mptable.c revision 38349
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 *	$Id: mp_machdep.c,v 1.76 1998/05/17 22:12:08 tegge Exp $
26 */
27
28#include "opt_smp.h"
29#include "opt_vm86.h"
30#include "opt_cpu.h"
31
32#ifdef SMP
33#include <machine/smptests.h>
34#else
35#error
36#endif
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/sysctl.h>
43#ifdef BETTER_CLOCK
44#include <sys/dkstat.h>
45#endif
46
47#include <vm/vm.h>
48#include <vm/vm_param.h>
49#include <vm/pmap.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_extern.h>
52#ifdef BETTER_CLOCK
53#include <sys/lock.h>
54#include <vm/vm_map.h>
55#include <sys/user.h>
56#ifdef GPROF
57#include <sys/gmon.h>
58#endif
59#endif
60
61#include <machine/smp.h>
62#include <machine/apic.h>
63#include <machine/mpapic.h>
64#include <machine/segments.h>
65#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
66#include <machine/tss.h>
67#include <machine/specialreg.h>
68#include <machine/cputypes.h>
69#include <machine/globaldata.h>
70
71#include <i386/i386/cons.h>	/* cngetc() */
72
73#if defined(APIC_IO)
74#include <machine/md_var.h>		/* setidt() */
75#include <i386/isa/icu.h>		/* IPIs */
76#include <i386/isa/intr_machdep.h>	/* IPIs */
77#endif	/* APIC_IO */
78
79#if defined(TEST_DEFAULT_CONFIG)
80#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
81#else
82#define MPFPS_MPFB1	mpfps->mpfb1
83#endif  /* TEST_DEFAULT_CONFIG */
84
85#define WARMBOOT_TARGET		0
86#define WARMBOOT_OFF		(KERNBASE + 0x0467)
87#define WARMBOOT_SEG		(KERNBASE + 0x0469)
88
89#define BIOS_BASE		(0xf0000)
90#define BIOS_SIZE		(0x10000)
91#define BIOS_COUNT		(BIOS_SIZE/4)
92
93#define CMOS_REG		(0x70)
94#define CMOS_DATA		(0x71)
95#define BIOS_RESET		(0x0f)
96#define BIOS_WARM		(0x0a)
97
98#define PROCENTRY_FLAG_EN	0x01
99#define PROCENTRY_FLAG_BP	0x02
100#define IOAPICENTRY_FLAG_EN	0x01
101
102
103/* MP Floating Pointer Structure */
104typedef struct MPFPS {
105	char    signature[4];
106	void   *pap;
107	u_char  length;
108	u_char  spec_rev;
109	u_char  checksum;
110	u_char  mpfb1;
111	u_char  mpfb2;
112	u_char  mpfb3;
113	u_char  mpfb4;
114	u_char  mpfb5;
115}      *mpfps_t;
116
117/* MP Configuration Table Header */
118typedef struct MPCTH {
119	char    signature[4];
120	u_short base_table_length;
121	u_char  spec_rev;
122	u_char  checksum;
123	u_char  oem_id[8];
124	u_char  product_id[12];
125	void   *oem_table_pointer;
126	u_short oem_table_size;
127	u_short entry_count;
128	void   *apic_address;
129	u_short extended_table_length;
130	u_char  extended_table_checksum;
131	u_char  reserved;
132}      *mpcth_t;
133
134
135typedef struct PROCENTRY {
136	u_char  type;
137	u_char  apic_id;
138	u_char  apic_version;
139	u_char  cpu_flags;
140	u_long  cpu_signature;
141	u_long  feature_flags;
142	u_long  reserved1;
143	u_long  reserved2;
144}      *proc_entry_ptr;
145
146typedef struct BUSENTRY {
147	u_char  type;
148	u_char  bus_id;
149	char    bus_type[6];
150}      *bus_entry_ptr;
151
152typedef struct IOAPICENTRY {
153	u_char  type;
154	u_char  apic_id;
155	u_char  apic_version;
156	u_char  apic_flags;
157	void   *apic_address;
158}      *io_apic_entry_ptr;
159
160typedef struct INTENTRY {
161	u_char  type;
162	u_char  int_type;
163	u_short int_flags;
164	u_char  src_bus_id;
165	u_char  src_bus_irq;
166	u_char  dst_apic_id;
167	u_char  dst_apic_int;
168}      *int_entry_ptr;
169
170/* descriptions of MP basetable entries */
171typedef struct BASETABLE_ENTRY {
172	u_char  type;
173	u_char  length;
174	char    name[16];
175}       basetable_entry;
176
177/*
178 * this code MUST be enabled here and in mpboot.s.
179 * it follows the very early stages of AP boot by placing values in CMOS ram.
180 * it NORMALLY will never be needed and thus the primitive method for enabling.
181 *
182#define CHECK_POINTS
183 */
184
185#if defined(CHECK_POINTS)
186#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
187#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
188
189#define CHECK_INIT(D);				\
190	CHECK_WRITE(0x34, (D));			\
191	CHECK_WRITE(0x35, (D));			\
192	CHECK_WRITE(0x36, (D));			\
193	CHECK_WRITE(0x37, (D));			\
194	CHECK_WRITE(0x38, (D));			\
195	CHECK_WRITE(0x39, (D));
196
197#define CHECK_PRINT(S);				\
198	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
199	   (S),					\
200	   CHECK_READ(0x34),			\
201	   CHECK_READ(0x35),			\
202	   CHECK_READ(0x36),			\
203	   CHECK_READ(0x37),			\
204	   CHECK_READ(0x38),			\
205	   CHECK_READ(0x39));
206
207#else				/* CHECK_POINTS */
208
209#define CHECK_INIT(D)
210#define CHECK_PRINT(S)
211
212#endif				/* CHECK_POINTS */
213
214/*
215 * Values to send to the POST hardware.
216 */
217#define MP_BOOTADDRESS_POST	0x10
218#define MP_PROBE_POST		0x11
219#define MPTABLE_PASS1_POST	0x12
220
221#define MP_START_POST		0x13
222#define MP_ENABLE_POST		0x14
223#define MPTABLE_PASS2_POST	0x15
224
225#define START_ALL_APS_POST	0x16
226#define INSTALL_AP_TRAMP_POST	0x17
227#define START_AP_POST		0x18
228
229#define MP_ANNOUNCE_POST	0x19
230
231
232/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
233int	current_postcode;
234
235/** XXX FIXME: what system files declare these??? */
236extern struct region_descriptor r_gdt, r_idt;
237
238int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
239int	mp_ncpus;		/* # of CPUs, including BSP */
240int	mp_naps;		/* # of Applications processors */
241int	mp_nbusses;		/* # of busses */
242int	mp_napics;		/* # of IO APICs */
243int	boot_cpu_id;		/* designated BSP */
244vm_offset_t cpu_apic_address;
245vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
246extern	int nkpt;
247
248u_int32_t cpu_apic_versions[NCPU];
249u_int32_t io_apic_versions[NAPIC];
250
251#ifdef APIC_INTR_DIAGNOSTIC
252int apic_itrace_enter[32];
253int apic_itrace_tryisrlock[32];
254int apic_itrace_gotisrlock[32];
255int apic_itrace_active[32];
256int apic_itrace_masked[32];
257int apic_itrace_noisrlock[32];
258int apic_itrace_masked2[32];
259int apic_itrace_unmask[32];
260int apic_itrace_noforward[32];
261int apic_itrace_leave[32];
262int apic_itrace_enter2[32];
263int apic_itrace_doreti[32];
264int apic_itrace_splz[32];
265int apic_itrace_eoi[32];
266#ifdef APIC_INTR_DIAGNOSTIC_IRQ
267unsigned short apic_itrace_debugbuffer[32768];
268int apic_itrace_debugbuffer_idx;
269struct simplelock apic_itrace_debuglock;
270#endif
271#endif
272
273#ifdef APIC_INTR_REORDER
274struct {
275	volatile int *location;
276	int bit;
277} apic_isrbit_location[32];
278#endif
279
280/*
281 * APIC ID logical/physical mapping structures.
282 * We oversize these to simplify boot-time config.
283 */
284int     cpu_num_to_apic_id[NAPICID];
285int     io_num_to_apic_id[NAPICID];
286int     apic_id_to_logical[NAPICID];
287
288
289/* Bitmap of all available CPUs */
290u_int	all_cpus;
291
292/* AP uses this PTD during bootstrap.  Do not staticize.  */
293pd_entry_t *bootPTD;
294
295/* Hotwire a 0->4MB V==P mapping */
296extern pt_entry_t *KPTphys;
297
298/* Virtual address of per-cpu common_tss */
299extern struct i386tss common_tss;
300#ifdef VM86
301extern struct segment_descriptor common_tssd;
302extern u_int private_tss;		/* flag indicating private tss */
303extern u_int my_tr;
304#endif /* VM86 */
305
306/* IdlePTD per cpu */
307pd_entry_t *IdlePTDS[NCPU];
308
309/* "my" private page table page, for BSP init */
310extern pt_entry_t SMP_prvpt[];
311
312/* Private page pointer to curcpu's PTD, used during BSP init */
313extern pd_entry_t *my_idlePTD;
314
315struct pcb stoppcbs[NCPU];
316
317static int smp_started;		/* has the system started? */
318
319/*
320 * Local data and functions.
321 */
322
323static int	mp_capable;
324static u_int	boot_address;
325static u_int	base_memory;
326
327static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
328static mpfps_t	mpfps;
329static int	search_for_sig(u_int32_t target, int count);
330static void	mp_enable(u_int boot_addr);
331
332static int	mptable_pass1(void);
333static int	mptable_pass2(void);
334static void	default_mp_table(int type);
335static void	fix_mp_table(void);
336static void	init_locks(void);
337static int	start_all_aps(u_int boot_addr);
338static void	install_ap_tramp(u_int boot_addr);
339static int	start_ap(int logicalCpu, u_int boot_addr);
340
341/*
342 * Calculate usable address in base memory for AP trampoline code.
343 */
344u_int
345mp_bootaddress(u_int basemem)
346{
347	POSTCODE(MP_BOOTADDRESS_POST);
348
349	base_memory = basemem * 1024;	/* convert to bytes */
350
351	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
352	if ((base_memory - boot_address) < bootMP_size)
353		boot_address -= 4096;	/* not enough, lower by 4k */
354
355	return boot_address;
356}
357
358
359/*
360 * Look for an Intel MP spec table (ie, SMP capable hardware).
361 */
362int
363mp_probe(void)
364{
365	int     x;
366	u_long  segment;
367	u_int32_t target;
368
369	POSTCODE(MP_PROBE_POST);
370
371	/* see if EBDA exists */
372	if (segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) {
373		/* search first 1K of EBDA */
374		target = (u_int32_t) (segment << 4);
375		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
376			goto found;
377	} else {
378		/* last 1K of base memory, effective 'top of base' passed in */
379		target = (u_int32_t) (base_memory - 0x400);
380		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
381			goto found;
382	}
383
384	/* search the BIOS */
385	target = (u_int32_t) BIOS_BASE;
386	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
387		goto found;
388
389	/* nothing found */
390	mpfps = (mpfps_t)0;
391	mp_capable = 0;
392	return 0;
393
394found:
395	/* calculate needed resources */
396	mpfps = (mpfps_t)x;
397	if (mptable_pass1())
398		panic("you must reconfigure your kernel");
399
400	/* flag fact that we are running multiple processors */
401	mp_capable = 1;
402	return 1;
403}
404
405
406/*
407 * Startup the SMP processors.
408 */
409void
410mp_start(void)
411{
412	POSTCODE(MP_START_POST);
413
414	/* look for MP capable motherboard */
415	if (mp_capable)
416		mp_enable(boot_address);
417	else
418		panic("MP hardware not found!");
419}
420
421
422/*
423 * Print various information about the SMP system hardware and setup.
424 */
425void
426mp_announce(void)
427{
428	int     x;
429
430	POSTCODE(MP_ANNOUNCE_POST);
431
432	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
433	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
434	printf(", version: 0x%08x", cpu_apic_versions[0]);
435	printf(", at 0x%08x\n", cpu_apic_address);
436	for (x = 1; x <= mp_naps; ++x) {
437		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
438		printf(", version: 0x%08x", cpu_apic_versions[x]);
439		printf(", at 0x%08x\n", cpu_apic_address);
440	}
441
442#if defined(APIC_IO)
443	for (x = 0; x < mp_napics; ++x) {
444		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
445		printf(", version: 0x%08x", io_apic_versions[x]);
446		printf(", at 0x%08x\n", io_apic_address[x]);
447	}
448#else
449	printf(" Warning: APIC I/O disabled\n");
450#endif	/* APIC_IO */
451}
452
453/*
454 * AP cpu's call this to sync up protected mode.
455 */
456void
457init_secondary(void)
458{
459	int	gsel_tss;
460#ifndef VM86
461	u_int	my_tr;
462#endif
463
464	r_gdt.rd_limit = sizeof(gdt[0]) * (NGDT + NCPU) - 1;
465	r_gdt.rd_base = (int) gdt;
466	lgdt(&r_gdt);			/* does magic intra-segment return */
467	lidt(&r_idt);
468	lldt(_default_ldt);
469
470	my_tr = NGDT + cpuid;
471	gsel_tss = GSEL(my_tr, SEL_KPL);
472	gdt[my_tr].sd.sd_type = SDT_SYS386TSS;
473	common_tss.tss_esp0 = 0;	/* not used until after switch */
474	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
475	common_tss.tss_ioopt = (sizeof common_tss) << 16;
476#ifdef VM86
477	common_tssd = gdt[my_tr].sd;
478	private_tss = 0;
479#endif /* VM86 */
480	ltr(gsel_tss);
481
482	load_cr0(0x8005003b);		/* XXX! */
483
484	PTD[0] = 0;
485	pmap_set_opt((unsigned *)PTD);
486
487	putmtrr();
488	pmap_setvidram();
489
490	invltlb();
491}
492
493
494#if defined(APIC_IO)
495/*
496 * Final configuration of the BSP's local APIC:
497 *  - disable 'pic mode'.
498 *  - disable 'virtual wire mode'.
499 *  - enable NMI.
500 */
501void
502bsp_apic_configure(void)
503{
504	u_char		byte;
505	u_int32_t	temp;
506
507	/* leave 'pic mode' if necessary */
508	if (picmode) {
509		outb(0x22, 0x70);	/* select IMCR */
510		byte = inb(0x23);	/* current contents */
511		byte |= 0x01;		/* mask external INTR */
512		outb(0x23, byte);	/* disconnect 8259s/NMI */
513	}
514
515	/* mask lint0 (the 8259 'virtual wire' connection) */
516	temp = lapic.lvt_lint0;
517	temp |= APIC_LVT_M;		/* set the mask */
518	lapic.lvt_lint0 = temp;
519
520        /* setup lint1 to handle NMI */
521        temp = lapic.lvt_lint1;
522        temp &= ~APIC_LVT_M;		/* clear the mask */
523        lapic.lvt_lint1 = temp;
524
525	if (bootverbose)
526		apic_dump("bsp_apic_configure()");
527}
528#endif  /* APIC_IO */
529
530
531/*******************************************************************
532 * local functions and data
533 */
534
535/*
536 * start the SMP system
537 */
538static void
539mp_enable(u_int boot_addr)
540{
541	int     x;
542#if defined(APIC_IO)
543	int     apic;
544	u_int   ux;
545#endif	/* APIC_IO */
546
547	getmtrr();
548	pmap_setvidram();
549
550	POSTCODE(MP_ENABLE_POST);
551
552	/* turn on 4MB of V == P addressing so we can get to MP table */
553	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
554	invltlb();
555
556	/* examine the MP table for needed info, uses physical addresses */
557	x = mptable_pass2();
558
559	*(int *)PTD = 0;
560	invltlb();
561
562	/* can't process default configs till the CPU APIC is pmapped */
563	if (x)
564		default_mp_table(x);
565
566	/* post scan cleanup */
567	fix_mp_table();
568
569#if defined(APIC_IO)
570
571	/* fill the LOGICAL io_apic_versions table */
572	for (apic = 0; apic < mp_napics; ++apic) {
573		ux = io_apic_read(apic, IOAPIC_VER);
574		io_apic_versions[apic] = ux;
575	}
576
577	/* program each IO APIC in the system */
578	for (apic = 0; apic < mp_napics; ++apic)
579		if (io_apic_setup(apic) < 0)
580			panic("IO APIC setup failure");
581
582	/* install a 'Spurious INTerrupt' vector */
583	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
584	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
585
586	/* install an inter-CPU IPI for TLB invalidation */
587	setidt(XINVLTLB_OFFSET, Xinvltlb,
588	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
589
590#ifdef BETTER_CLOCK
591	/* install an inter-CPU IPI for reading processor state */
592	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
593	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
594#endif
595
596	/* install an inter-CPU IPI for forcing an additional software trap */
597	setidt(XCPUAST_OFFSET, Xcpuast,
598	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
599
600	/* install an inter-CPU IPI for interrupt forwarding */
601	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
602	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
603
604	/* install an inter-CPU IPI for CPU stop/restart */
605	setidt(XCPUSTOP_OFFSET, Xcpustop,
606	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
607
608#if defined(TEST_TEST1)
609	/* install a "fake hardware INTerrupt" vector */
610	setidt(XTEST1_OFFSET, Xtest1,
611	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
612#endif  /** TEST_TEST1 */
613
614#endif	/* APIC_IO */
615
616	/* initialize all SMP locks */
617	init_locks();
618
619	/* start each Application Processor */
620	start_all_aps(boot_addr);
621
622	/*
623	 * The init process might be started on a different CPU now,
624	 * and the boot CPU might not call prepare_usermode to get
625	 * cr0 correctly configured. Thus we initialize cr0 here.
626	 */
627	load_cr0(rcr0() | CR0_WP | CR0_AM);
628}
629
630
631/*
632 * look for the MP spec signature
633 */
634
635/* string defined by the Intel MP Spec as identifying the MP table */
636#define MP_SIG		0x5f504d5f	/* _MP_ */
637#define NEXT(X)		((X) += 4)
638static int
639search_for_sig(u_int32_t target, int count)
640{
641	int     x;
642	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
643
644	for (x = 0; x < count; NEXT(x))
645		if (addr[x] == MP_SIG)
646			/* make array index a byte index */
647			return (target + (x * sizeof(u_int32_t)));
648
649	return -1;
650}
651
652
653static basetable_entry basetable_entry_types[] =
654{
655	{0, 20, "Processor"},
656	{1, 8, "Bus"},
657	{2, 8, "I/O APIC"},
658	{3, 8, "I/O INT"},
659	{4, 8, "Local INT"}
660};
661
662typedef struct BUSDATA {
663	u_char  bus_id;
664	enum busTypes bus_type;
665}       bus_datum;
666
667typedef struct INTDATA {
668	u_char  int_type;
669	u_short int_flags;
670	u_char  src_bus_id;
671	u_char  src_bus_irq;
672	u_char  dst_apic_id;
673	u_char  dst_apic_int;
674}       io_int, local_int;
675
676typedef struct BUSTYPENAME {
677	u_char  type;
678	char    name[7];
679}       bus_type_name;
680
681static bus_type_name bus_type_table[] =
682{
683	{CBUS, "CBUS"},
684	{CBUSII, "CBUSII"},
685	{EISA, "EISA"},
686	{UNKNOWN_BUSTYPE, "---"},
687	{UNKNOWN_BUSTYPE, "---"},
688	{ISA, "ISA"},
689	{UNKNOWN_BUSTYPE, "---"},
690	{UNKNOWN_BUSTYPE, "---"},
691	{UNKNOWN_BUSTYPE, "---"},
692	{UNKNOWN_BUSTYPE, "---"},
693	{UNKNOWN_BUSTYPE, "---"},
694	{UNKNOWN_BUSTYPE, "---"},
695	{PCI, "PCI"},
696	{UNKNOWN_BUSTYPE, "---"},
697	{UNKNOWN_BUSTYPE, "---"},
698	{UNKNOWN_BUSTYPE, "---"},
699	{UNKNOWN_BUSTYPE, "---"},
700	{XPRESS, "XPRESS"},
701	{UNKNOWN_BUSTYPE, "---"}
702};
703/* from MP spec v1.4, table 5-1 */
704static int default_data[7][5] =
705{
706/*   nbus, id0, type0, id1, type1 */
707	{1, 0, ISA, 255, 255},
708	{1, 0, EISA, 255, 255},
709	{1, 0, EISA, 255, 255},
710	{0, 255, 255, 255, 255},/* MCA not supported */
711	{2, 0, ISA, 1, PCI},
712	{2, 0, EISA, 1, PCI},
713	{0, 255, 255, 255, 255}	/* MCA not supported */
714};
715
716
717/* the bus data */
718static bus_datum bus_data[NBUS];
719
720/* the IO INT data, one entry per possible APIC INTerrupt */
721static io_int  io_apic_ints[NINTR];
722
723static int nintrs;
724
725static int processor_entry	__P((proc_entry_ptr entry, int cpu));
726static int bus_entry		__P((bus_entry_ptr entry, int bus));
727static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
728static int int_entry		__P((int_entry_ptr entry, int intr));
729static int lookup_bus_type	__P((char *name));
730
731
732/*
733 * 1st pass on motherboard's Intel MP specification table.
734 *
735 * initializes:
736 *	mp_ncpus = 1
737 *
738 * determines:
739 *	cpu_apic_address (common to all CPUs)
740 *	io_apic_address[N]
741 *	mp_naps
742 *	mp_nbusses
743 *	mp_napics
744 *	nintrs
745 */
746static int
747mptable_pass1(void)
748{
749	int	x;
750	mpcth_t	cth;
751	int	totalSize;
752	void*	position;
753	int	count;
754	int	type;
755	int	mustpanic;
756
757	POSTCODE(MPTABLE_PASS1_POST);
758
759	mustpanic = 0;
760
761	/* clear various tables */
762	for (x = 0; x < NAPICID; ++x) {
763		io_apic_address[x] = ~0;	/* IO APIC address table */
764	}
765
766	/* init everything to empty */
767	mp_naps = 0;
768	mp_nbusses = 0;
769	mp_napics = 0;
770	nintrs = 0;
771
772	/* check for use of 'default' configuration */
773	if (MPFPS_MPFB1 != 0) {
774		/* use default addresses */
775		cpu_apic_address = DEFAULT_APIC_BASE;
776		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
777
778		/* fill in with defaults */
779		mp_naps = 2;		/* includes BSP */
780		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
781#if defined(APIC_IO)
782		mp_napics = 1;
783		nintrs = 16;
784#endif	/* APIC_IO */
785	}
786	else {
787		if ((cth = mpfps->pap) == 0)
788			panic("MP Configuration Table Header MISSING!");
789
790		cpu_apic_address = (vm_offset_t) cth->apic_address;
791
792		/* walk the table, recording info of interest */
793		totalSize = cth->base_table_length - sizeof(struct MPCTH);
794		position = (u_char *) cth + sizeof(struct MPCTH);
795		count = cth->entry_count;
796
797		while (count--) {
798			switch (type = *(u_char *) position) {
799			case 0: /* processor_entry */
800				if (((proc_entry_ptr)position)->cpu_flags
801					& PROCENTRY_FLAG_EN)
802					++mp_naps;
803				break;
804			case 1: /* bus_entry */
805				++mp_nbusses;
806				break;
807			case 2: /* io_apic_entry */
808				if (((io_apic_entry_ptr)position)->apic_flags
809					& IOAPICENTRY_FLAG_EN)
810					io_apic_address[mp_napics++] =
811					    (vm_offset_t)((io_apic_entry_ptr)
812						position)->apic_address;
813				break;
814			case 3: /* int_entry */
815				++nintrs;
816				break;
817			case 4:	/* int_entry */
818				break;
819			default:
820				panic("mpfps Base Table HOSED!");
821				/* NOTREACHED */
822			}
823
824			totalSize -= basetable_entry_types[type].length;
825			(u_char*)position += basetable_entry_types[type].length;
826		}
827	}
828
829	/* qualify the numbers */
830	if (mp_naps > NCPU)
831#if 0 /* XXX FIXME: kern/4255 */
832		printf("Warning: only using %d of %d available CPUs!\n",
833			NCPU, mp_naps);
834#else
835	{
836		printf("NCPU cannot be different than actual CPU count.\n");
837		printf(" add 'options NCPU=%d' to your kernel config file,\n",
838			mp_naps);
839		printf(" then rerun config & rebuild your SMP kernel\n");
840		mustpanic = 1;
841	}
842#endif /* XXX FIXME: kern/4255 */
843	if (mp_nbusses > NBUS) {
844		printf("found %d busses, increase NBUS\n", mp_nbusses);
845		mustpanic = 1;
846	}
847	if (mp_napics > NAPIC) {
848		printf("found %d apics, increase NAPIC\n", mp_napics);
849		mustpanic = 1;
850	}
851	if (nintrs > NINTR) {
852		printf("found %d intrs, increase NINTR\n", nintrs);
853		mustpanic = 1;
854	}
855
856	/*
857	 * Count the BSP.
858	 * This is also used as a counter while starting the APs.
859	 */
860	mp_ncpus = 1;
861
862	--mp_naps;	/* subtract the BSP */
863
864	return mustpanic;
865}
866
867
868/*
869 * 2nd pass on motherboard's Intel MP specification table.
870 *
871 * sets:
872 *	boot_cpu_id
873 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
874 *	CPU_TO_ID(N), logical CPU to APIC ID table
875 *	IO_TO_ID(N), logical IO to APIC ID table
876 *	bus_data[N]
877 *	io_apic_ints[N]
878 */
879static int
880mptable_pass2(void)
881{
882	int     x;
883	mpcth_t cth;
884	int     totalSize;
885	void*   position;
886	int     count;
887	int     type;
888	int     apic, bus, cpu, intr;
889
890	POSTCODE(MPTABLE_PASS2_POST);
891
892	/* clear various tables */
893	for (x = 0; x < NAPICID; ++x) {
894		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
895		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
896		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
897	}
898
899	/* clear bus data table */
900	for (x = 0; x < NBUS; ++x)
901		bus_data[x].bus_id = 0xff;
902
903	/* clear IO APIC INT table */
904	for (x = 0; x < NINTR; ++x)
905		io_apic_ints[x].int_type = 0xff;
906
907	/* setup the cpu/apic mapping arrays */
908	boot_cpu_id = -1;
909
910	/* record whether PIC or virtual-wire mode */
911	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
912
913	/* check for use of 'default' configuration */
914	if (MPFPS_MPFB1 != 0)
915		return MPFPS_MPFB1;	/* return default configuration type */
916
917	if ((cth = mpfps->pap) == 0)
918		panic("MP Configuration Table Header MISSING!");
919
920	/* walk the table, recording info of interest */
921	totalSize = cth->base_table_length - sizeof(struct MPCTH);
922	position = (u_char *) cth + sizeof(struct MPCTH);
923	count = cth->entry_count;
924	apic = bus = intr = 0;
925	cpu = 1;				/* pre-count the BSP */
926
927	while (count--) {
928		switch (type = *(u_char *) position) {
929		case 0:
930			if (processor_entry(position, cpu))
931				++cpu;
932			break;
933		case 1:
934			if (bus_entry(position, bus))
935				++bus;
936			break;
937		case 2:
938			if (io_apic_entry(position, apic))
939				++apic;
940			break;
941		case 3:
942			if (int_entry(position, intr))
943				++intr;
944			break;
945		case 4:
946			/* int_entry(position); */
947			break;
948		default:
949			panic("mpfps Base Table HOSED!");
950			/* NOTREACHED */
951		}
952
953		totalSize -= basetable_entry_types[type].length;
954		(u_char *) position += basetable_entry_types[type].length;
955	}
956
957	if (boot_cpu_id == -1)
958		panic("NO BSP found!");
959
960	/* report fact that its NOT a default configuration */
961	return 0;
962}
963
964
965/*
966 * parse an Intel MP specification table
967 */
968static void
969fix_mp_table(void)
970{
971	int	x;
972	int	id;
973	int	bus_0;
974	int	bus_pci;
975	int	num_pci_bus;
976
977	/*
978	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
979	 * did it wrong.  The MP spec says that when more than 1 PCI bus
980	 * exists the BIOS must begin with bus entries for the PCI bus and use
981	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
982	 * exists the BIOS can choose to ignore this ordering, and indeed many
983	 * MP motherboards do ignore it.  This causes a problem when the PCI
984	 * sub-system makes requests of the MP sub-system based on PCI bus
985	 * numbers.	So here we look for the situation and renumber the
986	 * busses and associated INTs in an effort to "make it right".
987	 */
988
989	/* find bus 0, PCI bus, count the number of PCI busses */
990	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
991		if (bus_data[x].bus_id == 0) {
992			bus_0 = x;
993		}
994		if (bus_data[x].bus_type == PCI) {
995			++num_pci_bus;
996			bus_pci = x;
997		}
998	}
999	/*
1000	 * bus_0 == slot of bus with ID of 0
1001	 * bus_pci == slot of last PCI bus encountered
1002	 */
1003
1004	/* check the 1 PCI bus case for sanity */
1005	if (num_pci_bus == 1) {
1006
1007		/* if it is number 0 all is well */
1008		if (bus_data[bus_pci].bus_id == 0)
1009			return;
1010
1011		/* mis-numbered, swap with whichever bus uses slot 0 */
1012
1013		/* swap the bus entry types */
1014		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1015		bus_data[bus_0].bus_type = PCI;
1016
1017		/* swap each relavant INTerrupt entry */
1018		id = bus_data[bus_pci].bus_id;
1019		for (x = 0; x < nintrs; ++x) {
1020			if (io_apic_ints[x].src_bus_id == id) {
1021				io_apic_ints[x].src_bus_id = 0;
1022			}
1023			else if (io_apic_ints[x].src_bus_id == 0) {
1024				io_apic_ints[x].src_bus_id = id;
1025			}
1026		}
1027	}
1028	/* sanity check if more than 1 PCI bus */
1029	else if (num_pci_bus > 1) {
1030		for (x = 0; x < mp_nbusses; ++x) {
1031			if (bus_data[x].bus_type != PCI)
1032				continue;
1033			if (bus_data[x].bus_id >= num_pci_bus)
1034				panic("bad PCI bus numbering");
1035		}
1036	}
1037}
1038
1039
1040static int
1041processor_entry(proc_entry_ptr entry, int cpu)
1042{
1043	/* check for usability */
1044	if ((cpu >= NCPU) || !(entry->cpu_flags & PROCENTRY_FLAG_EN))
1045		return 0;
1046
1047	/* check for BSP flag */
1048	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1049		boot_cpu_id = entry->apic_id;
1050		CPU_TO_ID(0) = entry->apic_id;
1051		ID_TO_CPU(entry->apic_id) = 0;
1052		return 0;	/* its already been counted */
1053	}
1054
1055	/* add another AP to list, if less than max number of CPUs */
1056	else {
1057		CPU_TO_ID(cpu) = entry->apic_id;
1058		ID_TO_CPU(entry->apic_id) = cpu;
1059		return 1;
1060	}
1061}
1062
1063
1064static int
1065bus_entry(bus_entry_ptr entry, int bus)
1066{
1067	int     x;
1068	char    c, name[8];
1069
1070	/* encode the name into an index */
1071	for (x = 0; x < 6; ++x) {
1072		if ((c = entry->bus_type[x]) == ' ')
1073			break;
1074		name[x] = c;
1075	}
1076	name[x] = '\0';
1077
1078	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1079		panic("unknown bus type: '%s'", name);
1080
1081	bus_data[bus].bus_id = entry->bus_id;
1082	bus_data[bus].bus_type = x;
1083
1084	return 1;
1085}
1086
1087
1088static int
1089io_apic_entry(io_apic_entry_ptr entry, int apic)
1090{
1091	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1092		return 0;
1093
1094	IO_TO_ID(apic) = entry->apic_id;
1095	ID_TO_IO(entry->apic_id) = apic;
1096
1097	return 1;
1098}
1099
1100
1101static int
1102lookup_bus_type(char *name)
1103{
1104	int     x;
1105
1106	for (x = 0; x < MAX_BUSTYPE; ++x)
1107		if (strcmp(bus_type_table[x].name, name) == 0)
1108			return bus_type_table[x].type;
1109
1110	return UNKNOWN_BUSTYPE;
1111}
1112
1113
1114static int
1115int_entry(int_entry_ptr entry, int intr)
1116{
1117	io_apic_ints[intr].int_type = entry->int_type;
1118	io_apic_ints[intr].int_flags = entry->int_flags;
1119	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1120	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1121	io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1122	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1123
1124	return 1;
1125}
1126
1127
1128static int
1129apic_int_is_bus_type(int intr, int bus_type)
1130{
1131	int     bus;
1132
1133	for (bus = 0; bus < mp_nbusses; ++bus)
1134		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1135		    && ((int) bus_data[bus].bus_type == bus_type))
1136			return 1;
1137
1138	return 0;
1139}
1140
1141
1142/*
1143 * Given a traditional ISA INT mask, return an APIC mask.
1144 */
1145u_int
1146isa_apic_mask(u_int isa_mask)
1147{
1148	int isa_irq;
1149	int apic_pin;
1150
1151#if defined(SKIP_IRQ15_REDIRECT)
1152	if (isa_mask == (1 << 15)) {
1153		printf("skipping ISA IRQ15 redirect\n");
1154		return isa_mask;
1155	}
1156#endif  /* SKIP_IRQ15_REDIRECT */
1157
1158	isa_irq = ffs(isa_mask);		/* find its bit position */
1159	if (isa_irq == 0)			/* doesn't exist */
1160		return 0;
1161	--isa_irq;				/* make it zero based */
1162
1163	apic_pin = isa_apic_pin(isa_irq);	/* look for APIC connection */
1164	if (apic_pin == -1)
1165		return 0;
1166
1167	return (1 << apic_pin);			/* convert pin# to a mask */
1168}
1169
1170
1171/*
1172 * Determine which APIC pin an ISA/EISA INT is attached to.
1173 */
1174#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1175#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1176
1177#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1178int
1179isa_apic_pin(int isa_irq)
1180{
1181	int     intr;
1182
1183	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1184		if (INTTYPE(intr) == 0) {		/* standard INT */
1185			if (SRCBUSIRQ(intr) == isa_irq) {
1186				if (apic_int_is_bus_type(intr, ISA) ||
1187			            apic_int_is_bus_type(intr, EISA))
1188					return INTPIN(intr);	/* found */
1189			}
1190		}
1191	}
1192	return -1;					/* NOT found */
1193}
1194
1195
1196/*
1197 * Determine which APIC pin a PCI INT is attached to.
1198 */
1199#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1200#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1201#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1202int
1203pci_apic_pin(int pciBus, int pciDevice, int pciInt)
1204{
1205	int     intr;
1206
1207	--pciInt;					/* zero based */
1208
1209	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1210		if ((INTTYPE(intr) == 0)		/* standard INT */
1211		    && (SRCBUSID(intr) == pciBus)
1212		    && (SRCBUSDEVICE(intr) == pciDevice)
1213		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1214			if (apic_int_is_bus_type(intr, PCI))
1215				return INTPIN(intr);	/* exact match */
1216
1217	return -1;					/* NOT found */
1218}
1219
1220int
1221next_apic_pin(int pin)
1222{
1223	int intr, ointr;
1224	int bus, bustype;
1225
1226	bus = 0;
1227	bustype = 0;
1228	for (intr = 0; intr < nintrs; intr++) {
1229		if (INTPIN(intr) != pin || INTTYPE(intr) != 0)
1230			continue;
1231		bus = SRCBUSID(intr);
1232		bustype = apic_bus_type(bus);
1233		if (bustype != ISA &&
1234		    bustype != EISA &&
1235		    bustype != PCI)
1236			continue;
1237		break;
1238	}
1239	if (intr >= nintrs) {
1240		return -1;
1241	}
1242	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1243		if (INTTYPE(ointr) != 0)
1244			continue;
1245		if (bus != SRCBUSID(ointr))
1246			continue;
1247		if (bustype == PCI) {
1248			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1249				continue;
1250			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1251				continue;
1252		}
1253		if (bustype == ISA || bustype == EISA) {
1254			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1255				continue;
1256		}
1257		if (INTPIN(intr) == INTPIN(ointr))
1258			continue;
1259		break;
1260	}
1261	if (ointr >= nintrs) {
1262		return -1;
1263	}
1264	return INTPIN(ointr);
1265}
1266#undef SRCBUSLINE
1267#undef SRCBUSDEVICE
1268#undef SRCBUSID
1269#undef SRCBUSIRQ
1270
1271#undef INTPIN
1272#undef INTTYPE
1273
1274
1275/*
1276 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1277 *
1278 * XXX FIXME:
1279 *  Exactly what this means is unclear at this point.  It is a solution
1280 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1281 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1282 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1283 *  option.
1284 */
1285int
1286undirect_isa_irq(int rirq)
1287{
1288#if defined(READY)
1289	printf("Freeing redirected ISA irq %d.\n", rirq);
1290	/** FIXME: tickle the MB redirector chip */
1291	return ???;
1292#else
1293	printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1294	return 0;
1295#endif  /* READY */
1296}
1297
1298
1299/*
1300 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1301 */
1302int
1303undirect_pci_irq(int rirq)
1304{
1305#if defined(READY)
1306	if (bootverbose)
1307		printf("Freeing redirected PCI irq %d.\n", rirq);
1308
1309	/** FIXME: tickle the MB redirector chip */
1310	return ???;
1311#else
1312	if (bootverbose)
1313		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1314		       rirq);
1315	return 0;
1316#endif  /* READY */
1317}
1318
1319
1320/*
1321 * given a bus ID, return:
1322 *  the bus type if found
1323 *  -1 if NOT found
1324 */
1325int
1326apic_bus_type(int id)
1327{
1328	int     x;
1329
1330	for (x = 0; x < mp_nbusses; ++x)
1331		if (bus_data[x].bus_id == id)
1332			return bus_data[x].bus_type;
1333
1334	return -1;
1335}
1336
1337
1338/*
1339 * given a LOGICAL APIC# and pin#, return:
1340 *  the associated src bus ID if found
1341 *  -1 if NOT found
1342 */
1343int
1344apic_src_bus_id(int apic, int pin)
1345{
1346	int     x;
1347
1348	/* search each of the possible INTerrupt sources */
1349	for (x = 0; x < nintrs; ++x)
1350		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1351		    (pin == io_apic_ints[x].dst_apic_int))
1352			return (io_apic_ints[x].src_bus_id);
1353
1354	return -1;		/* NOT found */
1355}
1356
1357
1358/*
1359 * given a LOGICAL APIC# and pin#, return:
1360 *  the associated src bus IRQ if found
1361 *  -1 if NOT found
1362 */
1363int
1364apic_src_bus_irq(int apic, int pin)
1365{
1366	int     x;
1367
1368	for (x = 0; x < nintrs; x++)
1369		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1370		    (pin == io_apic_ints[x].dst_apic_int))
1371			return (io_apic_ints[x].src_bus_irq);
1372
1373	return -1;		/* NOT found */
1374}
1375
1376
1377/*
1378 * given a LOGICAL APIC# and pin#, return:
1379 *  the associated INTerrupt type if found
1380 *  -1 if NOT found
1381 */
1382int
1383apic_int_type(int apic, int pin)
1384{
1385	int     x;
1386
1387	/* search each of the possible INTerrupt sources */
1388	for (x = 0; x < nintrs; ++x)
1389		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1390		    (pin == io_apic_ints[x].dst_apic_int))
1391			return (io_apic_ints[x].int_type);
1392
1393	return -1;		/* NOT found */
1394}
1395
1396
1397/*
1398 * given a LOGICAL APIC# and pin#, return:
1399 *  the associated trigger mode if found
1400 *  -1 if NOT found
1401 */
1402int
1403apic_trigger(int apic, int pin)
1404{
1405	int     x;
1406
1407	/* search each of the possible INTerrupt sources */
1408	for (x = 0; x < nintrs; ++x)
1409		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1410		    (pin == io_apic_ints[x].dst_apic_int))
1411			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1412
1413	return -1;		/* NOT found */
1414}
1415
1416
1417/*
1418 * given a LOGICAL APIC# and pin#, return:
1419 *  the associated 'active' level if found
1420 *  -1 if NOT found
1421 */
1422int
1423apic_polarity(int apic, int pin)
1424{
1425	int     x;
1426
1427	/* search each of the possible INTerrupt sources */
1428	for (x = 0; x < nintrs; ++x)
1429		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1430		    (pin == io_apic_ints[x].dst_apic_int))
1431			return (io_apic_ints[x].int_flags & 0x03);
1432
1433	return -1;		/* NOT found */
1434}
1435
1436
1437/*
1438 * set data according to MP defaults
1439 * FIXME: probably not complete yet...
1440 */
1441static void
1442default_mp_table(int type)
1443{
1444	int     ap_cpu_id;
1445#if defined(APIC_IO)
1446	u_int32_t ux;
1447	int     io_apic_id;
1448	int     pin;
1449#endif	/* APIC_IO */
1450
1451#if 0
1452	printf("  MP default config type: %d\n", type);
1453	switch (type) {
1454	case 1:
1455		printf("   bus: ISA, APIC: 82489DX\n");
1456		break;
1457	case 2:
1458		printf("   bus: EISA, APIC: 82489DX\n");
1459		break;
1460	case 3:
1461		printf("   bus: EISA, APIC: 82489DX\n");
1462		break;
1463	case 4:
1464		printf("   bus: MCA, APIC: 82489DX\n");
1465		break;
1466	case 5:
1467		printf("   bus: ISA+PCI, APIC: Integrated\n");
1468		break;
1469	case 6:
1470		printf("   bus: EISA+PCI, APIC: Integrated\n");
1471		break;
1472	case 7:
1473		printf("   bus: MCA+PCI, APIC: Integrated\n");
1474		break;
1475	default:
1476		printf("   future type\n");
1477		break;
1478		/* NOTREACHED */
1479	}
1480#endif	/* 0 */
1481
1482	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1483	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1484
1485	/* BSP */
1486	CPU_TO_ID(0) = boot_cpu_id;
1487	ID_TO_CPU(boot_cpu_id) = 0;
1488
1489	/* one and only AP */
1490	CPU_TO_ID(1) = ap_cpu_id;
1491	ID_TO_CPU(ap_cpu_id) = 1;
1492
1493#if defined(APIC_IO)
1494	/* one and only IO APIC */
1495	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1496
1497	/*
1498	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1499	 * necessary as some hardware isn't properly setting up the IO APIC
1500	 */
1501#if defined(REALLY_ANAL_IOAPICID_VALUE)
1502	if (io_apic_id != 2) {
1503#else
1504	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1505#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1506		ux = io_apic_read(0, IOAPIC_ID);	/* get current contents */
1507		ux &= ~APIC_ID_MASK;	/* clear the ID field */
1508		ux |= 0x02000000;	/* set it to '2' */
1509		io_apic_write(0, IOAPIC_ID, ux);	/* write new value */
1510		ux = io_apic_read(0, IOAPIC_ID);	/* re-read && test */
1511		if ((ux & APIC_ID_MASK) != 0x02000000)
1512			panic("can't control IO APIC ID, reg: 0x%08x", ux);
1513		io_apic_id = 2;
1514	}
1515	IO_TO_ID(0) = io_apic_id;
1516	ID_TO_IO(io_apic_id) = 0;
1517#endif	/* APIC_IO */
1518
1519	/* fill out bus entries */
1520	switch (type) {
1521	case 1:
1522	case 2:
1523	case 3:
1524	case 5:
1525	case 6:
1526		bus_data[0].bus_id = default_data[type - 1][1];
1527		bus_data[0].bus_type = default_data[type - 1][2];
1528		bus_data[1].bus_id = default_data[type - 1][3];
1529		bus_data[1].bus_type = default_data[type - 1][4];
1530		break;
1531
1532	/* case 4: case 7:		   MCA NOT supported */
1533	default:		/* illegal/reserved */
1534		panic("BAD default MP config: %d", type);
1535		/* NOTREACHED */
1536	}
1537
1538#if defined(APIC_IO)
1539	/* general cases from MP v1.4, table 5-2 */
1540	for (pin = 0; pin < 16; ++pin) {
1541		io_apic_ints[pin].int_type = 0;
1542		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1543		io_apic_ints[pin].src_bus_id = 0;
1544		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1545		io_apic_ints[pin].dst_apic_id = io_apic_id;
1546		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1547	}
1548
1549	/* special cases from MP v1.4, table 5-2 */
1550	if (type == 2) {
1551		io_apic_ints[2].int_type = 0xff;	/* N/C */
1552		io_apic_ints[13].int_type = 0xff;	/* N/C */
1553#if !defined(APIC_MIXED_MODE)
1554		/** FIXME: ??? */
1555		panic("sorry, can't support type 2 default yet");
1556#endif	/* APIC_MIXED_MODE */
1557	}
1558	else
1559		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1560
1561	if (type == 7)
1562		io_apic_ints[0].int_type = 0xff;	/* N/C */
1563	else
1564		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1565#endif	/* APIC_IO */
1566}
1567
1568
1569/*
1570 * initialize all the SMP locks
1571 */
1572
1573/* critical region around IO APIC, apic_imen */
1574struct simplelock	imen_lock;
1575
1576/* critical region around splxx(), cpl, cml, cil, ipending */
1577struct simplelock	cpl_lock;
1578
1579/* Make FAST_INTR() routines sequential */
1580struct simplelock	fast_intr_lock;
1581
1582/* critical region around INTR() routines */
1583struct simplelock	intr_lock;
1584
1585/* lock regions protected in UP kernel via cli/sti */
1586struct simplelock	mpintr_lock;
1587
1588/* lock region used by kernel profiling */
1589struct simplelock	mcount_lock;
1590
1591#ifdef USE_COMLOCK
1592/* locks com (tty) data/hardware accesses: a FASTINTR() */
1593struct simplelock	com_lock;
1594#endif /* USE_COMLOCK */
1595
1596#ifdef USE_CLOCKLOCK
1597/* lock regions around the clock hardware */
1598struct simplelock	clock_lock;
1599#endif /* USE_CLOCKLOCK */
1600
1601static void
1602init_locks(void)
1603{
1604	/*
1605	 * Get the initial mp_lock with a count of 1 for the BSP.
1606	 * This uses a LOGICAL cpu ID, ie BSP == 0.
1607	 */
1608	mp_lock = 0x00000001;
1609
1610	/* ISR uses its own "giant lock" */
1611	isr_lock = FREE_LOCK;
1612
1613#if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1614	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1615#endif
1616
1617	s_lock_init((struct simplelock*)&mpintr_lock);
1618
1619	s_lock_init((struct simplelock*)&mcount_lock);
1620
1621	s_lock_init((struct simplelock*)&fast_intr_lock);
1622	s_lock_init((struct simplelock*)&intr_lock);
1623	s_lock_init((struct simplelock*)&imen_lock);
1624	s_lock_init((struct simplelock*)&cpl_lock);
1625
1626#ifdef USE_COMLOCK
1627	s_lock_init((struct simplelock*)&com_lock);
1628#endif /* USE_COMLOCK */
1629#ifdef USE_CLOCKLOCK
1630	s_lock_init((struct simplelock*)&clock_lock);
1631#endif /* USE_CLOCKLOCK */
1632}
1633
1634
1635/*
1636 * start each AP in our list
1637 */
1638static int
1639start_all_aps(u_int boot_addr)
1640{
1641	int     x, i;
1642	u_char  mpbiosreason;
1643	u_long  mpbioswarmvec;
1644	pd_entry_t *newptd;
1645	pt_entry_t *newpt;
1646	struct globaldata *gd;
1647	char *stack;
1648	pd_entry_t	*myPTD;
1649
1650	POSTCODE(START_ALL_APS_POST);
1651
1652	/* initialize BSP's local APIC */
1653	apic_initialize();
1654	bsp_apic_ready = 1;
1655
1656	/* install the AP 1st level boot code */
1657	install_ap_tramp(boot_addr);
1658
1659
1660	/* save the current value of the warm-start vector */
1661	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1662	outb(CMOS_REG, BIOS_RESET);
1663	mpbiosreason = inb(CMOS_DATA);
1664
1665	/* record BSP in CPU map */
1666	all_cpus = 1;
1667
1668	/* start each AP */
1669	for (x = 1; x <= mp_naps; ++x) {
1670
1671		/* This is a bit verbose, it will go away soon.  */
1672
1673		/* alloc new page table directory */
1674		newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1675
1676		/* Store the virtual PTD address for this CPU */
1677		IdlePTDS[x] = newptd;
1678
1679		/* clone currently active one (ie: IdlePTD) */
1680		bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1681
1682		/* set up 0 -> 4MB P==V mapping for AP boot */
1683		newptd[0] = (void *)(uintptr_t)(PG_V | PG_RW |
1684		    ((uintptr_t)(void *)KPTphys & PG_FRAME));
1685
1686		/* store PTD for this AP's boot sequence */
1687		myPTD = (pd_entry_t *)vtophys(newptd);
1688
1689		/* alloc new page table page */
1690		newpt = (pt_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1691
1692		/* set the new PTD's private page to point there */
1693		newptd[MPPTDI] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1694
1695		/* install self referential entry */
1696		newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1697
1698		/* allocate a new private data page */
1699		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1700
1701		/* wire it into the private page table page */
1702		newpt[0] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1703
1704		/* wire the ptp into itself for access */
1705		newpt[1] = (pt_entry_t)(PG_V | PG_RW | vtophys(newpt));
1706
1707		/* copy in the pointer to the local apic */
1708		newpt[2] = SMP_prvpt[2];
1709
1710		/* and the IO apic mapping[s] */
1711		for (i = 16; i < 32; i++)
1712			newpt[i] = SMP_prvpt[i];
1713
1714		/* allocate and set up an idle stack data page */
1715		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1716		for (i = 0; i < UPAGES; i++)
1717			newpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1718
1719		newpt[3 + UPAGES] = 0;		/* *prv_CMAP1 */
1720		newpt[4 + UPAGES] = 0;		/* *prv_CMAP2 */
1721		newpt[5 + UPAGES] = 0;		/* *prv_CMAP3 */
1722		newpt[6 + UPAGES] = 0;		/* *prv_PMAP1 */
1723
1724		/* prime data page for it to use */
1725		gd->cpuid = x;
1726		gd->cpu_lockid = x << 24;
1727		gd->my_idlePTD = myPTD;
1728		gd->prv_CMAP1 = &newpt[3 + UPAGES];
1729		gd->prv_CMAP2 = &newpt[4 + UPAGES];
1730		gd->prv_CMAP3 = &newpt[5 + UPAGES];
1731		gd->prv_PMAP1 = &newpt[6 + UPAGES];
1732
1733		/* setup a vector to our boot code */
1734		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
1735		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
1736		outb(CMOS_REG, BIOS_RESET);
1737		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
1738
1739		bootPTD = myPTD;
1740		/* attempt to start the Application Processor */
1741		CHECK_INIT(99);	/* setup checkpoints */
1742		if (!start_ap(x, boot_addr)) {
1743			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
1744			CHECK_PRINT("trace");	/* show checkpoints */
1745			/* better panic as the AP may be running loose */
1746			printf("panic y/n? [y] ");
1747			if (cngetc() != 'n')
1748				panic("bye-bye");
1749		}
1750		CHECK_PRINT("trace");		/* show checkpoints */
1751
1752		/* record its version info */
1753		cpu_apic_versions[x] = cpu_apic_versions[0];
1754
1755		all_cpus |= (1 << x);		/* record AP in CPU map */
1756	}
1757
1758	/* build our map of 'other' CPUs */
1759	other_cpus = all_cpus & ~(1 << cpuid);
1760
1761	/* fill in our (BSP) APIC version */
1762	cpu_apic_versions[0] = lapic.version;
1763
1764	/* restore the warmstart vector */
1765	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
1766	outb(CMOS_REG, BIOS_RESET);
1767	outb(CMOS_DATA, mpbiosreason);
1768
1769	/*
1770	 * Set up the idle context for the BSP.  Similar to above except
1771	 * that some was done by locore, some by pmap.c and some is implicit
1772	 * because the BSP is cpu#0 and the page is initially zero, and also
1773	 * because we can refer to variables by name on the BSP..
1774	 */
1775	newptd = (pd_entry_t *)(kmem_alloc(kernel_map, PAGE_SIZE));
1776
1777	bcopy(PTD, newptd, PAGE_SIZE);	/* inc prv page pde */
1778	IdlePTDS[0] = newptd;
1779
1780	/* Point PTD[] to this page instead of IdlePTD's physical page */
1781	newptd[PTDPTDI] = (pd_entry_t)(PG_V | PG_RW | vtophys(newptd));
1782
1783	my_idlePTD = (pd_entry_t *)vtophys(newptd);
1784
1785	/* Allocate and setup BSP idle stack */
1786	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
1787	for (i = 0; i < UPAGES; i++)
1788		SMP_prvpt[i + 3] = (pt_entry_t)(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1789
1790	pmap_set_opt_bsp();
1791
1792	for (i = 0; i < mp_ncpus; i++) {
1793		bcopy( (int *) PTD + KPTDI, (int *) IdlePTDS[i] + KPTDI, NKPDE * sizeof (int));
1794	}
1795
1796	/* number of APs actually started */
1797	return mp_ncpus - 1;
1798}
1799
1800
1801/*
1802 * load the 1st level AP boot code into base memory.
1803 */
1804
1805/* targets for relocation */
1806extern void bigJump(void);
1807extern void bootCodeSeg(void);
1808extern void bootDataSeg(void);
1809extern void MPentry(void);
1810extern u_int MP_GDT;
1811extern u_int mp_gdtbase;
1812
1813static void
1814install_ap_tramp(u_int boot_addr)
1815{
1816	int     x;
1817	int     size = *(int *) ((u_long) & bootMP_size);
1818	u_char *src = (u_char *) ((u_long) bootMP);
1819	u_char *dst = (u_char *) boot_addr + KERNBASE;
1820	u_int   boot_base = (u_int) bootMP;
1821	u_int8_t *dst8;
1822	u_int16_t *dst16;
1823	u_int32_t *dst32;
1824
1825	POSTCODE(INSTALL_AP_TRAMP_POST);
1826
1827	for (x = 0; x < size; ++x)
1828		*dst++ = *src++;
1829
1830	/*
1831	 * modify addresses in code we just moved to basemem. unfortunately we
1832	 * need fairly detailed info about mpboot.s for this to work.  changes
1833	 * to mpboot.s might require changes here.
1834	 */
1835
1836	/* boot code is located in KERNEL space */
1837	dst = (u_char *) boot_addr + KERNBASE;
1838
1839	/* modify the lgdt arg */
1840	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1841	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
1842
1843	/* modify the ljmp target for MPentry() */
1844	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1845	*dst32 = ((u_int) MPentry - KERNBASE);
1846
1847	/* modify the target for boot code segment */
1848	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1849	dst8 = (u_int8_t *) (dst16 + 1);
1850	*dst16 = (u_int) boot_addr & 0xffff;
1851	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1852
1853	/* modify the target for boot data segment */
1854	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1855	dst8 = (u_int8_t *) (dst16 + 1);
1856	*dst16 = (u_int) boot_addr & 0xffff;
1857	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
1858}
1859
1860
1861/*
1862 * this function starts the AP (application processor) identified
1863 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1864 * to accomplish this.  This is necessary because of the nuances
1865 * of the different hardware we might encounter.  It ain't pretty,
1866 * but it seems to work.
1867 */
1868static int
1869start_ap(int logical_cpu, u_int boot_addr)
1870{
1871	int     physical_cpu;
1872	int     vector;
1873	int     cpus;
1874	u_long  icr_lo, icr_hi;
1875
1876	POSTCODE(START_AP_POST);
1877
1878	/* get the PHYSICAL APIC ID# */
1879	physical_cpu = CPU_TO_ID(logical_cpu);
1880
1881	/* calculate the vector */
1882	vector = (boot_addr >> 12) & 0xff;
1883
1884	/* used as a watchpoint to signal AP startup */
1885	cpus = mp_ncpus;
1886
1887	/*
1888	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1889	 * and running the target CPU. OR this INIT IPI might be latched (P5
1890	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1891	 * ignored.
1892	 */
1893
1894	/* setup the address for the target AP */
1895	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
1896	icr_hi |= (physical_cpu << 24);
1897	lapic.icr_hi = icr_hi;
1898
1899	/* do an INIT IPI: assert RESET */
1900	icr_lo = lapic.icr_lo & 0xfff00000;
1901	lapic.icr_lo = icr_lo | 0x0000c500;
1902
1903	/* wait for pending status end */
1904	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1905		 /* spin */ ;
1906
1907	/* do an INIT IPI: deassert RESET */
1908	lapic.icr_lo = icr_lo | 0x00008500;
1909
1910	/* wait for pending status end */
1911	u_sleep(10000);		/* wait ~10mS */
1912	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1913		 /* spin */ ;
1914
1915	/*
1916	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1917	 * latched, (P5 bug) this 1st STARTUP would then terminate
1918	 * immediately, and the previously started INIT IPI would continue. OR
1919	 * the previous INIT IPI has already run. and this STARTUP IPI will
1920	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1921	 * will run.
1922	 */
1923
1924	/* do a STARTUP IPI */
1925	lapic.icr_lo = icr_lo | 0x00000600 | vector;
1926	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1927		 /* spin */ ;
1928	u_sleep(200);		/* wait ~200uS */
1929
1930	/*
1931	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1932	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1933	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1934	 * recognized after hardware RESET or INIT IPI.
1935	 */
1936
1937	lapic.icr_lo = icr_lo | 0x00000600 | vector;
1938	while (lapic.icr_lo & APIC_DELSTAT_MASK)
1939		 /* spin */ ;
1940	u_sleep(200);		/* wait ~200uS */
1941
1942	/* wait for it to start */
1943	set_apic_timer(5000000);/* == 5 seconds */
1944	while (read_apic_timer())
1945		if (mp_ncpus > cpus)
1946			return 1;	/* return SUCCESS */
1947
1948	return 0;		/* return FAILURE */
1949}
1950
1951
1952/*
1953 * Flush the TLB on all other CPU's
1954 *
1955 * XXX: Needs to handshake and wait for completion before proceding.
1956 */
1957void
1958smp_invltlb(void)
1959{
1960#if defined(APIC_IO)
1961	if (smp_started && invltlb_ok)
1962		all_but_self_ipi(XINVLTLB_OFFSET);
1963#endif  /* APIC_IO */
1964}
1965
1966void
1967invlpg(u_int addr)
1968{
1969	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
1970
1971	/* send a message to the other CPUs */
1972	smp_invltlb();
1973}
1974
1975void
1976invltlb(void)
1977{
1978	u_long  temp;
1979
1980	/*
1981	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
1982	 * inlined.
1983	 */
1984	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
1985
1986	/* send a message to the other CPUs */
1987	smp_invltlb();
1988}
1989
1990
1991/*
1992 * When called the executing CPU will send an IPI to all other CPUs
1993 *  requesting that they halt execution.
1994 *
1995 * Usually (but not necessarily) called with 'other_cpus' as its arg.
1996 *
1997 *  - Signals all CPUs in map to stop.
1998 *  - Waits for each to stop.
1999 *
2000 * Returns:
2001 *  -1: error
2002 *   0: NA
2003 *   1: ok
2004 *
2005 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2006 *            from executing at same time.
2007 */
2008int
2009stop_cpus(u_int map)
2010{
2011	if (!smp_started)
2012		return 0;
2013
2014	/* send the Xcpustop IPI to all CPUs in map */
2015	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2016
2017	while ((stopped_cpus & map) != map)
2018		/* spin */ ;
2019
2020	return 1;
2021}
2022
2023
2024/*
2025 * Called by a CPU to restart stopped CPUs.
2026 *
2027 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2028 *
2029 *  - Signals all CPUs in map to restart.
2030 *  - Waits for each to restart.
2031 *
2032 * Returns:
2033 *  -1: error
2034 *   0: NA
2035 *   1: ok
2036 */
2037int
2038restart_cpus(u_int map)
2039{
2040	if (!smp_started)
2041		return 0;
2042
2043	started_cpus = map;		/* signal other cpus to restart */
2044
2045	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2046		/* spin */ ;
2047
2048	return 1;
2049}
2050
2051int smp_active = 0;	/* are the APs allowed to run? */
2052SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2053
2054/* XXX maybe should be hw.ncpu */
2055static int smp_cpus = 1;	/* how many cpu's running */
2056SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2057
2058int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2059SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2060
2061/* Warning: Do not staticize.  Used from swtch.s */
2062int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2063SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2064	   &do_page_zero_idle, 0, "");
2065
2066/* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2067int forward_irq_enabled = 1;
2068SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2069	   &forward_irq_enabled, 0, "");
2070
2071/* Enable forwarding of a signal to a process running on a different CPU */
2072int forward_signal_enabled = 1;
2073SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2074	   &forward_signal_enabled, 0, "");
2075
2076/* Enable forwarding of roundrobin to all other cpus */
2077int forward_roundrobin_enabled = 1;
2078SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2079	   &forward_roundrobin_enabled, 0, "");
2080
2081/*
2082 * This is called once the rest of the system is up and running and we're
2083 * ready to let the AP's out of the pen.
2084 */
2085void ap_init(void);
2086
2087void
2088ap_init()
2089{
2090	u_int   temp;
2091	u_int	apic_id;
2092
2093	smp_cpus++;
2094
2095#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2096	lidt(&r_idt);
2097#endif
2098
2099	/* Build our map of 'other' CPUs. */
2100	other_cpus = all_cpus & ~(1 << cpuid);
2101
2102	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2103
2104	/* XXX FIXME: i386 specific, and redundant: Setup the FPU. */
2105	load_cr0((rcr0() & ~CR0_EM) | CR0_MP | CR0_NE | CR0_TS);
2106
2107	/* A quick check from sanity claus */
2108	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2109	if (cpuid != apic_id) {
2110		printf("SMP: cpuid = %d\n", cpuid);
2111		printf("SMP: apic_id = %d\n", apic_id);
2112		printf("PTD[MPPTDI] = %08x\n", PTD[MPPTDI]);
2113		panic("cpuid mismatch! boom!!");
2114	}
2115
2116	getmtrr();
2117
2118	/* Init local apic for irq's */
2119	apic_initialize();
2120
2121	/*
2122	 * Activate smp_invltlb, although strictly speaking, this isn't
2123	 * quite correct yet.  We should have a bitfield for cpus willing
2124	 * to accept TLB flush IPI's or something and sync them.
2125	 */
2126	invltlb_ok = 1;
2127	smp_started = 1;	/* enable IPI's, tlb shootdown, freezes etc */
2128	smp_active = 1;		/* historic */
2129
2130	curproc = NULL;		/* make sure */
2131}
2132
2133#ifdef BETTER_CLOCK
2134
2135#define CHECKSTATE_USER	0
2136#define CHECKSTATE_SYS	1
2137#define CHECKSTATE_INTR	2
2138
2139/* Do not staticize.  Used from apic_vector.s */
2140struct proc*	checkstate_curproc[NCPU];
2141int		checkstate_cpustate[NCPU];
2142u_long		checkstate_pc[NCPU];
2143
2144extern long	cp_time[CPUSTATES];
2145
2146#define PC_TO_INDEX(pc, prof)				\
2147        ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2148            (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2149
2150static void
2151addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2152{
2153	int i;
2154	struct uprof *prof;
2155	u_long pc;
2156
2157	pc = checkstate_pc[id];
2158	prof = &p->p_stats->p_prof;
2159	if (pc >= prof->pr_off &&
2160	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2161		if ((p->p_flag & P_OWEUPC) == 0) {
2162			prof->pr_addr = pc;
2163			prof->pr_ticks = 1;
2164			p->p_flag |= P_OWEUPC;
2165		}
2166		*astmap |= (1 << id);
2167	}
2168}
2169
2170static void
2171forwarded_statclock(int id, int pscnt, int *astmap)
2172{
2173	struct pstats *pstats;
2174	long rss;
2175	struct rusage *ru;
2176	struct vmspace *vm;
2177	int cpustate;
2178	struct proc *p;
2179#ifdef GPROF
2180	register struct gmonparam *g;
2181	int i;
2182#endif
2183
2184	p = checkstate_curproc[id];
2185	cpustate = checkstate_cpustate[id];
2186
2187	switch (cpustate) {
2188	case CHECKSTATE_USER:
2189		if (p->p_flag & P_PROFIL)
2190			addupc_intr_forwarded(p, id, astmap);
2191		if (pscnt > 1)
2192			return;
2193		p->p_uticks++;
2194		if (p->p_nice > NZERO)
2195			cp_time[CP_NICE]++;
2196		else
2197			cp_time[CP_USER]++;
2198		break;
2199	case CHECKSTATE_SYS:
2200#ifdef GPROF
2201		/*
2202		 * Kernel statistics are just like addupc_intr, only easier.
2203		 */
2204		g = &_gmonparam;
2205		if (g->state == GMON_PROF_ON) {
2206			i = checkstate_pc[id] - g->lowpc;
2207			if (i < g->textsize) {
2208				i /= HISTFRACTION * sizeof(*g->kcount);
2209				g->kcount[i]++;
2210			}
2211		}
2212#endif
2213		if (pscnt > 1)
2214			return;
2215
2216		if (!p)
2217			cp_time[CP_IDLE]++;
2218		else {
2219			p->p_sticks++;
2220			cp_time[CP_SYS]++;
2221		}
2222		break;
2223	case CHECKSTATE_INTR:
2224	default:
2225#ifdef GPROF
2226		/*
2227		 * Kernel statistics are just like addupc_intr, only easier.
2228		 */
2229		g = &_gmonparam;
2230		if (g->state == GMON_PROF_ON) {
2231			i = checkstate_pc[id] - g->lowpc;
2232			if (i < g->textsize) {
2233				i /= HISTFRACTION * sizeof(*g->kcount);
2234				g->kcount[i]++;
2235			}
2236		}
2237#endif
2238		if (pscnt > 1)
2239			return;
2240		if (p)
2241			p->p_iticks++;
2242		cp_time[CP_INTR]++;
2243	}
2244	if (p != NULL) {
2245		p->p_cpticks++;
2246		if (++p->p_estcpu == 0)
2247			p->p_estcpu--;
2248		if ((p->p_estcpu & 3) == 0) {
2249			resetpriority(p);
2250			if (p->p_priority >= PUSER)
2251				p->p_priority = p->p_usrpri;
2252		}
2253
2254		/* Update resource usage integrals and maximums. */
2255		if ((pstats = p->p_stats) != NULL &&
2256		    (ru = &pstats->p_ru) != NULL &&
2257		    (vm = p->p_vmspace) != NULL) {
2258			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
2259			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
2260			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
2261			rss = vm->vm_pmap.pm_stats.resident_count *
2262				PAGE_SIZE / 1024;
2263			if (ru->ru_maxrss < rss)
2264				ru->ru_maxrss = rss;
2265        	}
2266	}
2267}
2268
2269void
2270forward_statclock(int pscnt)
2271{
2272	int map;
2273	int id;
2274	int i;
2275
2276	/* Kludge. We don't yet have separate locks for the interrupts
2277	 * and the kernel. This means that we cannot let the other processors
2278	 * handle complex interrupts while inhibiting them from entering
2279	 * the kernel in a non-interrupt context.
2280	 *
2281	 * What we can do, without changing the locking mechanisms yet,
2282	 * is letting the other processors handle a very simple interrupt
2283	 * (wich determines the processor states), and do the main
2284	 * work ourself.
2285	 */
2286
2287	if (!smp_started || !invltlb_ok || cold || panicstr)
2288		return;
2289
2290	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2291
2292	map = other_cpus & ~stopped_cpus ;
2293	checkstate_probed_cpus = 0;
2294	if (map != 0)
2295		selected_apic_ipi(map,
2296				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2297
2298	i = 0;
2299	while (checkstate_probed_cpus != map) {
2300		/* spin */
2301		i++;
2302		if (i == 100000) {
2303#ifdef BETTER_CLOCK_DIAGNOSTIC
2304			printf("forward_statclock: checkstate %x\n",
2305			       checkstate_probed_cpus);
2306#endif
2307			break;
2308		}
2309	}
2310
2311	/*
2312	 * Step 2: walk through other processors processes, update ticks and
2313	 * profiling info.
2314	 */
2315
2316	map = 0;
2317	for (id = 0; id < mp_ncpus; id++) {
2318		if (id == cpuid)
2319			continue;
2320		if (((1 << id) & checkstate_probed_cpus) == 0)
2321			continue;
2322		forwarded_statclock(id, pscnt, &map);
2323	}
2324	if (map != 0) {
2325		checkstate_need_ast |= map;
2326		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2327		i = 0;
2328		while ((checkstate_need_ast & map) != 0) {
2329			/* spin */
2330			i++;
2331			if (i > 100000) {
2332#ifdef BETTER_CLOCK_DIAGNOSTIC
2333				printf("forward_statclock: dropped ast 0x%x\n",
2334				       checkstate_need_ast & map);
2335#endif
2336				break;
2337			}
2338		}
2339	}
2340}
2341
2342void
2343forward_hardclock(int pscnt)
2344{
2345	int map;
2346	int id;
2347	struct proc *p;
2348	struct pstats *pstats;
2349	int i;
2350
2351	/* Kludge. We don't yet have separate locks for the interrupts
2352	 * and the kernel. This means that we cannot let the other processors
2353	 * handle complex interrupts while inhibiting them from entering
2354	 * the kernel in a non-interrupt context.
2355	 *
2356	 * What we can do, without changing the locking mechanisms yet,
2357	 * is letting the other processors handle a very simple interrupt
2358	 * (wich determines the processor states), and do the main
2359	 * work ourself.
2360	 */
2361
2362	if (!smp_started || !invltlb_ok || cold || panicstr)
2363		return;
2364
2365	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2366
2367	map = other_cpus & ~stopped_cpus ;
2368	checkstate_probed_cpus = 0;
2369	if (map != 0)
2370		selected_apic_ipi(map,
2371				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2372
2373	i = 0;
2374	while (checkstate_probed_cpus != map) {
2375		/* spin */
2376		i++;
2377		if (i == 100000) {
2378#ifdef BETTER_CLOCK_DIAGNOSTIC
2379			printf("forward_hardclock: checkstate %x\n",
2380			       checkstate_probed_cpus);
2381#endif
2382			break;
2383		}
2384	}
2385
2386	/*
2387	 * Step 2: walk through other processors processes, update virtual
2388	 * timer and profiling timer. If stathz == 0, also update ticks and
2389	 * profiling info.
2390	 */
2391
2392	map = 0;
2393	for (id = 0; id < mp_ncpus; id++) {
2394		if (id == cpuid)
2395			continue;
2396		if (((1 << id) & checkstate_probed_cpus) == 0)
2397			continue;
2398		p = checkstate_curproc[id];
2399		if (p) {
2400			pstats = p->p_stats;
2401			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2402			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2403			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2404				psignal(p, SIGVTALRM);
2405				map |= (1 << id);
2406			}
2407			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2408			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2409				psignal(p, SIGPROF);
2410				map |= (1 << id);
2411			}
2412		}
2413		if (stathz == 0) {
2414			forwarded_statclock( id, pscnt, &map);
2415		}
2416	}
2417	if (map != 0) {
2418		checkstate_need_ast |= map;
2419		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2420		i = 0;
2421		while ((checkstate_need_ast & map) != 0) {
2422			/* spin */
2423			i++;
2424			if (i > 100000) {
2425#ifdef BETTER_CLOCK_DIAGNOSTIC
2426				printf("forward_hardclock: dropped ast 0x%x\n",
2427				       checkstate_need_ast & map);
2428#endif
2429				break;
2430			}
2431		}
2432	}
2433}
2434
2435#endif /* BETTER_CLOCK */
2436
2437void
2438forward_signal(struct proc *p)
2439{
2440	int map;
2441	int id;
2442	int i;
2443
2444	/* Kludge. We don't yet have separate locks for the interrupts
2445	 * and the kernel. This means that we cannot let the other processors
2446	 * handle complex interrupts while inhibiting them from entering
2447	 * the kernel in a non-interrupt context.
2448	 *
2449	 * What we can do, without changing the locking mechanisms yet,
2450	 * is letting the other processors handle a very simple interrupt
2451	 * (wich determines the processor states), and do the main
2452	 * work ourself.
2453	 */
2454
2455	if (!smp_started || !invltlb_ok || cold || panicstr)
2456		return;
2457	if (!forward_signal_enabled)
2458		return;
2459	while (1) {
2460		if (p->p_stat != SRUN)
2461			return;
2462		id = (u_char) p->p_oncpu;
2463		if (id == 0xff)
2464			return;
2465		map = (1<<id);
2466		checkstate_need_ast |= map;
2467		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2468		i = 0;
2469		while ((checkstate_need_ast & map) != 0) {
2470			/* spin */
2471			i++;
2472			if (i > 100000) {
2473#if 0
2474				printf("forward_signal: dropped ast 0x%x\n",
2475				       checkstate_need_ast & map);
2476#endif
2477				break;
2478			}
2479		}
2480		if (id == (u_char) p->p_oncpu)
2481			return;
2482	}
2483}
2484
2485void
2486forward_roundrobin(void)
2487{
2488	u_int map;
2489	int i;
2490
2491	if (!smp_started || !invltlb_ok || cold || panicstr)
2492		return;
2493	if (!forward_roundrobin_enabled)
2494		return;
2495	resched_cpus |= other_cpus;
2496	map = other_cpus & ~stopped_cpus ;
2497#if 1
2498	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2499#else
2500	(void) all_but_self_ipi(XCPUAST_OFFSET);
2501#endif
2502	i = 0;
2503	while ((checkstate_need_ast & map) != 0) {
2504		/* spin */
2505		i++;
2506		if (i > 100000) {
2507#if 0
2508			printf("forward_roundrobin: dropped ast 0x%x\n",
2509			       checkstate_need_ast & map);
2510#endif
2511			break;
2512		}
2513	}
2514}
2515
2516
2517#ifdef APIC_INTR_REORDER
2518/*
2519 *	Maintain mapping from softintr vector to isr bit in local apic.
2520 */
2521void
2522set_lapic_isrloc(int intr, int vector)
2523{
2524	if (intr < 0 || intr > 32)
2525		panic("set_apic_isrloc: bad intr argument: %d",intr);
2526	if (vector < ICU_OFFSET || vector > 255)
2527		panic("set_apic_isrloc: bad vector argument: %d",vector);
2528	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2529	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2530}
2531#endif
2532