mptable.c revision 50972
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/i386/i386/mptable.c 50972 1999-09-05 20:17:40Z peter $
26 */
27
28#include "opt_smp.h"
29#include "opt_cpu.h"
30#include "opt_user_ldt.h"
31
32#ifdef SMP
33#include <machine/smptests.h>
34#else
35#error
36#endif
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/sysctl.h>
43#include <sys/malloc.h>
44#include <sys/memrange.h>
45#ifdef BETTER_CLOCK
46#include <sys/dkstat.h>
47#endif
48#include <sys/cons.h>	/* cngetc() */
49
50#include <vm/vm.h>
51#include <vm/vm_param.h>
52#include <vm/pmap.h>
53#include <vm/vm_kern.h>
54#include <vm/vm_extern.h>
55#ifdef BETTER_CLOCK
56#include <sys/lock.h>
57#include <vm/vm_map.h>
58#include <sys/user.h>
59#ifdef GPROF
60#include <sys/gmon.h>
61#endif
62#endif
63
64#include <machine/smp.h>
65#include <machine/apic.h>
66#include <machine/atomic.h>
67#include <machine/cpufunc.h>
68#include <machine/mpapic.h>
69#include <machine/psl.h>
70#include <machine/segments.h>
71#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
72#include <machine/tss.h>
73#include <machine/specialreg.h>
74#include <machine/cputypes.h>
75#include <machine/cputypes.h>
76#include <machine/globaldata.h>
77
78#if defined(APIC_IO)
79#include <machine/md_var.h>		/* setidt() */
80#include <i386/isa/icu.h>		/* IPIs */
81#include <i386/isa/intr_machdep.h>	/* IPIs */
82#endif	/* APIC_IO */
83
84#if defined(TEST_DEFAULT_CONFIG)
85#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
86#else
87#define MPFPS_MPFB1	mpfps->mpfb1
88#endif  /* TEST_DEFAULT_CONFIG */
89
90#define WARMBOOT_TARGET		0
91#define WARMBOOT_OFF		(KERNBASE + 0x0467)
92#define WARMBOOT_SEG		(KERNBASE + 0x0469)
93
94#ifdef PC98
95#define BIOS_BASE		(0xe8000)
96#define BIOS_SIZE		(0x18000)
97#else
98#define BIOS_BASE		(0xf0000)
99#define BIOS_SIZE		(0x10000)
100#endif
101#define BIOS_COUNT		(BIOS_SIZE/4)
102
103#define CMOS_REG		(0x70)
104#define CMOS_DATA		(0x71)
105#define BIOS_RESET		(0x0f)
106#define BIOS_WARM		(0x0a)
107
108#define PROCENTRY_FLAG_EN	0x01
109#define PROCENTRY_FLAG_BP	0x02
110#define IOAPICENTRY_FLAG_EN	0x01
111
112
113/* MP Floating Pointer Structure */
114typedef struct MPFPS {
115	char    signature[4];
116	void   *pap;
117	u_char  length;
118	u_char  spec_rev;
119	u_char  checksum;
120	u_char  mpfb1;
121	u_char  mpfb2;
122	u_char  mpfb3;
123	u_char  mpfb4;
124	u_char  mpfb5;
125}      *mpfps_t;
126
127/* MP Configuration Table Header */
128typedef struct MPCTH {
129	char    signature[4];
130	u_short base_table_length;
131	u_char  spec_rev;
132	u_char  checksum;
133	u_char  oem_id[8];
134	u_char  product_id[12];
135	void   *oem_table_pointer;
136	u_short oem_table_size;
137	u_short entry_count;
138	void   *apic_address;
139	u_short extended_table_length;
140	u_char  extended_table_checksum;
141	u_char  reserved;
142}      *mpcth_t;
143
144
145typedef struct PROCENTRY {
146	u_char  type;
147	u_char  apic_id;
148	u_char  apic_version;
149	u_char  cpu_flags;
150	u_long  cpu_signature;
151	u_long  feature_flags;
152	u_long  reserved1;
153	u_long  reserved2;
154}      *proc_entry_ptr;
155
156typedef struct BUSENTRY {
157	u_char  type;
158	u_char  bus_id;
159	char    bus_type[6];
160}      *bus_entry_ptr;
161
162typedef struct IOAPICENTRY {
163	u_char  type;
164	u_char  apic_id;
165	u_char  apic_version;
166	u_char  apic_flags;
167	void   *apic_address;
168}      *io_apic_entry_ptr;
169
170typedef struct INTENTRY {
171	u_char  type;
172	u_char  int_type;
173	u_short int_flags;
174	u_char  src_bus_id;
175	u_char  src_bus_irq;
176	u_char  dst_apic_id;
177	u_char  dst_apic_int;
178}      *int_entry_ptr;
179
180/* descriptions of MP basetable entries */
181typedef struct BASETABLE_ENTRY {
182	u_char  type;
183	u_char  length;
184	char    name[16];
185}       basetable_entry;
186
187/*
188 * this code MUST be enabled here and in mpboot.s.
189 * it follows the very early stages of AP boot by placing values in CMOS ram.
190 * it NORMALLY will never be needed and thus the primitive method for enabling.
191 *
192#define CHECK_POINTS
193 */
194
195#if defined(CHECK_POINTS) && !defined(PC98)
196#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
197#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
198
199#define CHECK_INIT(D);				\
200	CHECK_WRITE(0x34, (D));			\
201	CHECK_WRITE(0x35, (D));			\
202	CHECK_WRITE(0x36, (D));			\
203	CHECK_WRITE(0x37, (D));			\
204	CHECK_WRITE(0x38, (D));			\
205	CHECK_WRITE(0x39, (D));
206
207#define CHECK_PRINT(S);				\
208	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
209	   (S),					\
210	   CHECK_READ(0x34),			\
211	   CHECK_READ(0x35),			\
212	   CHECK_READ(0x36),			\
213	   CHECK_READ(0x37),			\
214	   CHECK_READ(0x38),			\
215	   CHECK_READ(0x39));
216
217#else				/* CHECK_POINTS */
218
219#define CHECK_INIT(D)
220#define CHECK_PRINT(S)
221
222#endif				/* CHECK_POINTS */
223
224/*
225 * Values to send to the POST hardware.
226 */
227#define MP_BOOTADDRESS_POST	0x10
228#define MP_PROBE_POST		0x11
229#define MPTABLE_PASS1_POST	0x12
230
231#define MP_START_POST		0x13
232#define MP_ENABLE_POST		0x14
233#define MPTABLE_PASS2_POST	0x15
234
235#define START_ALL_APS_POST	0x16
236#define INSTALL_AP_TRAMP_POST	0x17
237#define START_AP_POST		0x18
238
239#define MP_ANNOUNCE_POST	0x19
240
241
242/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
243int	current_postcode;
244
245/** XXX FIXME: what system files declare these??? */
246extern struct region_descriptor r_gdt, r_idt;
247
248int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
249int	mp_ncpus;		/* # of CPUs, including BSP */
250int	mp_naps;		/* # of Applications processors */
251int	mp_nbusses;		/* # of busses */
252int	mp_napics;		/* # of IO APICs */
253int	boot_cpu_id;		/* designated BSP */
254vm_offset_t cpu_apic_address;
255vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
256extern	int nkpt;
257
258u_int32_t cpu_apic_versions[NCPU];
259u_int32_t io_apic_versions[NAPIC];
260
261#ifdef APIC_INTR_DIAGNOSTIC
262int apic_itrace_enter[32];
263int apic_itrace_tryisrlock[32];
264int apic_itrace_gotisrlock[32];
265int apic_itrace_active[32];
266int apic_itrace_masked[32];
267int apic_itrace_noisrlock[32];
268int apic_itrace_masked2[32];
269int apic_itrace_unmask[32];
270int apic_itrace_noforward[32];
271int apic_itrace_leave[32];
272int apic_itrace_enter2[32];
273int apic_itrace_doreti[32];
274int apic_itrace_splz[32];
275int apic_itrace_eoi[32];
276#ifdef APIC_INTR_DIAGNOSTIC_IRQ
277unsigned short apic_itrace_debugbuffer[32768];
278int apic_itrace_debugbuffer_idx;
279struct simplelock apic_itrace_debuglock;
280#endif
281#endif
282
283#ifdef APIC_INTR_REORDER
284struct {
285	volatile int *location;
286	int bit;
287} apic_isrbit_location[32];
288#endif
289
290struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
291
292/*
293 * APIC ID logical/physical mapping structures.
294 * We oversize these to simplify boot-time config.
295 */
296int     cpu_num_to_apic_id[NAPICID];
297int     io_num_to_apic_id[NAPICID];
298int     apic_id_to_logical[NAPICID];
299
300
301/* Bitmap of all available CPUs */
302u_int	all_cpus;
303
304/* AP uses this during bootstrap.  Do not staticize.  */
305char *bootSTK;
306static int bootAP;
307
308/* Hotwire a 0->4MB V==P mapping */
309extern pt_entry_t *KPTphys;
310
311/* SMP page table page */
312extern pt_entry_t *SMPpt;
313
314struct pcb stoppcbs[NCPU];
315
316int smp_started;		/* has the system started? */
317
318/*
319 * Local data and functions.
320 */
321
322static int	mp_capable;
323static u_int	boot_address;
324static u_int	base_memory;
325
326static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
327static mpfps_t	mpfps;
328static int	search_for_sig(u_int32_t target, int count);
329static void	mp_enable(u_int boot_addr);
330
331static int	mptable_pass1(void);
332static int	mptable_pass2(void);
333static void	default_mp_table(int type);
334static void	fix_mp_table(void);
335static void	setup_apic_irq_mapping(void);
336static void	init_locks(void);
337static int	start_all_aps(u_int boot_addr);
338static void	install_ap_tramp(u_int boot_addr);
339static int	start_ap(int logicalCpu, u_int boot_addr);
340
341/*
342 * Calculate usable address in base memory for AP trampoline code.
343 */
344u_int
345mp_bootaddress(u_int basemem)
346{
347	POSTCODE(MP_BOOTADDRESS_POST);
348
349	base_memory = basemem * 1024;	/* convert to bytes */
350
351	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
352	if ((base_memory - boot_address) < bootMP_size)
353		boot_address -= 4096;	/* not enough, lower by 4k */
354
355	return boot_address;
356}
357
358
359/*
360 * Look for an Intel MP spec table (ie, SMP capable hardware).
361 */
362int
363mp_probe(void)
364{
365	int     x;
366	u_long  segment;
367	u_int32_t target;
368
369	POSTCODE(MP_PROBE_POST);
370
371	/* see if EBDA exists */
372	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
373		/* search first 1K of EBDA */
374		target = (u_int32_t) (segment << 4);
375		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
376			goto found;
377	} else {
378		/* last 1K of base memory, effective 'top of base' passed in */
379		target = (u_int32_t) (base_memory - 0x400);
380		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
381			goto found;
382	}
383
384	/* search the BIOS */
385	target = (u_int32_t) BIOS_BASE;
386	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
387		goto found;
388
389	/* nothing found */
390	mpfps = (mpfps_t)0;
391	mp_capable = 0;
392	return 0;
393
394found:
395	/* calculate needed resources */
396	mpfps = (mpfps_t)x;
397	if (mptable_pass1())
398		panic("you must reconfigure your kernel");
399
400	/* flag fact that we are running multiple processors */
401	mp_capable = 1;
402	return 1;
403}
404
405
406/*
407 * Startup the SMP processors.
408 */
409void
410mp_start(void)
411{
412	POSTCODE(MP_START_POST);
413
414	/* look for MP capable motherboard */
415	if (mp_capable)
416		mp_enable(boot_address);
417	else
418		panic("MP hardware not found!");
419}
420
421
422/*
423 * Print various information about the SMP system hardware and setup.
424 */
425void
426mp_announce(void)
427{
428	int     x;
429
430	POSTCODE(MP_ANNOUNCE_POST);
431
432	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
433	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
434	printf(", version: 0x%08x", cpu_apic_versions[0]);
435	printf(", at 0x%08x\n", cpu_apic_address);
436	for (x = 1; x <= mp_naps; ++x) {
437		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
438		printf(", version: 0x%08x", cpu_apic_versions[x]);
439		printf(", at 0x%08x\n", cpu_apic_address);
440	}
441
442#if defined(APIC_IO)
443	for (x = 0; x < mp_napics; ++x) {
444		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
445		printf(", version: 0x%08x", io_apic_versions[x]);
446		printf(", at 0x%08x\n", io_apic_address[x]);
447	}
448#else
449	printf(" Warning: APIC I/O disabled\n");
450#endif	/* APIC_IO */
451}
452
453/*
454 * AP cpu's call this to sync up protected mode.
455 */
456void
457init_secondary(void)
458{
459	int	gsel_tss;
460	int	x, myid = bootAP;
461
462	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
463	gdt_segs[GPROC0_SEL].ssd_base =
464		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
465	SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid];
466
467	for (x = 0; x < NGDT; x++) {
468		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
469	}
470
471	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
472	r_gdt.rd_base = (int) &gdt[myid * NGDT];
473	lgdt(&r_gdt);			/* does magic intra-segment return */
474
475	lidt(&r_idt);
476
477	lldt(_default_ldt);
478#ifdef USER_LDT
479	currentldt = _default_ldt;
480#endif
481
482	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
483	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
484	common_tss.tss_esp0 = 0;	/* not used until after switch */
485	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
486	common_tss.tss_ioopt = (sizeof common_tss) << 16;
487	tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
488	common_tssd = *tss_gdt;
489	ltr(gsel_tss);
490
491	load_cr0(0x8005003b);		/* XXX! */
492
493	pmap_set_opt();
494}
495
496
497#if defined(APIC_IO)
498/*
499 * Final configuration of the BSP's local APIC:
500 *  - disable 'pic mode'.
501 *  - disable 'virtual wire mode'.
502 *  - enable NMI.
503 */
504void
505bsp_apic_configure(void)
506{
507	u_char		byte;
508	u_int32_t	temp;
509
510	/* leave 'pic mode' if necessary */
511	if (picmode) {
512		outb(0x22, 0x70);	/* select IMCR */
513		byte = inb(0x23);	/* current contents */
514		byte |= 0x01;		/* mask external INTR */
515		outb(0x23, byte);	/* disconnect 8259s/NMI */
516	}
517
518	/* mask lint0 (the 8259 'virtual wire' connection) */
519	temp = lapic.lvt_lint0;
520	temp |= APIC_LVT_M;		/* set the mask */
521	lapic.lvt_lint0 = temp;
522
523        /* setup lint1 to handle NMI */
524        temp = lapic.lvt_lint1;
525        temp &= ~APIC_LVT_M;		/* clear the mask */
526        lapic.lvt_lint1 = temp;
527
528	if (bootverbose)
529		apic_dump("bsp_apic_configure()");
530}
531#endif  /* APIC_IO */
532
533
534/*******************************************************************
535 * local functions and data
536 */
537
538/*
539 * start the SMP system
540 */
541static void
542mp_enable(u_int boot_addr)
543{
544	int     x;
545#if defined(APIC_IO)
546	int     apic;
547	u_int   ux;
548#endif	/* APIC_IO */
549
550	POSTCODE(MP_ENABLE_POST);
551
552	/* turn on 4MB of V == P addressing so we can get to MP table */
553	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
554	invltlb();
555
556	/* examine the MP table for needed info, uses physical addresses */
557	x = mptable_pass2();
558
559	*(int *)PTD = 0;
560	invltlb();
561
562	/* can't process default configs till the CPU APIC is pmapped */
563	if (x)
564		default_mp_table(x);
565
566	/* post scan cleanup */
567	fix_mp_table();
568	setup_apic_irq_mapping();
569
570#if defined(APIC_IO)
571
572	/* fill the LOGICAL io_apic_versions table */
573	for (apic = 0; apic < mp_napics; ++apic) {
574		ux = io_apic_read(apic, IOAPIC_VER);
575		io_apic_versions[apic] = ux;
576	}
577
578	/* program each IO APIC in the system */
579	for (apic = 0; apic < mp_napics; ++apic)
580		if (io_apic_setup(apic) < 0)
581			panic("IO APIC setup failure");
582
583	/* install a 'Spurious INTerrupt' vector */
584	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
585	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
586
587	/* install an inter-CPU IPI for TLB invalidation */
588	setidt(XINVLTLB_OFFSET, Xinvltlb,
589	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
590
591#ifdef BETTER_CLOCK
592	/* install an inter-CPU IPI for reading processor state */
593	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
594	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
595#endif
596
597	/* install an inter-CPU IPI for all-CPU rendezvous */
598	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
599	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
600
601	/* install an inter-CPU IPI for forcing an additional software trap */
602	setidt(XCPUAST_OFFSET, Xcpuast,
603	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
604
605	/* install an inter-CPU IPI for interrupt forwarding */
606	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
607	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
608
609	/* install an inter-CPU IPI for CPU stop/restart */
610	setidt(XCPUSTOP_OFFSET, Xcpustop,
611	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
612
613#if defined(TEST_TEST1)
614	/* install a "fake hardware INTerrupt" vector */
615	setidt(XTEST1_OFFSET, Xtest1,
616	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
617#endif  /** TEST_TEST1 */
618
619#endif	/* APIC_IO */
620
621	/* initialize all SMP locks */
622	init_locks();
623
624	/* start each Application Processor */
625	start_all_aps(boot_addr);
626
627	/*
628	 * The init process might be started on a different CPU now,
629	 * and the boot CPU might not call prepare_usermode to get
630	 * cr0 correctly configured. Thus we initialize cr0 here.
631	 */
632	load_cr0(rcr0() | CR0_WP | CR0_AM);
633}
634
635
636/*
637 * look for the MP spec signature
638 */
639
640/* string defined by the Intel MP Spec as identifying the MP table */
641#define MP_SIG		0x5f504d5f	/* _MP_ */
642#define NEXT(X)		((X) += 4)
643static int
644search_for_sig(u_int32_t target, int count)
645{
646	int     x;
647	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
648
649	for (x = 0; x < count; NEXT(x))
650		if (addr[x] == MP_SIG)
651			/* make array index a byte index */
652			return (target + (x * sizeof(u_int32_t)));
653
654	return -1;
655}
656
657
658static basetable_entry basetable_entry_types[] =
659{
660	{0, 20, "Processor"},
661	{1, 8, "Bus"},
662	{2, 8, "I/O APIC"},
663	{3, 8, "I/O INT"},
664	{4, 8, "Local INT"}
665};
666
667typedef struct BUSDATA {
668	u_char  bus_id;
669	enum busTypes bus_type;
670}       bus_datum;
671
672typedef struct INTDATA {
673	u_char  int_type;
674	u_short int_flags;
675	u_char  src_bus_id;
676	u_char  src_bus_irq;
677	u_char  dst_apic_id;
678	u_char  dst_apic_int;
679	u_char	int_vector;
680}       io_int, local_int;
681
682typedef struct BUSTYPENAME {
683	u_char  type;
684	char    name[7];
685}       bus_type_name;
686
687static bus_type_name bus_type_table[] =
688{
689	{CBUS, "CBUS"},
690	{CBUSII, "CBUSII"},
691	{EISA, "EISA"},
692	{UNKNOWN_BUSTYPE, "---"},
693	{UNKNOWN_BUSTYPE, "---"},
694	{ISA, "ISA"},
695	{UNKNOWN_BUSTYPE, "---"},
696	{UNKNOWN_BUSTYPE, "---"},
697	{UNKNOWN_BUSTYPE, "---"},
698	{UNKNOWN_BUSTYPE, "---"},
699	{UNKNOWN_BUSTYPE, "---"},
700	{UNKNOWN_BUSTYPE, "---"},
701	{PCI, "PCI"},
702	{UNKNOWN_BUSTYPE, "---"},
703	{UNKNOWN_BUSTYPE, "---"},
704	{UNKNOWN_BUSTYPE, "---"},
705	{UNKNOWN_BUSTYPE, "---"},
706	{XPRESS, "XPRESS"},
707	{UNKNOWN_BUSTYPE, "---"}
708};
709/* from MP spec v1.4, table 5-1 */
710static int default_data[7][5] =
711{
712/*   nbus, id0, type0, id1, type1 */
713	{1, 0, ISA, 255, 255},
714	{1, 0, EISA, 255, 255},
715	{1, 0, EISA, 255, 255},
716	{0, 255, 255, 255, 255},/* MCA not supported */
717	{2, 0, ISA, 1, PCI},
718	{2, 0, EISA, 1, PCI},
719	{0, 255, 255, 255, 255}	/* MCA not supported */
720};
721
722
723/* the bus data */
724static bus_datum bus_data[NBUS];
725
726/* the IO INT data, one entry per possible APIC INTerrupt */
727static io_int  io_apic_ints[NINTR];
728
729static int nintrs;
730
731static int processor_entry	__P((proc_entry_ptr entry, int cpu));
732static int bus_entry		__P((bus_entry_ptr entry, int bus));
733static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
734static int int_entry		__P((int_entry_ptr entry, int intr));
735static int lookup_bus_type	__P((char *name));
736
737
738/*
739 * 1st pass on motherboard's Intel MP specification table.
740 *
741 * initializes:
742 *	mp_ncpus = 1
743 *
744 * determines:
745 *	cpu_apic_address (common to all CPUs)
746 *	io_apic_address[N]
747 *	mp_naps
748 *	mp_nbusses
749 *	mp_napics
750 *	nintrs
751 */
752static int
753mptable_pass1(void)
754{
755	int	x;
756	mpcth_t	cth;
757	int	totalSize;
758	void*	position;
759	int	count;
760	int	type;
761	int	mustpanic;
762
763	POSTCODE(MPTABLE_PASS1_POST);
764
765	mustpanic = 0;
766
767	/* clear various tables */
768	for (x = 0; x < NAPICID; ++x) {
769		io_apic_address[x] = ~0;	/* IO APIC address table */
770	}
771
772	/* init everything to empty */
773	mp_naps = 0;
774	mp_nbusses = 0;
775	mp_napics = 0;
776	nintrs = 0;
777
778	/* check for use of 'default' configuration */
779	if (MPFPS_MPFB1 != 0) {
780		/* use default addresses */
781		cpu_apic_address = DEFAULT_APIC_BASE;
782		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
783
784		/* fill in with defaults */
785		mp_naps = 2;		/* includes BSP */
786		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
787#if defined(APIC_IO)
788		mp_napics = 1;
789		nintrs = 16;
790#endif	/* APIC_IO */
791	}
792	else {
793		if ((cth = mpfps->pap) == 0)
794			panic("MP Configuration Table Header MISSING!");
795
796		cpu_apic_address = (vm_offset_t) cth->apic_address;
797
798		/* walk the table, recording info of interest */
799		totalSize = cth->base_table_length - sizeof(struct MPCTH);
800		position = (u_char *) cth + sizeof(struct MPCTH);
801		count = cth->entry_count;
802
803		while (count--) {
804			switch (type = *(u_char *) position) {
805			case 0: /* processor_entry */
806				if (((proc_entry_ptr)position)->cpu_flags
807					& PROCENTRY_FLAG_EN)
808					++mp_naps;
809				break;
810			case 1: /* bus_entry */
811				++mp_nbusses;
812				break;
813			case 2: /* io_apic_entry */
814				if (((io_apic_entry_ptr)position)->apic_flags
815					& IOAPICENTRY_FLAG_EN)
816					io_apic_address[mp_napics++] =
817					    (vm_offset_t)((io_apic_entry_ptr)
818						position)->apic_address;
819				break;
820			case 3: /* int_entry */
821				++nintrs;
822				break;
823			case 4:	/* int_entry */
824				break;
825			default:
826				panic("mpfps Base Table HOSED!");
827				/* NOTREACHED */
828			}
829
830			totalSize -= basetable_entry_types[type].length;
831			(u_char*)position += basetable_entry_types[type].length;
832		}
833	}
834
835	/* qualify the numbers */
836	if (mp_naps > NCPU) {
837		printf("Warning: only using %d of %d available CPUs!\n",
838			NCPU, mp_naps);
839		mp_naps = NCPU;
840	}
841	if (mp_nbusses > NBUS) {
842		printf("found %d busses, increase NBUS\n", mp_nbusses);
843		mustpanic = 1;
844	}
845	if (mp_napics > NAPIC) {
846		printf("found %d apics, increase NAPIC\n", mp_napics);
847		mustpanic = 1;
848	}
849	if (nintrs > NINTR) {
850		printf("found %d intrs, increase NINTR\n", nintrs);
851		mustpanic = 1;
852	}
853
854	/*
855	 * Count the BSP.
856	 * This is also used as a counter while starting the APs.
857	 */
858	mp_ncpus = 1;
859
860	--mp_naps;	/* subtract the BSP */
861
862	return mustpanic;
863}
864
865
866/*
867 * 2nd pass on motherboard's Intel MP specification table.
868 *
869 * sets:
870 *	boot_cpu_id
871 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
872 *	CPU_TO_ID(N), logical CPU to APIC ID table
873 *	IO_TO_ID(N), logical IO to APIC ID table
874 *	bus_data[N]
875 *	io_apic_ints[N]
876 */
877static int
878mptable_pass2(void)
879{
880	int     x;
881	mpcth_t cth;
882	int     totalSize;
883	void*   position;
884	int     count;
885	int     type;
886	int     apic, bus, cpu, intr;
887
888	POSTCODE(MPTABLE_PASS2_POST);
889
890	/* clear various tables */
891	for (x = 0; x < NAPICID; ++x) {
892		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
893		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
894		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
895	}
896
897	/* clear bus data table */
898	for (x = 0; x < NBUS; ++x)
899		bus_data[x].bus_id = 0xff;
900
901	/* clear IO APIC INT table */
902	for (x = 0; x < NINTR; ++x) {
903		io_apic_ints[x].int_type = 0xff;
904		io_apic_ints[x].int_vector = 0xff;
905	}
906
907	/* setup the cpu/apic mapping arrays */
908	boot_cpu_id = -1;
909
910	/* record whether PIC or virtual-wire mode */
911	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
912
913	/* check for use of 'default' configuration */
914	if (MPFPS_MPFB1 != 0)
915		return MPFPS_MPFB1;	/* return default configuration type */
916
917	if ((cth = mpfps->pap) == 0)
918		panic("MP Configuration Table Header MISSING!");
919
920	/* walk the table, recording info of interest */
921	totalSize = cth->base_table_length - sizeof(struct MPCTH);
922	position = (u_char *) cth + sizeof(struct MPCTH);
923	count = cth->entry_count;
924	apic = bus = intr = 0;
925	cpu = 1;				/* pre-count the BSP */
926
927	while (count--) {
928		switch (type = *(u_char *) position) {
929		case 0:
930			if (processor_entry(position, cpu))
931				++cpu;
932			break;
933		case 1:
934			if (bus_entry(position, bus))
935				++bus;
936			break;
937		case 2:
938			if (io_apic_entry(position, apic))
939				++apic;
940			break;
941		case 3:
942			if (int_entry(position, intr))
943				++intr;
944			break;
945		case 4:
946			/* int_entry(position); */
947			break;
948		default:
949			panic("mpfps Base Table HOSED!");
950			/* NOTREACHED */
951		}
952
953		totalSize -= basetable_entry_types[type].length;
954		(u_char *) position += basetable_entry_types[type].length;
955	}
956
957	if (boot_cpu_id == -1)
958		panic("NO BSP found!");
959
960	/* report fact that its NOT a default configuration */
961	return 0;
962}
963
964
965static void
966assign_apic_irq(int apic, int intpin, int irq)
967{
968	int x;
969
970	if (int_to_apicintpin[irq].ioapic != -1)
971		panic("assign_apic_irq: inconsistent table");
972
973	int_to_apicintpin[irq].ioapic = apic;
974	int_to_apicintpin[irq].int_pin = intpin;
975	int_to_apicintpin[irq].apic_address = ioapic[apic];
976	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
977
978	for (x = 0; x < nintrs; x++) {
979		if ((io_apic_ints[x].int_type == 0 ||
980		     io_apic_ints[x].int_type == 3) &&
981		    io_apic_ints[x].int_vector == 0xff &&
982		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
983		    io_apic_ints[x].dst_apic_int == intpin)
984			io_apic_ints[x].int_vector = irq;
985	}
986}
987
988/*
989 * parse an Intel MP specification table
990 */
991static void
992fix_mp_table(void)
993{
994	int	x;
995	int	id;
996	int	bus_0 = 0;	/* Stop GCC warning */
997	int	bus_pci = 0;	/* Stop GCC warning */
998	int	num_pci_bus;
999
1000	/*
1001	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1002	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1003	 * exists the BIOS must begin with bus entries for the PCI bus and use
1004	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1005	 * exists the BIOS can choose to ignore this ordering, and indeed many
1006	 * MP motherboards do ignore it.  This causes a problem when the PCI
1007	 * sub-system makes requests of the MP sub-system based on PCI bus
1008	 * numbers.	So here we look for the situation and renumber the
1009	 * busses and associated INTs in an effort to "make it right".
1010	 */
1011
1012	/* find bus 0, PCI bus, count the number of PCI busses */
1013	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1014		if (bus_data[x].bus_id == 0) {
1015			bus_0 = x;
1016		}
1017		if (bus_data[x].bus_type == PCI) {
1018			++num_pci_bus;
1019			bus_pci = x;
1020		}
1021	}
1022	/*
1023	 * bus_0 == slot of bus with ID of 0
1024	 * bus_pci == slot of last PCI bus encountered
1025	 */
1026
1027	/* check the 1 PCI bus case for sanity */
1028	if (num_pci_bus == 1) {
1029
1030		/* if it is number 0 all is well */
1031		if (bus_data[bus_pci].bus_id == 0)
1032			return;
1033
1034		/* mis-numbered, swap with whichever bus uses slot 0 */
1035
1036		/* swap the bus entry types */
1037		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1038		bus_data[bus_0].bus_type = PCI;
1039
1040		/* swap each relavant INTerrupt entry */
1041		id = bus_data[bus_pci].bus_id;
1042		for (x = 0; x < nintrs; ++x) {
1043			if (io_apic_ints[x].src_bus_id == id) {
1044				io_apic_ints[x].src_bus_id = 0;
1045			}
1046			else if (io_apic_ints[x].src_bus_id == 0) {
1047				io_apic_ints[x].src_bus_id = id;
1048			}
1049		}
1050	}
1051	/* sanity check if more than 1 PCI bus */
1052	else if (num_pci_bus > 1) {
1053		for (x = 0; x < mp_nbusses; ++x) {
1054			if (bus_data[x].bus_type != PCI)
1055				continue;
1056		}
1057	}
1058}
1059
1060
1061static void
1062setup_apic_irq_mapping(void)
1063{
1064	int	x;
1065	int	int_vector;
1066
1067	/* Assign low level interrupt handlers */
1068	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1069		int_to_apicintpin[x].ioapic = -1;
1070		int_to_apicintpin[x].int_pin = 0;
1071		int_to_apicintpin[x].apic_address = NULL;
1072		int_to_apicintpin[x].redirindex = 0;
1073	}
1074	for (x = 0; x < nintrs; x++) {
1075		if (io_apic_ints[x].dst_apic_int < APIC_INTMAPSIZE &&
1076		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1077		    io_apic_ints[x].int_vector == 0xff &&
1078		    (io_apic_ints[x].int_type == 0 ||
1079		     io_apic_ints[x].int_type == 3)) {
1080			assign_apic_irq(0,
1081					io_apic_ints[x].dst_apic_int,
1082					io_apic_ints[x].dst_apic_int);
1083		}
1084	}
1085	int_vector = 0;
1086	while (int_vector < APIC_INTMAPSIZE &&
1087	       int_to_apicintpin[int_vector].ioapic != -1)
1088		int_vector++;
1089	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1090		if ((io_apic_ints[x].int_type == 0 ||
1091		     io_apic_ints[x].int_type == 3) &&
1092		    io_apic_ints[x].int_vector == 0xff) {
1093			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1094					io_apic_ints[x].dst_apic_int,
1095					int_vector);
1096			int_vector++;
1097			while (int_vector < APIC_INTMAPSIZE &&
1098			       int_to_apicintpin[int_vector].ioapic != -1)
1099				int_vector++;
1100		}
1101	}
1102}
1103
1104
1105static int
1106processor_entry(proc_entry_ptr entry, int cpu)
1107{
1108	/* check for usability */
1109	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
1110		return 0;
1111
1112	/* check for BSP flag */
1113	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1114		boot_cpu_id = entry->apic_id;
1115		CPU_TO_ID(0) = entry->apic_id;
1116		ID_TO_CPU(entry->apic_id) = 0;
1117		return 0;	/* its already been counted */
1118	}
1119
1120	/* add another AP to list, if less than max number of CPUs */
1121	else {
1122		CPU_TO_ID(cpu) = entry->apic_id;
1123		ID_TO_CPU(entry->apic_id) = cpu;
1124		return 1;
1125	}
1126}
1127
1128
1129static int
1130bus_entry(bus_entry_ptr entry, int bus)
1131{
1132	int     x;
1133	char    c, name[8];
1134
1135	/* encode the name into an index */
1136	for (x = 0; x < 6; ++x) {
1137		if ((c = entry->bus_type[x]) == ' ')
1138			break;
1139		name[x] = c;
1140	}
1141	name[x] = '\0';
1142
1143	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1144		panic("unknown bus type: '%s'", name);
1145
1146	bus_data[bus].bus_id = entry->bus_id;
1147	bus_data[bus].bus_type = x;
1148
1149	return 1;
1150}
1151
1152
1153static int
1154io_apic_entry(io_apic_entry_ptr entry, int apic)
1155{
1156	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1157		return 0;
1158
1159	IO_TO_ID(apic) = entry->apic_id;
1160	ID_TO_IO(entry->apic_id) = apic;
1161
1162	return 1;
1163}
1164
1165
1166static int
1167lookup_bus_type(char *name)
1168{
1169	int     x;
1170
1171	for (x = 0; x < MAX_BUSTYPE; ++x)
1172		if (strcmp(bus_type_table[x].name, name) == 0)
1173			return bus_type_table[x].type;
1174
1175	return UNKNOWN_BUSTYPE;
1176}
1177
1178
1179static int
1180int_entry(int_entry_ptr entry, int intr)
1181{
1182	int apic;
1183
1184	io_apic_ints[intr].int_type = entry->int_type;
1185	io_apic_ints[intr].int_flags = entry->int_flags;
1186	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1187	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1188	if (entry->dst_apic_id == 255) {
1189		/* This signal goes to all IO APICS.  Select an IO APIC
1190		   with sufficient number of interrupt pins */
1191		for (apic = 0; apic < mp_napics; apic++)
1192			if (((io_apic_read(apic, IOAPIC_VER) &
1193			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1194			    entry->dst_apic_int)
1195				break;
1196		if (apic < mp_napics)
1197			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1198		else
1199			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1200	} else
1201		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1202	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1203
1204	return 1;
1205}
1206
1207
1208static int
1209apic_int_is_bus_type(int intr, int bus_type)
1210{
1211	int     bus;
1212
1213	for (bus = 0; bus < mp_nbusses; ++bus)
1214		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1215		    && ((int) bus_data[bus].bus_type == bus_type))
1216			return 1;
1217
1218	return 0;
1219}
1220
1221
1222/*
1223 * Given a traditional ISA INT mask, return an APIC mask.
1224 */
1225u_int
1226isa_apic_mask(u_int isa_mask)
1227{
1228	int isa_irq;
1229	int apic_pin;
1230
1231#if defined(SKIP_IRQ15_REDIRECT)
1232	if (isa_mask == (1 << 15)) {
1233		printf("skipping ISA IRQ15 redirect\n");
1234		return isa_mask;
1235	}
1236#endif  /* SKIP_IRQ15_REDIRECT */
1237
1238	isa_irq = ffs(isa_mask);		/* find its bit position */
1239	if (isa_irq == 0)			/* doesn't exist */
1240		return 0;
1241	--isa_irq;				/* make it zero based */
1242
1243	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1244	if (apic_pin == -1)
1245		return 0;
1246
1247	return (1 << apic_pin);			/* convert pin# to a mask */
1248}
1249
1250
1251/*
1252 * Determine which APIC pin an ISA/EISA INT is attached to.
1253 */
1254#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1255#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1256#define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1257#define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1258
1259#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1260int
1261isa_apic_irq(int isa_irq)
1262{
1263	int     intr;
1264
1265	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1266		if (INTTYPE(intr) == 0) {		/* standard INT */
1267			if (SRCBUSIRQ(intr) == isa_irq) {
1268				if (apic_int_is_bus_type(intr, ISA) ||
1269			            apic_int_is_bus_type(intr, EISA))
1270					return INTIRQ(intr);	/* found */
1271			}
1272		}
1273	}
1274	return -1;					/* NOT found */
1275}
1276
1277
1278/*
1279 * Determine which APIC pin a PCI INT is attached to.
1280 */
1281#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1282#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1283#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1284int
1285pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1286{
1287	int     intr;
1288
1289	--pciInt;					/* zero based */
1290
1291	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1292		if ((INTTYPE(intr) == 0)		/* standard INT */
1293		    && (SRCBUSID(intr) == pciBus)
1294		    && (SRCBUSDEVICE(intr) == pciDevice)
1295		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1296			if (apic_int_is_bus_type(intr, PCI))
1297				return INTIRQ(intr);	/* exact match */
1298
1299	return -1;					/* NOT found */
1300}
1301
1302int
1303next_apic_irq(int irq)
1304{
1305	int intr, ointr;
1306	int bus, bustype;
1307
1308	bus = 0;
1309	bustype = 0;
1310	for (intr = 0; intr < nintrs; intr++) {
1311		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1312			continue;
1313		bus = SRCBUSID(intr);
1314		bustype = apic_bus_type(bus);
1315		if (bustype != ISA &&
1316		    bustype != EISA &&
1317		    bustype != PCI)
1318			continue;
1319		break;
1320	}
1321	if (intr >= nintrs) {
1322		return -1;
1323	}
1324	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1325		if (INTTYPE(ointr) != 0)
1326			continue;
1327		if (bus != SRCBUSID(ointr))
1328			continue;
1329		if (bustype == PCI) {
1330			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1331				continue;
1332			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1333				continue;
1334		}
1335		if (bustype == ISA || bustype == EISA) {
1336			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1337				continue;
1338		}
1339		if (INTPIN(intr) == INTPIN(ointr))
1340			continue;
1341		break;
1342	}
1343	if (ointr >= nintrs) {
1344		return -1;
1345	}
1346	return INTIRQ(ointr);
1347}
1348#undef SRCBUSLINE
1349#undef SRCBUSDEVICE
1350#undef SRCBUSID
1351#undef SRCBUSIRQ
1352
1353#undef INTPIN
1354#undef INTIRQ
1355#undef INTAPIC
1356#undef INTTYPE
1357
1358
1359/*
1360 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1361 *
1362 * XXX FIXME:
1363 *  Exactly what this means is unclear at this point.  It is a solution
1364 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1365 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1366 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1367 *  option.
1368 */
1369int
1370undirect_isa_irq(int rirq)
1371{
1372#if defined(READY)
1373	if (bootverbose)
1374	    printf("Freeing redirected ISA irq %d.\n", rirq);
1375	/** FIXME: tickle the MB redirector chip */
1376	return ???;
1377#else
1378	if (bootverbose)
1379	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1380	return 0;
1381#endif  /* READY */
1382}
1383
1384
1385/*
1386 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1387 */
1388int
1389undirect_pci_irq(int rirq)
1390{
1391#if defined(READY)
1392	if (bootverbose)
1393		printf("Freeing redirected PCI irq %d.\n", rirq);
1394
1395	/** FIXME: tickle the MB redirector chip */
1396	return ???;
1397#else
1398	if (bootverbose)
1399		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1400		       rirq);
1401	return 0;
1402#endif  /* READY */
1403}
1404
1405
1406/*
1407 * given a bus ID, return:
1408 *  the bus type if found
1409 *  -1 if NOT found
1410 */
1411int
1412apic_bus_type(int id)
1413{
1414	int     x;
1415
1416	for (x = 0; x < mp_nbusses; ++x)
1417		if (bus_data[x].bus_id == id)
1418			return bus_data[x].bus_type;
1419
1420	return -1;
1421}
1422
1423
1424/*
1425 * given a LOGICAL APIC# and pin#, return:
1426 *  the associated src bus ID if found
1427 *  -1 if NOT found
1428 */
1429int
1430apic_src_bus_id(int apic, int pin)
1431{
1432	int     x;
1433
1434	/* search each of the possible INTerrupt sources */
1435	for (x = 0; x < nintrs; ++x)
1436		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1437		    (pin == io_apic_ints[x].dst_apic_int))
1438			return (io_apic_ints[x].src_bus_id);
1439
1440	return -1;		/* NOT found */
1441}
1442
1443
1444/*
1445 * given a LOGICAL APIC# and pin#, return:
1446 *  the associated src bus IRQ if found
1447 *  -1 if NOT found
1448 */
1449int
1450apic_src_bus_irq(int apic, int pin)
1451{
1452	int     x;
1453
1454	for (x = 0; x < nintrs; x++)
1455		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1456		    (pin == io_apic_ints[x].dst_apic_int))
1457			return (io_apic_ints[x].src_bus_irq);
1458
1459	return -1;		/* NOT found */
1460}
1461
1462
1463/*
1464 * given a LOGICAL APIC# and pin#, return:
1465 *  the associated INTerrupt type if found
1466 *  -1 if NOT found
1467 */
1468int
1469apic_int_type(int apic, int pin)
1470{
1471	int     x;
1472
1473	/* search each of the possible INTerrupt sources */
1474	for (x = 0; x < nintrs; ++x)
1475		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1476		    (pin == io_apic_ints[x].dst_apic_int))
1477			return (io_apic_ints[x].int_type);
1478
1479	return -1;		/* NOT found */
1480}
1481
1482int
1483apic_irq(int apic, int pin)
1484{
1485	int x;
1486	int res;
1487
1488	for (x = 0; x < nintrs; ++x)
1489		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1490		    (pin == io_apic_ints[x].dst_apic_int)) {
1491			res = io_apic_ints[x].int_vector;
1492			if (res == 0xff)
1493				return -1;
1494			if (apic != int_to_apicintpin[res].ioapic)
1495				panic("apic_irq: inconsistent table");
1496			if (pin != int_to_apicintpin[res].int_pin)
1497				panic("apic_irq inconsistent table (2)");
1498			return res;
1499		}
1500	return -1;
1501}
1502
1503
1504/*
1505 * given a LOGICAL APIC# and pin#, return:
1506 *  the associated trigger mode if found
1507 *  -1 if NOT found
1508 */
1509int
1510apic_trigger(int apic, int pin)
1511{
1512	int     x;
1513
1514	/* search each of the possible INTerrupt sources */
1515	for (x = 0; x < nintrs; ++x)
1516		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1517		    (pin == io_apic_ints[x].dst_apic_int))
1518			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1519
1520	return -1;		/* NOT found */
1521}
1522
1523
1524/*
1525 * given a LOGICAL APIC# and pin#, return:
1526 *  the associated 'active' level if found
1527 *  -1 if NOT found
1528 */
1529int
1530apic_polarity(int apic, int pin)
1531{
1532	int     x;
1533
1534	/* search each of the possible INTerrupt sources */
1535	for (x = 0; x < nintrs; ++x)
1536		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1537		    (pin == io_apic_ints[x].dst_apic_int))
1538			return (io_apic_ints[x].int_flags & 0x03);
1539
1540	return -1;		/* NOT found */
1541}
1542
1543
1544/*
1545 * set data according to MP defaults
1546 * FIXME: probably not complete yet...
1547 */
1548static void
1549default_mp_table(int type)
1550{
1551	int     ap_cpu_id;
1552#if defined(APIC_IO)
1553	u_int32_t ux;
1554	int     io_apic_id;
1555	int     pin;
1556#endif	/* APIC_IO */
1557
1558#if 0
1559	printf("  MP default config type: %d\n", type);
1560	switch (type) {
1561	case 1:
1562		printf("   bus: ISA, APIC: 82489DX\n");
1563		break;
1564	case 2:
1565		printf("   bus: EISA, APIC: 82489DX\n");
1566		break;
1567	case 3:
1568		printf("   bus: EISA, APIC: 82489DX\n");
1569		break;
1570	case 4:
1571		printf("   bus: MCA, APIC: 82489DX\n");
1572		break;
1573	case 5:
1574		printf("   bus: ISA+PCI, APIC: Integrated\n");
1575		break;
1576	case 6:
1577		printf("   bus: EISA+PCI, APIC: Integrated\n");
1578		break;
1579	case 7:
1580		printf("   bus: MCA+PCI, APIC: Integrated\n");
1581		break;
1582	default:
1583		printf("   future type\n");
1584		break;
1585		/* NOTREACHED */
1586	}
1587#endif	/* 0 */
1588
1589	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1590	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1591
1592	/* BSP */
1593	CPU_TO_ID(0) = boot_cpu_id;
1594	ID_TO_CPU(boot_cpu_id) = 0;
1595
1596	/* one and only AP */
1597	CPU_TO_ID(1) = ap_cpu_id;
1598	ID_TO_CPU(ap_cpu_id) = 1;
1599
1600#if defined(APIC_IO)
1601	/* one and only IO APIC */
1602	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1603
1604	/*
1605	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1606	 * necessary as some hardware isn't properly setting up the IO APIC
1607	 */
1608#if defined(REALLY_ANAL_IOAPICID_VALUE)
1609	if (io_apic_id != 2) {
1610#else
1611	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1612#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1613		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1614		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1615		ux |= 0x02000000;	/* set it to '2' */
1616		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1617		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1618		if ((ux & APIC_ID_MASK) != 0x02000000)
1619			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1620		io_apic_id = 2;
1621	}
1622	IO_TO_ID(0) = io_apic_id;
1623	ID_TO_IO(io_apic_id) = 0;
1624#endif	/* APIC_IO */
1625
1626	/* fill out bus entries */
1627	switch (type) {
1628	case 1:
1629	case 2:
1630	case 3:
1631	case 5:
1632	case 6:
1633		bus_data[0].bus_id = default_data[type - 1][1];
1634		bus_data[0].bus_type = default_data[type - 1][2];
1635		bus_data[1].bus_id = default_data[type - 1][3];
1636		bus_data[1].bus_type = default_data[type - 1][4];
1637		break;
1638
1639	/* case 4: case 7:		   MCA NOT supported */
1640	default:		/* illegal/reserved */
1641		panic("BAD default MP config: %d", type);
1642		/* NOTREACHED */
1643	}
1644
1645#if defined(APIC_IO)
1646	/* general cases from MP v1.4, table 5-2 */
1647	for (pin = 0; pin < 16; ++pin) {
1648		io_apic_ints[pin].int_type = 0;
1649		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1650		io_apic_ints[pin].src_bus_id = 0;
1651		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1652		io_apic_ints[pin].dst_apic_id = io_apic_id;
1653		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1654	}
1655
1656	/* special cases from MP v1.4, table 5-2 */
1657	if (type == 2) {
1658		io_apic_ints[2].int_type = 0xff;	/* N/C */
1659		io_apic_ints[13].int_type = 0xff;	/* N/C */
1660#if !defined(APIC_MIXED_MODE)
1661		/** FIXME: ??? */
1662		panic("sorry, can't support type 2 default yet");
1663#endif	/* APIC_MIXED_MODE */
1664	}
1665	else
1666		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1667
1668	if (type == 7)
1669		io_apic_ints[0].int_type = 0xff;	/* N/C */
1670	else
1671		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1672#endif	/* APIC_IO */
1673}
1674
1675
1676/*
1677 * initialize all the SMP locks
1678 */
1679
1680/* critical region around IO APIC, apic_imen */
1681struct simplelock	imen_lock;
1682
1683/* critical region around splxx(), cpl, cml, cil, ipending */
1684struct simplelock	cpl_lock;
1685
1686/* Make FAST_INTR() routines sequential */
1687struct simplelock	fast_intr_lock;
1688
1689/* critical region around INTR() routines */
1690struct simplelock	intr_lock;
1691
1692/* lock regions protected in UP kernel via cli/sti */
1693struct simplelock	mpintr_lock;
1694
1695/* lock region used by kernel profiling */
1696struct simplelock	mcount_lock;
1697
1698#ifdef USE_COMLOCK
1699/* locks com (tty) data/hardware accesses: a FASTINTR() */
1700struct simplelock	com_lock;
1701#endif /* USE_COMLOCK */
1702
1703#ifdef USE_CLOCKLOCK
1704/* lock regions around the clock hardware */
1705struct simplelock	clock_lock;
1706#endif /* USE_CLOCKLOCK */
1707
1708/* lock around the MP rendezvous */
1709static struct simplelock smp_rv_lock;
1710
1711static void
1712init_locks(void)
1713{
1714	/*
1715	 * Get the initial mp_lock with a count of 1 for the BSP.
1716	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1717	 */
1718	mp_lock = 0x00000001;
1719
1720	/* ISR uses its own "giant lock" */
1721	isr_lock = FREE_LOCK;
1722
1723#if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1724	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1725#endif
1726
1727	s_lock_init((struct simplelock*)&mpintr_lock);
1728
1729	s_lock_init((struct simplelock*)&mcount_lock);
1730
1731	s_lock_init((struct simplelock*)&fast_intr_lock);
1732	s_lock_init((struct simplelock*)&intr_lock);
1733	s_lock_init((struct simplelock*)&imen_lock);
1734	s_lock_init((struct simplelock*)&cpl_lock);
1735	s_lock_init(&smp_rv_lock);
1736
1737#ifdef USE_COMLOCK
1738	s_lock_init((struct simplelock*)&com_lock);
1739#endif /* USE_COMLOCK */
1740#ifdef USE_CLOCKLOCK
1741	s_lock_init((struct simplelock*)&clock_lock);
1742#endif /* USE_CLOCKLOCK */
1743}
1744
1745
1746/* Wait for all APs to be fully initialized */
1747extern int wait_ap(unsigned int);
1748
1749/*
1750 * start each AP in our list
1751 */
1752static int
1753start_all_aps(u_int boot_addr)
1754{
1755	int     x, i, pg;
1756	u_char  mpbiosreason;
1757	u_long  mpbioswarmvec;
1758	struct globaldata *gd;
1759	char *stack;
1760
1761	POSTCODE(START_ALL_APS_POST);
1762
1763	/* initialize BSP's local APIC */
1764	apic_initialize();
1765	bsp_apic_ready = 1;
1766
1767	/* install the AP 1st level boot code */
1768	install_ap_tramp(boot_addr);
1769
1770
1771	/* save the current value of the warm-start vector */
1772	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1773#ifndef PC98
1774	outb(CMOS_REG, BIOS_RESET);
1775	mpbiosreason = inb(CMOS_DATA);
1776#endif
1777
1778	/* record BSP in CPU map */
1779	all_cpus = 1;
1780
1781	/* set up 0 -> 4MB P==V mapping for AP boot */
1782	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1783	invltlb();
1784
1785	/* start each AP */
1786	for (x = 1; x <= mp_naps; ++x) {
1787
1788		/* This is a bit verbose, it will go away soon.  */
1789
1790		/* first page of AP's private space */
1791		pg = x * i386_btop(sizeof(struct privatespace));
1792
1793		/* allocate a new private data page */
1794		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1795
1796		/* wire it into the private page table page */
1797		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1798
1799		/* allocate and set up an idle stack data page */
1800		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1801		for (i = 0; i < UPAGES; i++)
1802			SMPpt[pg + 5 + i] = (pt_entry_t)
1803			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1804
1805		SMPpt[pg + 1] = 0;		/* *prv_CMAP1 */
1806		SMPpt[pg + 2] = 0;		/* *prv_CMAP2 */
1807		SMPpt[pg + 3] = 0;		/* *prv_CMAP3 */
1808		SMPpt[pg + 4] = 0;		/* *prv_PMAP1 */
1809
1810		/* prime data page for it to use */
1811		gd->gd_cpuid = x;
1812		gd->gd_cpu_lockid = x << 24;
1813		gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
1814		gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
1815		gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
1816		gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
1817		gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
1818		gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
1819		gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
1820		gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
1821
1822		/* setup a vector to our boot code */
1823		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1824		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1825#ifndef PC98
1826		outb(CMOS_REG, BIOS_RESET);
1827		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1828#endif
1829
1830		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
1831		bootAP = x;
1832
1833		/* attempt to start the Application Processor */
1834		CHECK_INIT(99);	/* setup checkpoints */
1835		if (!start_ap(x, boot_addr)) {
1836			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1837			CHECK_PRINT("trace");	/* show checkpoints */
1838			/* better panic as the AP may be running loose */
1839			printf("panic y/n? [y] ");
1840			if (cngetc() != 'n')
1841				panic("bye-bye");
1842		}
1843		CHECK_PRINT("trace");		/* show checkpoints */
1844
1845		/* record its version info */
1846		cpu_apic_versions[x] = cpu_apic_versions[0];
1847
1848		all_cpus |= (1 << x);		/* record AP in CPU map */
1849	}
1850
1851	/* build our map of 'other' CPUs */
1852	other_cpus = all_cpus & ~(1 << cpuid);
1853
1854	/* fill in our (BSP) APIC version */
1855	cpu_apic_versions[0] = lapic.version;
1856
1857	/* restore the warmstart vector */
1858	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1859#ifndef PC98
1860	outb(CMOS_REG, BIOS_RESET);
1861	outb(CMOS_DATA, mpbiosreason);
1862#endif
1863
1864	/*
1865	 * Set up the idle context for the BSP.  Similar to above except
1866	 * that some was done by locore, some by pmap.c and some is implicit
1867	 * because the BSP is cpu#0 and the page is initially zero, and also
1868	 * because we can refer to variables by name on the BSP..
1869	 */
1870
1871	/* Allocate and setup BSP idle stack */
1872	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1873	for (i = 0; i < UPAGES; i++)
1874		SMPpt[5 + i] = (pt_entry_t)
1875		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1876
1877	*(int *)PTD = 0;
1878	pmap_set_opt();
1879
1880	/* number of APs actually started */
1881	return mp_ncpus - 1;
1882}
1883
1884
1885/*
1886 * load the 1st level AP boot code into base memory.
1887 */
1888
1889/* targets for relocation */
1890extern void bigJump(void);
1891extern void bootCodeSeg(void);
1892extern void bootDataSeg(void);
1893extern void MPentry(void);
1894extern u_int MP_GDT;
1895extern u_int mp_gdtbase;
1896
1897static void
1898install_ap_tramp(u_int boot_addr)
1899{
1900	int     x;
1901	int     size = *(int *) ((u_long) & bootMP_size);
1902	u_char *src = (u_char *) ((u_long) bootMP);
1903	u_char *dst = (u_char *) boot_addr + KERNBASE;
1904	u_int   boot_base = (u_int) bootMP;
1905	u_int8_t *dst8;
1906	u_int16_t *dst16;
1907	u_int32_t *dst32;
1908
1909	POSTCODE(INSTALL_AP_TRAMP_POST);
1910
1911	for (x = 0; x < size; ++x)
1912		*dst++ = *src++;
1913
1914	/*
1915	 * modify addresses in code we just moved to basemem. unfortunately we
1916	 * need fairly detailed info about mpboot.s for this to work.  changes
1917	 * to mpboot.s might require changes here.
1918	 */
1919
1920	/* boot code is located in KERNEL space */
1921	dst = (u_char *) boot_addr + KERNBASE;
1922
1923	/* modify the lgdt arg */
1924	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1925	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1926
1927	/* modify the ljmp target for MPentry() */
1928	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1929	*dst32 = ((u_int) MPentry - KERNBASE);
1930
1931	/* modify the target for boot code segment */
1932	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1933	dst8 = (u_int8_t *) (dst16 + 1);
1934	*dst16 = (u_int) boot_addr & 0xffff;
1935	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1936
1937	/* modify the target for boot data segment */
1938	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1939	dst8 = (u_int8_t *) (dst16 + 1);
1940	*dst16 = (u_int) boot_addr & 0xffff;
1941	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1942}
1943
1944
1945/*
1946 * this function starts the AP (application processor) identified
1947 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1948 * to accomplish this.  This is necessary because of the nuances
1949 * of the different hardware we might encounter.  It ain't pretty,
1950 * but it seems to work.
1951 */
1952static int
1953start_ap(int logical_cpu, u_int boot_addr)
1954{
1955	int     physical_cpu;
1956	int     vector;
1957	int     cpus;
1958	u_long  icr_lo, icr_hi;
1959
1960	POSTCODE(START_AP_POST);
1961
1962	/* get the PHYSICAL APIC ID# */
1963	physical_cpu = CPU_TO_ID(logical_cpu);
1964
1965	/* calculate the vector */
1966	vector = (boot_addr >> 12) & 0xff;
1967
1968	/* used as a watchpoint to signal AP startup */
1969	cpus = mp_ncpus;
1970
1971	/*
1972	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1973	 * and running the target CPU. OR this INIT IPI might be latched (P5
1974	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1975	 * ignored.
1976	 */
1977
1978	/* setup the address for the target AP */
1979	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
1980	icr_hi |= (physical_cpu << 24);
1981	lapic.icr_hi = icr_hi;
1982
1983	/* do an INIT IPI: assert RESET */
1984	icr_lo = lapic.icr_lo & 0xfff00000;
1985	lapic.icr_lo = icr_lo | 0x0000c500;
1986
1987	/* wait for pending status end */
1988	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1989		 /* spin */ ;
1990
1991	/* do an INIT IPI: deassert RESET */
1992	lapic.icr_lo = icr_lo | 0x00008500;
1993
1994	/* wait for pending status end */
1995	u_sleep(10000);		/* wait ~10mS */
1996	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1997		 /* spin */ ;
1998
1999	/*
2000	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2001	 * latched, (P5 bug) this 1st STARTUP would then terminate
2002	 * immediately, and the previously started INIT IPI would continue. OR
2003	 * the previous INIT IPI has already run. and this STARTUP IPI will
2004	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2005	 * will run.
2006	 */
2007
2008	/* do a STARTUP IPI */
2009	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2010	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2011		 /* spin */ ;
2012	u_sleep(200);		/* wait ~200uS */
2013
2014	/*
2015	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2016	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2017	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2018	 * recognized after hardware RESET or INIT IPI.
2019	 */
2020
2021	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2022	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2023		 /* spin */ ;
2024	u_sleep(200);		/* wait ~200uS */
2025
2026	/* wait for it to start */
2027	set_apic_timer(5000000);/* == 5 seconds */
2028	while (read_apic_timer())
2029		if (mp_ncpus > cpus)
2030			return 1;	/* return SUCCESS */
2031
2032	return 0;		/* return FAILURE */
2033}
2034
2035
2036/*
2037 * Flush the TLB on all other CPU's
2038 *
2039 * XXX: Needs to handshake and wait for completion before proceding.
2040 */
2041void
2042smp_invltlb(void)
2043{
2044#if defined(APIC_IO)
2045	if (smp_started && invltlb_ok)
2046		all_but_self_ipi(XINVLTLB_OFFSET);
2047#endif  /* APIC_IO */
2048}
2049
2050void
2051invlpg(u_int addr)
2052{
2053	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2054
2055	/* send a message to the other CPUs */
2056	smp_invltlb();
2057}
2058
2059void
2060invltlb(void)
2061{
2062	u_long  temp;
2063
2064	/*
2065	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2066	 * inlined.
2067	 */
2068	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2069
2070	/* send a message to the other CPUs */
2071	smp_invltlb();
2072}
2073
2074
2075/*
2076 * When called the executing CPU will send an IPI to all other CPUs
2077 *  requesting that they halt execution.
2078 *
2079 * Usually (but not necessarily) called with 'other_cpus' as its arg.
2080 *
2081 *  - Signals all CPUs in map to stop.
2082 *  - Waits for each to stop.
2083 *
2084 * Returns:
2085 *  -1: error
2086 *   0: NA
2087 *   1: ok
2088 *
2089 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2090 *            from executing at same time.
2091 */
2092int
2093stop_cpus(u_int map)
2094{
2095	if (!smp_started)
2096		return 0;
2097
2098	/* send the Xcpustop IPI to all CPUs in map */
2099	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2100
2101	while ((stopped_cpus & map) != map)
2102		/* spin */ ;
2103
2104	return 1;
2105}
2106
2107
2108/*
2109 * Called by a CPU to restart stopped CPUs.
2110 *
2111 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2112 *
2113 *  - Signals all CPUs in map to restart.
2114 *  - Waits for each to restart.
2115 *
2116 * Returns:
2117 *  -1: error
2118 *   0: NA
2119 *   1: ok
2120 */
2121int
2122restart_cpus(u_int map)
2123{
2124	if (!smp_started)
2125		return 0;
2126
2127	started_cpus = map;		/* signal other cpus to restart */
2128
2129	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2130		/* spin */ ;
2131
2132	return 1;
2133}
2134
2135int smp_active = 0;	/* are the APs allowed to run? */
2136SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2137
2138/* XXX maybe should be hw.ncpu */
2139static int smp_cpus = 1;	/* how many cpu's running */
2140SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2141
2142int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2143SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2144
2145/* Warning: Do not staticize.  Used from swtch.s */
2146int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2147SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2148	   &do_page_zero_idle, 0, "");
2149
2150/* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2151int forward_irq_enabled = 1;
2152SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2153	   &forward_irq_enabled, 0, "");
2154
2155/* Enable forwarding of a signal to a process running on a different CPU */
2156static int forward_signal_enabled = 1;
2157SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2158	   &forward_signal_enabled, 0, "");
2159
2160/* Enable forwarding of roundrobin to all other cpus */
2161static int forward_roundrobin_enabled = 1;
2162SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2163	   &forward_roundrobin_enabled, 0, "");
2164
2165/*
2166 * This is called once the rest of the system is up and running and we're
2167 * ready to let the AP's out of the pen.
2168 */
2169void ap_init(void);
2170
2171void
2172ap_init()
2173{
2174	u_int	apic_id;
2175
2176	/* BSP may have changed PTD while we're waiting for the lock */
2177	cpu_invltlb();
2178
2179	smp_cpus++;
2180
2181#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2182	lidt(&r_idt);
2183#endif
2184
2185	/* Build our map of 'other' CPUs. */
2186	other_cpus = all_cpus & ~(1 << cpuid);
2187
2188	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2189
2190	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
2191	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
2192
2193	/* set up FPU state on the AP */
2194	npxinit(__INITIAL_NPXCW__);
2195
2196	/* A quick check from sanity claus */
2197	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2198	if (cpuid != apic_id) {
2199		printf("SMP: cpuid = %d\n", cpuid);
2200		printf("SMP: apic_id = %d\n", apic_id);
2201		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2202		panic("cpuid mismatch! boom!!");
2203	}
2204
2205	/* Init local apic for irq's */
2206	apic_initialize();
2207
2208	/* Set memory range attributes for this CPU to match the BSP */
2209	mem_range_AP_init();
2210
2211	/*
2212	 * Activate smp_invltlb, although strictly speaking, this isn't
2213	 * quite correct yet.  We should have a bitfield for cpus willing
2214	 * to accept TLB flush IPI's or something and sync them.
2215	 */
2216	if (smp_cpus == mp_ncpus) {
2217		invltlb_ok = 1;
2218		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2219		smp_active = 1;	 /* historic */
2220	}
2221}
2222
2223#ifdef BETTER_CLOCK
2224
2225#define CHECKSTATE_USER	0
2226#define CHECKSTATE_SYS	1
2227#define CHECKSTATE_INTR	2
2228
2229/* Do not staticize.  Used from apic_vector.s */
2230struct proc*	checkstate_curproc[NCPU];
2231int		checkstate_cpustate[NCPU];
2232u_long		checkstate_pc[NCPU];
2233
2234extern long	cp_time[CPUSTATES];
2235
2236#define PC_TO_INDEX(pc, prof)				\
2237        ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2238            (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2239
2240static void
2241addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2242{
2243	int i;
2244	struct uprof *prof;
2245	u_long pc;
2246
2247	pc = checkstate_pc[id];
2248	prof = &p->p_stats->p_prof;
2249	if (pc >= prof->pr_off &&
2250	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2251		if ((p->p_flag & P_OWEUPC) == 0) {
2252			prof->pr_addr = pc;
2253			prof->pr_ticks = 1;
2254			p->p_flag |= P_OWEUPC;
2255		}
2256		*astmap |= (1 << id);
2257	}
2258}
2259
2260static void
2261forwarded_statclock(int id, int pscnt, int *astmap)
2262{
2263	struct pstats *pstats;
2264	long rss;
2265	struct rusage *ru;
2266	struct vmspace *vm;
2267	int cpustate;
2268	struct proc *p;
2269#ifdef GPROF
2270	register struct gmonparam *g;
2271	int i;
2272#endif
2273
2274	p = checkstate_curproc[id];
2275	cpustate = checkstate_cpustate[id];
2276
2277	switch (cpustate) {
2278	case CHECKSTATE_USER:
2279		if (p->p_flag & P_PROFIL)
2280			addupc_intr_forwarded(p, id, astmap);
2281		if (pscnt > 1)
2282			return;
2283		p->p_uticks++;
2284		if (p->p_nice > NZERO)
2285			cp_time[CP_NICE]++;
2286		else
2287			cp_time[CP_USER]++;
2288		break;
2289	case CHECKSTATE_SYS:
2290#ifdef GPROF
2291		/*
2292		 * Kernel statistics are just like addupc_intr, only easier.
2293		 */
2294		g = &_gmonparam;
2295		if (g->state == GMON_PROF_ON) {
2296			i = checkstate_pc[id] - g->lowpc;
2297			if (i < g->textsize) {
2298				i /= HISTFRACTION * sizeof(*g->kcount);
2299				g->kcount[i]++;
2300			}
2301		}
2302#endif
2303		if (pscnt > 1)
2304			return;
2305
2306		if (!p)
2307			cp_time[CP_IDLE]++;
2308		else {
2309			p->p_sticks++;
2310			cp_time[CP_SYS]++;
2311		}
2312		break;
2313	case CHECKSTATE_INTR:
2314	default:
2315#ifdef GPROF
2316		/*
2317		 * Kernel statistics are just like addupc_intr, only easier.
2318		 */
2319		g = &_gmonparam;
2320		if (g->state == GMON_PROF_ON) {
2321			i = checkstate_pc[id] - g->lowpc;
2322			if (i < g->textsize) {
2323				i /= HISTFRACTION * sizeof(*g->kcount);
2324				g->kcount[i]++;
2325			}
2326		}
2327#endif
2328		if (pscnt > 1)
2329			return;
2330		if (p)
2331			p->p_iticks++;
2332		cp_time[CP_INTR]++;
2333	}
2334	if (p != NULL) {
2335		p->p_cpticks++;
2336		if (++p->p_estcpu == 0)
2337			p->p_estcpu--;
2338		if ((p->p_estcpu & 3) == 0) {
2339			resetpriority(p);
2340			if (p->p_priority >= PUSER)
2341				p->p_priority = p->p_usrpri;
2342		}
2343
2344		/* Update resource usage integrals and maximums. */
2345		if ((pstats = p->p_stats) != NULL &&
2346		    (ru = &pstats->p_ru) != NULL &&
2347		    (vm = p->p_vmspace) != NULL) {
2348			ru->ru_ixrss += pgtok(vm->vm_tsize);
2349			ru->ru_idrss += pgtok(vm->vm_dsize);
2350			ru->ru_isrss += pgtok(vm->vm_ssize);
2351			rss = pgtok(vmspace_resident_count(vm));
2352			if (ru->ru_maxrss < rss)
2353				ru->ru_maxrss = rss;
2354        	}
2355	}
2356}
2357
2358void
2359forward_statclock(int pscnt)
2360{
2361	int map;
2362	int id;
2363	int i;
2364
2365	/* Kludge. We don't yet have separate locks for the interrupts
2366	 * and the kernel. This means that we cannot let the other processors
2367	 * handle complex interrupts while inhibiting them from entering
2368	 * the kernel in a non-interrupt context.
2369	 *
2370	 * What we can do, without changing the locking mechanisms yet,
2371	 * is letting the other processors handle a very simple interrupt
2372	 * (wich determines the processor states), and do the main
2373	 * work ourself.
2374	 */
2375
2376	if (!smp_started || !invltlb_ok || cold || panicstr)
2377		return;
2378
2379	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2380
2381	map = other_cpus & ~stopped_cpus ;
2382	checkstate_probed_cpus = 0;
2383	if (map != 0)
2384		selected_apic_ipi(map,
2385				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2386
2387	i = 0;
2388	while (checkstate_probed_cpus != map) {
2389		/* spin */
2390		i++;
2391		if (i == 100000) {
2392#ifdef BETTER_CLOCK_DIAGNOSTIC
2393			printf("forward_statclock: checkstate %x\n",
2394			       checkstate_probed_cpus);
2395#endif
2396			break;
2397		}
2398	}
2399
2400	/*
2401	 * Step 2: walk through other processors processes, update ticks and
2402	 * profiling info.
2403	 */
2404
2405	map = 0;
2406	for (id = 0; id < mp_ncpus; id++) {
2407		if (id == cpuid)
2408			continue;
2409		if (((1 << id) & checkstate_probed_cpus) == 0)
2410			continue;
2411		forwarded_statclock(id, pscnt, &map);
2412	}
2413	if (map != 0) {
2414		checkstate_need_ast |= map;
2415		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2416		i = 0;
2417		while ((checkstate_need_ast & map) != 0) {
2418			/* spin */
2419			i++;
2420			if (i > 100000) {
2421#ifdef BETTER_CLOCK_DIAGNOSTIC
2422				printf("forward_statclock: dropped ast 0x%x\n",
2423				       checkstate_need_ast & map);
2424#endif
2425				break;
2426			}
2427		}
2428	}
2429}
2430
2431void
2432forward_hardclock(int pscnt)
2433{
2434	int map;
2435	int id;
2436	struct proc *p;
2437	struct pstats *pstats;
2438	int i;
2439
2440	/* Kludge. We don't yet have separate locks for the interrupts
2441	 * and the kernel. This means that we cannot let the other processors
2442	 * handle complex interrupts while inhibiting them from entering
2443	 * the kernel in a non-interrupt context.
2444	 *
2445	 * What we can do, without changing the locking mechanisms yet,
2446	 * is letting the other processors handle a very simple interrupt
2447	 * (wich determines the processor states), and do the main
2448	 * work ourself.
2449	 */
2450
2451	if (!smp_started || !invltlb_ok || cold || panicstr)
2452		return;
2453
2454	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2455
2456	map = other_cpus & ~stopped_cpus ;
2457	checkstate_probed_cpus = 0;
2458	if (map != 0)
2459		selected_apic_ipi(map,
2460				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2461
2462	i = 0;
2463	while (checkstate_probed_cpus != map) {
2464		/* spin */
2465		i++;
2466		if (i == 100000) {
2467#ifdef BETTER_CLOCK_DIAGNOSTIC
2468			printf("forward_hardclock: checkstate %x\n",
2469			       checkstate_probed_cpus);
2470#endif
2471			break;
2472		}
2473	}
2474
2475	/*
2476	 * Step 2: walk through other processors processes, update virtual
2477	 * timer and profiling timer. If stathz == 0, also update ticks and
2478	 * profiling info.
2479	 */
2480
2481	map = 0;
2482	for (id = 0; id < mp_ncpus; id++) {
2483		if (id == cpuid)
2484			continue;
2485		if (((1 << id) & checkstate_probed_cpus) == 0)
2486			continue;
2487		p = checkstate_curproc[id];
2488		if (p) {
2489			pstats = p->p_stats;
2490			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2491			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2492			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2493				psignal(p, SIGVTALRM);
2494				map |= (1 << id);
2495			}
2496			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2497			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2498				psignal(p, SIGPROF);
2499				map |= (1 << id);
2500			}
2501		}
2502		if (stathz == 0) {
2503			forwarded_statclock( id, pscnt, &map);
2504		}
2505	}
2506	if (map != 0) {
2507		checkstate_need_ast |= map;
2508		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2509		i = 0;
2510		while ((checkstate_need_ast & map) != 0) {
2511			/* spin */
2512			i++;
2513			if (i > 100000) {
2514#ifdef BETTER_CLOCK_DIAGNOSTIC
2515				printf("forward_hardclock: dropped ast 0x%x\n",
2516				       checkstate_need_ast & map);
2517#endif
2518				break;
2519			}
2520		}
2521	}
2522}
2523
2524#endif /* BETTER_CLOCK */
2525
2526void
2527forward_signal(struct proc *p)
2528{
2529	int map;
2530	int id;
2531	int i;
2532
2533	/* Kludge. We don't yet have separate locks for the interrupts
2534	 * and the kernel. This means that we cannot let the other processors
2535	 * handle complex interrupts while inhibiting them from entering
2536	 * the kernel in a non-interrupt context.
2537	 *
2538	 * What we can do, without changing the locking mechanisms yet,
2539	 * is letting the other processors handle a very simple interrupt
2540	 * (wich determines the processor states), and do the main
2541	 * work ourself.
2542	 */
2543
2544	if (!smp_started || !invltlb_ok || cold || panicstr)
2545		return;
2546	if (!forward_signal_enabled)
2547		return;
2548	while (1) {
2549		if (p->p_stat != SRUN)
2550			return;
2551		id = p->p_oncpu;
2552		if (id == 0xff)
2553			return;
2554		map = (1<<id);
2555		checkstate_need_ast |= map;
2556		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2557		i = 0;
2558		while ((checkstate_need_ast & map) != 0) {
2559			/* spin */
2560			i++;
2561			if (i > 100000) {
2562#if 0
2563				printf("forward_signal: dropped ast 0x%x\n",
2564				       checkstate_need_ast & map);
2565#endif
2566				break;
2567			}
2568		}
2569		if (id == p->p_oncpu)
2570			return;
2571	}
2572}
2573
2574void
2575forward_roundrobin(void)
2576{
2577	u_int map;
2578	int i;
2579
2580	if (!smp_started || !invltlb_ok || cold || panicstr)
2581		return;
2582	if (!forward_roundrobin_enabled)
2583		return;
2584	resched_cpus |= other_cpus;
2585	map = other_cpus & ~stopped_cpus ;
2586#if 1
2587	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2588#else
2589	(void) all_but_self_ipi(XCPUAST_OFFSET);
2590#endif
2591	i = 0;
2592	while ((checkstate_need_ast & map) != 0) {
2593		/* spin */
2594		i++;
2595		if (i > 100000) {
2596#if 0
2597			printf("forward_roundrobin: dropped ast 0x%x\n",
2598			       checkstate_need_ast & map);
2599#endif
2600			break;
2601		}
2602	}
2603}
2604
2605
2606#ifdef APIC_INTR_REORDER
2607/*
2608 *	Maintain mapping from softintr vector to isr bit in local apic.
2609 */
2610void
2611set_lapic_isrloc(int intr, int vector)
2612{
2613	if (intr < 0 || intr > 32)
2614		panic("set_apic_isrloc: bad intr argument: %d",intr);
2615	if (vector < ICU_OFFSET || vector > 255)
2616		panic("set_apic_isrloc: bad vector argument: %d",vector);
2617	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2618	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2619}
2620#endif
2621
2622/*
2623 * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
2624 * (if specified), rendezvous, execute the action function (if specified),
2625 * rendezvous again, execute the teardown function (if specified), and then
2626 * resume.
2627 *
2628 * Note that the supplied external functions _must_ be reentrant and aware
2629 * that they are running in parallel and in an unknown lock context.
2630 */
2631static void (*smp_rv_setup_func)(void *arg);
2632static void (*smp_rv_action_func)(void *arg);
2633static void (*smp_rv_teardown_func)(void *arg);
2634static void *smp_rv_func_arg;
2635static volatile int smp_rv_waiters[2];
2636
2637void
2638smp_rendezvous_action(void)
2639{
2640	/* setup function */
2641	if (smp_rv_setup_func != NULL)
2642		smp_rv_setup_func(smp_rv_func_arg);
2643	/* spin on entry rendezvous */
2644	atomic_add_int(&smp_rv_waiters[0], 1);
2645	while (smp_rv_waiters[0] < mp_ncpus)
2646		;
2647	/* action function */
2648	if (smp_rv_action_func != NULL)
2649		smp_rv_action_func(smp_rv_func_arg);
2650	/* spin on exit rendezvous */
2651	atomic_add_int(&smp_rv_waiters[1], 1);
2652	while (smp_rv_waiters[1] < mp_ncpus)
2653		;
2654	/* teardown function */
2655	if (smp_rv_teardown_func != NULL)
2656		smp_rv_teardown_func(smp_rv_func_arg);
2657}
2658
2659void
2660smp_rendezvous(void (* setup_func)(void *),
2661	       void (* action_func)(void *),
2662	       void (* teardown_func)(void *),
2663	       void *arg)
2664{
2665	u_int	efl;
2666
2667	/* obtain rendezvous lock */
2668	s_lock(&smp_rv_lock);		/* XXX sleep here? NOWAIT flag? */
2669
2670	/* set static function pointers */
2671	smp_rv_setup_func = setup_func;
2672	smp_rv_action_func = action_func;
2673	smp_rv_teardown_func = teardown_func;
2674	smp_rv_func_arg = arg;
2675	smp_rv_waiters[0] = 0;
2676	smp_rv_waiters[1] = 0;
2677
2678	/* disable interrupts on this CPU, save interrupt status */
2679	efl = read_eflags();
2680	write_eflags(efl & ~PSL_I);
2681
2682	/* signal other processors, which will enter the IPI with interrupts off */
2683	all_but_self_ipi(XRENDEZVOUS_OFFSET);
2684
2685	/* call executor function */
2686	smp_rendezvous_action();
2687
2688	/* restore interrupt flag */
2689	write_eflags(efl);
2690
2691	/* release lock */
2692	s_unlock(&smp_rv_lock);
2693}
2694