mptable.c revision 61136
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/i386/i386/mptable.c 61136 2000-05-31 21:37:28Z msmith $
26 */
27
28#include "opt_smp.h"
29#include "opt_cpu.h"
30#include "opt_user_ldt.h"
31
32#ifdef SMP
33#include <machine/smptests.h>
34#else
35#error
36#endif
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/sysctl.h>
43#include <sys/malloc.h>
44#include <sys/memrange.h>
45#ifdef BETTER_CLOCK
46#include <sys/dkstat.h>
47#endif
48#include <sys/cons.h>	/* cngetc() */
49
50#include <vm/vm.h>
51#include <vm/vm_param.h>
52#include <vm/pmap.h>
53#include <vm/vm_kern.h>
54#include <vm/vm_extern.h>
55#ifdef BETTER_CLOCK
56#include <sys/lock.h>
57#include <vm/vm_map.h>
58#include <sys/user.h>
59#ifdef GPROF
60#include <sys/gmon.h>
61#endif
62#endif
63
64#include <machine/smp.h>
65#include <machine/apic.h>
66#include <machine/atomic.h>
67#include <machine/cpufunc.h>
68#include <machine/mpapic.h>
69#include <machine/psl.h>
70#include <machine/segments.h>
71#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
72#include <machine/tss.h>
73#include <machine/specialreg.h>
74#include <machine/globaldata.h>
75
76#if defined(APIC_IO)
77#include <machine/md_var.h>		/* setidt() */
78#include <i386/isa/icu.h>		/* IPIs */
79#include <i386/isa/intr_machdep.h>	/* IPIs */
80#endif	/* APIC_IO */
81
82#if defined(TEST_DEFAULT_CONFIG)
83#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
84#else
85#define MPFPS_MPFB1	mpfps->mpfb1
86#endif  /* TEST_DEFAULT_CONFIG */
87
88#define WARMBOOT_TARGET		0
89#define WARMBOOT_OFF		(KERNBASE + 0x0467)
90#define WARMBOOT_SEG		(KERNBASE + 0x0469)
91
92#ifdef PC98
93#define BIOS_BASE		(0xe8000)
94#define BIOS_SIZE		(0x18000)
95#else
96#define BIOS_BASE		(0xf0000)
97#define BIOS_SIZE		(0x10000)
98#endif
99#define BIOS_COUNT		(BIOS_SIZE/4)
100
101#define CMOS_REG		(0x70)
102#define CMOS_DATA		(0x71)
103#define BIOS_RESET		(0x0f)
104#define BIOS_WARM		(0x0a)
105
106#define PROCENTRY_FLAG_EN	0x01
107#define PROCENTRY_FLAG_BP	0x02
108#define IOAPICENTRY_FLAG_EN	0x01
109
110
111/* MP Floating Pointer Structure */
112typedef struct MPFPS {
113	char    signature[4];
114	void   *pap;
115	u_char  length;
116	u_char  spec_rev;
117	u_char  checksum;
118	u_char  mpfb1;
119	u_char  mpfb2;
120	u_char  mpfb3;
121	u_char  mpfb4;
122	u_char  mpfb5;
123}      *mpfps_t;
124
125/* MP Configuration Table Header */
126typedef struct MPCTH {
127	char    signature[4];
128	u_short base_table_length;
129	u_char  spec_rev;
130	u_char  checksum;
131	u_char  oem_id[8];
132	u_char  product_id[12];
133	void   *oem_table_pointer;
134	u_short oem_table_size;
135	u_short entry_count;
136	void   *apic_address;
137	u_short extended_table_length;
138	u_char  extended_table_checksum;
139	u_char  reserved;
140}      *mpcth_t;
141
142
143typedef struct PROCENTRY {
144	u_char  type;
145	u_char  apic_id;
146	u_char  apic_version;
147	u_char  cpu_flags;
148	u_long  cpu_signature;
149	u_long  feature_flags;
150	u_long  reserved1;
151	u_long  reserved2;
152}      *proc_entry_ptr;
153
154typedef struct BUSENTRY {
155	u_char  type;
156	u_char  bus_id;
157	char    bus_type[6];
158}      *bus_entry_ptr;
159
160typedef struct IOAPICENTRY {
161	u_char  type;
162	u_char  apic_id;
163	u_char  apic_version;
164	u_char  apic_flags;
165	void   *apic_address;
166}      *io_apic_entry_ptr;
167
168typedef struct INTENTRY {
169	u_char  type;
170	u_char  int_type;
171	u_short int_flags;
172	u_char  src_bus_id;
173	u_char  src_bus_irq;
174	u_char  dst_apic_id;
175	u_char  dst_apic_int;
176}      *int_entry_ptr;
177
178/* descriptions of MP basetable entries */
179typedef struct BASETABLE_ENTRY {
180	u_char  type;
181	u_char  length;
182	char    name[16];
183}       basetable_entry;
184
185/*
186 * this code MUST be enabled here and in mpboot.s.
187 * it follows the very early stages of AP boot by placing values in CMOS ram.
188 * it NORMALLY will never be needed and thus the primitive method for enabling.
189 *
190#define CHECK_POINTS
191 */
192
193#if defined(CHECK_POINTS) && !defined(PC98)
194#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
195#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
196
197#define CHECK_INIT(D);				\
198	CHECK_WRITE(0x34, (D));			\
199	CHECK_WRITE(0x35, (D));			\
200	CHECK_WRITE(0x36, (D));			\
201	CHECK_WRITE(0x37, (D));			\
202	CHECK_WRITE(0x38, (D));			\
203	CHECK_WRITE(0x39, (D));
204
205#define CHECK_PRINT(S);				\
206	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
207	   (S),					\
208	   CHECK_READ(0x34),			\
209	   CHECK_READ(0x35),			\
210	   CHECK_READ(0x36),			\
211	   CHECK_READ(0x37),			\
212	   CHECK_READ(0x38),			\
213	   CHECK_READ(0x39));
214
215#else				/* CHECK_POINTS */
216
217#define CHECK_INIT(D)
218#define CHECK_PRINT(S)
219
220#endif				/* CHECK_POINTS */
221
222/*
223 * Values to send to the POST hardware.
224 */
225#define MP_BOOTADDRESS_POST	0x10
226#define MP_PROBE_POST		0x11
227#define MPTABLE_PASS1_POST	0x12
228
229#define MP_START_POST		0x13
230#define MP_ENABLE_POST		0x14
231#define MPTABLE_PASS2_POST	0x15
232
233#define START_ALL_APS_POST	0x16
234#define INSTALL_AP_TRAMP_POST	0x17
235#define START_AP_POST		0x18
236
237#define MP_ANNOUNCE_POST	0x19
238
239
240/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
241int	current_postcode;
242
243/** XXX FIXME: what system files declare these??? */
244extern struct region_descriptor r_gdt, r_idt;
245
246int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
247int	mp_ncpus;		/* # of CPUs, including BSP */
248int	mp_naps;		/* # of Applications processors */
249int	mp_nbusses;		/* # of busses */
250int	mp_napics;		/* # of IO APICs */
251int	boot_cpu_id;		/* designated BSP */
252vm_offset_t cpu_apic_address;
253vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
254extern	int nkpt;
255
256u_int32_t cpu_apic_versions[NCPU];
257u_int32_t io_apic_versions[NAPIC];
258
259#ifdef APIC_INTR_DIAGNOSTIC
260int apic_itrace_enter[32];
261int apic_itrace_tryisrlock[32];
262int apic_itrace_gotisrlock[32];
263int apic_itrace_active[32];
264int apic_itrace_masked[32];
265int apic_itrace_noisrlock[32];
266int apic_itrace_masked2[32];
267int apic_itrace_unmask[32];
268int apic_itrace_noforward[32];
269int apic_itrace_leave[32];
270int apic_itrace_enter2[32];
271int apic_itrace_doreti[32];
272int apic_itrace_splz[32];
273int apic_itrace_eoi[32];
274#ifdef APIC_INTR_DIAGNOSTIC_IRQ
275unsigned short apic_itrace_debugbuffer[32768];
276int apic_itrace_debugbuffer_idx;
277struct simplelock apic_itrace_debuglock;
278#endif
279#endif
280
281#ifdef APIC_INTR_REORDER
282struct {
283	volatile int *location;
284	int bit;
285} apic_isrbit_location[32];
286#endif
287
288struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
289
290/*
291 * APIC ID logical/physical mapping structures.
292 * We oversize these to simplify boot-time config.
293 */
294int     cpu_num_to_apic_id[NAPICID];
295int     io_num_to_apic_id[NAPICID];
296int     apic_id_to_logical[NAPICID];
297
298
299/* Bitmap of all available CPUs */
300u_int	all_cpus;
301
302/* AP uses this during bootstrap.  Do not staticize.  */
303char *bootSTK;
304static int bootAP;
305
306/* Hotwire a 0->4MB V==P mapping */
307extern pt_entry_t *KPTphys;
308
309/* SMP page table page */
310extern pt_entry_t *SMPpt;
311
312struct pcb stoppcbs[NCPU];
313
314int smp_started;		/* has the system started? */
315
316/*
317 * Local data and functions.
318 */
319
320static int	mp_capable;
321static u_int	boot_address;
322static u_int	base_memory;
323
324static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
325static mpfps_t	mpfps;
326static int	search_for_sig(u_int32_t target, int count);
327static void	mp_enable(u_int boot_addr);
328
329static int	mptable_pass1(void);
330static int	mptable_pass2(void);
331static void	default_mp_table(int type);
332static void	fix_mp_table(void);
333static void	setup_apic_irq_mapping(void);
334static void	init_locks(void);
335static int	start_all_aps(u_int boot_addr);
336static void	install_ap_tramp(u_int boot_addr);
337static int	start_ap(int logicalCpu, u_int boot_addr);
338static int	apic_int_is_bus_type(int intr, int bus_type);
339
340/*
341 * Calculate usable address in base memory for AP trampoline code.
342 */
343u_int
344mp_bootaddress(u_int basemem)
345{
346	POSTCODE(MP_BOOTADDRESS_POST);
347
348	base_memory = basemem * 1024;	/* convert to bytes */
349
350	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
351	if ((base_memory - boot_address) < bootMP_size)
352		boot_address -= 4096;	/* not enough, lower by 4k */
353
354	return boot_address;
355}
356
357
358/*
359 * Look for an Intel MP spec table (ie, SMP capable hardware).
360 */
361int
362mp_probe(void)
363{
364	int     x;
365	u_long  segment;
366	u_int32_t target;
367
368	POSTCODE(MP_PROBE_POST);
369
370	/* see if EBDA exists */
371	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
372		/* search first 1K of EBDA */
373		target = (u_int32_t) (segment << 4);
374		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
375			goto found;
376	} else {
377		/* last 1K of base memory, effective 'top of base' passed in */
378		target = (u_int32_t) (base_memory - 0x400);
379		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
380			goto found;
381	}
382
383	/* search the BIOS */
384	target = (u_int32_t) BIOS_BASE;
385	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
386		goto found;
387
388	/* nothing found */
389	mpfps = (mpfps_t)0;
390	mp_capable = 0;
391	return 0;
392
393found:
394	/* calculate needed resources */
395	mpfps = (mpfps_t)x;
396	if (mptable_pass1())
397		panic("you must reconfigure your kernel");
398
399	/* flag fact that we are running multiple processors */
400	mp_capable = 1;
401	return 1;
402}
403
404
405/*
406 * Startup the SMP processors.
407 */
408void
409mp_start(void)
410{
411	POSTCODE(MP_START_POST);
412
413	/* look for MP capable motherboard */
414	if (mp_capable)
415		mp_enable(boot_address);
416	else
417		panic("MP hardware not found!");
418}
419
420
421/*
422 * Print various information about the SMP system hardware and setup.
423 */
424void
425mp_announce(void)
426{
427	int     x;
428
429	POSTCODE(MP_ANNOUNCE_POST);
430
431	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
432	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
433	printf(", version: 0x%08x", cpu_apic_versions[0]);
434	printf(", at 0x%08x\n", cpu_apic_address);
435	for (x = 1; x <= mp_naps; ++x) {
436		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
437		printf(", version: 0x%08x", cpu_apic_versions[x]);
438		printf(", at 0x%08x\n", cpu_apic_address);
439	}
440
441#if defined(APIC_IO)
442	for (x = 0; x < mp_napics; ++x) {
443		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
444		printf(", version: 0x%08x", io_apic_versions[x]);
445		printf(", at 0x%08x\n", io_apic_address[x]);
446	}
447#else
448	printf(" Warning: APIC I/O disabled\n");
449#endif	/* APIC_IO */
450}
451
452/*
453 * AP cpu's call this to sync up protected mode.
454 */
455void
456init_secondary(void)
457{
458	int	gsel_tss;
459	int	x, myid = bootAP;
460
461	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
462	gdt_segs[GPROC0_SEL].ssd_base =
463		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
464	SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid];
465
466	for (x = 0; x < NGDT; x++) {
467		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
468	}
469
470	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
471	r_gdt.rd_base = (int) &gdt[myid * NGDT];
472	lgdt(&r_gdt);			/* does magic intra-segment return */
473
474	lidt(&r_idt);
475
476	lldt(_default_ldt);
477#ifdef USER_LDT
478	currentldt = _default_ldt;
479#endif
480
481	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
482	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
483	common_tss.tss_esp0 = 0;	/* not used until after switch */
484	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
485	common_tss.tss_ioopt = (sizeof common_tss) << 16;
486	tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
487	common_tssd = *tss_gdt;
488	ltr(gsel_tss);
489
490	load_cr0(0x8005003b);		/* XXX! */
491
492	pmap_set_opt();
493}
494
495
496#if defined(APIC_IO)
497/*
498 * Final configuration of the BSP's local APIC:
499 *  - disable 'pic mode'.
500 *  - disable 'virtual wire mode'.
501 *  - enable NMI.
502 */
503void
504bsp_apic_configure(void)
505{
506	u_char		byte;
507	u_int32_t	temp;
508
509	/* leave 'pic mode' if necessary */
510	if (picmode) {
511		outb(0x22, 0x70);	/* select IMCR */
512		byte = inb(0x23);	/* current contents */
513		byte |= 0x01;		/* mask external INTR */
514		outb(0x23, byte);	/* disconnect 8259s/NMI */
515	}
516
517	/* mask lint0 (the 8259 'virtual wire' connection) */
518	temp = lapic.lvt_lint0;
519	temp |= APIC_LVT_M;		/* set the mask */
520	lapic.lvt_lint0 = temp;
521
522        /* setup lint1 to handle NMI */
523        temp = lapic.lvt_lint1;
524        temp &= ~APIC_LVT_M;		/* clear the mask */
525        lapic.lvt_lint1 = temp;
526
527	if (bootverbose)
528		apic_dump("bsp_apic_configure()");
529}
530#endif  /* APIC_IO */
531
532
533/*******************************************************************
534 * local functions and data
535 */
536
537/*
538 * start the SMP system
539 */
540static void
541mp_enable(u_int boot_addr)
542{
543	int     x;
544#if defined(APIC_IO)
545	int     apic;
546	u_int   ux;
547#endif	/* APIC_IO */
548
549	POSTCODE(MP_ENABLE_POST);
550
551	/* turn on 4MB of V == P addressing so we can get to MP table */
552	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
553	invltlb();
554
555	/* examine the MP table for needed info, uses physical addresses */
556	x = mptable_pass2();
557
558	*(int *)PTD = 0;
559	invltlb();
560
561	/* can't process default configs till the CPU APIC is pmapped */
562	if (x)
563		default_mp_table(x);
564
565	/* post scan cleanup */
566	fix_mp_table();
567	setup_apic_irq_mapping();
568
569#if defined(APIC_IO)
570
571	/* fill the LOGICAL io_apic_versions table */
572	for (apic = 0; apic < mp_napics; ++apic) {
573		ux = io_apic_read(apic, IOAPIC_VER);
574		io_apic_versions[apic] = ux;
575		io_apic_set_id(apic, IO_TO_ID(apic));
576	}
577
578	/* program each IO APIC in the system */
579	for (apic = 0; apic < mp_napics; ++apic)
580		if (io_apic_setup(apic) < 0)
581			panic("IO APIC setup failure");
582
583	/* install a 'Spurious INTerrupt' vector */
584	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
585	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
586
587	/* install an inter-CPU IPI for TLB invalidation */
588	setidt(XINVLTLB_OFFSET, Xinvltlb,
589	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
590
591#ifdef BETTER_CLOCK
592	/* install an inter-CPU IPI for reading processor state */
593	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
594	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
595#endif
596
597	/* install an inter-CPU IPI for all-CPU rendezvous */
598	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
599	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
600
601	/* install an inter-CPU IPI for forcing an additional software trap */
602	setidt(XCPUAST_OFFSET, Xcpuast,
603	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
604
605	/* install an inter-CPU IPI for interrupt forwarding */
606	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
607	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
608
609	/* install an inter-CPU IPI for CPU stop/restart */
610	setidt(XCPUSTOP_OFFSET, Xcpustop,
611	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
612
613#if defined(TEST_TEST1)
614	/* install a "fake hardware INTerrupt" vector */
615	setidt(XTEST1_OFFSET, Xtest1,
616	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
617#endif  /** TEST_TEST1 */
618
619#endif	/* APIC_IO */
620
621	/* initialize all SMP locks */
622	init_locks();
623
624	/* start each Application Processor */
625	start_all_aps(boot_addr);
626
627	/*
628	 * The init process might be started on a different CPU now,
629	 * and the boot CPU might not call prepare_usermode to get
630	 * cr0 correctly configured. Thus we initialize cr0 here.
631	 */
632	load_cr0(rcr0() | CR0_WP | CR0_AM);
633}
634
635
636/*
637 * look for the MP spec signature
638 */
639
640/* string defined by the Intel MP Spec as identifying the MP table */
641#define MP_SIG		0x5f504d5f	/* _MP_ */
642#define NEXT(X)		((X) += 4)
643static int
644search_for_sig(u_int32_t target, int count)
645{
646	int     x;
647	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
648
649	for (x = 0; x < count; NEXT(x))
650		if (addr[x] == MP_SIG)
651			/* make array index a byte index */
652			return (target + (x * sizeof(u_int32_t)));
653
654	return -1;
655}
656
657
658static basetable_entry basetable_entry_types[] =
659{
660	{0, 20, "Processor"},
661	{1, 8, "Bus"},
662	{2, 8, "I/O APIC"},
663	{3, 8, "I/O INT"},
664	{4, 8, "Local INT"}
665};
666
667typedef struct BUSDATA {
668	u_char  bus_id;
669	enum busTypes bus_type;
670}       bus_datum;
671
672typedef struct INTDATA {
673	u_char  int_type;
674	u_short int_flags;
675	u_char  src_bus_id;
676	u_char  src_bus_irq;
677	u_char  dst_apic_id;
678	u_char  dst_apic_int;
679	u_char	int_vector;
680}       io_int, local_int;
681
682typedef struct BUSTYPENAME {
683	u_char  type;
684	char    name[7];
685}       bus_type_name;
686
687static bus_type_name bus_type_table[] =
688{
689	{CBUS, "CBUS"},
690	{CBUSII, "CBUSII"},
691	{EISA, "EISA"},
692	{MCA, "MCA"},
693	{UNKNOWN_BUSTYPE, "---"},
694	{ISA, "ISA"},
695	{MCA, "MCA"},
696	{UNKNOWN_BUSTYPE, "---"},
697	{UNKNOWN_BUSTYPE, "---"},
698	{UNKNOWN_BUSTYPE, "---"},
699	{UNKNOWN_BUSTYPE, "---"},
700	{UNKNOWN_BUSTYPE, "---"},
701	{PCI, "PCI"},
702	{UNKNOWN_BUSTYPE, "---"},
703	{UNKNOWN_BUSTYPE, "---"},
704	{UNKNOWN_BUSTYPE, "---"},
705	{UNKNOWN_BUSTYPE, "---"},
706	{XPRESS, "XPRESS"},
707	{UNKNOWN_BUSTYPE, "---"}
708};
709/* from MP spec v1.4, table 5-1 */
710static int default_data[7][5] =
711{
712/*   nbus, id0, type0, id1, type1 */
713	{1, 0, ISA, 255, 255},
714	{1, 0, EISA, 255, 255},
715	{1, 0, EISA, 255, 255},
716	{1, 0, MCA, 255, 255},
717	{2, 0, ISA, 1, PCI},
718	{2, 0, EISA, 1, PCI},
719	{2, 0, MCA, 1, PCI}
720};
721
722
723/* the bus data */
724static bus_datum bus_data[NBUS];
725
726/* the IO INT data, one entry per possible APIC INTerrupt */
727static io_int  io_apic_ints[NINTR];
728
729static int nintrs;
730
731static int processor_entry	__P((proc_entry_ptr entry, int cpu));
732static int bus_entry		__P((bus_entry_ptr entry, int bus));
733static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
734static int int_entry		__P((int_entry_ptr entry, int intr));
735static int lookup_bus_type	__P((char *name));
736
737
738/*
739 * 1st pass on motherboard's Intel MP specification table.
740 *
741 * initializes:
742 *	mp_ncpus = 1
743 *
744 * determines:
745 *	cpu_apic_address (common to all CPUs)
746 *	io_apic_address[N]
747 *	mp_naps
748 *	mp_nbusses
749 *	mp_napics
750 *	nintrs
751 */
752static int
753mptable_pass1(void)
754{
755	int	x;
756	mpcth_t	cth;
757	int	totalSize;
758	void*	position;
759	int	count;
760	int	type;
761	int	mustpanic;
762
763	POSTCODE(MPTABLE_PASS1_POST);
764
765	mustpanic = 0;
766
767	/* clear various tables */
768	for (x = 0; x < NAPICID; ++x) {
769		io_apic_address[x] = ~0;	/* IO APIC address table */
770	}
771
772	/* init everything to empty */
773	mp_naps = 0;
774	mp_nbusses = 0;
775	mp_napics = 0;
776	nintrs = 0;
777
778	/* check for use of 'default' configuration */
779	if (MPFPS_MPFB1 != 0) {
780		/* use default addresses */
781		cpu_apic_address = DEFAULT_APIC_BASE;
782		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
783
784		/* fill in with defaults */
785		mp_naps = 2;		/* includes BSP */
786		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
787#if defined(APIC_IO)
788		mp_napics = 1;
789		nintrs = 16;
790#endif	/* APIC_IO */
791	}
792	else {
793		if ((cth = mpfps->pap) == 0)
794			panic("MP Configuration Table Header MISSING!");
795
796		cpu_apic_address = (vm_offset_t) cth->apic_address;
797
798		/* walk the table, recording info of interest */
799		totalSize = cth->base_table_length - sizeof(struct MPCTH);
800		position = (u_char *) cth + sizeof(struct MPCTH);
801		count = cth->entry_count;
802
803		while (count--) {
804			switch (type = *(u_char *) position) {
805			case 0: /* processor_entry */
806				if (((proc_entry_ptr)position)->cpu_flags
807					& PROCENTRY_FLAG_EN)
808					++mp_naps;
809				break;
810			case 1: /* bus_entry */
811				++mp_nbusses;
812				break;
813			case 2: /* io_apic_entry */
814				if (((io_apic_entry_ptr)position)->apic_flags
815					& IOAPICENTRY_FLAG_EN)
816					io_apic_address[mp_napics++] =
817					    (vm_offset_t)((io_apic_entry_ptr)
818						position)->apic_address;
819				break;
820			case 3: /* int_entry */
821				++nintrs;
822				break;
823			case 4:	/* int_entry */
824				break;
825			default:
826				panic("mpfps Base Table HOSED!");
827				/* NOTREACHED */
828			}
829
830			totalSize -= basetable_entry_types[type].length;
831			(u_char*)position += basetable_entry_types[type].length;
832		}
833	}
834
835	/* qualify the numbers */
836	if (mp_naps > NCPU) {
837		printf("Warning: only using %d of %d available CPUs!\n",
838			NCPU, mp_naps);
839		mp_naps = NCPU;
840	}
841	if (mp_nbusses > NBUS) {
842		printf("found %d busses, increase NBUS\n", mp_nbusses);
843		mustpanic = 1;
844	}
845	if (mp_napics > NAPIC) {
846		printf("found %d apics, increase NAPIC\n", mp_napics);
847		mustpanic = 1;
848	}
849	if (nintrs > NINTR) {
850		printf("found %d intrs, increase NINTR\n", nintrs);
851		mustpanic = 1;
852	}
853
854	/*
855	 * Count the BSP.
856	 * This is also used as a counter while starting the APs.
857	 */
858	mp_ncpus = 1;
859
860	--mp_naps;	/* subtract the BSP */
861
862	return mustpanic;
863}
864
865
866/*
867 * 2nd pass on motherboard's Intel MP specification table.
868 *
869 * sets:
870 *	boot_cpu_id
871 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
872 *	CPU_TO_ID(N), logical CPU to APIC ID table
873 *	IO_TO_ID(N), logical IO to APIC ID table
874 *	bus_data[N]
875 *	io_apic_ints[N]
876 */
877static int
878mptable_pass2(void)
879{
880	int     x;
881	mpcth_t cth;
882	int     totalSize;
883	void*   position;
884	int     count;
885	int     type;
886	int     apic, bus, cpu, intr;
887
888	POSTCODE(MPTABLE_PASS2_POST);
889
890	/* clear various tables */
891	for (x = 0; x < NAPICID; ++x) {
892		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
893		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
894		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
895	}
896
897	/* clear bus data table */
898	for (x = 0; x < NBUS; ++x)
899		bus_data[x].bus_id = 0xff;
900
901	/* clear IO APIC INT table */
902	for (x = 0; x < NINTR; ++x) {
903		io_apic_ints[x].int_type = 0xff;
904		io_apic_ints[x].int_vector = 0xff;
905	}
906
907	/* setup the cpu/apic mapping arrays */
908	boot_cpu_id = -1;
909
910	/* record whether PIC or virtual-wire mode */
911	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
912
913	/* check for use of 'default' configuration */
914	if (MPFPS_MPFB1 != 0)
915		return MPFPS_MPFB1;	/* return default configuration type */
916
917	if ((cth = mpfps->pap) == 0)
918		panic("MP Configuration Table Header MISSING!");
919
920	/* walk the table, recording info of interest */
921	totalSize = cth->base_table_length - sizeof(struct MPCTH);
922	position = (u_char *) cth + sizeof(struct MPCTH);
923	count = cth->entry_count;
924	apic = bus = intr = 0;
925	cpu = 1;				/* pre-count the BSP */
926
927	while (count--) {
928		switch (type = *(u_char *) position) {
929		case 0:
930			if (processor_entry(position, cpu))
931				++cpu;
932			break;
933		case 1:
934			if (bus_entry(position, bus))
935				++bus;
936			break;
937		case 2:
938			if (io_apic_entry(position, apic))
939				++apic;
940			break;
941		case 3:
942			if (int_entry(position, intr))
943				++intr;
944			break;
945		case 4:
946			/* int_entry(position); */
947			break;
948		default:
949			panic("mpfps Base Table HOSED!");
950			/* NOTREACHED */
951		}
952
953		totalSize -= basetable_entry_types[type].length;
954		(u_char *) position += basetable_entry_types[type].length;
955	}
956
957	if (boot_cpu_id == -1)
958		panic("NO BSP found!");
959
960	/* report fact that its NOT a default configuration */
961	return 0;
962}
963
964
965void
966assign_apic_irq(int apic, int intpin, int irq)
967{
968	int x;
969
970	if (int_to_apicintpin[irq].ioapic != -1)
971		panic("assign_apic_irq: inconsistent table");
972
973	int_to_apicintpin[irq].ioapic = apic;
974	int_to_apicintpin[irq].int_pin = intpin;
975	int_to_apicintpin[irq].apic_address = ioapic[apic];
976	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
977
978	for (x = 0; x < nintrs; x++) {
979		if ((io_apic_ints[x].int_type == 0 ||
980		     io_apic_ints[x].int_type == 3) &&
981		    io_apic_ints[x].int_vector == 0xff &&
982		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
983		    io_apic_ints[x].dst_apic_int == intpin)
984			io_apic_ints[x].int_vector = irq;
985	}
986}
987
988void
989revoke_apic_irq(int irq)
990{
991	int x;
992	int oldapic;
993	int oldintpin;
994
995	if (int_to_apicintpin[irq].ioapic == -1)
996		panic("assign_apic_irq: inconsistent table");
997
998	oldapic = int_to_apicintpin[irq].ioapic;
999	oldintpin = int_to_apicintpin[irq].int_pin;
1000
1001	int_to_apicintpin[irq].ioapic = -1;
1002	int_to_apicintpin[irq].int_pin = 0;
1003	int_to_apicintpin[irq].apic_address = NULL;
1004	int_to_apicintpin[irq].redirindex = 0;
1005
1006	for (x = 0; x < nintrs; x++) {
1007		if ((io_apic_ints[x].int_type == 0 ||
1008		     io_apic_ints[x].int_type == 3) &&
1009		    io_apic_ints[x].int_vector == 0xff &&
1010		    io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1011		    io_apic_ints[x].dst_apic_int == oldintpin)
1012			io_apic_ints[x].int_vector = 0xff;
1013	}
1014}
1015
1016/*
1017 * parse an Intel MP specification table
1018 */
1019static void
1020fix_mp_table(void)
1021{
1022	int	x;
1023	int	id;
1024	int	bus_0 = 0;	/* Stop GCC warning */
1025	int	bus_pci = 0;	/* Stop GCC warning */
1026	int	num_pci_bus;
1027
1028	/*
1029	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1030	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1031	 * exists the BIOS must begin with bus entries for the PCI bus and use
1032	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1033	 * exists the BIOS can choose to ignore this ordering, and indeed many
1034	 * MP motherboards do ignore it.  This causes a problem when the PCI
1035	 * sub-system makes requests of the MP sub-system based on PCI bus
1036	 * numbers.	So here we look for the situation and renumber the
1037	 * busses and associated INTs in an effort to "make it right".
1038	 */
1039
1040	/* find bus 0, PCI bus, count the number of PCI busses */
1041	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1042		if (bus_data[x].bus_id == 0) {
1043			bus_0 = x;
1044		}
1045		if (bus_data[x].bus_type == PCI) {
1046			++num_pci_bus;
1047			bus_pci = x;
1048		}
1049	}
1050	/*
1051	 * bus_0 == slot of bus with ID of 0
1052	 * bus_pci == slot of last PCI bus encountered
1053	 */
1054
1055	/* check the 1 PCI bus case for sanity */
1056	if (num_pci_bus == 1) {
1057
1058		/* if it is number 0 all is well */
1059		if (bus_data[bus_pci].bus_id == 0)
1060			return;
1061
1062		/* mis-numbered, swap with whichever bus uses slot 0 */
1063
1064		/* swap the bus entry types */
1065		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1066		bus_data[bus_0].bus_type = PCI;
1067
1068		/* swap each relavant INTerrupt entry */
1069		id = bus_data[bus_pci].bus_id;
1070		for (x = 0; x < nintrs; ++x) {
1071			if (io_apic_ints[x].src_bus_id == id) {
1072				io_apic_ints[x].src_bus_id = 0;
1073			}
1074			else if (io_apic_ints[x].src_bus_id == 0) {
1075				io_apic_ints[x].src_bus_id = id;
1076			}
1077		}
1078	}
1079}
1080
1081
1082/* Assign low level interrupt handlers */
1083static void
1084setup_apic_irq_mapping(void)
1085{
1086	int	x;
1087	int	int_vector;
1088
1089	/* Clear array */
1090	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1091		int_to_apicintpin[x].ioapic = -1;
1092		int_to_apicintpin[x].int_pin = 0;
1093		int_to_apicintpin[x].apic_address = NULL;
1094		int_to_apicintpin[x].redirindex = 0;
1095	}
1096
1097	/* First assign ISA/EISA interrupts */
1098	for (x = 0; x < nintrs; x++) {
1099		int_vector = io_apic_ints[x].src_bus_irq;
1100		if (int_vector < APIC_INTMAPSIZE &&
1101		    io_apic_ints[x].int_vector == 0xff &&
1102		    int_to_apicintpin[int_vector].ioapic == -1 &&
1103		    (apic_int_is_bus_type(x, ISA) ||
1104		     apic_int_is_bus_type(x, EISA)) &&
1105		    io_apic_ints[x].int_type == 0) {
1106			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1107					io_apic_ints[x].dst_apic_int,
1108					int_vector);
1109		}
1110	}
1111
1112	/* Assign interrupts on first 24 intpins on IOAPIC #0 */
1113	for (x = 0; x < nintrs; x++) {
1114		int_vector = io_apic_ints[x].dst_apic_int;
1115		if (int_vector < APIC_INTMAPSIZE &&
1116		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1117		    io_apic_ints[x].int_vector == 0xff &&
1118		    int_to_apicintpin[int_vector].ioapic == -1 &&
1119		    (io_apic_ints[x].int_type == 0 ||
1120		     io_apic_ints[x].int_type == 3)) {
1121			assign_apic_irq(0,
1122					io_apic_ints[x].dst_apic_int,
1123					int_vector);
1124		}
1125	}
1126	/*
1127	 * Assign interrupts for remaining intpins.
1128	 * Skip IOAPIC #0 intpin 0 if the type is ExtInt, since this indicates
1129	 * that an entry for ISA/EISA irq 0 exist, and a fallback to mixed mode
1130	 * due to 8254 interrupts not being delivered can reuse that low level
1131	 * interrupt handler.
1132	 */
1133	int_vector = 0;
1134	while (int_vector < APIC_INTMAPSIZE &&
1135	       int_to_apicintpin[int_vector].ioapic != -1)
1136		int_vector++;
1137	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1138		if ((io_apic_ints[x].int_type == 0 ||
1139		     (io_apic_ints[x].int_type == 3 &&
1140		      (io_apic_ints[x].dst_apic_id != IO_TO_ID(0) ||
1141		       io_apic_ints[x].dst_apic_int != 0))) &&
1142		    io_apic_ints[x].int_vector == 0xff) {
1143			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1144					io_apic_ints[x].dst_apic_int,
1145					int_vector);
1146			int_vector++;
1147			while (int_vector < APIC_INTMAPSIZE &&
1148			       int_to_apicintpin[int_vector].ioapic != -1)
1149				int_vector++;
1150		}
1151	}
1152}
1153
1154
1155static int
1156processor_entry(proc_entry_ptr entry, int cpu)
1157{
1158	/* check for usability */
1159	if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1160		return 0;
1161
1162	/* check for BSP flag */
1163	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1164		boot_cpu_id = entry->apic_id;
1165		CPU_TO_ID(0) = entry->apic_id;
1166		ID_TO_CPU(entry->apic_id) = 0;
1167		return 0;	/* its already been counted */
1168	}
1169
1170	/* add another AP to list, if less than max number of CPUs */
1171	else if (cpu < NCPU) {
1172		CPU_TO_ID(cpu) = entry->apic_id;
1173		ID_TO_CPU(entry->apic_id) = cpu;
1174		return 1;
1175	}
1176
1177	return 0;
1178}
1179
1180
1181static int
1182bus_entry(bus_entry_ptr entry, int bus)
1183{
1184	int     x;
1185	char    c, name[8];
1186
1187	/* encode the name into an index */
1188	for (x = 0; x < 6; ++x) {
1189		if ((c = entry->bus_type[x]) == ' ')
1190			break;
1191		name[x] = c;
1192	}
1193	name[x] = '\0';
1194
1195	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1196		panic("unknown bus type: '%s'", name);
1197
1198	bus_data[bus].bus_id = entry->bus_id;
1199	bus_data[bus].bus_type = x;
1200
1201	return 1;
1202}
1203
1204
1205static int
1206io_apic_entry(io_apic_entry_ptr entry, int apic)
1207{
1208	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1209		return 0;
1210
1211	IO_TO_ID(apic) = entry->apic_id;
1212	ID_TO_IO(entry->apic_id) = apic;
1213
1214	return 1;
1215}
1216
1217
1218static int
1219lookup_bus_type(char *name)
1220{
1221	int     x;
1222
1223	for (x = 0; x < MAX_BUSTYPE; ++x)
1224		if (strcmp(bus_type_table[x].name, name) == 0)
1225			return bus_type_table[x].type;
1226
1227	return UNKNOWN_BUSTYPE;
1228}
1229
1230
1231static int
1232int_entry(int_entry_ptr entry, int intr)
1233{
1234	int apic;
1235
1236	io_apic_ints[intr].int_type = entry->int_type;
1237	io_apic_ints[intr].int_flags = entry->int_flags;
1238	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1239	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1240	if (entry->dst_apic_id == 255) {
1241		/* This signal goes to all IO APICS.  Select an IO APIC
1242		   with sufficient number of interrupt pins */
1243		for (apic = 0; apic < mp_napics; apic++)
1244			if (((io_apic_read(apic, IOAPIC_VER) &
1245			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1246			    entry->dst_apic_int)
1247				break;
1248		if (apic < mp_napics)
1249			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1250		else
1251			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1252	} else
1253		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1254	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1255
1256	return 1;
1257}
1258
1259
1260static int
1261apic_int_is_bus_type(int intr, int bus_type)
1262{
1263	int     bus;
1264
1265	for (bus = 0; bus < mp_nbusses; ++bus)
1266		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1267		    && ((int) bus_data[bus].bus_type == bus_type))
1268			return 1;
1269
1270	return 0;
1271}
1272
1273
1274/*
1275 * Given a traditional ISA INT mask, return an APIC mask.
1276 */
1277u_int
1278isa_apic_mask(u_int isa_mask)
1279{
1280	int isa_irq;
1281	int apic_pin;
1282
1283#if defined(SKIP_IRQ15_REDIRECT)
1284	if (isa_mask == (1 << 15)) {
1285		printf("skipping ISA IRQ15 redirect\n");
1286		return isa_mask;
1287	}
1288#endif  /* SKIP_IRQ15_REDIRECT */
1289
1290	isa_irq = ffs(isa_mask);		/* find its bit position */
1291	if (isa_irq == 0)			/* doesn't exist */
1292		return 0;
1293	--isa_irq;				/* make it zero based */
1294
1295	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1296	if (apic_pin == -1)
1297		return 0;
1298
1299	return (1 << apic_pin);			/* convert pin# to a mask */
1300}
1301
1302
1303/*
1304 * Determine which APIC pin an ISA/EISA INT is attached to.
1305 */
1306#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1307#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1308#define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1309#define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1310
1311#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1312int
1313isa_apic_irq(int isa_irq)
1314{
1315	int     intr;
1316
1317	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1318		if (INTTYPE(intr) == 0) {		/* standard INT */
1319			if (SRCBUSIRQ(intr) == isa_irq) {
1320				if (apic_int_is_bus_type(intr, ISA) ||
1321			            apic_int_is_bus_type(intr, EISA))
1322					return INTIRQ(intr);	/* found */
1323			}
1324		}
1325	}
1326	return -1;					/* NOT found */
1327}
1328
1329
1330/*
1331 * Determine which APIC pin a PCI INT is attached to.
1332 */
1333#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1334#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1335#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1336int
1337pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1338{
1339	int     intr;
1340
1341	--pciInt;					/* zero based */
1342
1343	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1344		if ((INTTYPE(intr) == 0)		/* standard INT */
1345		    && (SRCBUSID(intr) == pciBus)
1346		    && (SRCBUSDEVICE(intr) == pciDevice)
1347		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1348			if (apic_int_is_bus_type(intr, PCI))
1349				return INTIRQ(intr);	/* exact match */
1350
1351	return -1;					/* NOT found */
1352}
1353
1354int
1355next_apic_irq(int irq)
1356{
1357	int intr, ointr;
1358	int bus, bustype;
1359
1360	bus = 0;
1361	bustype = 0;
1362	for (intr = 0; intr < nintrs; intr++) {
1363		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1364			continue;
1365		bus = SRCBUSID(intr);
1366		bustype = apic_bus_type(bus);
1367		if (bustype != ISA &&
1368		    bustype != EISA &&
1369		    bustype != PCI)
1370			continue;
1371		break;
1372	}
1373	if (intr >= nintrs) {
1374		return -1;
1375	}
1376	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1377		if (INTTYPE(ointr) != 0)
1378			continue;
1379		if (bus != SRCBUSID(ointr))
1380			continue;
1381		if (bustype == PCI) {
1382			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1383				continue;
1384			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1385				continue;
1386		}
1387		if (bustype == ISA || bustype == EISA) {
1388			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1389				continue;
1390		}
1391		if (INTPIN(intr) == INTPIN(ointr))
1392			continue;
1393		break;
1394	}
1395	if (ointr >= nintrs) {
1396		return -1;
1397	}
1398	return INTIRQ(ointr);
1399}
1400#undef SRCBUSLINE
1401#undef SRCBUSDEVICE
1402#undef SRCBUSID
1403#undef SRCBUSIRQ
1404
1405#undef INTPIN
1406#undef INTIRQ
1407#undef INTAPIC
1408#undef INTTYPE
1409
1410
1411/*
1412 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1413 *
1414 * XXX FIXME:
1415 *  Exactly what this means is unclear at this point.  It is a solution
1416 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1417 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1418 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1419 *  option.
1420 */
1421int
1422undirect_isa_irq(int rirq)
1423{
1424#if defined(READY)
1425	if (bootverbose)
1426	    printf("Freeing redirected ISA irq %d.\n", rirq);
1427	/** FIXME: tickle the MB redirector chip */
1428	return ???;
1429#else
1430	if (bootverbose)
1431	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1432	return 0;
1433#endif  /* READY */
1434}
1435
1436
1437/*
1438 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1439 */
1440int
1441undirect_pci_irq(int rirq)
1442{
1443#if defined(READY)
1444	if (bootverbose)
1445		printf("Freeing redirected PCI irq %d.\n", rirq);
1446
1447	/** FIXME: tickle the MB redirector chip */
1448	return ???;
1449#else
1450	if (bootverbose)
1451		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1452		       rirq);
1453	return 0;
1454#endif  /* READY */
1455}
1456
1457
1458/*
1459 * given a bus ID, return:
1460 *  the bus type if found
1461 *  -1 if NOT found
1462 */
1463int
1464apic_bus_type(int id)
1465{
1466	int     x;
1467
1468	for (x = 0; x < mp_nbusses; ++x)
1469		if (bus_data[x].bus_id == id)
1470			return bus_data[x].bus_type;
1471
1472	return -1;
1473}
1474
1475
1476/*
1477 * given a LOGICAL APIC# and pin#, return:
1478 *  the associated src bus ID if found
1479 *  -1 if NOT found
1480 */
1481int
1482apic_src_bus_id(int apic, int pin)
1483{
1484	int     x;
1485
1486	/* search each of the possible INTerrupt sources */
1487	for (x = 0; x < nintrs; ++x)
1488		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1489		    (pin == io_apic_ints[x].dst_apic_int))
1490			return (io_apic_ints[x].src_bus_id);
1491
1492	return -1;		/* NOT found */
1493}
1494
1495
1496/*
1497 * given a LOGICAL APIC# and pin#, return:
1498 *  the associated src bus IRQ if found
1499 *  -1 if NOT found
1500 */
1501int
1502apic_src_bus_irq(int apic, int pin)
1503{
1504	int     x;
1505
1506	for (x = 0; x < nintrs; x++)
1507		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1508		    (pin == io_apic_ints[x].dst_apic_int))
1509			return (io_apic_ints[x].src_bus_irq);
1510
1511	return -1;		/* NOT found */
1512}
1513
1514
1515/*
1516 * given a LOGICAL APIC# and pin#, return:
1517 *  the associated INTerrupt type if found
1518 *  -1 if NOT found
1519 */
1520int
1521apic_int_type(int apic, int pin)
1522{
1523	int     x;
1524
1525	/* search each of the possible INTerrupt sources */
1526	for (x = 0; x < nintrs; ++x)
1527		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1528		    (pin == io_apic_ints[x].dst_apic_int))
1529			return (io_apic_ints[x].int_type);
1530
1531	return -1;		/* NOT found */
1532}
1533
1534int
1535apic_irq(int apic, int pin)
1536{
1537	int x;
1538	int res;
1539
1540	for (x = 0; x < nintrs; ++x)
1541		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1542		    (pin == io_apic_ints[x].dst_apic_int)) {
1543			res = io_apic_ints[x].int_vector;
1544			if (res == 0xff)
1545				return -1;
1546			if (apic != int_to_apicintpin[res].ioapic)
1547				panic("apic_irq: inconsistent table");
1548			if (pin != int_to_apicintpin[res].int_pin)
1549				panic("apic_irq inconsistent table (2)");
1550			return res;
1551		}
1552	return -1;
1553}
1554
1555
1556/*
1557 * given a LOGICAL APIC# and pin#, return:
1558 *  the associated trigger mode if found
1559 *  -1 if NOT found
1560 */
1561int
1562apic_trigger(int apic, int pin)
1563{
1564	int     x;
1565
1566	/* search each of the possible INTerrupt sources */
1567	for (x = 0; x < nintrs; ++x)
1568		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1569		    (pin == io_apic_ints[x].dst_apic_int))
1570			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1571
1572	return -1;		/* NOT found */
1573}
1574
1575
1576/*
1577 * given a LOGICAL APIC# and pin#, return:
1578 *  the associated 'active' level if found
1579 *  -1 if NOT found
1580 */
1581int
1582apic_polarity(int apic, int pin)
1583{
1584	int     x;
1585
1586	/* search each of the possible INTerrupt sources */
1587	for (x = 0; x < nintrs; ++x)
1588		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1589		    (pin == io_apic_ints[x].dst_apic_int))
1590			return (io_apic_ints[x].int_flags & 0x03);
1591
1592	return -1;		/* NOT found */
1593}
1594
1595
1596/*
1597 * set data according to MP defaults
1598 * FIXME: probably not complete yet...
1599 */
1600static void
1601default_mp_table(int type)
1602{
1603	int     ap_cpu_id;
1604#if defined(APIC_IO)
1605	u_int32_t ux;
1606	int     io_apic_id;
1607	int     pin;
1608#endif	/* APIC_IO */
1609
1610#if 0
1611	printf("  MP default config type: %d\n", type);
1612	switch (type) {
1613	case 1:
1614		printf("   bus: ISA, APIC: 82489DX\n");
1615		break;
1616	case 2:
1617		printf("   bus: EISA, APIC: 82489DX\n");
1618		break;
1619	case 3:
1620		printf("   bus: EISA, APIC: 82489DX\n");
1621		break;
1622	case 4:
1623		printf("   bus: MCA, APIC: 82489DX\n");
1624		break;
1625	case 5:
1626		printf("   bus: ISA+PCI, APIC: Integrated\n");
1627		break;
1628	case 6:
1629		printf("   bus: EISA+PCI, APIC: Integrated\n");
1630		break;
1631	case 7:
1632		printf("   bus: MCA+PCI, APIC: Integrated\n");
1633		break;
1634	default:
1635		printf("   future type\n");
1636		break;
1637		/* NOTREACHED */
1638	}
1639#endif	/* 0 */
1640
1641	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1642	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1643
1644	/* BSP */
1645	CPU_TO_ID(0) = boot_cpu_id;
1646	ID_TO_CPU(boot_cpu_id) = 0;
1647
1648	/* one and only AP */
1649	CPU_TO_ID(1) = ap_cpu_id;
1650	ID_TO_CPU(ap_cpu_id) = 1;
1651
1652#if defined(APIC_IO)
1653	/* one and only IO APIC */
1654	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1655
1656	/*
1657	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1658	 * necessary as some hardware isn't properly setting up the IO APIC
1659	 */
1660#if defined(REALLY_ANAL_IOAPICID_VALUE)
1661	if (io_apic_id != 2) {
1662#else
1663	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1664#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1665		io_apic_set_id(0, 2);
1666		io_apic_id = 2;
1667	}
1668	IO_TO_ID(0) = io_apic_id;
1669	ID_TO_IO(io_apic_id) = 0;
1670#endif	/* APIC_IO */
1671
1672	/* fill out bus entries */
1673	switch (type) {
1674	case 1:
1675	case 2:
1676	case 3:
1677	case 4:
1678	case 5:
1679	case 6:
1680	case 7:
1681		bus_data[0].bus_id = default_data[type - 1][1];
1682		bus_data[0].bus_type = default_data[type - 1][2];
1683		bus_data[1].bus_id = default_data[type - 1][3];
1684		bus_data[1].bus_type = default_data[type - 1][4];
1685		break;
1686
1687	/* case 4: case 7:		   MCA NOT supported */
1688	default:		/* illegal/reserved */
1689		panic("BAD default MP config: %d", type);
1690		/* NOTREACHED */
1691	}
1692
1693#if defined(APIC_IO)
1694	/* general cases from MP v1.4, table 5-2 */
1695	for (pin = 0; pin < 16; ++pin) {
1696		io_apic_ints[pin].int_type = 0;
1697		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1698		io_apic_ints[pin].src_bus_id = 0;
1699		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1700		io_apic_ints[pin].dst_apic_id = io_apic_id;
1701		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1702	}
1703
1704	/* special cases from MP v1.4, table 5-2 */
1705	if (type == 2) {
1706		io_apic_ints[2].int_type = 0xff;	/* N/C */
1707		io_apic_ints[13].int_type = 0xff;	/* N/C */
1708#if !defined(APIC_MIXED_MODE)
1709		/** FIXME: ??? */
1710		panic("sorry, can't support type 2 default yet");
1711#endif	/* APIC_MIXED_MODE */
1712	}
1713	else
1714		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1715
1716	if (type == 7)
1717		io_apic_ints[0].int_type = 0xff;	/* N/C */
1718	else
1719		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1720#endif	/* APIC_IO */
1721}
1722
1723
1724/*
1725 * initialize all the SMP locks
1726 */
1727
1728/* critical region around IO APIC, apic_imen */
1729struct simplelock	imen_lock;
1730
1731/* critical region around splxx(), cpl, cml, cil, ipending */
1732struct simplelock	cpl_lock;
1733
1734/* Make FAST_INTR() routines sequential */
1735struct simplelock	fast_intr_lock;
1736
1737/* critical region around INTR() routines */
1738struct simplelock	intr_lock;
1739
1740/* lock regions protected in UP kernel via cli/sti */
1741struct simplelock	mpintr_lock;
1742
1743/* lock region used by kernel profiling */
1744struct simplelock	mcount_lock;
1745
1746#ifdef USE_COMLOCK
1747/* locks com (tty) data/hardware accesses: a FASTINTR() */
1748struct simplelock	com_lock;
1749#endif /* USE_COMLOCK */
1750
1751#ifdef USE_CLOCKLOCK
1752/* lock regions around the clock hardware */
1753struct simplelock	clock_lock;
1754#endif /* USE_CLOCKLOCK */
1755
1756/* lock around the MP rendezvous */
1757static struct simplelock smp_rv_lock;
1758
1759static void
1760init_locks(void)
1761{
1762	/*
1763	 * Get the initial mp_lock with a count of 1 for the BSP.
1764	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1765	 */
1766	mp_lock = 0x00000001;
1767
1768#if 0
1769	/* ISR uses its own "giant lock" */
1770	isr_lock = FREE_LOCK;
1771#endif
1772
1773#if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1774	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1775#endif
1776
1777	s_lock_init((struct simplelock*)&mpintr_lock);
1778
1779	s_lock_init((struct simplelock*)&mcount_lock);
1780
1781	s_lock_init((struct simplelock*)&fast_intr_lock);
1782	s_lock_init((struct simplelock*)&intr_lock);
1783	s_lock_init((struct simplelock*)&imen_lock);
1784	s_lock_init((struct simplelock*)&cpl_lock);
1785	s_lock_init(&smp_rv_lock);
1786
1787#ifdef USE_COMLOCK
1788	s_lock_init((struct simplelock*)&com_lock);
1789#endif /* USE_COMLOCK */
1790#ifdef USE_CLOCKLOCK
1791	s_lock_init((struct simplelock*)&clock_lock);
1792#endif /* USE_CLOCKLOCK */
1793}
1794
1795
1796/* Wait for all APs to be fully initialized */
1797extern int wait_ap(unsigned int);
1798
1799/*
1800 * start each AP in our list
1801 */
1802static int
1803start_all_aps(u_int boot_addr)
1804{
1805	int     x, i, pg;
1806	u_char  mpbiosreason;
1807	u_long  mpbioswarmvec;
1808	struct globaldata *gd;
1809	char *stack;
1810
1811	POSTCODE(START_ALL_APS_POST);
1812
1813	/* initialize BSP's local APIC */
1814	apic_initialize();
1815	bsp_apic_ready = 1;
1816
1817	/* install the AP 1st level boot code */
1818	install_ap_tramp(boot_addr);
1819
1820
1821	/* save the current value of the warm-start vector */
1822	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1823#ifndef PC98
1824	outb(CMOS_REG, BIOS_RESET);
1825	mpbiosreason = inb(CMOS_DATA);
1826#endif
1827
1828	/* record BSP in CPU map */
1829	all_cpus = 1;
1830
1831	/* set up 0 -> 4MB P==V mapping for AP boot */
1832	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1833	invltlb();
1834
1835	/* start each AP */
1836	for (x = 1; x <= mp_naps; ++x) {
1837
1838		/* This is a bit verbose, it will go away soon.  */
1839
1840		/* first page of AP's private space */
1841		pg = x * i386_btop(sizeof(struct privatespace));
1842
1843		/* allocate a new private data page */
1844		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1845
1846		/* wire it into the private page table page */
1847		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1848
1849		/* allocate and set up an idle stack data page */
1850		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1851		for (i = 0; i < UPAGES; i++)
1852			SMPpt[pg + 5 + i] = (pt_entry_t)
1853			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1854
1855		SMPpt[pg + 1] = 0;		/* *prv_CMAP1 */
1856		SMPpt[pg + 2] = 0;		/* *prv_CMAP2 */
1857		SMPpt[pg + 3] = 0;		/* *prv_CMAP3 */
1858		SMPpt[pg + 4] = 0;		/* *prv_PMAP1 */
1859
1860		/* prime data page for it to use */
1861		gd->gd_cpuid = x;
1862		gd->gd_cpu_lockid = x << 24;
1863		gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
1864		gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
1865		gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
1866		gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
1867		gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
1868		gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
1869		gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
1870		gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
1871
1872		/* setup a vector to our boot code */
1873		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1874		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1875#ifndef PC98
1876		outb(CMOS_REG, BIOS_RESET);
1877		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1878#endif
1879
1880		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
1881		bootAP = x;
1882
1883		/* attempt to start the Application Processor */
1884		CHECK_INIT(99);	/* setup checkpoints */
1885		if (!start_ap(x, boot_addr)) {
1886			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1887			CHECK_PRINT("trace");	/* show checkpoints */
1888			/* better panic as the AP may be running loose */
1889			printf("panic y/n? [y] ");
1890			if (cngetc() != 'n')
1891				panic("bye-bye");
1892		}
1893		CHECK_PRINT("trace");		/* show checkpoints */
1894
1895		/* record its version info */
1896		cpu_apic_versions[x] = cpu_apic_versions[0];
1897
1898		all_cpus |= (1 << x);		/* record AP in CPU map */
1899	}
1900
1901	/* build our map of 'other' CPUs */
1902	other_cpus = all_cpus & ~(1 << cpuid);
1903
1904	/* fill in our (BSP) APIC version */
1905	cpu_apic_versions[0] = lapic.version;
1906
1907	/* restore the warmstart vector */
1908	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1909#ifndef PC98
1910	outb(CMOS_REG, BIOS_RESET);
1911	outb(CMOS_DATA, mpbiosreason);
1912#endif
1913
1914	/*
1915	 * Set up the idle context for the BSP.  Similar to above except
1916	 * that some was done by locore, some by pmap.c and some is implicit
1917	 * because the BSP is cpu#0 and the page is initially zero, and also
1918	 * because we can refer to variables by name on the BSP..
1919	 */
1920
1921	/* Allocate and setup BSP idle stack */
1922	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1923	for (i = 0; i < UPAGES; i++)
1924		SMPpt[5 + i] = (pt_entry_t)
1925		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1926
1927	*(int *)PTD = 0;
1928	pmap_set_opt();
1929
1930	/* number of APs actually started */
1931	return mp_ncpus - 1;
1932}
1933
1934
1935/*
1936 * load the 1st level AP boot code into base memory.
1937 */
1938
1939/* targets for relocation */
1940extern void bigJump(void);
1941extern void bootCodeSeg(void);
1942extern void bootDataSeg(void);
1943extern void MPentry(void);
1944extern u_int MP_GDT;
1945extern u_int mp_gdtbase;
1946
1947static void
1948install_ap_tramp(u_int boot_addr)
1949{
1950	int     x;
1951	int     size = *(int *) ((u_long) & bootMP_size);
1952	u_char *src = (u_char *) ((u_long) bootMP);
1953	u_char *dst = (u_char *) boot_addr + KERNBASE;
1954	u_int   boot_base = (u_int) bootMP;
1955	u_int8_t *dst8;
1956	u_int16_t *dst16;
1957	u_int32_t *dst32;
1958
1959	POSTCODE(INSTALL_AP_TRAMP_POST);
1960
1961	for (x = 0; x < size; ++x)
1962		*dst++ = *src++;
1963
1964	/*
1965	 * modify addresses in code we just moved to basemem. unfortunately we
1966	 * need fairly detailed info about mpboot.s for this to work.  changes
1967	 * to mpboot.s might require changes here.
1968	 */
1969
1970	/* boot code is located in KERNEL space */
1971	dst = (u_char *) boot_addr + KERNBASE;
1972
1973	/* modify the lgdt arg */
1974	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1975	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1976
1977	/* modify the ljmp target for MPentry() */
1978	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1979	*dst32 = ((u_int) MPentry - KERNBASE);
1980
1981	/* modify the target for boot code segment */
1982	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1983	dst8 = (u_int8_t *) (dst16 + 1);
1984	*dst16 = (u_int) boot_addr & 0xffff;
1985	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1986
1987	/* modify the target for boot data segment */
1988	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1989	dst8 = (u_int8_t *) (dst16 + 1);
1990	*dst16 = (u_int) boot_addr & 0xffff;
1991	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1992}
1993
1994
1995/*
1996 * this function starts the AP (application processor) identified
1997 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1998 * to accomplish this.  This is necessary because of the nuances
1999 * of the different hardware we might encounter.  It ain't pretty,
2000 * but it seems to work.
2001 */
2002static int
2003start_ap(int logical_cpu, u_int boot_addr)
2004{
2005	int     physical_cpu;
2006	int     vector;
2007	int     cpus;
2008	u_long  icr_lo, icr_hi;
2009
2010	POSTCODE(START_AP_POST);
2011
2012	/* get the PHYSICAL APIC ID# */
2013	physical_cpu = CPU_TO_ID(logical_cpu);
2014
2015	/* calculate the vector */
2016	vector = (boot_addr >> 12) & 0xff;
2017
2018	/* used as a watchpoint to signal AP startup */
2019	cpus = mp_ncpus;
2020
2021	/*
2022	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2023	 * and running the target CPU. OR this INIT IPI might be latched (P5
2024	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2025	 * ignored.
2026	 */
2027
2028	/* setup the address for the target AP */
2029	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2030	icr_hi |= (physical_cpu << 24);
2031	lapic.icr_hi = icr_hi;
2032
2033	/* do an INIT IPI: assert RESET */
2034	icr_lo = lapic.icr_lo & 0xfff00000;
2035	lapic.icr_lo = icr_lo | 0x0000c500;
2036
2037	/* wait for pending status end */
2038	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2039		 /* spin */ ;
2040
2041	/* do an INIT IPI: deassert RESET */
2042	lapic.icr_lo = icr_lo | 0x00008500;
2043
2044	/* wait for pending status end */
2045	u_sleep(10000);		/* wait ~10mS */
2046	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2047		 /* spin */ ;
2048
2049	/*
2050	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2051	 * latched, (P5 bug) this 1st STARTUP would then terminate
2052	 * immediately, and the previously started INIT IPI would continue. OR
2053	 * the previous INIT IPI has already run. and this STARTUP IPI will
2054	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2055	 * will run.
2056	 */
2057
2058	/* do a STARTUP IPI */
2059	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2060	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2061		 /* spin */ ;
2062	u_sleep(200);		/* wait ~200uS */
2063
2064	/*
2065	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2066	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2067	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2068	 * recognized after hardware RESET or INIT IPI.
2069	 */
2070
2071	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2072	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2073		 /* spin */ ;
2074	u_sleep(200);		/* wait ~200uS */
2075
2076	/* wait for it to start */
2077	set_apic_timer(5000000);/* == 5 seconds */
2078	while (read_apic_timer())
2079		if (mp_ncpus > cpus)
2080			return 1;	/* return SUCCESS */
2081
2082	return 0;		/* return FAILURE */
2083}
2084
2085
2086/*
2087 * Flush the TLB on all other CPU's
2088 *
2089 * XXX: Needs to handshake and wait for completion before proceding.
2090 */
2091void
2092smp_invltlb(void)
2093{
2094#if defined(APIC_IO)
2095	if (smp_started && invltlb_ok)
2096		all_but_self_ipi(XINVLTLB_OFFSET);
2097#endif  /* APIC_IO */
2098}
2099
2100void
2101invlpg(u_int addr)
2102{
2103	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2104
2105	/* send a message to the other CPUs */
2106	smp_invltlb();
2107}
2108
2109void
2110invltlb(void)
2111{
2112	u_long  temp;
2113
2114	/*
2115	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2116	 * inlined.
2117	 */
2118	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2119
2120	/* send a message to the other CPUs */
2121	smp_invltlb();
2122}
2123
2124
2125/*
2126 * When called the executing CPU will send an IPI to all other CPUs
2127 *  requesting that they halt execution.
2128 *
2129 * Usually (but not necessarily) called with 'other_cpus' as its arg.
2130 *
2131 *  - Signals all CPUs in map to stop.
2132 *  - Waits for each to stop.
2133 *
2134 * Returns:
2135 *  -1: error
2136 *   0: NA
2137 *   1: ok
2138 *
2139 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2140 *            from executing at same time.
2141 */
2142int
2143stop_cpus(u_int map)
2144{
2145	if (!smp_started)
2146		return 0;
2147
2148	/* send the Xcpustop IPI to all CPUs in map */
2149	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2150
2151	while ((stopped_cpus & map) != map)
2152		/* spin */ ;
2153
2154	return 1;
2155}
2156
2157
2158/*
2159 * Called by a CPU to restart stopped CPUs.
2160 *
2161 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2162 *
2163 *  - Signals all CPUs in map to restart.
2164 *  - Waits for each to restart.
2165 *
2166 * Returns:
2167 *  -1: error
2168 *   0: NA
2169 *   1: ok
2170 */
2171int
2172restart_cpus(u_int map)
2173{
2174	if (!smp_started)
2175		return 0;
2176
2177	started_cpus = map;		/* signal other cpus to restart */
2178
2179	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2180		/* spin */ ;
2181
2182	return 1;
2183}
2184
2185int smp_active = 0;	/* are the APs allowed to run? */
2186SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2187
2188/* XXX maybe should be hw.ncpu */
2189static int smp_cpus = 1;	/* how many cpu's running */
2190SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2191
2192int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2193SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2194
2195/* Warning: Do not staticize.  Used from swtch.s */
2196int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2197SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2198	   &do_page_zero_idle, 0, "");
2199
2200/* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2201int forward_irq_enabled = 1;
2202SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2203	   &forward_irq_enabled, 0, "");
2204
2205/* Enable forwarding of a signal to a process running on a different CPU */
2206static int forward_signal_enabled = 1;
2207SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2208	   &forward_signal_enabled, 0, "");
2209
2210/* Enable forwarding of roundrobin to all other cpus */
2211static int forward_roundrobin_enabled = 1;
2212SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2213	   &forward_roundrobin_enabled, 0, "");
2214
2215/*
2216 * This is called once the rest of the system is up and running and we're
2217 * ready to let the AP's out of the pen.
2218 */
2219void ap_init(void);
2220
2221void
2222ap_init()
2223{
2224	u_int	apic_id;
2225
2226	/* BSP may have changed PTD while we're waiting for the lock */
2227	cpu_invltlb();
2228
2229	smp_cpus++;
2230
2231#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2232	lidt(&r_idt);
2233#endif
2234
2235	/* Build our map of 'other' CPUs. */
2236	other_cpus = all_cpus & ~(1 << cpuid);
2237
2238	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2239
2240	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
2241	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
2242
2243	/* set up FPU state on the AP */
2244	npxinit(__INITIAL_NPXCW__);
2245
2246	/* A quick check from sanity claus */
2247	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2248	if (cpuid != apic_id) {
2249		printf("SMP: cpuid = %d\n", cpuid);
2250		printf("SMP: apic_id = %d\n", apic_id);
2251		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2252		panic("cpuid mismatch! boom!!");
2253	}
2254
2255	/* Init local apic for irq's */
2256	apic_initialize();
2257
2258	/* Set memory range attributes for this CPU to match the BSP */
2259	mem_range_AP_init();
2260
2261	/*
2262	 * Activate smp_invltlb, although strictly speaking, this isn't
2263	 * quite correct yet.  We should have a bitfield for cpus willing
2264	 * to accept TLB flush IPI's or something and sync them.
2265	 */
2266	if (smp_cpus == mp_ncpus) {
2267		invltlb_ok = 1;
2268		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2269		smp_active = 1;	 /* historic */
2270	}
2271}
2272
2273#ifdef BETTER_CLOCK
2274
2275#define CHECKSTATE_USER	0
2276#define CHECKSTATE_SYS	1
2277#define CHECKSTATE_INTR	2
2278
2279/* Do not staticize.  Used from apic_vector.s */
2280struct proc*	checkstate_curproc[NCPU];
2281int		checkstate_cpustate[NCPU];
2282u_long		checkstate_pc[NCPU];
2283
2284extern long	cp_time[CPUSTATES];
2285
2286#define PC_TO_INDEX(pc, prof)				\
2287        ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2288            (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2289
2290static void
2291addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2292{
2293	int i;
2294	struct uprof *prof;
2295	u_long pc;
2296
2297	pc = checkstate_pc[id];
2298	prof = &p->p_stats->p_prof;
2299	if (pc >= prof->pr_off &&
2300	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2301		if ((p->p_flag & P_OWEUPC) == 0) {
2302			prof->pr_addr = pc;
2303			prof->pr_ticks = 1;
2304			p->p_flag |= P_OWEUPC;
2305		}
2306		*astmap |= (1 << id);
2307	}
2308}
2309
2310static void
2311forwarded_statclock(int id, int pscnt, int *astmap)
2312{
2313	struct pstats *pstats;
2314	long rss;
2315	struct rusage *ru;
2316	struct vmspace *vm;
2317	int cpustate;
2318	struct proc *p;
2319#ifdef GPROF
2320	register struct gmonparam *g;
2321	int i;
2322#endif
2323
2324	p = checkstate_curproc[id];
2325	cpustate = checkstate_cpustate[id];
2326
2327	switch (cpustate) {
2328	case CHECKSTATE_USER:
2329		if (p->p_flag & P_PROFIL)
2330			addupc_intr_forwarded(p, id, astmap);
2331		if (pscnt > 1)
2332			return;
2333		p->p_uticks++;
2334		if (p->p_nice > NZERO)
2335			cp_time[CP_NICE]++;
2336		else
2337			cp_time[CP_USER]++;
2338		break;
2339	case CHECKSTATE_SYS:
2340#ifdef GPROF
2341		/*
2342		 * Kernel statistics are just like addupc_intr, only easier.
2343		 */
2344		g = &_gmonparam;
2345		if (g->state == GMON_PROF_ON) {
2346			i = checkstate_pc[id] - g->lowpc;
2347			if (i < g->textsize) {
2348				i /= HISTFRACTION * sizeof(*g->kcount);
2349				g->kcount[i]++;
2350			}
2351		}
2352#endif
2353		if (pscnt > 1)
2354			return;
2355
2356		if (!p)
2357			cp_time[CP_IDLE]++;
2358		else {
2359			p->p_sticks++;
2360			cp_time[CP_SYS]++;
2361		}
2362		break;
2363	case CHECKSTATE_INTR:
2364	default:
2365#ifdef GPROF
2366		/*
2367		 * Kernel statistics are just like addupc_intr, only easier.
2368		 */
2369		g = &_gmonparam;
2370		if (g->state == GMON_PROF_ON) {
2371			i = checkstate_pc[id] - g->lowpc;
2372			if (i < g->textsize) {
2373				i /= HISTFRACTION * sizeof(*g->kcount);
2374				g->kcount[i]++;
2375			}
2376		}
2377#endif
2378		if (pscnt > 1)
2379			return;
2380		if (p)
2381			p->p_iticks++;
2382		cp_time[CP_INTR]++;
2383	}
2384	if (p != NULL) {
2385		schedclock(p);
2386
2387		/* Update resource usage integrals and maximums. */
2388		if ((pstats = p->p_stats) != NULL &&
2389		    (ru = &pstats->p_ru) != NULL &&
2390		    (vm = p->p_vmspace) != NULL) {
2391			ru->ru_ixrss += pgtok(vm->vm_tsize);
2392			ru->ru_idrss += pgtok(vm->vm_dsize);
2393			ru->ru_isrss += pgtok(vm->vm_ssize);
2394			rss = pgtok(vmspace_resident_count(vm));
2395			if (ru->ru_maxrss < rss)
2396				ru->ru_maxrss = rss;
2397        	}
2398	}
2399}
2400
2401void
2402forward_statclock(int pscnt)
2403{
2404	int map;
2405	int id;
2406	int i;
2407
2408	/* Kludge. We don't yet have separate locks for the interrupts
2409	 * and the kernel. This means that we cannot let the other processors
2410	 * handle complex interrupts while inhibiting them from entering
2411	 * the kernel in a non-interrupt context.
2412	 *
2413	 * What we can do, without changing the locking mechanisms yet,
2414	 * is letting the other processors handle a very simple interrupt
2415	 * (wich determines the processor states), and do the main
2416	 * work ourself.
2417	 */
2418
2419	if (!smp_started || !invltlb_ok || cold || panicstr)
2420		return;
2421
2422	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2423
2424	map = other_cpus & ~stopped_cpus ;
2425	checkstate_probed_cpus = 0;
2426	if (map != 0)
2427		selected_apic_ipi(map,
2428				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2429
2430	i = 0;
2431	while (checkstate_probed_cpus != map) {
2432		/* spin */
2433		i++;
2434		if (i == 100000) {
2435#ifdef BETTER_CLOCK_DIAGNOSTIC
2436			printf("forward_statclock: checkstate %x\n",
2437			       checkstate_probed_cpus);
2438#endif
2439			break;
2440		}
2441	}
2442
2443	/*
2444	 * Step 2: walk through other processors processes, update ticks and
2445	 * profiling info.
2446	 */
2447
2448	map = 0;
2449	for (id = 0; id < mp_ncpus; id++) {
2450		if (id == cpuid)
2451			continue;
2452		if (((1 << id) & checkstate_probed_cpus) == 0)
2453			continue;
2454		forwarded_statclock(id, pscnt, &map);
2455	}
2456	if (map != 0) {
2457		checkstate_need_ast |= map;
2458		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2459		i = 0;
2460		while ((checkstate_need_ast & map) != 0) {
2461			/* spin */
2462			i++;
2463			if (i > 100000) {
2464#ifdef BETTER_CLOCK_DIAGNOSTIC
2465				printf("forward_statclock: dropped ast 0x%x\n",
2466				       checkstate_need_ast & map);
2467#endif
2468				break;
2469			}
2470		}
2471	}
2472}
2473
2474void
2475forward_hardclock(int pscnt)
2476{
2477	int map;
2478	int id;
2479	struct proc *p;
2480	struct pstats *pstats;
2481	int i;
2482
2483	/* Kludge. We don't yet have separate locks for the interrupts
2484	 * and the kernel. This means that we cannot let the other processors
2485	 * handle complex interrupts while inhibiting them from entering
2486	 * the kernel in a non-interrupt context.
2487	 *
2488	 * What we can do, without changing the locking mechanisms yet,
2489	 * is letting the other processors handle a very simple interrupt
2490	 * (wich determines the processor states), and do the main
2491	 * work ourself.
2492	 */
2493
2494	if (!smp_started || !invltlb_ok || cold || panicstr)
2495		return;
2496
2497	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2498
2499	map = other_cpus & ~stopped_cpus ;
2500	checkstate_probed_cpus = 0;
2501	if (map != 0)
2502		selected_apic_ipi(map,
2503				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2504
2505	i = 0;
2506	while (checkstate_probed_cpus != map) {
2507		/* spin */
2508		i++;
2509		if (i == 100000) {
2510#ifdef BETTER_CLOCK_DIAGNOSTIC
2511			printf("forward_hardclock: checkstate %x\n",
2512			       checkstate_probed_cpus);
2513#endif
2514			break;
2515		}
2516	}
2517
2518	/*
2519	 * Step 2: walk through other processors processes, update virtual
2520	 * timer and profiling timer. If stathz == 0, also update ticks and
2521	 * profiling info.
2522	 */
2523
2524	map = 0;
2525	for (id = 0; id < mp_ncpus; id++) {
2526		if (id == cpuid)
2527			continue;
2528		if (((1 << id) & checkstate_probed_cpus) == 0)
2529			continue;
2530		p = checkstate_curproc[id];
2531		if (p) {
2532			pstats = p->p_stats;
2533			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2534			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2535			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2536				psignal(p, SIGVTALRM);
2537				map |= (1 << id);
2538			}
2539			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2540			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2541				psignal(p, SIGPROF);
2542				map |= (1 << id);
2543			}
2544		}
2545		if (stathz == 0) {
2546			forwarded_statclock( id, pscnt, &map);
2547		}
2548	}
2549	if (map != 0) {
2550		checkstate_need_ast |= map;
2551		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2552		i = 0;
2553		while ((checkstate_need_ast & map) != 0) {
2554			/* spin */
2555			i++;
2556			if (i > 100000) {
2557#ifdef BETTER_CLOCK_DIAGNOSTIC
2558				printf("forward_hardclock: dropped ast 0x%x\n",
2559				       checkstate_need_ast & map);
2560#endif
2561				break;
2562			}
2563		}
2564	}
2565}
2566
2567#endif /* BETTER_CLOCK */
2568
2569void
2570forward_signal(struct proc *p)
2571{
2572	int map;
2573	int id;
2574	int i;
2575
2576	/* Kludge. We don't yet have separate locks for the interrupts
2577	 * and the kernel. This means that we cannot let the other processors
2578	 * handle complex interrupts while inhibiting them from entering
2579	 * the kernel in a non-interrupt context.
2580	 *
2581	 * What we can do, without changing the locking mechanisms yet,
2582	 * is letting the other processors handle a very simple interrupt
2583	 * (wich determines the processor states), and do the main
2584	 * work ourself.
2585	 */
2586
2587	if (!smp_started || !invltlb_ok || cold || panicstr)
2588		return;
2589	if (!forward_signal_enabled)
2590		return;
2591	while (1) {
2592		if (p->p_stat != SRUN)
2593			return;
2594		id = p->p_oncpu;
2595		if (id == 0xff)
2596			return;
2597		map = (1<<id);
2598		checkstate_need_ast |= map;
2599		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2600		i = 0;
2601		while ((checkstate_need_ast & map) != 0) {
2602			/* spin */
2603			i++;
2604			if (i > 100000) {
2605#if 0
2606				printf("forward_signal: dropped ast 0x%x\n",
2607				       checkstate_need_ast & map);
2608#endif
2609				break;
2610			}
2611		}
2612		if (id == p->p_oncpu)
2613			return;
2614	}
2615}
2616
2617void
2618forward_roundrobin(void)
2619{
2620	u_int map;
2621	int i;
2622
2623	if (!smp_started || !invltlb_ok || cold || panicstr)
2624		return;
2625	if (!forward_roundrobin_enabled)
2626		return;
2627	resched_cpus |= other_cpus;
2628	map = other_cpus & ~stopped_cpus ;
2629#if 1
2630	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2631#else
2632	(void) all_but_self_ipi(XCPUAST_OFFSET);
2633#endif
2634	i = 0;
2635	while ((checkstate_need_ast & map) != 0) {
2636		/* spin */
2637		i++;
2638		if (i > 100000) {
2639#if 0
2640			printf("forward_roundrobin: dropped ast 0x%x\n",
2641			       checkstate_need_ast & map);
2642#endif
2643			break;
2644		}
2645	}
2646}
2647
2648
2649#ifdef APIC_INTR_REORDER
2650/*
2651 *	Maintain mapping from softintr vector to isr bit in local apic.
2652 */
2653void
2654set_lapic_isrloc(int intr, int vector)
2655{
2656	if (intr < 0 || intr > 32)
2657		panic("set_apic_isrloc: bad intr argument: %d",intr);
2658	if (vector < ICU_OFFSET || vector > 255)
2659		panic("set_apic_isrloc: bad vector argument: %d",vector);
2660	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2661	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2662}
2663#endif
2664
2665/*
2666 * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
2667 * (if specified), rendezvous, execute the action function (if specified),
2668 * rendezvous again, execute the teardown function (if specified), and then
2669 * resume.
2670 *
2671 * Note that the supplied external functions _must_ be reentrant and aware
2672 * that they are running in parallel and in an unknown lock context.
2673 */
2674static void (*smp_rv_setup_func)(void *arg);
2675static void (*smp_rv_action_func)(void *arg);
2676static void (*smp_rv_teardown_func)(void *arg);
2677static void *smp_rv_func_arg;
2678static volatile int smp_rv_waiters[2];
2679
2680void
2681smp_rendezvous_action(void)
2682{
2683	/* setup function */
2684	if (smp_rv_setup_func != NULL)
2685		smp_rv_setup_func(smp_rv_func_arg);
2686	/* spin on entry rendezvous */
2687	atomic_add_int(&smp_rv_waiters[0], 1);
2688	while (smp_rv_waiters[0] < mp_ncpus)
2689		;
2690	/* action function */
2691	if (smp_rv_action_func != NULL)
2692		smp_rv_action_func(smp_rv_func_arg);
2693	/* spin on exit rendezvous */
2694	atomic_add_int(&smp_rv_waiters[1], 1);
2695	while (smp_rv_waiters[1] < mp_ncpus)
2696		;
2697	/* teardown function */
2698	if (smp_rv_teardown_func != NULL)
2699		smp_rv_teardown_func(smp_rv_func_arg);
2700}
2701
2702void
2703smp_rendezvous(void (* setup_func)(void *),
2704	       void (* action_func)(void *),
2705	       void (* teardown_func)(void *),
2706	       void *arg)
2707{
2708	u_int	efl;
2709
2710	/* obtain rendezvous lock */
2711	s_lock(&smp_rv_lock);		/* XXX sleep here? NOWAIT flag? */
2712
2713	/* set static function pointers */
2714	smp_rv_setup_func = setup_func;
2715	smp_rv_action_func = action_func;
2716	smp_rv_teardown_func = teardown_func;
2717	smp_rv_func_arg = arg;
2718	smp_rv_waiters[0] = 0;
2719	smp_rv_waiters[1] = 0;
2720
2721	/* disable interrupts on this CPU, save interrupt status */
2722	efl = read_eflags();
2723	write_eflags(efl & ~PSL_I);
2724
2725	/* signal other processors, which will enter the IPI with interrupts off */
2726	all_but_self_ipi(XRENDEZVOUS_OFFSET);
2727
2728	/* call executor function */
2729	smp_rendezvous_action();
2730
2731	/* restore interrupt flag */
2732	write_eflags(efl);
2733
2734	/* release lock */
2735	s_unlock(&smp_rv_lock);
2736}
2737