int default_data[7][5] =
745{
746/*   nbus, id0, type0, id1, type1 */
747	{1, 0, ISA, 255, 255},
748	{1, 0, EISA, 255, 255},
749	{1, 0, EISA, 255, 255},
750	{1, 0, MCA, 255, 255},
751	{2, 0, ISA, 1, PCI},
752	{2, 0, EISA, 1, PCI},
753	{2, 0, MCA, 1, PCI}
754};
755
756
757/* the bus data */
758static bus_datum *bus_data;
759
760/* the IO INT data, one entry per possible APIC INTerrupt */
761static io_int  *io_apic_ints;
762
763static int nintrs;
764
765static int processor_entry	__P((proc_entry_ptr entry, int cpu));
766static int bus_entry		__P((bus_entry_ptr entry, int bus));
767static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
768static int int_entry		__P((int_entry_ptr entry, int intr));
769static int lookup_bus_type	__P((char *name));
770
771
772/*
773 * 1st pass on motherboard's Intel MP specification table.
774 *
775 * initializes:
776 *	mp_ncpus = 1
777 *
778 * determines:
779 *	cpu_apic_address (common to all CPUs)
780 *	io_apic_address[N]
781 *	mp_naps
782 *	mp_nbusses
783 *	mp_napics
784 *	nintrs
785 */
786static void
787mptable_pass1(void)
788{
789	int	x;
790	mpcth_t	cth;
791	int	totalSize;
792	void*	position;
793	int	count;
794	int	type;
795
796	POSTCODE(MPTABLE_PASS1_POST);
797
798	/* clear various tables */
799	for (x = 0; x < NAPICID; ++x) {
800		io_apic_address[x] = ~0;	/* IO APIC address table */
801	}
802
803	/* init everything to empty */
804	mp_naps = 0;
805	mp_nbusses = 0;
806	mp_napics = 0;
807	nintrs = 0;
808
809	/* check for use of 'default' configuration */
810	if (MPFPS_MPFB1 != 0) {
811		/* use default addresses */
812		cpu_apic_address = DEFAULT_APIC_BASE;
813		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
814
815		/* fill in with defaults */
816		mp_naps = 2;		/* includes BSP */
817		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
818#if defined(APIC_IO)
819		mp_napics = 1;
820		nintrs = 16;
821#endif	/* APIC_IO */
822	}
823	else {
824		if ((cth = mpfps->pap) == 0)
825			panic("MP Configuration Table Header MISSING!");
826
827		cpu_apic_address = (vm_offset_t) cth->apic_address;
828
829		/* walk the table, recording info of interest */
830		totalSize = cth->base_table_length - sizeof(struct MPCTH);
831		position = (u_char *) cth + sizeof(struct MPCTH);
832		count = cth->entry_count;
833
834		while (count--) {
835			switch (type = *(u_char *) position) {
836			case 0: /* processor_entry */
837				if (((proc_entry_ptr)position)->cpu_flags
838					& PROCENTRY_FLAG_EN)
839					++mp_naps;
840				break;
841			case 1: /* bus_entry */
842				++mp_nbusses;
843				break;
844			case 2: /* io_apic_entry */
845				if (((io_apic_entry_ptr)position)->apic_flags
846					& IOAPICENTRY_FLAG_EN)
847					io_apic_address[mp_napics++] =
848					    (vm_offset_t)((io_apic_entry_ptr)
849						position)->apic_address;
850				break;
851			case 3: /* int_entry */
852				++nintrs;
853				break;
854			case 4:	/* int_entry */
855				break;
856			default:
857				panic("mpfps Base Table HOSED!");
858				/* NOTREACHED */
859			}
860
861			totalSize -= basetable_entry_types[type].length;
862			(u_char*)position += basetable_entry_types[type].length;
863		}
864	}
865
866	/* qualify the numbers */
867	if (mp_naps > MAXCPU) {
868		printf("Warning: only using %d of %d available CPUs!\n",
869			MAXCPU, mp_naps);
870		mp_naps = MAXCPU;
871	}
872
873	/*
874	 * Count the BSP.
875	 * This is also used as a counter while starting the APs.
876	 */
877	mp_ncpus = 1;
878
879	--mp_naps;	/* subtract the BSP */
880}
881
882
883/*
884 * 2nd pass on motherboard's Intel MP specification table.
885 *
886 * sets:
887 *	boot_cpu_id
888 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
889 *	CPU_TO_ID(N), logical CPU to APIC ID table
890 *	IO_TO_ID(N), logical IO to APIC ID table
891 *	bus_data[N]
892 *	io_apic_ints[N]
893 */
894static int
895mptable_pass2(void)
896{
897	int     x;
898	mpcth_t cth;
899	int     totalSize;
900	void*   position;
901	int     count;
902	int     type;
903	int     apic, bus, cpu, intr;
904	int	i, j;
905	int	pgeflag;
906
907	POSTCODE(MPTABLE_PASS2_POST);
908
909	pgeflag = 0;		/* XXX - Not used under SMP yet.  */
910
911	MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
912	    M_DEVBUF, M_WAITOK);
913	MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
914	    M_DEVBUF, M_WAITOK);
915	MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
916	    M_DEVBUF, M_WAITOK);
917	MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
918	    M_DEVBUF, M_WAITOK);
919
920	bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
921
922	for (i = 0; i < mp_napics; i++) {
923		for (j = 0; j < mp_napics; j++) {
924			/* same page frame as a previous IO apic? */
925			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
926			    (io_apic_address[i] & PG_FRAME)) {
927				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
928					+ (NPTEPG-2-j) * PAGE_SIZE
929					+ (io_apic_address[i] & PAGE_MASK));
930				break;
931			}
932			/* use this slot if available */
933			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
934				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
935				    pgeflag | (io_apic_address[i] & PG_FRAME));
936				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
937					+ (NPTEPG-2-j) * PAGE_SIZE
938					+ (io_apic_address[i] & PAGE_MASK));
939				break;
940			}
941		}
942	}
943
944	/* clear various tables */
945	for (x = 0; x < NAPICID; ++x) {
946		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
947		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
948		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
949	}
950
951	/* clear bus data table */
952	for (x = 0; x < mp_nbusses; ++x)
953		bus_data[x].bus_id = 0xff;
954
955	/* clear IO APIC INT table */
956	for (x = 0; x < (nintrs + 1); ++x) {
957		io_apic_ints[x].int_type = 0xff;
958		io_apic_ints[x].int_vector = 0xff;
959	}
960
961	/* setup the cpu/apic mapping arrays */
962	boot_cpu_id = -1;
963
964	/* record whether PIC or virtual-wire mode */
965	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
966
967	/* check for use of 'default' configuration */
968	if (MPFPS_MPFB1 != 0)
969		return MPFPS_MPFB1;	/* return default configuration type */
970
971	if ((cth = mpfps->pap) == 0)
972		panic("MP Configuration Table Header MISSING!");
973
974	/* walk the table, recording info of interest */
975	totalSize = cth->base_table_length - sizeof(struct MPCTH);
976	position = (u_char *) cth + sizeof(struct MPCTH);
977	count = cth->entry_count;
978	apic = bus = intr = 0;
979	cpu = 1;				/* pre-count the BSP */
980
981	while (count--) {
982		switch (type = *(u_char *) position) {
983		case 0:
984			if (processor_entry(position, cpu))
985				++cpu;
986			break;
987		case 1:
988			if (bus_entry(position, bus))
989				++bus;
990			break;
991		case 2:
992			if (io_apic_entry(position, apic))
993				++apic;
994			break;
995		case 3:
996			if (int_entry(position, intr))
997				++intr;
998			break;
999		case 4:
1000			/* int_entry(position); */
1001			break;
1002		default:
1003			panic("mpfps Base Table HOSED!");
1004			/* NOTREACHED */
1005		}
1006
1007		totalSize -= basetable_entry_types[type].length;
1008		(u_char *) position += basetable_entry_types[type].length;
1009	}
1010
1011	if (boot_cpu_id == -1)
1012		panic("NO BSP found!");
1013
1014	/* report fact that its NOT a default configuration */
1015	return 0;
1016}
1017
1018
1019void
1020assign_apic_irq(int apic, int intpin, int irq)
1021{
1022	int x;
1023
1024	if (int_to_apicintpin[irq].ioapic != -1)
1025		panic("assign_apic_irq: inconsistent table");
1026
1027	int_to_apicintpin[irq].ioapic = apic;
1028	int_to_apicintpin[irq].int_pin = intpin;
1029	int_to_apicintpin[irq].apic_address = ioapic[apic];
1030	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
1031
1032	for (x = 0; x < nintrs; x++) {
1033		if ((io_apic_ints[x].int_type == 0 ||
1034		     io_apic_ints[x].int_type == 3) &&
1035		    io_apic_ints[x].int_vector == 0xff &&
1036		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
1037		    io_apic_ints[x].dst_apic_int == intpin)
1038			io_apic_ints[x].int_vector = irq;
1039	}
1040}
1041
1042void
1043revoke_apic_irq(int irq)
1044{
1045	int x;
1046	int oldapic;
1047	int oldintpin;
1048
1049	if (int_to_apicintpin[irq].ioapic == -1)
1050		panic("assign_apic_irq: inconsistent table");
1051
1052	oldapic = int_to_apicintpin[irq].ioapic;
1053	oldintpin = int_to_apicintpin[irq].int_pin;
1054
1055	int_to_apicintpin[irq].ioapic = -1;
1056	int_to_apicintpin[irq].int_pin = 0;
1057	int_to_apicintpin[irq].apic_address = NULL;
1058	int_to_apicintpin[irq].redirindex = 0;
1059
1060	for (x = 0; x < nintrs; x++) {
1061		if ((io_apic_ints[x].int_type == 0 ||
1062		     io_apic_ints[x].int_type == 3) &&
1063		    io_apic_ints[x].int_vector == 0xff &&
1064		    io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1065		    io_apic_ints[x].dst_apic_int == oldintpin)
1066			io_apic_ints[x].int_vector = 0xff;
1067	}
1068}
1069
1070
1071static void
1072allocate_apic_irq(int intr)
1073{
1074	int apic;
1075	int intpin;
1076	int irq;
1077
1078	if (io_apic_ints[intr].int_vector != 0xff)
1079		return;		/* Interrupt handler already assigned */
1080
1081	if (io_apic_ints[intr].int_type != 0 &&
1082	    (io_apic_ints[intr].int_type != 3 ||
1083	     (io_apic_ints[intr].dst_apic_id == IO_TO_ID(0) &&
1084	      io_apic_ints[intr].dst_apic_int == 0)))
1085		return;		/* Not INT or ExtInt on != (0, 0) */
1086
1087	irq = 0;
1088	while (irq < APIC_INTMAPSIZE &&
1089	       int_to_apicintpin[irq].ioapic != -1)
1090		irq++;
1091
1092	if (irq >= APIC_INTMAPSIZE)
1093		return;		/* No free interrupt handlers */
1094
1095	apic = ID_TO_IO(io_apic_ints[intr].dst_apic_id);
1096	intpin = io_apic_ints[intr].dst_apic_int;
1097
1098	assign_apic_irq(apic, intpin, irq);
1099	io_apic_setup_intpin(apic, intpin);
1100}
1101
1102
1103static void
1104swap_apic_id(int apic, int oldid, int newid)
1105{
1106	int x;
1107	int oapic;
1108
1109
1110	if (oldid == newid)
1111		return;			/* Nothing to do */
1112
1113	printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
1114	       apic, oldid, newid);
1115
1116	/* Swap physical APIC IDs in interrupt entries */
1117	for (x = 0; x < nintrs; x++) {
1118		if (io_apic_ints[x].dst_apic_id == oldid)
1119			io_apic_ints[x].dst_apic_id = newid;
1120		else if (io_apic_ints[x].dst_apic_id == newid)
1121			io_apic_ints[x].dst_apic_id = oldid;
1122	}
1123
1124	/* Swap physical APIC IDs in IO_TO_ID mappings */
1125	for (oapic = 0; oapic < mp_napics; oapic++)
1126		if (IO_TO_ID(oapic) == newid)
1127			break;
1128
1129	if (oapic < mp_napics) {
1130		printf("Changing APIC ID for IO APIC #%d from "
1131		       "%d to %d in MP table\n",
1132		       oapic, newid, oldid);
1133		IO_TO_ID(oapic) = oldid;
1134	}
1135	IO_TO_ID(apic) = newid;
1136}
1137
1138
1139static void
1140fix_id_to_io_mapping(void)
1141{
1142	int x;
1143
1144	for (x = 0; x < NAPICID; x++)
1145		ID_TO_IO(x) = -1;
1146
1147	for (x = 0; x <= mp_naps; x++)
1148		if (CPU_TO_ID(x) < NAPICID)
1149			ID_TO_IO(CPU_TO_ID(x)) = x;
1150
1151	for (x = 0; x < mp_napics; x++)
1152		if (IO_TO_ID(x) < NAPICID)
1153			ID_TO_IO(IO_TO_ID(x)) = x;
1154}
1155
1156
1157static int
1158first_free_apic_id(void)
1159{
1160	int freeid, x;
1161
1162	for (freeid = 0; freeid < NAPICID; freeid++) {
1163		for (x = 0; x <= mp_naps; x++)
1164			if (CPU_TO_ID(x) == freeid)
1165				break;
1166		if (x <= mp_naps)
1167			continue;
1168		for (x = 0; x < mp_napics; x++)
1169			if (IO_TO_ID(x) == freeid)
1170				break;
1171		if (x < mp_napics)
1172			continue;
1173		return freeid;
1174	}
1175	return freeid;
1176}
1177
1178
1179static int
1180io_apic_id_acceptable(int apic, int id)
1181{
1182	int cpu;		/* Logical CPU number */
1183	int oapic;		/* Logical IO APIC number for other IO APIC */
1184
1185	if (id >= NAPICID)
1186		return 0;	/* Out of range */
1187
1188	for (cpu = 0; cpu <= mp_naps; cpu++)
1189		if (CPU_TO_ID(cpu) == id)
1190			return 0;	/* Conflict with CPU */
1191
1192	for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
1193		if (IO_TO_ID(oapic) == id)
1194			return 0;	/* Conflict with other APIC */
1195
1196	return 1;		/* ID is acceptable for IO APIC */
1197}
1198
1199
1200/*
1201 * parse an Intel MP specification table
1202 */
1203static void
1204fix_mp_table(void)
1205{
1206	int	x;
1207	int	id;
1208	int	bus_0 = 0;	/* Stop GCC warning */
1209	int	bus_pci = 0;	/* Stop GCC warning */
1210	int	num_pci_bus;
1211	int	apic;		/* IO APIC unit number */
1212	int     freeid;		/* Free physical APIC ID */
1213	int	physid;		/* Current physical IO APIC ID */
1214
1215	/*
1216	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1217	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1218	 * exists the BIOS must begin with bus entries for the PCI bus and use
1219	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1220	 * exists the BIOS can choose to ignore this ordering, and indeed many
1221	 * MP motherboards do ignore it.  This causes a problem when the PCI
1222	 * sub-system makes requests of the MP sub-system based on PCI bus
1223	 * numbers.	So here we look for the situation and renumber the
1224	 * busses and associated INTs in an effort to "make it right".
1225	 */
1226
1227	/* find bus 0, PCI bus, count the number of PCI busses */
1228	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1229		if (bus_data[x].bus_id == 0) {
1230			bus_0 = x;
1231		}
1232		if (bus_data[x].bus_type == PCI) {
1233			++num_pci_bus;
1234			bus_pci = x;
1235		}
1236	}
1237	/*
1238	 * bus_0 == slot of bus with ID of 0
1239	 * bus_pci == slot of last PCI bus encountered
1240	 */
1241
1242	/* check the 1 PCI bus case for sanity */
1243	/* if it is number 0 all is well */
1244	if (num_pci_bus == 1 &&
1245	    bus_data[bus_pci].bus_id != 0) {
1246
1247		/* mis-numbered, swap with whichever bus uses slot 0 */
1248
1249		/* swap the bus entry types */
1250		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1251		bus_data[bus_0].bus_type = PCI;
1252
1253		/* swap each relavant INTerrupt entry */
1254		id = bus_data[bus_pci].bus_id;
1255		for (x = 0; x < nintrs; ++x) {
1256			if (io_apic_ints[x].src_bus_id == id) {
1257				io_apic_ints[x].src_bus_id = 0;
1258			}
1259			else if (io_apic_ints[x].src_bus_id == 0) {
1260				io_apic_ints[x].src_bus_id = id;
1261			}
1262		}
1263	}
1264
1265	/* Assign IO APIC IDs.
1266	 *
1267	 * First try the existing ID. If a conflict is detected, try
1268	 * the ID in the MP table.  If a conflict is still detected, find
1269	 * a free id.
1270	 *
1271	 * We cannot use the ID_TO_IO table before all conflicts has been
1272	 * resolved and the table has been corrected.
1273	 */
1274	for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
1275
1276		/* First try to use the value set by the BIOS */
1277		physid = io_apic_get_id(apic);
1278		if (io_apic_id_acceptable(apic, physid)) {
1279			if (IO_TO_ID(apic) != physid)
1280				swap_apic_id(apic, IO_TO_ID(apic), physid);
1281			continue;
1282		}
1283
1284		/* Then check if the value in the MP table is acceptable */
1285		if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
1286			continue;
1287
1288		/* Last resort, find a free APIC ID and use it */
1289		freeid = first_free_apic_id();
1290		if (freeid >= NAPICID)
1291			panic("No free physical APIC IDs found");
1292
1293		if (io_apic_id_acceptable(apic, freeid)) {
1294			swap_apic_id(apic, IO_TO_ID(apic), freeid);
1295			continue;
1296		}
1297		panic("Free physical APIC ID not usable");
1298	}
1299	fix_id_to_io_mapping();
1300
1301	/* detect and fix broken Compaq MP table */
1302	if (apic_int_type(0, 0) == -1) {
1303		printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
1304		io_apic_ints[nintrs].int_type = 3;	/* ExtInt */
1305		io_apic_ints[nintrs].int_vector = 0xff;	/* Unassigned */
1306		/* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
1307		io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
1308		io_apic_ints[nintrs].dst_apic_int = 0;	/* Pin 0 */
1309		nintrs++;
1310	}
1311}
1312
1313
1314/* Assign low level interrupt handlers */
1315static void
1316setup_apic_irq_mapping(void)
1317{
1318	int	x;
1319	int	int_vector;
1320
1321	/* Clear array */
1322	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1323		int_to_apicintpin[x].ioapic = -1;
1324		int_to_apicintpin[x].int_pin = 0;
1325		int_to_apicintpin[x].apic_address = NULL;
1326		int_to_apicintpin[x].redirindex = 0;
1327	}
1328
1329	/* First assign ISA/EISA interrupts */
1330	for (x = 0; x < nintrs; x++) {
1331		int_vector = io_apic_ints[x].src_bus_irq;
1332		if (int_vector < APIC_INTMAPSIZE &&
1333		    io_apic_ints[x].int_vector == 0xff &&
1334		    int_to_apicintpin[int_vector].ioapic == -1 &&
1335		    (apic_int_is_bus_type(x, ISA) ||
1336		     apic_int_is_bus_type(x, EISA)) &&
1337		    io_apic_ints[x].int_type == 0) {
1338			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1339					io_apic_ints[x].dst_apic_int,
1340					int_vector);
1341		}
1342	}
1343
1344	/* Assign ExtInt entry if no ISA/EISA interrupt 0 entry */
1345	for (x = 0; x < nintrs; x++) {
1346		if (io_apic_ints[x].dst_apic_int == 0 &&
1347		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1348		    io_apic_ints[x].int_vector == 0xff &&
1349		    int_to_apicintpin[0].ioapic == -1 &&
1350		    io_apic_ints[x].int_type == 3) {
1351			assign_apic_irq(0, 0, 0);
1352			break;
1353		}
1354	}
1355	/* PCI interrupt assignment is deferred */
1356}
1357
1358
1359static int
1360processor_entry(proc_entry_ptr entry, int cpu)
1361{
1362	/* check for usability */
1363	if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1364		return 0;
1365
1366	if(entry->apic_id >= NAPICID)
1367		panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
1368	/* check for BSP flag */
1369	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1370		boot_cpu_id = entry->apic_id;
1371		CPU_TO_ID(0) = entry->apic_id;
1372		ID_TO_CPU(entry->apic_id) = 0;
1373		return 0;	/* its already been counted */
1374	}
1375
1376	/* add another AP to list, if less than max number of CPUs */
1377	else if (cpu < MAXCPU) {
1378		CPU_TO_ID(cpu) = entry->apic_id;
1379		ID_TO_CPU(entry->apic_id) = cpu;
1380		return 1;
1381	}
1382
1383	return 0;
1384}
1385
1386
1387static int
1388bus_entry(bus_entry_ptr entry, int bus)
1389{
1390	int     x;
1391	char    c, name[8];
1392
1393	/* encode the name into an index */
1394	for (x = 0; x < 6; ++x) {
1395		if ((c = entry->bus_type[x]) == ' ')
1396			break;
1397		name[x] = c;
1398	}
1399	name[x] = '\0';
1400
1401	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1402		panic("unknown bus type: '%s'", name);
1403
1404	bus_data[bus].bus_id = entry->bus_id;
1405	bus_data[bus].bus_type = x;
1406
1407	return 1;
1408}
1409
1410
1411static int
1412io_apic_entry(io_apic_entry_ptr entry, int apic)
1413{
1414	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1415		return 0;
1416
1417	IO_TO_ID(apic) = entry->apic_id;
1418	if (entry->apic_id < NAPICID)
1419		ID_TO_IO(entry->apic_id) = apic;
1420
1421	return 1;
1422}
1423
1424
1425static int
1426lookup_bus_type(char *name)
1427{
1428	int     x;
1429
1430	for (x = 0; x < MAX_BUSTYPE; ++x)
1431		if (strcmp(bus_type_table[x].name, name) == 0)
1432			return bus_type_table[x].type;
1433
1434	return UNKNOWN_BUSTYPE;
1435}
1436
1437
1438static int
1439int_entry(int_entry_ptr entry, int intr)
1440{
1441	int apic;
1442
1443	io_apic_ints[intr].int_type = entry->int_type;
1444	io_apic_ints[intr].int_flags = entry->int_flags;
1445	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1446	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1447	if (entry->dst_apic_id == 255) {
1448		/* This signal goes to all IO APICS.  Select an IO APIC
1449		   with sufficient number of interrupt pins */
1450		for (apic = 0; apic < mp_napics; apic++)
1451			if (((io_apic_read(apic, IOAPIC_VER) &
1452			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1453			    entry->dst_apic_int)
1454				break;
1455		if (apic < mp_napics)
1456			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1457		else
1458			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1459	} else
1460		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1461	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1462
1463	return 1;
1464}
1465
1466
1467static int
1468apic_int_is_bus_type(int intr, int bus_type)
1469{
1470	int     bus;
1471
1472	for (bus = 0; bus < mp_nbusses; ++bus)
1473		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1474		    && ((int) bus_data[bus].bus_type == bus_type))
1475			return 1;
1476
1477	return 0;
1478}
1479
1480
1481/*
1482 * Given a traditional ISA INT mask, return an APIC mask.
1483 */
1484u_int
1485isa_apic_mask(u_int isa_mask)
1486{
1487	int isa_irq;
1488	int apic_pin;
1489
1490#if defined(SKIP_IRQ15_REDIRECT)
1491	if (isa_mask == (1 << 15)) {
1492		printf("skipping ISA IRQ15 redirect\n");
1493		return isa_mask;
1494	}
1495#endif  /* SKIP_IRQ15_REDIRECT */
1496
1497	isa_irq = ffs(isa_mask);		/* find its bit position */
1498	if (isa_irq == 0)			/* doesn't exist */
1499		return 0;
1500	--isa_irq;				/* make it zero based */
1501
1502	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1503	if (apic_pin == -1)
1504		return 0;
1505
1506	return (1 << apic_pin);			/* convert pin# to a mask */
1507}
1508
1509
1510/*
1511 * Determine which APIC pin an ISA/EISA INT is attached to.
1512 */
1513#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1514#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1515#define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1516#define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1517
1518#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1519int
1520isa_apic_irq(int isa_irq)
1521{
1522	int     intr;
1523
1524	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1525		if (INTTYPE(intr) == 0) {		/* standard INT */
1526			if (SRCBUSIRQ(intr) == isa_irq) {
1527				if (apic_int_is_bus_type(intr, ISA) ||
1528			            apic_int_is_bus_type(intr, EISA)) {
1529					if (INTIRQ(intr) == 0xff)
1530						return -1; /* unassigned */
1531					return INTIRQ(intr);	/* found */
1532				}
1533			}
1534		}
1535	}
1536	return -1;					/* NOT found */
1537}
1538
1539
1540/*
1541 * Determine which APIC pin a PCI INT is attached to.
1542 */
1543#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1544#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1545#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1546int
1547pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1548{
1549	int     intr;
1550
1551	--pciInt;					/* zero based */
1552
1553	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1554		if ((INTTYPE(intr) == 0)		/* standard INT */
1555		    && (SRCBUSID(intr) == pciBus)
1556		    && (SRCBUSDEVICE(intr) == pciDevice)
1557		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1558			if (apic_int_is_bus_type(intr, PCI)) {
1559				if (INTIRQ(intr) == 0xff)
1560					allocate_apic_irq(intr);
1561				if (INTIRQ(intr) == 0xff)
1562					return -1;	/* unassigned */
1563				return INTIRQ(intr);	/* exact match */
1564			}
1565
1566	return -1;					/* NOT found */
1567}
1568
1569int
1570next_apic_irq(int irq)
1571{
1572	int intr, ointr;
1573	int bus, bustype;
1574
1575	bus = 0;
1576	bustype = 0;
1577	for (intr = 0; intr < nintrs; intr++) {
1578		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1579			continue;
1580		bus = SRCBUSID(intr);
1581		bustype = apic_bus_type(bus);
1582		if (bustype != ISA &&
1583		    bustype != EISA &&
1584		    bustype != PCI)
1585			continue;
1586		break;
1587	}
1588	if (intr >= nintrs) {
1589		return -1;
1590	}
1591	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1592		if (INTTYPE(ointr) != 0)
1593			continue;
1594		if (bus != SRCBUSID(ointr))
1595			continue;
1596		if (bustype == PCI) {
1597			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1598				continue;
1599			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1600				continue;
1601		}
1602		if (bustype == ISA || bustype == EISA) {
1603			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1604				continue;
1605		}
1606		if (INTPIN(intr) == INTPIN(ointr))
1607			continue;
1608		break;
1609	}
1610	if (ointr >= nintrs) {
1611		return -1;
1612	}
1613	return INTIRQ(ointr);
1614}
1615#undef SRCBUSLINE
1616#undef SRCBUSDEVICE
1617#undef SRCBUSID
1618#undef SRCBUSIRQ
1619
1620#undef INTPIN
1621#undef INTIRQ
1622#undef INTAPIC
1623#undef INTTYPE
1624
1625
1626/*
1627 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1628 *
1629 * XXX FIXME:
1630 *  Exactly what this means is unclear at this point.  It is a solution
1631 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1632 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1633 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1634 *  option.
1635 */
1636int
1637undirect_isa_irq(int rirq)
1638{
1639#if defined(READY)
1640	if (bootverbose)
1641	    printf("Freeing redirected ISA irq %d.\n", rirq);
1642	/** FIXME: tickle the MB redirector chip */
1643	return -1;
1644#else
1645	if (bootverbose)
1646	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1647	return 0;
1648#endif  /* READY */
1649}
1650
1651
1652/*
1653 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1654 */
1655int
1656undirect_pci_irq(int rirq)
1657{
1658#if defined(READY)
1659	if (bootverbose)
1660		printf("Freeing redirected PCI irq %d.\n", rirq);
1661
1662	/** FIXME: tickle the MB redirector chip */
1663	return -1;
1664#else
1665	if (bootverbose)
1666		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1667		       rirq);
1668	return 0;
1669#endif  /* READY */
1670}
1671
1672
1673/*
1674 * given a bus ID, return:
1675 *  the bus type if found
1676 *  -1 if NOT found
1677 */
1678int
1679apic_bus_type(int id)
1680{
1681	int     x;
1682
1683	for (x = 0; x < mp_nbusses; ++x)
1684		if (bus_data[x].bus_id == id)
1685			return bus_data[x].bus_type;
1686
1687	return -1;
1688}
1689
1690
1691/*
1692 * given a LOGICAL APIC# and pin#, return:
1693 *  the associated src bus ID if found
1694 *  -1 if NOT found
1695 */
1696int
1697apic_src_bus_id(int apic, int pin)
1698{
1699	int     x;
1700
1701	/* search each of the possible INTerrupt sources */
1702	for (x = 0; x < nintrs; ++x)
1703		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1704		    (pin == io_apic_ints[x].dst_apic_int))
1705			return (io_apic_ints[x].src_bus_id);
1706
1707	return -1;		/* NOT found */
1708}
1709
1710
1711/*
1712 * given a LOGICAL APIC# and pin#, return:
1713 *  the associated src bus IRQ if found
1714 *  -1 if NOT found
1715 */
1716int
1717apic_src_bus_irq(int apic, int pin)
1718{
1719	int     x;
1720
1721	for (x = 0; x < nintrs; x++)
1722		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1723		    (pin == io_apic_ints[x].dst_apic_int))
1724			return (io_apic_ints[x].src_bus_irq);
1725
1726	return -1;		/* NOT found */
1727}
1728
1729
1730/*
1731 * given a LOGICAL APIC# and pin#, return:
1732 *  the associated INTerrupt type if found
1733 *  -1 if NOT found
1734 */
1735int
1736apic_int_type(int apic, int pin)
1737{
1738	int     x;
1739
1740	/* search each of the possible INTerrupt sources */
1741	for (x = 0; x < nintrs; ++x)
1742		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1743		    (pin == io_apic_ints[x].dst_apic_int))
1744			return (io_apic_ints[x].int_type);
1745
1746	return -1;		/* NOT found */
1747}
1748
1749int
1750apic_irq(int apic, int pin)
1751{
1752	int x;
1753	int res;
1754
1755	for (x = 0; x < nintrs; ++x)
1756		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1757		    (pin == io_apic_ints[x].dst_apic_int)) {
1758			res = io_apic_ints[x].int_vector;
1759			if (res == 0xff)
1760				return -1;
1761			if (apic != int_to_apicintpin[res].ioapic)
1762				panic("apic_irq: inconsistent table");
1763			if (pin != int_to_apicintpin[res].int_pin)
1764				panic("apic_irq inconsistent table (2)");
1765			return res;
1766		}
1767	return -1;
1768}
1769
1770
1771/*
1772 * given a LOGICAL APIC# and pin#, return:
1773 *  the associated trigger mode if found
1774 *  -1 if NOT found
1775 */
1776int
1777apic_trigger(int apic, int pin)
1778{
1779	int     x;
1780
1781	/* search each of the possible INTerrupt sources */
1782	for (x = 0; x < nintrs; ++x)
1783		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1784		    (pin == io_apic_ints[x].dst_apic_int))
1785			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1786
1787	return -1;		/* NOT found */
1788}
1789
1790
1791/*
1792 * given a LOGICAL APIC# and pin#, return:
1793 *  the associated 'active' level if found
1794 *  -1 if NOT found
1795 */
1796int
1797apic_polarity(int apic, int pin)
1798{
1799	int     x;
1800
1801	/* search each of the possible INTerrupt sources */
1802	for (x = 0; x < nintrs; ++x)
1803		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1804		    (pin == io_apic_ints[x].dst_apic_int))
1805			return (io_apic_ints[x].int_flags & 0x03);
1806
1807	return -1;		/* NOT found */
1808}
1809
1810
1811/*
1812 * set data according to MP defaults
1813 * FIXME: probably not complete yet...
1814 */
1815static void
1816default_mp_table(int type)
1817{
1818	int     ap_cpu_id;
1819#if defined(APIC_IO)
1820	int     io_apic_id;
1821	int     pin;
1822#endif	/* APIC_IO */
1823
1824#if 0
1825	printf("  MP default config type: %d\n", type);
1826	switch (type) {
1827	case 1:
1828		printf("   bus: ISA, APIC: 82489DX\n");
1829		break;
1830	case 2:
1831		printf("   bus: EISA, APIC: 82489DX\n");
1832		break;
1833	case 3:
1834		printf("   bus: EISA, APIC: 82489DX\n");
1835		break;
1836	case 4:
1837		printf("   bus: MCA, APIC: 82489DX\n");
1838		break;
1839	case 5:
1840		printf("   bus: ISA+PCI, APIC: Integrated\n");
1841		break;
1842	case 6:
1843		printf("   bus: EISA+PCI, APIC: Integrated\n");
1844		break;
1845	case 7:
1846		printf("   bus: MCA+PCI, APIC: Integrated\n");
1847		break;
1848	default:
1849		printf("   future type\n");
1850		break;
1851		/* NOTREACHED */
1852	}
1853#endif	/* 0 */
1854
1855	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1856	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1857
1858	/* BSP */
1859	CPU_TO_ID(0) = boot_cpu_id;
1860	ID_TO_CPU(boot_cpu_id) = 0;
1861
1862	/* one and only AP */
1863	CPU_TO_ID(1) = ap_cpu_id;
1864	ID_TO_CPU(ap_cpu_id) = 1;
1865
1866#if defined(APIC_IO)
1867	/* one and only IO APIC */
1868	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1869
1870	/*
1871	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1872	 * necessary as some hardware isn't properly setting up the IO APIC
1873	 */
1874#if defined(REALLY_ANAL_IOAPICID_VALUE)
1875	if (io_apic_id != 2) {
1876#else
1877	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1878#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1879		io_apic_set_id(0, 2);
1880		io_apic_id = 2;
1881	}
1882	IO_TO_ID(0) = io_apic_id;
1883	ID_TO_IO(io_apic_id) = 0;
1884#endif	/* APIC_IO */
1885
1886	/* fill out bus entries */
1887	switch (type) {
1888	case 1:
1889	case 2:
1890	case 3:
1891	case 4:
1892	case 5:
1893	case 6:
1894	case 7:
1895		bus_data[0].bus_id = default_data[type - 1][1];
1896		bus_data[0].bus_type = default_data[type - 1][2];
1897		bus_data[1].bus_id = default_data[type - 1][3];
1898		bus_data[1].bus_type = default_data[type - 1][4];
1899		break;
1900
1901	/* case 4: case 7:		   MCA NOT supported */
1902	default:		/* illegal/reserved */
1903		panic("BAD default MP config: %d", type);
1904		/* NOTREACHED */
1905	}
1906
1907#if defined(APIC_IO)
1908	/* general cases from MP v1.4, table 5-2 */
1909	for (pin = 0; pin < 16; ++pin) {
1910		io_apic_ints[pin].int_type = 0;
1911		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1912		io_apic_ints[pin].src_bus_id = 0;
1913		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1914		io_apic_ints[pin].dst_apic_id = io_apic_id;
1915		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1916	}
1917
1918	/* special cases from MP v1.4, table 5-2 */
1919	if (type == 2) {
1920		io_apic_ints[2].int_type = 0xff;	/* N/C */
1921		io_apic_ints[13].int_type = 0xff;	/* N/C */
1922#if !defined(APIC_MIXED_MODE)
1923		/** FIXME: ??? */
1924		panic("sorry, can't support type 2 default yet");
1925#endif	/* APIC_MIXED_MODE */
1926	}
1927	else
1928		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1929
1930	if (type == 7)
1931		io_apic_ints[0].int_type = 0xff;	/* N/C */
1932	else
1933		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1934#endif	/* APIC_IO */
1935}
1936
1937
1938/*
1939 * start each AP in our list
1940 */
1941static int
1942start_all_aps(u_int boot_addr)
1943{
1944	int     x, i, pg;
1945	u_char  mpbiosreason;
1946	u_long  mpbioswarmvec;
1947	struct globaldata *gd;
1948	char *stack;
1949
1950	POSTCODE(START_ALL_APS_POST);
1951
1952	/* initialize BSP's local APIC */
1953	apic_initialize();
1954	bsp_apic_ready = 1;
1955
1956	/* install the AP 1st level boot code */
1957	install_ap_tramp(boot_addr);
1958
1959
1960	/* save the current value of the warm-start vector */
1961	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1962#ifndef PC98
1963	outb(CMOS_REG, BIOS_RESET);
1964	mpbiosreason = inb(CMOS_DATA);
1965#endif
1966
1967	/* record BSP in CPU map */
1968	all_cpus = 1;
1969
1970	/* set up 0 -> 4MB P==V mapping for AP boot */
1971	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1972	invltlb();
1973
1974	/* start each AP */
1975	for (x = 1; x <= mp_naps; ++x) {
1976
1977		/* This is a bit verbose, it will go away soon.  */
1978
1979		/* first page of AP's private space */
1980		pg = x * i386_btop(sizeof(struct privatespace));
1981
1982		/* allocate a new private data page */
1983		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1984
1985		/* wire it into the private page table page */
1986		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1987
1988		/* allocate and set up an idle stack data page */
1989		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1990		for (i = 0; i < UPAGES; i++)
1991			SMPpt[pg + 1 + i] = (pt_entry_t)
1992			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1993
1994		/* prime data page for it to use */
1995		SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu);
1996		gd->gd_cpuid = x;
1997		gd->gd_cpu_lockid = x << 24;
1998
1999		/* setup a vector to our boot code */
2000		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
2001		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
2002#ifndef PC98
2003		outb(CMOS_REG, BIOS_RESET);
2004		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
2005#endif
2006
2007		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
2008		bootAP = x;
2009
2010		/* attempt to start the Application Processor */
2011		CHECK_INIT(99);	/* setup checkpoints */
2012		if (!start_ap(x, boot_addr)) {
2013			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
2014			CHECK_PRINT("trace");	/* show checkpoints */
2015			/* better panic as the AP may be running loose */
2016			printf("panic y/n? [y] ");
2017			if (cngetc() != 'n')
2018				panic("bye-bye");
2019		}
2020		CHECK_PRINT("trace");		/* show checkpoints */
2021
2022		/* record its version info */
2023		cpu_apic_versions[x] = cpu_apic_versions[0];
2024
2025		all_cpus |= (1 << x);		/* record AP in CPU map */
2026	}
2027
2028	/* build our map of 'other' CPUs */
2029	PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2030
2031	/* fill in our (BSP) APIC version */
2032	cpu_apic_versions[0] = lapic.version;
2033
2034	/* restore the warmstart vector */
2035	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
2036#ifndef PC98
2037	outb(CMOS_REG, BIOS_RESET);
2038	outb(CMOS_DATA, mpbiosreason);
2039#endif
2040
2041	/*
2042	 * Set up the idle context for the BSP.  Similar to above except
2043	 * that some was done by locore, some by pmap.c and some is implicit
2044	 * because the BSP is cpu#0 and the page is initially zero, and also
2045	 * because we can refer to variables by name on the BSP..
2046	 */
2047
2048	/* Allocate and setup BSP idle stack */
2049	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
2050	for (i = 0; i < UPAGES; i++)
2051		SMPpt[1 + i] = (pt_entry_t)
2052		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
2053
2054	*(int *)PTD = 0;
2055	pmap_set_opt();
2056
2057	/* number of APs actually started */
2058	return mp_ncpus - 1;
2059}
2060
2061
2062/*
2063 * load the 1st level AP boot code into base memory.
2064 */
2065
2066/* targets for relocation */
2067extern void bigJump(void);
2068extern void bootCodeSeg(void);
2069extern void bootDataSeg(void);
2070extern void MPentry(void);
2071extern u_int MP_GDT;
2072extern u_int mp_gdtbase;
2073
2074static void
2075install_ap_tramp(u_int boot_addr)
2076{
2077	int     x;
2078	int     size = *(int *) ((u_long) & bootMP_size);
2079	u_char *src = (u_char *) ((u_long) bootMP);
2080	u_char *dst = (u_char *) boot_addr + KERNBASE;
2081	u_int   boot_base = (u_int) bootMP;
2082	u_int8_t *dst8;
2083	u_int16_t *dst16;
2084	u_int32_t *dst32;
2085
2086	POSTCODE(INSTALL_AP_TRAMP_POST);
2087
2088	for (x = 0; x < size; ++x)
2089		*dst++ = *src++;
2090
2091	/*
2092	 * modify addresses in code we just moved to basemem. unfortunately we
2093	 * need fairly detailed info about mpboot.s for this to work.  changes
2094	 * to mpboot.s might require changes here.
2095	 */
2096
2097	/* boot code is located in KERNEL space */
2098	dst = (u_char *) boot_addr + KERNBASE;
2099
2100	/* modify the lgdt arg */
2101	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
2102	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
2103
2104	/* modify the ljmp target for MPentry() */
2105	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
2106	*dst32 = ((u_int) MPentry - KERNBASE);
2107
2108	/* modify the target for boot code segment */
2109	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
2110	dst8 = (u_int8_t *) (dst16 + 1);
2111	*dst16 = (u_int) boot_addr & 0xffff;
2112	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2113
2114	/* modify the target for boot data segment */
2115	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
2116	dst8 = (u_int8_t *) (dst16 + 1);
2117	*dst16 = (u_int) boot_addr & 0xffff;
2118	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2119}
2120
2121
2122/*
2123 * this function starts the AP (application processor) identified
2124 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
2125 * to accomplish this.  This is necessary because of the nuances
2126 * of the different hardware we might encounter.  It ain't pretty,
2127 * but it seems to work.
2128 */
2129static int
2130start_ap(int logical_cpu, u_int boot_addr)
2131{
2132	int     physical_cpu;
2133	int     vector;
2134	int     cpus;
2135	u_long  icr_lo, icr_hi;
2136
2137	POSTCODE(START_AP_POST);
2138
2139	/* get the PHYSICAL APIC ID# */
2140	physical_cpu = CPU_TO_ID(logical_cpu);
2141
2142	/* calculate the vector */
2143	vector = (boot_addr >> 12) & 0xff;
2144
2145	/* used as a watchpoint to signal AP startup */
2146	cpus = mp_ncpus;
2147
2148	/*
2149	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2150	 * and running the target CPU. OR this INIT IPI might be latched (P5
2151	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2152	 * ignored.
2153	 */
2154
2155	/* setup the address for the target AP */
2156	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2157	icr_hi |= (physical_cpu << 24);
2158	lapic.icr_hi = icr_hi;
2159
2160	/* do an INIT IPI: assert RESET */
2161	icr_lo = lapic.icr_lo & 0xfff00000;
2162	lapic.icr_lo = icr_lo | 0x0000c500;
2163
2164	/* wait for pending status end */
2165	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2166		 /* spin */ ;
2167
2168	/* do an INIT IPI: deassert RESET */
2169	lapic.icr_lo = icr_lo | 0x00008500;
2170
2171	/* wait for pending status end */
2172	u_sleep(10000);		/* wait ~10mS */
2173	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2174		 /* spin */ ;
2175
2176	/*
2177	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2178	 * latched, (P5 bug) this 1st STARTUP would then terminate
2179	 * immediately, and the previously started INIT IPI would continue. OR
2180	 * the previous INIT IPI has already run. and this STARTUP IPI will
2181	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2182	 * will run.
2183	 */
2184
2185	/* do a STARTUP IPI */
2186	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2187	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2188		 /* spin */ ;
2189	u_sleep(200);		/* wait ~200uS */
2190
2191	/*
2192	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2193	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2194	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2195	 * recognized after hardware RESET or INIT IPI.
2196	 */
2197
2198	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2199	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2200		 /* spin */ ;
2201	u_sleep(200);		/* wait ~200uS */
2202
2203	/* wait for it to start */
2204	set_apic_timer(5000000);/* == 5 seconds */
2205	while (read_apic_timer())
2206		if (mp_ncpus > cpus)
2207			return 1;	/* return SUCCESS */
2208
2209	return 0;		/* return FAILURE */
2210}
2211
2212/*
2213 * Flush the TLB on all other CPU's
2214 *
2215 * XXX: Needs to handshake and wait for completion before proceding.
2216 */
2217void
2218smp_invltlb(void)
2219{
2220#if defined(APIC_IO)
2221	if (smp_started && invltlb_ok)
2222		all_but_self_ipi(XINVLTLB_OFFSET);
2223#endif  /* APIC_IO */
2224}
2225
2226void
2227invlpg(u_int addr)
2228{
2229	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2230
2231	/* send a message to the other CPUs */
2232	smp_invltlb();
2233}
2234
2235void
2236invltlb(void)
2237{
2238	u_long  temp;
2239
2240	/*
2241	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2242	 * inlined.
2243	 */
2244	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2245
2246	/* send a message to the other CPUs */
2247	smp_invltlb();
2248}
2249
2250
2251/*
2252 * This is called once the rest of the system is up and running and we're
2253 * ready to let the AP's out of the pen.
2254 */
2255void
2256ap_init(void)
2257{
2258	u_int	apic_id;
2259
2260	/* spin until all the AP's are ready */
2261	while (!aps_ready)
2262		/* spin */ ;
2263
2264	/*
2265	 * Set curproc to our per-cpu idleproc so that mutexes have
2266	 * something unique to lock with.
2267	 */
2268	PCPU_SET(curproc, PCPU_GET(idleproc));
2269
2270	/* lock against other AP's that are waking up */
2271	mtx_enter(&ap_boot_mtx, MTX_SPIN);
2272
2273	/* BSP may have changed PTD while we're waiting for the lock */
2274	cpu_invltlb();
2275
2276	smp_cpus++;
2277
2278#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2279	lidt(&r_idt);
2280#endif
2281
2282	/* Build our map of 'other' CPUs. */
2283	PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
2284
2285	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
2286
2287	/* set up CPU registers and state */
2288	cpu_setregs();
2289
2290	/* set up FPU state on the AP */
2291	npxinit(__INITIAL_NPXCW__);
2292
2293	/* A quick check from sanity claus */
2294	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2295	if (PCPU_GET(cpuid) != apic_id) {
2296		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
2297		printf("SMP: apic_id = %d\n", apic_id);
2298		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2299		panic("cpuid mismatch! boom!!");
2300	}
2301
2302	/* Init local apic for irq's */
2303	apic_initialize();
2304
2305	/* Set memory range attributes for this CPU to match the BSP */
2306	mem_range_AP_init();
2307
2308	/*
2309	 * Activate smp_invltlb, although strictly speaking, this isn't
2310	 * quite correct yet.  We should have a bitfield for cpus willing
2311	 * to accept TLB flush IPI's or something and sync them.
2312	 */
2313	if (smp_cpus == mp_ncpus) {
2314		invltlb_ok = 1;
2315		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2316		smp_active = 1;	 /* historic */
2317	}
2318
2319	/* let other AP's wake up now */
2320	mtx_exit(&ap_boot_mtx, MTX_SPIN);
2321
2322	/* wait until all the AP's are up */
2323	while (smp_started == 0)
2324		; /* nothing */
2325
2326	microuptime(PCPU_PTR(switchtime));
2327	PCPU_SET(switchticks, ticks);
2328
2329	/* ok, now grab sched_lock and enter the scheduler */
2330	enable_intr();
2331	mtx_enter(&sched_lock, MTX_SPIN);
2332	cpu_throw();	/* doesn't return */
2333
2334	panic("scheduler returned us to ap_init");
2335}
2336
2337#ifdef BETTER_CLOCK
2338
2339#define CHECKSTATE_USER	0
2340#define CHECKSTATE_SYS	1
2341#define CHECKSTATE_INTR	2
2342
2343/* Do not staticize.  Used from apic_vector.s */
2344struct proc*	checkstate_curproc[MAXCPU];
2345int		checkstate_cpustate[MAXCPU];
2346u_long		checkstate_pc[MAXCPU];
2347
2348#define PC_TO_INDEX(pc, prof)				\
2349        ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2350            (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2351
2352static void
2353addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2354{
2355	int i;
2356	struct uprof *prof;
2357	u_long pc;
2358
2359	pc = checkstate_pc[id];
2360	prof = &p->p_stats->p_prof;
2361	if (pc >= prof->pr_off &&
2362	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2363		mtx_assert(&sched_lock, MA_OWNED);
2364		if ((p->p_sflag & PS_OWEUPC) == 0) {
2365			prof->pr_addr = pc;
2366			prof->pr_ticks = 1;
2367			p->p_sflag |= PS_OWEUPC;
2368		}
2369		*astmap |= (1 << id);
2370	}
2371}
2372
2373static void
2374forwarded_statclock(int id, int pscnt, int *astmap)
2375{
2376	struct pstats *pstats;
2377	long rss;
2378	struct rusage *ru;
2379	struct vmspace *vm;
2380	int cpustate;
2381	struct proc *p;
2382#ifdef GPROF
2383	register struct gmonparam *g;
2384	int i;
2385#endif
2386
2387	mtx_assert(&sched_lock, MA_OWNED);
2388	p = checkstate_curproc[id];
2389	cpustate = checkstate_cpustate[id];
2390
2391	/* XXX */
2392	if (p->p_ithd)
2393		cpustate = CHECKSTATE_INTR;
2394	else if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2395		cpustate = CHECKSTATE_SYS;
2396
2397	switch (cpustate) {
2398	case CHECKSTATE_USER:
2399		if (p->p_sflag & PS_PROFIL)
2400			addupc_intr_forwarded(p, id, astmap);
2401		if (pscnt > 1)
2402			return;
2403		p->p_uticks++;
2404		if (p->p_nice > NZERO)
2405			cp_time[CP_NICE]++;
2406		else
2407			cp_time[CP_USER]++;
2408		break;
2409	case CHECKSTATE_SYS:
2410#ifdef GPROF
2411		/*
2412		 * Kernel statistics are just like addupc_intr, only easier.
2413		 */
2414		g = &_gmonparam;
2415		if (g->state == GMON_PROF_ON) {
2416			i = checkstate_pc[id] - g->lowpc;
2417			if (i < g->textsize) {
2418				i /= HISTFRACTION * sizeof(*g->kcount);
2419				g->kcount[i]++;
2420			}
2421		}
2422#endif
2423		if (pscnt > 1)
2424			return;
2425
2426		p->p_sticks++;
2427		if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2428			cp_time[CP_IDLE]++;
2429		else
2430			cp_time[CP_SYS]++;
2431		break;
2432	case CHECKSTATE_INTR:
2433	default:
2434#ifdef GPROF
2435		/*
2436		 * Kernel statistics are just like addupc_intr, only easier.
2437		 */
2438		g = &_gmonparam;
2439		if (g->state == GMON_PROF_ON) {
2440			i = checkstate_pc[id] - g->lowpc;
2441			if (i < g->textsize) {
2442				i /= HISTFRACTION * sizeof(*g->kcount);
2443				g->kcount[i]++;
2444			}
2445		}
2446#endif
2447		if (pscnt > 1)
2448			return;
2449		KASSERT(p != NULL, ("NULL process in interrupt state"));
2450		p->p_iticks++;
2451		cp_time[CP_INTR]++;
2452	}
2453
2454	schedclock(p);
2455
2456	/* Update resource usage integrals and maximums. */
2457	if ((pstats = p->p_stats) != NULL &&
2458	    (ru = &pstats->p_ru) != NULL &&
2459	    (vm = p->p_vmspace) != NULL) {
2460		ru->ru_ixrss += pgtok(vm->vm_tsize);
2461		ru->ru_idrss += pgtok(vm->vm_dsize);
2462		ru->ru_isrss += pgtok(vm->vm_ssize);
2463		rss = pgtok(vmspace_resident_count(vm));
2464		if (ru->ru_maxrss < rss)
2465			ru->ru_maxrss = rss;
2466	}
2467}
2468
2469void
2470forward_statclock(int pscnt)
2471{
2472	int map;
2473	int id;
2474	int i;
2475
2476	/* Kludge. We don't yet have separate locks for the interrupts
2477	 * and the kernel. This means that we cannot let the other processors
2478	 * handle complex interrupts while inhibiting them from entering
2479	 * the kernel in a non-interrupt context.
2480	 *
2481	 * What we can do, without changing the locking mechanisms yet,
2482	 * is letting the other processors handle a very simple interrupt
2483	 * (wich determines the processor states), and do the main
2484	 * work ourself.
2485	 */
2486
2487	CTR1(KTR_SMP, "forward_statclock(%d)", pscnt);
2488
2489	if (!smp_started || !invltlb_ok || cold || panicstr)
2490		return;
2491
2492	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2493
2494	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2495	checkstate_probed_cpus = 0;
2496	if (map != 0)
2497		selected_apic_ipi(map,
2498				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2499
2500	i = 0;
2501	while (checkstate_probed_cpus != map) {
2502		/* spin */
2503		i++;
2504		if (i == 100000) {
2505#ifdef BETTER_CLOCK_DIAGNOSTIC
2506			printf("forward_statclock: checkstate %x\n",
2507			       checkstate_probed_cpus);
2508#endif
2509			break;
2510		}
2511	}
2512
2513	/*
2514	 * Step 2: walk through other processors processes, update ticks and
2515	 * profiling info.
2516	 */
2517
2518	map = 0;
2519	for (id = 0; id < mp_ncpus; id++) {
2520		if (id == PCPU_GET(cpuid))
2521			continue;
2522		if (((1 << id) & checkstate_probed_cpus) == 0)
2523			continue;
2524		forwarded_statclock(id, pscnt, &map);
2525	}
2526	if (map != 0) {
2527		checkstate_need_ast |= map;
2528		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2529		i = 0;
2530		while ((checkstate_need_ast & map) != 0) {
2531			/* spin */
2532			i++;
2533			if (i > 100000) {
2534#ifdef BETTER_CLOCK_DIAGNOSTIC
2535				printf("forward_statclock: dropped ast 0x%x\n",
2536				       checkstate_need_ast & map);
2537#endif
2538				break;
2539			}
2540		}
2541	}
2542}
2543
2544void
2545forward_hardclock(int pscnt)
2546{
2547	int map;
2548	int id;
2549	struct proc *p;
2550	struct pstats *pstats;
2551	int i;
2552
2553	/* Kludge. We don't yet have separate locks for the interrupts
2554	 * and the kernel. This means that we cannot let the other processors
2555	 * handle complex interrupts while inhibiting them from entering
2556	 * the kernel in a non-interrupt context.
2557	 *
2558	 * What we can do, without changing the locking mechanisms yet,
2559	 * is letting the other processors handle a very simple interrupt
2560	 * (wich determines the processor states), and do the main
2561	 * work ourself.
2562	 */
2563
2564	CTR1(KTR_SMP, "forward_hardclock(%d)", pscnt);
2565
2566	if (!smp_started || !invltlb_ok || cold || panicstr)
2567		return;
2568
2569	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2570
2571	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2572	checkstate_probed_cpus = 0;
2573	if (map != 0)
2574		selected_apic_ipi(map,
2575				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2576
2577	i = 0;
2578	while (checkstate_probed_cpus != map) {
2579		/* spin */
2580		i++;
2581		if (i == 100000) {
2582#ifdef BETTER_CLOCK_DIAGNOSTIC
2583			printf("forward_hardclock: checkstate %x\n",
2584			       checkstate_probed_cpus);
2585#endif
2586			break;
2587		}
2588	}
2589
2590	/*
2591	 * Step 2: walk through other processors processes, update virtual
2592	 * timer and profiling timer. If stathz == 0, also update ticks and
2593	 * profiling info.
2594	 */
2595
2596	map = 0;
2597	for (id = 0; id < mp_ncpus; id++) {
2598		if (id == PCPU_GET(cpuid))
2599			continue;
2600		if (((1 << id) & checkstate_probed_cpus) == 0)
2601			continue;
2602		p = checkstate_curproc[id];
2603		if (p) {
2604			pstats = p->p_stats;
2605			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2606			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2607			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2608				p->p_sflag |= PS_ALRMPEND;
2609				map |= (1 << id);
2610			}
2611			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2612			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2613				p->p_sflag |= PS_PROFPEND;
2614				map |= (1 << id);
2615			}
2616		}
2617		if (stathz == 0) {
2618			forwarded_statclock( id, pscnt, &map);
2619		}
2620	}
2621	if (map != 0) {
2622		checkstate_need_ast |= map;
2623		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2624		i = 0;
2625		while ((checkstate_need_ast & map) != 0) {
2626			/* spin */
2627			i++;
2628			if (i > 100000) {
2629#ifdef BETTER_CLOCK_DIAGNOSTIC
2630				printf("forward_hardclock: dropped ast 0x%x\n",
2631				       checkstate_need_ast & map);
2632#endif
2633				break;
2634			}
2635		}
2636	}
2637}
2638
2639#endif /* BETTER_CLOCK */
2640
2641void
2642forward_signal(struct proc *p)
2643{
2644	int map;
2645	int id;
2646	int i;
2647
2648	/* Kludge. We don't yet have separate locks for the interrupts
2649	 * and the kernel. This means that we cannot let the other processors
2650	 * handle complex interrupts while inhibiting them from entering
2651	 * the kernel in a non-interrupt context.
2652	 *
2653	 * What we can do, without changing the locking mechanisms yet,
2654	 * is letting the other processors handle a very simple interrupt
2655	 * (wich determines the processor states), and do the main
2656	 * work ourself.
2657	 */
2658
2659	CTR1(KTR_SMP, "forward_signal(%p)", p);
2660
2661	if (!smp_started || !invltlb_ok || cold || panicstr)
2662		return;
2663	if (!forward_signal_enabled)
2664		return;
2665	mtx_enter(&sched_lock, MTX_SPIN);
2666	while (1) {
2667		if (p->p_stat != SRUN) {
2668			mtx_exit(&sched_lock, MTX_SPIN);
2669			return;
2670		}
2671		id = p->p_oncpu;
2672		mtx_exit(&sched_lock, MTX_SPIN);
2673		if (id == 0xff)
2674			return;
2675		map = (1<<id);
2676		checkstate_need_ast |= map;
2677		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2678		i = 0;
2679		while ((checkstate_need_ast & map) != 0) {
2680			/* spin */
2681			i++;
2682			if (i > 100000) {
2683#if 0
2684				printf("forward_signal: dropped ast 0x%x\n",
2685				       checkstate_need_ast & map);
2686#endif
2687				break;
2688			}
2689		}
2690		mtx_enter(&sched_lock, MTX_SPIN);
2691		if (id == p->p_oncpu) {
2692			mtx_exit(&sched_lock, MTX_SPIN);
2693			return;
2694		}
2695	}
2696}
2697
2698void
2699forward_roundrobin(void)
2700{
2701	u_int map;
2702	int i;
2703
2704	CTR0(KTR_SMP, "forward_roundrobin()");
2705
2706	if (!smp_started || !invltlb_ok || cold || panicstr)
2707		return;
2708	if (!forward_roundrobin_enabled)
2709		return;
2710	resched_cpus |= PCPU_GET(other_cpus);
2711	map = PCPU_GET(other_cpus) & ~stopped_cpus ;
2712#if 1
2713	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2714#else
2715	(void) all_but_self_ipi(XCPUAST_OFFSET);
2716#endif
2717	i = 0;
2718	while ((checkstate_need_ast & map) != 0) {
2719		/* spin */
2720		i++;
2721		if (i > 100000) {
2722#if 0
2723			printf("forward_roundrobin: dropped ast 0x%x\n",
2724			       checkstate_need_ast & map);
2725#endif
2726			break;
2727		}
2728	}
2729}
2730
2731/*
2732 * When called the executing CPU will send an IPI to all other CPUs
2733 *  requesting that they halt execution.
2734 *
2735 * Usually (but not necessarily) called with 'other_cpus' as its arg.
2736 *
2737 *  - Signals all CPUs in map to stop.
2738 *  - Waits for each to stop.
2739 *
2740 * Returns:
2741 *  -1: error
2742 *   0: NA
2743 *   1: ok
2744 *
2745 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2746 *            from executing at same time.
2747 */
2748int
2749stop_cpus(u_int map)
2750{
2751	int count = 0;
2752
2753	if (!smp_started)
2754		return 0;
2755
2756	/* send the Xcpustop IPI to all CPUs in map */
2757	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2758
2759	while (count++ < 100000 && (stopped_cpus & map) != map)
2760		/* spin */ ;
2761
2762#ifdef DIAGNOSTIC
2763	if ((stopped_cpus & map) != map)
2764		printf("Warning: CPUs 0x%x did not stop!\n",
2765		    (~(stopped_cpus & map)) & map);
2766#endif
2767
2768	return 1;
2769}
2770
2771
2772/*
2773 * Called by a CPU to restart stopped CPUs.
2774 *
2775 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2776 *
2777 *  - Signals all CPUs in map to restart.
2778 *  - Waits for each to restart.
2779 *
2780 * Returns:
2781 *  -1: error
2782 *   0: NA
2783 *   1: ok
2784 */
2785int
2786restart_cpus(u_int map)
2787{
2788	int count = 0;
2789
2790	if (!smp_started)
2791		return 0;
2792
2793	started_cpus = map;		/* signal other cpus to restart */
2794
2795	/* wait for each to clear its bit */
2796	while (count++ < 100000 && (stopped_cpus & map) != 0)
2797		/* spin */ ;
2798
2799#ifdef DIAGNOSTIC
2800	if ((stopped_cpus & map) != 0)
2801		printf("Warning: CPUs 0x%x did not restart!\n",
2802		    (~(stopped_cpus & map)) & map);
2803#endif
2804
2805	return 1;
2806}
2807
2808
2809#ifdef APIC_INTR_REORDER
2810/*
2811 *	Maintain mapping from softintr vector to isr bit in local apic.
2812 */
2813void
2814set_lapic_isrloc(int intr, int vector)
2815{
2816	if (intr < 0 || intr > 32)
2817		panic("set_apic_isrloc: bad intr argument: %d",intr);
2818	if (vector < ICU_OFFSET || vector > 255)
2819		panic("set_apic_isrloc: bad vector argument: %d",vector);
2820	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2821	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2822}
2823#endif
2824
2825/*
2826 * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
2827 * (if specified), rendezvous, execute the action function (if specified),
2828 * rendezvous again, execute the teardown function (if specified), and then
2829 * resume.
2830 *
2831 * Note that the supplied external functions _must_ be reentrant and aware
2832 * that they are running in parallel and in an unknown lock context.
2833 */
2834static void (*smp_rv_setup_func)(void *arg);
2835static void (*smp_rv_action_func)(void *arg);
2836static void (*smp_rv_teardown_func)(void *arg);
2837static void *smp_rv_func_arg;
2838static volatile int smp_rv_waiters[2];
2839
2840void
2841smp_rendezvous_action(void)
2842{
2843	/* setup function */
2844	if (smp_rv_setup_func != NULL)
2845		smp_rv_setup_func(smp_rv_func_arg);
2846	/* spin on entry rendezvous */
2847	atomic_add_int(&smp_rv_waiters[0], 1);
2848	while (smp_rv_waiters[0] < mp_ncpus)
2849		;
2850	/* action function */
2851	if (smp_rv_action_func != NULL)
2852		smp_rv_action_func(smp_rv_func_arg);
2853	/* spin on exit rendezvous */
2854	atomic_add_int(&smp_rv_waiters[1], 1);
2855	while (smp_rv_waiters[1] < mp_ncpus)
2856		;
2857	/* teardown function */
2858	if (smp_rv_teardown_func != NULL)
2859		smp_rv_teardown_func(smp_rv_func_arg);
2860}
2861
2862void
2863smp_rendezvous(void (* setup_func)(void *),
2864	       void (* action_func)(void *),
2865	       void (* teardown_func)(void *),
2866	       void *arg)
2867{
2868
2869	/* obtain rendezvous lock */
2870	mtx_enter(&smp_rv_mtx, MTX_SPIN);
2871
2872	/* set static function pointers */
2873	smp_rv_setup_func = setup_func;
2874	smp_rv_action_func = action_func;
2875	smp_rv_teardown_func = teardown_func;
2876	smp_rv_func_arg = arg;
2877	smp_rv_waiters[0] = 0;
2878	smp_rv_waiters[1] = 0;
2879
2880	/*
2881	 * signal other processors, which will enter the IPI with interrupts off
2882	 */
2883	all_but_self_ipi(XRENDEZVOUS_OFFSET);
2884
2885	/* call executor function */
2886	smp_rendezvous_action();
2887
2888	/* release lock */
2889	mtx_exit(&smp_rv_mtx, MTX_SPIN);
2890}
2891
2892void
2893release_aps(void *dummy __unused)
2894{
2895	atomic_store_rel_int(&aps_ready, 1);
2896}
2897
2898SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
2899