mp_x86.c revision 66277
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/i386/i386/mp_machdep.c 66277 2000-09-22 23:40:10Z ps $
26 */
27
28#include "opt_cpu.h"
29#include "opt_user_ldt.h"
30
31#ifdef SMP
32#include <machine/smptests.h>
33#else
34#error
35#endif
36
37#include <sys/param.h>
38#include <sys/bus.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/proc.h>
42#include <sys/sysctl.h>
43#include <sys/malloc.h>
44#include <sys/memrange.h>
45#ifdef BETTER_CLOCK
46#include <sys/dkstat.h>
47#endif
48#include <sys/cons.h>	/* cngetc() */
49
50#include <vm/vm.h>
51#include <vm/vm_param.h>
52#include <vm/pmap.h>
53#include <vm/vm_kern.h>
54#include <vm/vm_extern.h>
55#ifdef BETTER_CLOCK
56#include <sys/lock.h>
57#include <vm/vm_map.h>
58#include <sys/user.h>
59#ifdef GPROF
60#include <sys/gmon.h>
61#endif
62#endif
63
64#include <machine/smp.h>
65#include <machine/apic.h>
66#include <machine/atomic.h>
67#include <machine/cpufunc.h>
68#include <machine/mutex.h>
69#include <machine/mpapic.h>
70#include <machine/psl.h>
71#include <machine/segments.h>
72#include <machine/smptests.h>	/** TEST_DEFAULT_CONFIG, TEST_TEST1 */
73#include <machine/tss.h>
74#include <machine/specialreg.h>
75#include <machine/globaldata.h>
76
77#if defined(APIC_IO)
78#include <machine/md_var.h>		/* setidt() */
79#include <i386/isa/icu.h>		/* IPIs */
80#include <i386/isa/intr_machdep.h>	/* IPIs */
81#endif	/* APIC_IO */
82
83#if defined(TEST_DEFAULT_CONFIG)
84#define MPFPS_MPFB1	TEST_DEFAULT_CONFIG
85#else
86#define MPFPS_MPFB1	mpfps->mpfb1
87#endif  /* TEST_DEFAULT_CONFIG */
88
89#define WARMBOOT_TARGET		0
90#define WARMBOOT_OFF		(KERNBASE + 0x0467)
91#define WARMBOOT_SEG		(KERNBASE + 0x0469)
92
93#ifdef PC98
94#define BIOS_BASE		(0xe8000)
95#define BIOS_SIZE		(0x18000)
96#else
97#define BIOS_BASE		(0xf0000)
98#define BIOS_SIZE		(0x10000)
99#endif
100#define BIOS_COUNT		(BIOS_SIZE/4)
101
102#define CMOS_REG		(0x70)
103#define CMOS_DATA		(0x71)
104#define BIOS_RESET		(0x0f)
105#define BIOS_WARM		(0x0a)
106
107#define PROCENTRY_FLAG_EN	0x01
108#define PROCENTRY_FLAG_BP	0x02
109#define IOAPICENTRY_FLAG_EN	0x01
110
111
112/* MP Floating Pointer Structure */
113typedef struct MPFPS {
114	char    signature[4];
115	void   *pap;
116	u_char  length;
117	u_char  spec_rev;
118	u_char  checksum;
119	u_char  mpfb1;
120	u_char  mpfb2;
121	u_char  mpfb3;
122	u_char  mpfb4;
123	u_char  mpfb5;
124}      *mpfps_t;
125
126/* MP Configuration Table Header */
127typedef struct MPCTH {
128	char    signature[4];
129	u_short base_table_length;
130	u_char  spec_rev;
131	u_char  checksum;
132	u_char  oem_id[8];
133	u_char  product_id[12];
134	void   *oem_table_pointer;
135	u_short oem_table_size;
136	u_short entry_count;
137	void   *apic_address;
138	u_short extended_table_length;
139	u_char  extended_table_checksum;
140	u_char  reserved;
141}      *mpcth_t;
142
143
144typedef struct PROCENTRY {
145	u_char  type;
146	u_char  apic_id;
147	u_char  apic_version;
148	u_char  cpu_flags;
149	u_long  cpu_signature;
150	u_long  feature_flags;
151	u_long  reserved1;
152	u_long  reserved2;
153}      *proc_entry_ptr;
154
155typedef struct BUSENTRY {
156	u_char  type;
157	u_char  bus_id;
158	char    bus_type[6];
159}      *bus_entry_ptr;
160
161typedef struct IOAPICENTRY {
162	u_char  type;
163	u_char  apic_id;
164	u_char  apic_version;
165	u_char  apic_flags;
166	void   *apic_address;
167}      *io_apic_entry_ptr;
168
169typedef struct INTENTRY {
170	u_char  type;
171	u_char  int_type;
172	u_short int_flags;
173	u_char  src_bus_id;
174	u_char  src_bus_irq;
175	u_char  dst_apic_id;
176	u_char  dst_apic_int;
177}      *int_entry_ptr;
178
179/* descriptions of MP basetable entries */
180typedef struct BASETABLE_ENTRY {
181	u_char  type;
182	u_char  length;
183	char    name[16];
184}       basetable_entry;
185
186/*
187 * this code MUST be enabled here and in mpboot.s.
188 * it follows the very early stages of AP boot by placing values in CMOS ram.
189 * it NORMALLY will never be needed and thus the primitive method for enabling.
190 *
191#define CHECK_POINTS
192 */
193
194#if defined(CHECK_POINTS) && !defined(PC98)
195#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
196#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
197
198#define CHECK_INIT(D);				\
199	CHECK_WRITE(0x34, (D));			\
200	CHECK_WRITE(0x35, (D));			\
201	CHECK_WRITE(0x36, (D));			\
202	CHECK_WRITE(0x37, (D));			\
203	CHECK_WRITE(0x38, (D));			\
204	CHECK_WRITE(0x39, (D));
205
206#define CHECK_PRINT(S);				\
207	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
208	   (S),					\
209	   CHECK_READ(0x34),			\
210	   CHECK_READ(0x35),			\
211	   CHECK_READ(0x36),			\
212	   CHECK_READ(0x37),			\
213	   CHECK_READ(0x38),			\
214	   CHECK_READ(0x39));
215
216#else				/* CHECK_POINTS */
217
218#define CHECK_INIT(D)
219#define CHECK_PRINT(S)
220
221#endif				/* CHECK_POINTS */
222
223/*
224 * Values to send to the POST hardware.
225 */
226#define MP_BOOTADDRESS_POST	0x10
227#define MP_PROBE_POST		0x11
228#define MPTABLE_PASS1_POST	0x12
229
230#define MP_START_POST		0x13
231#define MP_ENABLE_POST		0x14
232#define MPTABLE_PASS2_POST	0x15
233
234#define START_ALL_APS_POST	0x16
235#define INSTALL_AP_TRAMP_POST	0x17
236#define START_AP_POST		0x18
237
238#define MP_ANNOUNCE_POST	0x19
239
240/* used to hold the AP's until we are ready to release them */
241struct simplelock	ap_boot_lock;
242
243/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
244int	current_postcode;
245
246/** XXX FIXME: what system files declare these??? */
247extern struct region_descriptor r_gdt, r_idt;
248
249int	bsp_apic_ready = 0;	/* flags useability of BSP apic */
250int	mp_ncpus;		/* # of CPUs, including BSP */
251int	mp_naps;		/* # of Applications processors */
252int	mp_nbusses;		/* # of busses */
253int	mp_napics;		/* # of IO APICs */
254int	boot_cpu_id;		/* designated BSP */
255vm_offset_t cpu_apic_address;
256vm_offset_t io_apic_address[NAPICID];	/* NAPICID is more than enough */
257extern	int nkpt;
258
259u_int32_t cpu_apic_versions[MAXCPU];
260u_int32_t *io_apic_versions;
261
262#ifdef APIC_INTR_DIAGNOSTIC
263int apic_itrace_enter[32];
264int apic_itrace_tryisrlock[32];
265int apic_itrace_gotisrlock[32];
266int apic_itrace_active[32];
267int apic_itrace_masked[32];
268int apic_itrace_noisrlock[32];
269int apic_itrace_masked2[32];
270int apic_itrace_unmask[32];
271int apic_itrace_noforward[32];
272int apic_itrace_leave[32];
273int apic_itrace_enter2[32];
274int apic_itrace_doreti[32];
275int apic_itrace_splz[32];
276int apic_itrace_eoi[32];
277#ifdef APIC_INTR_DIAGNOSTIC_IRQ
278unsigned short apic_itrace_debugbuffer[32768];
279int apic_itrace_debugbuffer_idx;
280struct simplelock apic_itrace_debuglock;
281#endif
282#endif
283
284#ifdef APIC_INTR_REORDER
285struct {
286	volatile int *location;
287	int bit;
288} apic_isrbit_location[32];
289#endif
290
291struct apic_intmapinfo	int_to_apicintpin[APIC_INTMAPSIZE];
292
293/*
294 * APIC ID logical/physical mapping structures.
295 * We oversize these to simplify boot-time config.
296 */
297int     cpu_num_to_apic_id[NAPICID];
298int     io_num_to_apic_id[NAPICID];
299int     apic_id_to_logical[NAPICID];
300
301
302/* Bitmap of all available CPUs */
303u_int	all_cpus;
304
305/* AP uses this during bootstrap.  Do not staticize.  */
306char *bootSTK;
307static int bootAP;
308
309/* Hotwire a 0->4MB V==P mapping */
310extern pt_entry_t *KPTphys;
311
312/* SMP page table page */
313extern pt_entry_t *SMPpt;
314
315struct pcb stoppcbs[MAXCPU];
316
317int smp_started;		/* has the system started? */
318
319/*
320 * Local data and functions.
321 */
322
323static int	mp_capable;
324static u_int	boot_address;
325static u_int	base_memory;
326
327static int	picmode;		/* 0: virtual wire mode, 1: PIC mode */
328static mpfps_t	mpfps;
329static int	search_for_sig(u_int32_t target, int count);
330static void	mp_enable(u_int boot_addr);
331
332static void	mptable_pass1(void);
333static int	mptable_pass2(void);
334static void	default_mp_table(int type);
335static void	fix_mp_table(void);
336static void	setup_apic_irq_mapping(void);
337static void	init_locks(void);
338static int	start_all_aps(u_int boot_addr);
339static void	install_ap_tramp(u_int boot_addr);
340static int	start_ap(int logicalCpu, u_int boot_addr);
341static int	apic_int_is_bus_type(int intr, int bus_type);
342static void	release_aps(void *dummy);
343
344/*
345 * Calculate usable address in base memory for AP trampoline code.
346 */
347u_int
348mp_bootaddress(u_int basemem)
349{
350	POSTCODE(MP_BOOTADDRESS_POST);
351
352	base_memory = basemem * 1024;	/* convert to bytes */
353
354	boot_address = base_memory & ~0xfff;	/* round down to 4k boundary */
355	if ((base_memory - boot_address) < bootMP_size)
356		boot_address -= 4096;	/* not enough, lower by 4k */
357
358	return boot_address;
359}
360
361
362/*
363 * Look for an Intel MP spec table (ie, SMP capable hardware).
364 */
365int
366mp_probe(void)
367{
368	int     x;
369	u_long  segment;
370	u_int32_t target;
371
372	POSTCODE(MP_PROBE_POST);
373
374	/* see if EBDA exists */
375	if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
376		/* search first 1K of EBDA */
377		target = (u_int32_t) (segment << 4);
378		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
379			goto found;
380	} else {
381		/* last 1K of base memory, effective 'top of base' passed in */
382		target = (u_int32_t) (base_memory - 0x400);
383		if ((x = search_for_sig(target, 1024 / 4)) >= 0)
384			goto found;
385	}
386
387	/* search the BIOS */
388	target = (u_int32_t) BIOS_BASE;
389	if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
390		goto found;
391
392	/* nothing found */
393	mpfps = (mpfps_t)0;
394	mp_capable = 0;
395	return 0;
396
397found:
398	/* calculate needed resources */
399	mpfps = (mpfps_t)x;
400	mptable_pass1();
401
402	/* flag fact that we are running multiple processors */
403	mp_capable = 1;
404	return 1;
405}
406
407
408/*
409 * Initialize the SMP hardware and the APIC and start up the AP's.
410 */
411void
412mp_start(void)
413{
414	POSTCODE(MP_START_POST);
415
416	/* look for MP capable motherboard */
417	if (mp_capable)
418		mp_enable(boot_address);
419	else
420		panic("MP hardware not found!");
421}
422
423
424/*
425 * Print various information about the SMP system hardware and setup.
426 */
427void
428mp_announce(void)
429{
430	int     x;
431
432	POSTCODE(MP_ANNOUNCE_POST);
433
434	printf("FreeBSD/SMP: Multiprocessor motherboard\n");
435	printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
436	printf(", version: 0x%08x", cpu_apic_versions[0]);
437	printf(", at 0x%08x\n", cpu_apic_address);
438	for (x = 1; x <= mp_naps; ++x) {
439		printf(" cpu%d (AP):  apic id: %2d", x, CPU_TO_ID(x));
440		printf(", version: 0x%08x", cpu_apic_versions[x]);
441		printf(", at 0x%08x\n", cpu_apic_address);
442	}
443
444#if defined(APIC_IO)
445	for (x = 0; x < mp_napics; ++x) {
446		printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
447		printf(", version: 0x%08x", io_apic_versions[x]);
448		printf(", at 0x%08x\n", io_apic_address[x]);
449	}
450#else
451	printf(" Warning: APIC I/O disabled\n");
452#endif	/* APIC_IO */
453}
454
455/*
456 * AP cpu's call this to sync up protected mode.
457 */
458void
459init_secondary(void)
460{
461	int	gsel_tss;
462	int	x, myid = bootAP;
463
464	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
465	gdt_segs[GPROC0_SEL].ssd_base =
466		(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
467	SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid];
468
469	for (x = 0; x < NGDT; x++) {
470		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
471	}
472
473	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
474	r_gdt.rd_base = (int) &gdt[myid * NGDT];
475	lgdt(&r_gdt);			/* does magic intra-segment return */
476
477	lidt(&r_idt);
478
479	lldt(_default_ldt);
480#ifdef USER_LDT
481	PCPU_SET(currentldt, _default_ldt);
482#endif
483
484	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
485	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
486	common_tss.tss_esp0 = 0;	/* not used until after switch */
487	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
488	common_tss.tss_ioopt = (sizeof common_tss) << 16;
489	tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd;
490	common_tssd = *tss_gdt;
491	ltr(gsel_tss);
492
493	pmap_set_opt();
494}
495
496
497#if defined(APIC_IO)
498/*
499 * Final configuration of the BSP's local APIC:
500 *  - disable 'pic mode'.
501 *  - disable 'virtual wire mode'.
502 *  - enable NMI.
503 */
504void
505bsp_apic_configure(void)
506{
507	u_char		byte;
508	u_int32_t	temp;
509
510	/* leave 'pic mode' if necessary */
511	if (picmode) {
512		outb(0x22, 0x70);	/* select IMCR */
513		byte = inb(0x23);	/* current contents */
514		byte |= 0x01;		/* mask external INTR */
515		outb(0x23, byte);	/* disconnect 8259s/NMI */
516	}
517
518	/* mask lint0 (the 8259 'virtual wire' connection) */
519	temp = lapic.lvt_lint0;
520	temp |= APIC_LVT_M;		/* set the mask */
521	lapic.lvt_lint0 = temp;
522
523        /* setup lint1 to handle NMI */
524        temp = lapic.lvt_lint1;
525        temp &= ~APIC_LVT_M;		/* clear the mask */
526        lapic.lvt_lint1 = temp;
527
528	if (bootverbose)
529		apic_dump("bsp_apic_configure()");
530}
531#endif  /* APIC_IO */
532
533
534/*******************************************************************
535 * local functions and data
536 */
537
538/*
539 * start the SMP system
540 */
541static void
542mp_enable(u_int boot_addr)
543{
544	int     x;
545#if defined(APIC_IO)
546	int     apic;
547	u_int   ux;
548#endif	/* APIC_IO */
549
550	POSTCODE(MP_ENABLE_POST);
551
552	/* turn on 4MB of V == P addressing so we can get to MP table */
553	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
554	invltlb();
555
556	/* examine the MP table for needed info, uses physical addresses */
557	x = mptable_pass2();
558
559	*(int *)PTD = 0;
560	invltlb();
561
562	/* can't process default configs till the CPU APIC is pmapped */
563	if (x)
564		default_mp_table(x);
565
566	/* post scan cleanup */
567	fix_mp_table();
568	setup_apic_irq_mapping();
569
570#if defined(APIC_IO)
571
572	/* fill the LOGICAL io_apic_versions table */
573	for (apic = 0; apic < mp_napics; ++apic) {
574		ux = io_apic_read(apic, IOAPIC_VER);
575		io_apic_versions[apic] = ux;
576		io_apic_set_id(apic, IO_TO_ID(apic));
577	}
578
579	/* program each IO APIC in the system */
580	for (apic = 0; apic < mp_napics; ++apic)
581		if (io_apic_setup(apic) < 0)
582			panic("IO APIC setup failure");
583
584	/* install a 'Spurious INTerrupt' vector */
585	setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
586	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
587
588	/* install an inter-CPU IPI for TLB invalidation */
589	setidt(XINVLTLB_OFFSET, Xinvltlb,
590	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
591
592#ifdef BETTER_CLOCK
593	/* install an inter-CPU IPI for reading processor state */
594	setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
595	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
596#endif
597
598	/* install an inter-CPU IPI for all-CPU rendezvous */
599	setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
600	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
601
602	/* install an inter-CPU IPI for forcing an additional software trap */
603	setidt(XCPUAST_OFFSET, Xcpuast,
604	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
605
606	/* install an inter-CPU IPI for interrupt forwarding */
607	setidt(XFORWARD_IRQ_OFFSET, Xforward_irq,
608	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
609
610	/* install an inter-CPU IPI for CPU stop/restart */
611	setidt(XCPUSTOP_OFFSET, Xcpustop,
612	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
613
614#if defined(TEST_TEST1)
615	/* install a "fake hardware INTerrupt" vector */
616	setidt(XTEST1_OFFSET, Xtest1,
617	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
618#endif  /** TEST_TEST1 */
619
620#endif	/* APIC_IO */
621
622	/* initialize all SMP locks */
623	init_locks();
624
625	/* obtain the ap_boot_lock */
626	s_lock(&ap_boot_lock);
627
628	/* start each Application Processor */
629	start_all_aps(boot_addr);
630}
631
632
633/*
634 * look for the MP spec signature
635 */
636
637/* string defined by the Intel MP Spec as identifying the MP table */
638#define MP_SIG		0x5f504d5f	/* _MP_ */
639#define NEXT(X)		((X) += 4)
640static int
641search_for_sig(u_int32_t target, int count)
642{
643	int     x;
644	u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
645
646	for (x = 0; x < count; NEXT(x))
647		if (addr[x] == MP_SIG)
648			/* make array index a byte index */
649			return (target + (x * sizeof(u_int32_t)));
650
651	return -1;
652}
653
654
655static basetable_entry basetable_entry_types[] =
656{
657	{0, 20, "Processor"},
658	{1, 8, "Bus"},
659	{2, 8, "I/O APIC"},
660	{3, 8, "I/O INT"},
661	{4, 8, "Local INT"}
662};
663
664typedef struct BUSDATA {
665	u_char  bus_id;
666	enum busTypes bus_type;
667}       bus_datum;
668
669typedef struct INTDATA {
670	u_char  int_type;
671	u_short int_flags;
672	u_char  src_bus_id;
673	u_char  src_bus_irq;
674	u_char  dst_apic_id;
675	u_char  dst_apic_int;
676	u_char	int_vector;
677}       io_int, local_int;
678
679typedef struct BUSTYPENAME {
680	u_char  type;
681	char    name[7];
682}       bus_type_name;
683
684static bus_type_name bus_type_table[] =
685{
686	{CBUS, "CBUS"},
687	{CBUSII, "CBUSII"},
688	{EISA, "EISA"},
689	{MCA, "MCA"},
690	{UNKNOWN_BUSTYPE, "---"},
691	{ISA, "ISA"},
692	{MCA, "MCA"},
693	{UNKNOWN_BUSTYPE, "---"},
694	{UNKNOWN_BUSTYPE, "---"},
695	{UNKNOWN_BUSTYPE, "---"},
696	{UNKNOWN_BUSTYPE, "---"},
697	{UNKNOWN_BUSTYPE, "---"},
698	{PCI, "PCI"},
699	{UNKNOWN_BUSTYPE, "---"},
700	{UNKNOWN_BUSTYPE, "---"},
701	{UNKNOWN_BUSTYPE, "---"},
702	{UNKNOWN_BUSTYPE, "---"},
703	{XPRESS, "XPRESS"},
704	{UNKNOWN_BUSTYPE, "---"}
705};
706/* from MP spec v1.4, table 5-1 */
707static int default_data[7][5] =
708{
709/*   nbus, id0, type0, id1, type1 */
710	{1, 0, ISA, 255, 255},
711	{1, 0, EISA, 255, 255},
712	{1, 0, EISA, 255, 255},
713	{1, 0, MCA, 255, 255},
714	{2, 0, ISA, 1, PCI},
715	{2, 0, EISA, 1, PCI},
716	{2, 0, MCA, 1, PCI}
717};
718
719
720/* the bus data */
721static bus_datum *bus_data;
722
723/* the IO INT data, one entry per possible APIC INTerrupt */
724static io_int  *io_apic_ints;
725
726static int nintrs;
727
728static int processor_entry	__P((proc_entry_ptr entry, int cpu));
729static int bus_entry		__P((bus_entry_ptr entry, int bus));
730static int io_apic_entry	__P((io_apic_entry_ptr entry, int apic));
731static int int_entry		__P((int_entry_ptr entry, int intr));
732static int lookup_bus_type	__P((char *name));
733
734
735/*
736 * 1st pass on motherboard's Intel MP specification table.
737 *
738 * initializes:
739 *	mp_ncpus = 1
740 *
741 * determines:
742 *	cpu_apic_address (common to all CPUs)
743 *	io_apic_address[N]
744 *	mp_naps
745 *	mp_nbusses
746 *	mp_napics
747 *	nintrs
748 */
749static void
750mptable_pass1(void)
751{
752	int	x;
753	mpcth_t	cth;
754	int	totalSize;
755	void*	position;
756	int	count;
757	int	type;
758
759	POSTCODE(MPTABLE_PASS1_POST);
760
761	/* clear various tables */
762	for (x = 0; x < NAPICID; ++x) {
763		io_apic_address[x] = ~0;	/* IO APIC address table */
764	}
765
766	/* init everything to empty */
767	mp_naps = 0;
768	mp_nbusses = 0;
769	mp_napics = 0;
770	nintrs = 0;
771
772	/* check for use of 'default' configuration */
773	if (MPFPS_MPFB1 != 0) {
774		/* use default addresses */
775		cpu_apic_address = DEFAULT_APIC_BASE;
776		io_apic_address[0] = DEFAULT_IO_APIC_BASE;
777
778		/* fill in with defaults */
779		mp_naps = 2;		/* includes BSP */
780		mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
781#if defined(APIC_IO)
782		mp_napics = 1;
783		nintrs = 16;
784#endif	/* APIC_IO */
785	}
786	else {
787		if ((cth = mpfps->pap) == 0)
788			panic("MP Configuration Table Header MISSING!");
789
790		cpu_apic_address = (vm_offset_t) cth->apic_address;
791
792		/* walk the table, recording info of interest */
793		totalSize = cth->base_table_length - sizeof(struct MPCTH);
794		position = (u_char *) cth + sizeof(struct MPCTH);
795		count = cth->entry_count;
796
797		while (count--) {
798			switch (type = *(u_char *) position) {
799			case 0: /* processor_entry */
800				if (((proc_entry_ptr)position)->cpu_flags
801					& PROCENTRY_FLAG_EN)
802					++mp_naps;
803				break;
804			case 1: /* bus_entry */
805				++mp_nbusses;
806				break;
807			case 2: /* io_apic_entry */
808				if (((io_apic_entry_ptr)position)->apic_flags
809					& IOAPICENTRY_FLAG_EN)
810					io_apic_address[mp_napics++] =
811					    (vm_offset_t)((io_apic_entry_ptr)
812						position)->apic_address;
813				break;
814			case 3: /* int_entry */
815				++nintrs;
816				break;
817			case 4:	/* int_entry */
818				break;
819			default:
820				panic("mpfps Base Table HOSED!");
821				/* NOTREACHED */
822			}
823
824			totalSize -= basetable_entry_types[type].length;
825			(u_char*)position += basetable_entry_types[type].length;
826		}
827	}
828
829	/* qualify the numbers */
830	if (mp_naps > MAXCPU) {
831		printf("Warning: only using %d of %d available CPUs!\n",
832			MAXCPU, mp_naps);
833		mp_naps = MAXCPU;
834	}
835
836	/*
837	 * Count the BSP.
838	 * This is also used as a counter while starting the APs.
839	 */
840	mp_ncpus = 1;
841
842	--mp_naps;	/* subtract the BSP */
843}
844
845
846/*
847 * 2nd pass on motherboard's Intel MP specification table.
848 *
849 * sets:
850 *	boot_cpu_id
851 *	ID_TO_IO(N), phy APIC ID to log CPU/IO table
852 *	CPU_TO_ID(N), logical CPU to APIC ID table
853 *	IO_TO_ID(N), logical IO to APIC ID table
854 *	bus_data[N]
855 *	io_apic_ints[N]
856 */
857static int
858mptable_pass2(void)
859{
860	int     x;
861	mpcth_t cth;
862	int     totalSize;
863	void*   position;
864	int     count;
865	int     type;
866	int     apic, bus, cpu, intr;
867	int	i, j;
868	int	pgeflag;
869
870	POSTCODE(MPTABLE_PASS2_POST);
871
872	pgeflag = 0;		/* XXX - Not used under SMP yet.  */
873
874	MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
875	    M_DEVBUF, M_WAITOK);
876	MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
877	    M_DEVBUF, M_WAITOK);
878	MALLOC(io_apic_ints, io_int *, sizeof(io_int) * nintrs,
879	    M_DEVBUF, M_WAITOK);
880	MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
881	    M_DEVBUF, M_WAITOK);
882
883	bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
884
885	for (i = 0; i < mp_napics; i++) {
886		for (j = 0; j < mp_napics; j++) {
887			/* same page frame as a previous IO apic? */
888			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
889			    (io_apic_address[i] & PG_FRAME)) {
890				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
891					+ (NPTEPG-2-j) * PAGE_SIZE
892					+ (io_apic_address[i] & PAGE_MASK));
893				break;
894			}
895			/* use this slot if available */
896			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
897				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
898				    pgeflag | (io_apic_address[i] & PG_FRAME));
899				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
900					+ (NPTEPG-2-j) * PAGE_SIZE
901					+ (io_apic_address[i] & PAGE_MASK));
902				break;
903			}
904		}
905	}
906
907	/* clear various tables */
908	for (x = 0; x < NAPICID; ++x) {
909		ID_TO_IO(x) = -1;	/* phy APIC ID to log CPU/IO table */
910		CPU_TO_ID(x) = -1;	/* logical CPU to APIC ID table */
911		IO_TO_ID(x) = -1;	/* logical IO to APIC ID table */
912	}
913
914	/* clear bus data table */
915	for (x = 0; x < mp_nbusses; ++x)
916		bus_data[x].bus_id = 0xff;
917
918	/* clear IO APIC INT table */
919	for (x = 0; x < nintrs; ++x) {
920		io_apic_ints[x].int_type = 0xff;
921		io_apic_ints[x].int_vector = 0xff;
922	}
923
924	/* setup the cpu/apic mapping arrays */
925	boot_cpu_id = -1;
926
927	/* record whether PIC or virtual-wire mode */
928	picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
929
930	/* check for use of 'default' configuration */
931	if (MPFPS_MPFB1 != 0)
932		return MPFPS_MPFB1;	/* return default configuration type */
933
934	if ((cth = mpfps->pap) == 0)
935		panic("MP Configuration Table Header MISSING!");
936
937	/* walk the table, recording info of interest */
938	totalSize = cth->base_table_length - sizeof(struct MPCTH);
939	position = (u_char *) cth + sizeof(struct MPCTH);
940	count = cth->entry_count;
941	apic = bus = intr = 0;
942	cpu = 1;				/* pre-count the BSP */
943
944	while (count--) {
945		switch (type = *(u_char *) position) {
946		case 0:
947			if (processor_entry(position, cpu))
948				++cpu;
949			break;
950		case 1:
951			if (bus_entry(position, bus))
952				++bus;
953			break;
954		case 2:
955			if (io_apic_entry(position, apic))
956				++apic;
957			break;
958		case 3:
959			if (int_entry(position, intr))
960				++intr;
961			break;
962		case 4:
963			/* int_entry(position); */
964			break;
965		default:
966			panic("mpfps Base Table HOSED!");
967			/* NOTREACHED */
968		}
969
970		totalSize -= basetable_entry_types[type].length;
971		(u_char *) position += basetable_entry_types[type].length;
972	}
973
974	if (boot_cpu_id == -1)
975		panic("NO BSP found!");
976
977	/* report fact that its NOT a default configuration */
978	return 0;
979}
980
981
982void
983assign_apic_irq(int apic, int intpin, int irq)
984{
985	int x;
986
987	if (int_to_apicintpin[irq].ioapic != -1)
988		panic("assign_apic_irq: inconsistent table");
989
990	int_to_apicintpin[irq].ioapic = apic;
991	int_to_apicintpin[irq].int_pin = intpin;
992	int_to_apicintpin[irq].apic_address = ioapic[apic];
993	int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
994
995	for (x = 0; x < nintrs; x++) {
996		if ((io_apic_ints[x].int_type == 0 ||
997		     io_apic_ints[x].int_type == 3) &&
998		    io_apic_ints[x].int_vector == 0xff &&
999		    io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
1000		    io_apic_ints[x].dst_apic_int == intpin)
1001			io_apic_ints[x].int_vector = irq;
1002	}
1003}
1004
1005void
1006revoke_apic_irq(int irq)
1007{
1008	int x;
1009	int oldapic;
1010	int oldintpin;
1011
1012	if (int_to_apicintpin[irq].ioapic == -1)
1013		panic("assign_apic_irq: inconsistent table");
1014
1015	oldapic = int_to_apicintpin[irq].ioapic;
1016	oldintpin = int_to_apicintpin[irq].int_pin;
1017
1018	int_to_apicintpin[irq].ioapic = -1;
1019	int_to_apicintpin[irq].int_pin = 0;
1020	int_to_apicintpin[irq].apic_address = NULL;
1021	int_to_apicintpin[irq].redirindex = 0;
1022
1023	for (x = 0; x < nintrs; x++) {
1024		if ((io_apic_ints[x].int_type == 0 ||
1025		     io_apic_ints[x].int_type == 3) &&
1026		    io_apic_ints[x].int_vector == 0xff &&
1027		    io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
1028		    io_apic_ints[x].dst_apic_int == oldintpin)
1029			io_apic_ints[x].int_vector = 0xff;
1030	}
1031}
1032
1033
1034
1035static void
1036swap_apic_id(int apic, int oldid, int newid)
1037{
1038	int x;
1039	int oapic;
1040
1041
1042	if (oldid == newid)
1043		return;			/* Nothing to do */
1044
1045	printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
1046	       apic, oldid, newid);
1047
1048	/* Swap physical APIC IDs in interrupt entries */
1049	for (x = 0; x < nintrs; x++) {
1050		if (io_apic_ints[x].dst_apic_id == oldid)
1051			io_apic_ints[x].dst_apic_id = newid;
1052		else if (io_apic_ints[x].dst_apic_id == newid)
1053			io_apic_ints[x].dst_apic_id = oldid;
1054	}
1055
1056	/* Swap physical APIC IDs in IO_TO_ID mappings */
1057	for (oapic = 0; oapic < mp_napics; oapic++)
1058		if (IO_TO_ID(oapic) == newid)
1059			break;
1060
1061	if (oapic < mp_napics) {
1062		printf("Changing APIC ID for IO APIC #%d from "
1063		       "%d to %d in MP table\n",
1064		       oapic, newid, oldid);
1065		IO_TO_ID(oapic) = oldid;
1066	}
1067	IO_TO_ID(apic) = newid;
1068}
1069
1070
1071static void
1072fix_id_to_io_mapping(void)
1073{
1074	int x;
1075
1076	for (x = 0; x < NAPICID; x++)
1077		ID_TO_IO(x) = -1;
1078
1079	for (x = 0; x <= mp_naps; x++)
1080		if (CPU_TO_ID(x) < NAPICID)
1081			ID_TO_IO(CPU_TO_ID(x)) = x;
1082
1083	for (x = 0; x < mp_napics; x++)
1084		if (IO_TO_ID(x) < NAPICID)
1085			ID_TO_IO(IO_TO_ID(x)) = x;
1086}
1087
1088
1089static int
1090first_free_apic_id(void)
1091{
1092	int freeid, x;
1093
1094	for (freeid = 0; freeid < NAPICID; freeid++) {
1095		for (x = 0; x <= mp_naps; x++)
1096			if (CPU_TO_ID(x) == freeid)
1097				break;
1098		if (x <= mp_naps)
1099			continue;
1100		for (x = 0; x < mp_napics; x++)
1101			if (IO_TO_ID(x) == freeid)
1102				break;
1103		if (x < mp_napics)
1104			continue;
1105		return freeid;
1106	}
1107	return freeid;
1108}
1109
1110
1111static int
1112io_apic_id_acceptable(int apic, int id)
1113{
1114	int cpu;		/* Logical CPU number */
1115	int oapic;		/* Logical IO APIC number for other IO APIC */
1116
1117	if (id >= NAPICID)
1118		return 0;	/* Out of range */
1119
1120	for (cpu = 0; cpu <= mp_naps; cpu++)
1121		if (CPU_TO_ID(cpu) == id)
1122			return 0;	/* Conflict with CPU */
1123
1124	for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
1125		if (IO_TO_ID(oapic) == id)
1126			return 0;	/* Conflict with other APIC */
1127
1128	return 1;		/* ID is acceptable for IO APIC */
1129}
1130
1131
1132/*
1133 * parse an Intel MP specification table
1134 */
1135static void
1136fix_mp_table(void)
1137{
1138	int	x;
1139	int	id;
1140	int	bus_0 = 0;	/* Stop GCC warning */
1141	int	bus_pci = 0;	/* Stop GCC warning */
1142	int	num_pci_bus;
1143	int	apic;		/* IO APIC unit number */
1144	int     freeid;		/* Free physical APIC ID */
1145	int	physid;		/* Current physical IO APIC ID */
1146
1147	/*
1148	 * Fix mis-numbering of the PCI bus and its INT entries if the BIOS
1149	 * did it wrong.  The MP spec says that when more than 1 PCI bus
1150	 * exists the BIOS must begin with bus entries for the PCI bus and use
1151	 * actual PCI bus numbering.  This implies that when only 1 PCI bus
1152	 * exists the BIOS can choose to ignore this ordering, and indeed many
1153	 * MP motherboards do ignore it.  This causes a problem when the PCI
1154	 * sub-system makes requests of the MP sub-system based on PCI bus
1155	 * numbers.	So here we look for the situation and renumber the
1156	 * busses and associated INTs in an effort to "make it right".
1157	 */
1158
1159	/* find bus 0, PCI bus, count the number of PCI busses */
1160	for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
1161		if (bus_data[x].bus_id == 0) {
1162			bus_0 = x;
1163		}
1164		if (bus_data[x].bus_type == PCI) {
1165			++num_pci_bus;
1166			bus_pci = x;
1167		}
1168	}
1169	/*
1170	 * bus_0 == slot of bus with ID of 0
1171	 * bus_pci == slot of last PCI bus encountered
1172	 */
1173
1174	/* check the 1 PCI bus case for sanity */
1175	/* if it is number 0 all is well */
1176	if (num_pci_bus == 1 &&
1177	    bus_data[bus_pci].bus_id != 0) {
1178
1179		/* mis-numbered, swap with whichever bus uses slot 0 */
1180
1181		/* swap the bus entry types */
1182		bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
1183		bus_data[bus_0].bus_type = PCI;
1184
1185		/* swap each relavant INTerrupt entry */
1186		id = bus_data[bus_pci].bus_id;
1187		for (x = 0; x < nintrs; ++x) {
1188			if (io_apic_ints[x].src_bus_id == id) {
1189				io_apic_ints[x].src_bus_id = 0;
1190			}
1191			else if (io_apic_ints[x].src_bus_id == 0) {
1192				io_apic_ints[x].src_bus_id = id;
1193			}
1194		}
1195	}
1196
1197	/* Assign IO APIC IDs.
1198	 *
1199	 * First try the existing ID. If a conflict is detected, try
1200	 * the ID in the MP table.  If a conflict is still detected, find
1201	 * a free id.
1202	 *
1203	 * We cannot use the ID_TO_IO table before all conflicts has been
1204	 * resolved and the table has been corrected.
1205	 */
1206	for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
1207
1208		/* First try to use the value set by the BIOS */
1209		physid = io_apic_get_id(apic);
1210		if (io_apic_id_acceptable(apic, physid)) {
1211			if (IO_TO_ID(apic) != physid)
1212				swap_apic_id(apic, IO_TO_ID(apic), physid);
1213			continue;
1214		}
1215
1216		/* Then check if the value in the MP table is acceptable */
1217		if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
1218			continue;
1219
1220		/* Last resort, find a free APIC ID and use it */
1221		freeid = first_free_apic_id();
1222		if (freeid >= NAPICID)
1223			panic("No free physical APIC IDs found");
1224
1225		if (io_apic_id_acceptable(apic, freeid)) {
1226			swap_apic_id(apic, IO_TO_ID(apic), freeid);
1227			continue;
1228		}
1229		panic("Free physical APIC ID not usable");
1230	}
1231	fix_id_to_io_mapping();
1232}
1233
1234
1235/* Assign low level interrupt handlers */
1236static void
1237setup_apic_irq_mapping(void)
1238{
1239	int	x;
1240	int	int_vector;
1241
1242	/* Clear array */
1243	for (x = 0; x < APIC_INTMAPSIZE; x++) {
1244		int_to_apicintpin[x].ioapic = -1;
1245		int_to_apicintpin[x].int_pin = 0;
1246		int_to_apicintpin[x].apic_address = NULL;
1247		int_to_apicintpin[x].redirindex = 0;
1248	}
1249
1250	/* First assign ISA/EISA interrupts */
1251	for (x = 0; x < nintrs; x++) {
1252		int_vector = io_apic_ints[x].src_bus_irq;
1253		if (int_vector < APIC_INTMAPSIZE &&
1254		    io_apic_ints[x].int_vector == 0xff &&
1255		    int_to_apicintpin[int_vector].ioapic == -1 &&
1256		    (apic_int_is_bus_type(x, ISA) ||
1257		     apic_int_is_bus_type(x, EISA)) &&
1258		    io_apic_ints[x].int_type == 0) {
1259			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1260					io_apic_ints[x].dst_apic_int,
1261					int_vector);
1262		}
1263	}
1264
1265	/* Assign interrupts on first 24 intpins on IOAPIC #0 */
1266	for (x = 0; x < nintrs; x++) {
1267		int_vector = io_apic_ints[x].dst_apic_int;
1268		if (int_vector < APIC_INTMAPSIZE &&
1269		    io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
1270		    io_apic_ints[x].int_vector == 0xff &&
1271		    int_to_apicintpin[int_vector].ioapic == -1 &&
1272		    (io_apic_ints[x].int_type == 0 ||
1273		     io_apic_ints[x].int_type == 3)) {
1274			assign_apic_irq(0,
1275					io_apic_ints[x].dst_apic_int,
1276					int_vector);
1277		}
1278	}
1279	/*
1280	 * Assign interrupts for remaining intpins.
1281	 * Skip IOAPIC #0 intpin 0 if the type is ExtInt, since this indicates
1282	 * that an entry for ISA/EISA irq 0 exist, and a fallback to mixed mode
1283	 * due to 8254 interrupts not being delivered can reuse that low level
1284	 * interrupt handler.
1285	 */
1286	int_vector = 0;
1287	while (int_vector < APIC_INTMAPSIZE &&
1288	       int_to_apicintpin[int_vector].ioapic != -1)
1289		int_vector++;
1290	for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) {
1291		if ((io_apic_ints[x].int_type == 0 ||
1292		     (io_apic_ints[x].int_type == 3 &&
1293		      (io_apic_ints[x].dst_apic_id != IO_TO_ID(0) ||
1294		       io_apic_ints[x].dst_apic_int != 0))) &&
1295		    io_apic_ints[x].int_vector == 0xff) {
1296			assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
1297					io_apic_ints[x].dst_apic_int,
1298					int_vector);
1299			int_vector++;
1300			while (int_vector < APIC_INTMAPSIZE &&
1301			       int_to_apicintpin[int_vector].ioapic != -1)
1302				int_vector++;
1303		}
1304	}
1305}
1306
1307
1308static int
1309processor_entry(proc_entry_ptr entry, int cpu)
1310{
1311	/* check for usability */
1312	if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
1313		return 0;
1314
1315	if(entry->apic_id >= NAPICID)
1316		panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
1317	/* check for BSP flag */
1318	if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
1319		boot_cpu_id = entry->apic_id;
1320		CPU_TO_ID(0) = entry->apic_id;
1321		ID_TO_CPU(entry->apic_id) = 0;
1322		return 0;	/* its already been counted */
1323	}
1324
1325	/* add another AP to list, if less than max number of CPUs */
1326	else if (cpu < MAXCPU) {
1327		CPU_TO_ID(cpu) = entry->apic_id;
1328		ID_TO_CPU(entry->apic_id) = cpu;
1329		return 1;
1330	}
1331
1332	return 0;
1333}
1334
1335
1336static int
1337bus_entry(bus_entry_ptr entry, int bus)
1338{
1339	int     x;
1340	char    c, name[8];
1341
1342	/* encode the name into an index */
1343	for (x = 0; x < 6; ++x) {
1344		if ((c = entry->bus_type[x]) == ' ')
1345			break;
1346		name[x] = c;
1347	}
1348	name[x] = '\0';
1349
1350	if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
1351		panic("unknown bus type: '%s'", name);
1352
1353	bus_data[bus].bus_id = entry->bus_id;
1354	bus_data[bus].bus_type = x;
1355
1356	return 1;
1357}
1358
1359
1360static int
1361io_apic_entry(io_apic_entry_ptr entry, int apic)
1362{
1363	if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
1364		return 0;
1365
1366	IO_TO_ID(apic) = entry->apic_id;
1367	if (entry->apic_id < NAPICID)
1368		ID_TO_IO(entry->apic_id) = apic;
1369
1370	return 1;
1371}
1372
1373
1374static int
1375lookup_bus_type(char *name)
1376{
1377	int     x;
1378
1379	for (x = 0; x < MAX_BUSTYPE; ++x)
1380		if (strcmp(bus_type_table[x].name, name) == 0)
1381			return bus_type_table[x].type;
1382
1383	return UNKNOWN_BUSTYPE;
1384}
1385
1386
1387static int
1388int_entry(int_entry_ptr entry, int intr)
1389{
1390	int apic;
1391
1392	io_apic_ints[intr].int_type = entry->int_type;
1393	io_apic_ints[intr].int_flags = entry->int_flags;
1394	io_apic_ints[intr].src_bus_id = entry->src_bus_id;
1395	io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
1396	if (entry->dst_apic_id == 255) {
1397		/* This signal goes to all IO APICS.  Select an IO APIC
1398		   with sufficient number of interrupt pins */
1399		for (apic = 0; apic < mp_napics; apic++)
1400			if (((io_apic_read(apic, IOAPIC_VER) &
1401			      IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
1402			    entry->dst_apic_int)
1403				break;
1404		if (apic < mp_napics)
1405			io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
1406		else
1407			io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1408	} else
1409		io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
1410	io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
1411
1412	return 1;
1413}
1414
1415
1416static int
1417apic_int_is_bus_type(int intr, int bus_type)
1418{
1419	int     bus;
1420
1421	for (bus = 0; bus < mp_nbusses; ++bus)
1422		if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
1423		    && ((int) bus_data[bus].bus_type == bus_type))
1424			return 1;
1425
1426	return 0;
1427}
1428
1429
1430/*
1431 * Given a traditional ISA INT mask, return an APIC mask.
1432 */
1433u_int
1434isa_apic_mask(u_int isa_mask)
1435{
1436	int isa_irq;
1437	int apic_pin;
1438
1439#if defined(SKIP_IRQ15_REDIRECT)
1440	if (isa_mask == (1 << 15)) {
1441		printf("skipping ISA IRQ15 redirect\n");
1442		return isa_mask;
1443	}
1444#endif  /* SKIP_IRQ15_REDIRECT */
1445
1446	isa_irq = ffs(isa_mask);		/* find its bit position */
1447	if (isa_irq == 0)			/* doesn't exist */
1448		return 0;
1449	--isa_irq;				/* make it zero based */
1450
1451	apic_pin = isa_apic_irq(isa_irq);	/* look for APIC connection */
1452	if (apic_pin == -1)
1453		return 0;
1454
1455	return (1 << apic_pin);			/* convert pin# to a mask */
1456}
1457
1458
1459/*
1460 * Determine which APIC pin an ISA/EISA INT is attached to.
1461 */
1462#define INTTYPE(I)	(io_apic_ints[(I)].int_type)
1463#define INTPIN(I)	(io_apic_ints[(I)].dst_apic_int)
1464#define INTIRQ(I)	(io_apic_ints[(I)].int_vector)
1465#define INTAPIC(I)	(ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
1466
1467#define SRCBUSIRQ(I)	(io_apic_ints[(I)].src_bus_irq)
1468int
1469isa_apic_irq(int isa_irq)
1470{
1471	int     intr;
1472
1473	for (intr = 0; intr < nintrs; ++intr) {		/* check each record */
1474		if (INTTYPE(intr) == 0) {		/* standard INT */
1475			if (SRCBUSIRQ(intr) == isa_irq) {
1476				if (apic_int_is_bus_type(intr, ISA) ||
1477			            apic_int_is_bus_type(intr, EISA))
1478					return INTIRQ(intr);	/* found */
1479			}
1480		}
1481	}
1482	return -1;					/* NOT found */
1483}
1484
1485
1486/*
1487 * Determine which APIC pin a PCI INT is attached to.
1488 */
1489#define SRCBUSID(I)	(io_apic_ints[(I)].src_bus_id)
1490#define SRCBUSDEVICE(I)	((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
1491#define SRCBUSLINE(I)	(io_apic_ints[(I)].src_bus_irq & 0x03)
1492int
1493pci_apic_irq(int pciBus, int pciDevice, int pciInt)
1494{
1495	int     intr;
1496
1497	--pciInt;					/* zero based */
1498
1499	for (intr = 0; intr < nintrs; ++intr)		/* check each record */
1500		if ((INTTYPE(intr) == 0)		/* standard INT */
1501		    && (SRCBUSID(intr) == pciBus)
1502		    && (SRCBUSDEVICE(intr) == pciDevice)
1503		    && (SRCBUSLINE(intr) == pciInt))	/* a candidate IRQ */
1504			if (apic_int_is_bus_type(intr, PCI))
1505				return INTIRQ(intr);	/* exact match */
1506
1507	return -1;					/* NOT found */
1508}
1509
1510int
1511next_apic_irq(int irq)
1512{
1513	int intr, ointr;
1514	int bus, bustype;
1515
1516	bus = 0;
1517	bustype = 0;
1518	for (intr = 0; intr < nintrs; intr++) {
1519		if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
1520			continue;
1521		bus = SRCBUSID(intr);
1522		bustype = apic_bus_type(bus);
1523		if (bustype != ISA &&
1524		    bustype != EISA &&
1525		    bustype != PCI)
1526			continue;
1527		break;
1528	}
1529	if (intr >= nintrs) {
1530		return -1;
1531	}
1532	for (ointr = intr + 1; ointr < nintrs; ointr++) {
1533		if (INTTYPE(ointr) != 0)
1534			continue;
1535		if (bus != SRCBUSID(ointr))
1536			continue;
1537		if (bustype == PCI) {
1538			if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
1539				continue;
1540			if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
1541				continue;
1542		}
1543		if (bustype == ISA || bustype == EISA) {
1544			if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
1545				continue;
1546		}
1547		if (INTPIN(intr) == INTPIN(ointr))
1548			continue;
1549		break;
1550	}
1551	if (ointr >= nintrs) {
1552		return -1;
1553	}
1554	return INTIRQ(ointr);
1555}
1556#undef SRCBUSLINE
1557#undef SRCBUSDEVICE
1558#undef SRCBUSID
1559#undef SRCBUSIRQ
1560
1561#undef INTPIN
1562#undef INTIRQ
1563#undef INTAPIC
1564#undef INTTYPE
1565
1566
1567/*
1568 * Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
1569 *
1570 * XXX FIXME:
1571 *  Exactly what this means is unclear at this point.  It is a solution
1572 *  for motherboards that redirect the MBIRQ0 pin.  Generically a motherboard
1573 *  could route any of the ISA INTs to upper (>15) IRQ values.  But most would
1574 *  NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
1575 *  option.
1576 */
1577int
1578undirect_isa_irq(int rirq)
1579{
1580#if defined(READY)
1581	if (bootverbose)
1582	    printf("Freeing redirected ISA irq %d.\n", rirq);
1583	/** FIXME: tickle the MB redirector chip */
1584	return ???;
1585#else
1586	if (bootverbose)
1587	    printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
1588	return 0;
1589#endif  /* READY */
1590}
1591
1592
1593/*
1594 * Reprogram the MB chipset to NOT redirect a PCI INTerrupt
1595 */
1596int
1597undirect_pci_irq(int rirq)
1598{
1599#if defined(READY)
1600	if (bootverbose)
1601		printf("Freeing redirected PCI irq %d.\n", rirq);
1602
1603	/** FIXME: tickle the MB redirector chip */
1604	return ???;
1605#else
1606	if (bootverbose)
1607		printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
1608		       rirq);
1609	return 0;
1610#endif  /* READY */
1611}
1612
1613
1614/*
1615 * given a bus ID, return:
1616 *  the bus type if found
1617 *  -1 if NOT found
1618 */
1619int
1620apic_bus_type(int id)
1621{
1622	int     x;
1623
1624	for (x = 0; x < mp_nbusses; ++x)
1625		if (bus_data[x].bus_id == id)
1626			return bus_data[x].bus_type;
1627
1628	return -1;
1629}
1630
1631
1632/*
1633 * given a LOGICAL APIC# and pin#, return:
1634 *  the associated src bus ID if found
1635 *  -1 if NOT found
1636 */
1637int
1638apic_src_bus_id(int apic, int pin)
1639{
1640	int     x;
1641
1642	/* search each of the possible INTerrupt sources */
1643	for (x = 0; x < nintrs; ++x)
1644		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1645		    (pin == io_apic_ints[x].dst_apic_int))
1646			return (io_apic_ints[x].src_bus_id);
1647
1648	return -1;		/* NOT found */
1649}
1650
1651
1652/*
1653 * given a LOGICAL APIC# and pin#, return:
1654 *  the associated src bus IRQ if found
1655 *  -1 if NOT found
1656 */
1657int
1658apic_src_bus_irq(int apic, int pin)
1659{
1660	int     x;
1661
1662	for (x = 0; x < nintrs; x++)
1663		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1664		    (pin == io_apic_ints[x].dst_apic_int))
1665			return (io_apic_ints[x].src_bus_irq);
1666
1667	return -1;		/* NOT found */
1668}
1669
1670
1671/*
1672 * given a LOGICAL APIC# and pin#, return:
1673 *  the associated INTerrupt type if found
1674 *  -1 if NOT found
1675 */
1676int
1677apic_int_type(int apic, int pin)
1678{
1679	int     x;
1680
1681	/* search each of the possible INTerrupt sources */
1682	for (x = 0; x < nintrs; ++x)
1683		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1684		    (pin == io_apic_ints[x].dst_apic_int))
1685			return (io_apic_ints[x].int_type);
1686
1687	return -1;		/* NOT found */
1688}
1689
1690int
1691apic_irq(int apic, int pin)
1692{
1693	int x;
1694	int res;
1695
1696	for (x = 0; x < nintrs; ++x)
1697		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1698		    (pin == io_apic_ints[x].dst_apic_int)) {
1699			res = io_apic_ints[x].int_vector;
1700			if (res == 0xff)
1701				return -1;
1702			if (apic != int_to_apicintpin[res].ioapic)
1703				panic("apic_irq: inconsistent table");
1704			if (pin != int_to_apicintpin[res].int_pin)
1705				panic("apic_irq inconsistent table (2)");
1706			return res;
1707		}
1708	return -1;
1709}
1710
1711
1712/*
1713 * given a LOGICAL APIC# and pin#, return:
1714 *  the associated trigger mode if found
1715 *  -1 if NOT found
1716 */
1717int
1718apic_trigger(int apic, int pin)
1719{
1720	int     x;
1721
1722	/* search each of the possible INTerrupt sources */
1723	for (x = 0; x < nintrs; ++x)
1724		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1725		    (pin == io_apic_ints[x].dst_apic_int))
1726			return ((io_apic_ints[x].int_flags >> 2) & 0x03);
1727
1728	return -1;		/* NOT found */
1729}
1730
1731
1732/*
1733 * given a LOGICAL APIC# and pin#, return:
1734 *  the associated 'active' level if found
1735 *  -1 if NOT found
1736 */
1737int
1738apic_polarity(int apic, int pin)
1739{
1740	int     x;
1741
1742	/* search each of the possible INTerrupt sources */
1743	for (x = 0; x < nintrs; ++x)
1744		if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
1745		    (pin == io_apic_ints[x].dst_apic_int))
1746			return (io_apic_ints[x].int_flags & 0x03);
1747
1748	return -1;		/* NOT found */
1749}
1750
1751
1752/*
1753 * set data according to MP defaults
1754 * FIXME: probably not complete yet...
1755 */
1756static void
1757default_mp_table(int type)
1758{
1759	int     ap_cpu_id;
1760#if defined(APIC_IO)
1761	int     io_apic_id;
1762	int     pin;
1763#endif	/* APIC_IO */
1764
1765#if 0
1766	printf("  MP default config type: %d\n", type);
1767	switch (type) {
1768	case 1:
1769		printf("   bus: ISA, APIC: 82489DX\n");
1770		break;
1771	case 2:
1772		printf("   bus: EISA, APIC: 82489DX\n");
1773		break;
1774	case 3:
1775		printf("   bus: EISA, APIC: 82489DX\n");
1776		break;
1777	case 4:
1778		printf("   bus: MCA, APIC: 82489DX\n");
1779		break;
1780	case 5:
1781		printf("   bus: ISA+PCI, APIC: Integrated\n");
1782		break;
1783	case 6:
1784		printf("   bus: EISA+PCI, APIC: Integrated\n");
1785		break;
1786	case 7:
1787		printf("   bus: MCA+PCI, APIC: Integrated\n");
1788		break;
1789	default:
1790		printf("   future type\n");
1791		break;
1792		/* NOTREACHED */
1793	}
1794#endif	/* 0 */
1795
1796	boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
1797	ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
1798
1799	/* BSP */
1800	CPU_TO_ID(0) = boot_cpu_id;
1801	ID_TO_CPU(boot_cpu_id) = 0;
1802
1803	/* one and only AP */
1804	CPU_TO_ID(1) = ap_cpu_id;
1805	ID_TO_CPU(ap_cpu_id) = 1;
1806
1807#if defined(APIC_IO)
1808	/* one and only IO APIC */
1809	io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
1810
1811	/*
1812	 * sanity check, refer to MP spec section 3.6.6, last paragraph
1813	 * necessary as some hardware isn't properly setting up the IO APIC
1814	 */
1815#if defined(REALLY_ANAL_IOAPICID_VALUE)
1816	if (io_apic_id != 2) {
1817#else
1818	if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
1819#endif	/* REALLY_ANAL_IOAPICID_VALUE */
1820		io_apic_set_id(0, 2);
1821		io_apic_id = 2;
1822	}
1823	IO_TO_ID(0) = io_apic_id;
1824	ID_TO_IO(io_apic_id) = 0;
1825#endif	/* APIC_IO */
1826
1827	/* fill out bus entries */
1828	switch (type) {
1829	case 1:
1830	case 2:
1831	case 3:
1832	case 4:
1833	case 5:
1834	case 6:
1835	case 7:
1836		bus_data[0].bus_id = default_data[type - 1][1];
1837		bus_data[0].bus_type = default_data[type - 1][2];
1838		bus_data[1].bus_id = default_data[type - 1][3];
1839		bus_data[1].bus_type = default_data[type - 1][4];
1840		break;
1841
1842	/* case 4: case 7:		   MCA NOT supported */
1843	default:		/* illegal/reserved */
1844		panic("BAD default MP config: %d", type);
1845		/* NOTREACHED */
1846	}
1847
1848#if defined(APIC_IO)
1849	/* general cases from MP v1.4, table 5-2 */
1850	for (pin = 0; pin < 16; ++pin) {
1851		io_apic_ints[pin].int_type = 0;
1852		io_apic_ints[pin].int_flags = 0x05;	/* edge/active-hi */
1853		io_apic_ints[pin].src_bus_id = 0;
1854		io_apic_ints[pin].src_bus_irq = pin;	/* IRQ2 caught below */
1855		io_apic_ints[pin].dst_apic_id = io_apic_id;
1856		io_apic_ints[pin].dst_apic_int = pin;	/* 1-to-1 */
1857	}
1858
1859	/* special cases from MP v1.4, table 5-2 */
1860	if (type == 2) {
1861		io_apic_ints[2].int_type = 0xff;	/* N/C */
1862		io_apic_ints[13].int_type = 0xff;	/* N/C */
1863#if !defined(APIC_MIXED_MODE)
1864		/** FIXME: ??? */
1865		panic("sorry, can't support type 2 default yet");
1866#endif	/* APIC_MIXED_MODE */
1867	}
1868	else
1869		io_apic_ints[2].src_bus_irq = 0;	/* ISA IRQ0 is on APIC INT 2 */
1870
1871	if (type == 7)
1872		io_apic_ints[0].int_type = 0xff;	/* N/C */
1873	else
1874		io_apic_ints[0].int_type = 3;	/* vectored 8259 */
1875#endif	/* APIC_IO */
1876}
1877
1878
1879/*
1880 * initialize all the SMP locks
1881 */
1882
1883/* critical region around IO APIC, apic_imen */
1884struct simplelock	imen_lock;
1885
1886/* critical region around splxx(), cpl, cml, cil, ipending */
1887struct simplelock	cpl_lock;
1888
1889/* Make FAST_INTR() routines sequential */
1890struct simplelock	fast_intr_lock;
1891
1892/* critical region around INTR() routines */
1893struct simplelock	intr_lock;
1894
1895/* lock region used by kernel profiling */
1896struct simplelock	mcount_lock;
1897
1898#ifdef USE_COMLOCK
1899/* locks com (tty) data/hardware accesses: a FASTINTR() */
1900struct simplelock	com_lock;
1901#endif /* USE_COMLOCK */
1902
1903#ifdef USE_CLOCKLOCK
1904/* lock regions around the clock hardware */
1905struct simplelock	clock_lock;
1906#endif /* USE_CLOCKLOCK */
1907
1908/* lock around the MP rendezvous */
1909static struct simplelock smp_rv_lock;
1910
1911/* only 1 CPU can panic at a time :) */
1912struct simplelock	panic_lock;
1913
1914static void
1915init_locks(void)
1916{
1917#if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ)
1918	s_lock_init((struct simplelock*)&apic_itrace_debuglock);
1919#endif
1920
1921	s_lock_init((struct simplelock*)&mcount_lock);
1922
1923	s_lock_init((struct simplelock*)&fast_intr_lock);
1924	s_lock_init((struct simplelock*)&intr_lock);
1925	s_lock_init((struct simplelock*)&imen_lock);
1926	s_lock_init((struct simplelock*)&cpl_lock);
1927	s_lock_init(&smp_rv_lock);
1928	s_lock_init(&panic_lock);
1929
1930#ifdef USE_COMLOCK
1931	s_lock_init((struct simplelock*)&com_lock);
1932#endif /* USE_COMLOCK */
1933#ifdef USE_CLOCKLOCK
1934	s_lock_init((struct simplelock*)&clock_lock);
1935#endif /* USE_CLOCKLOCK */
1936
1937	s_lock_init(&ap_boot_lock);
1938}
1939
1940/*
1941 * start each AP in our list
1942 */
1943static int
1944start_all_aps(u_int boot_addr)
1945{
1946	int     x, i, pg;
1947	u_char  mpbiosreason;
1948	u_long  mpbioswarmvec;
1949	struct globaldata *gd;
1950	char *stack;
1951
1952	POSTCODE(START_ALL_APS_POST);
1953
1954	/* initialize BSP's local APIC */
1955	apic_initialize();
1956	bsp_apic_ready = 1;
1957
1958	/* install the AP 1st level boot code */
1959	install_ap_tramp(boot_addr);
1960
1961
1962	/* save the current value of the warm-start vector */
1963	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
1964#ifndef PC98
1965	outb(CMOS_REG, BIOS_RESET);
1966	mpbiosreason = inb(CMOS_DATA);
1967#endif
1968
1969	/* record BSP in CPU map */
1970	all_cpus = 1;
1971
1972	/* set up 0 -> 4MB P==V mapping for AP boot */
1973	*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
1974	invltlb();
1975
1976	/* start each AP */
1977	for (x = 1; x <= mp_naps; ++x) {
1978
1979		/* This is a bit verbose, it will go away soon.  */
1980
1981		/* first page of AP's private space */
1982		pg = x * i386_btop(sizeof(struct privatespace));
1983
1984		/* allocate a new private data page */
1985		gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
1986
1987		/* wire it into the private page table page */
1988		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
1989
1990		/* allocate and set up an idle stack data page */
1991		stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
1992		for (i = 0; i < UPAGES; i++)
1993			SMPpt[pg + 5 + i] = (pt_entry_t)
1994			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
1995
1996		SMPpt[pg + 1] = 0;		/* *prv_CMAP1 */
1997		SMPpt[pg + 2] = 0;		/* *prv_CMAP2 */
1998		SMPpt[pg + 3] = 0;		/* *prv_CMAP3 */
1999		SMPpt[pg + 4] = 0;		/* *prv_PMAP1 */
2000
2001		/* prime data page for it to use */
2002		SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu);
2003		gd->gd_cpuid = x;
2004		gd->gd_cpu_lockid = x << 24;
2005		gd->gd_prv_CMAP1 = &SMPpt[pg + 1];
2006		gd->gd_prv_CMAP2 = &SMPpt[pg + 2];
2007		gd->gd_prv_CMAP3 = &SMPpt[pg + 3];
2008		gd->gd_prv_PMAP1 = &SMPpt[pg + 4];
2009		gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1;
2010		gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2;
2011		gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3;
2012		gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1;
2013
2014		/* setup a vector to our boot code */
2015		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
2016		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
2017#ifndef PC98
2018		outb(CMOS_REG, BIOS_RESET);
2019		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
2020#endif
2021
2022		bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
2023		bootAP = x;
2024
2025		/* attempt to start the Application Processor */
2026		CHECK_INIT(99);	/* setup checkpoints */
2027		if (!start_ap(x, boot_addr)) {
2028			printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
2029			CHECK_PRINT("trace");	/* show checkpoints */
2030			/* better panic as the AP may be running loose */
2031			printf("panic y/n? [y] ");
2032			if (cngetc() != 'n')
2033				panic("bye-bye");
2034		}
2035		CHECK_PRINT("trace");		/* show checkpoints */
2036
2037		/* record its version info */
2038		cpu_apic_versions[x] = cpu_apic_versions[0];
2039
2040		all_cpus |= (1 << x);		/* record AP in CPU map */
2041	}
2042
2043	/* build our map of 'other' CPUs */
2044	other_cpus = all_cpus & ~(1 << cpuid);
2045
2046	/* fill in our (BSP) APIC version */
2047	cpu_apic_versions[0] = lapic.version;
2048
2049	/* restore the warmstart vector */
2050	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
2051#ifndef PC98
2052	outb(CMOS_REG, BIOS_RESET);
2053	outb(CMOS_DATA, mpbiosreason);
2054#endif
2055
2056	/*
2057	 * Set up the idle context for the BSP.  Similar to above except
2058	 * that some was done by locore, some by pmap.c and some is implicit
2059	 * because the BSP is cpu#0 and the page is initially zero, and also
2060	 * because we can refer to variables by name on the BSP..
2061	 */
2062
2063	/* Allocate and setup BSP idle stack */
2064	stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
2065	for (i = 0; i < UPAGES; i++)
2066		SMPpt[5 + i] = (pt_entry_t)
2067		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
2068
2069	*(int *)PTD = 0;
2070	pmap_set_opt();
2071
2072	/* number of APs actually started */
2073	return mp_ncpus - 1;
2074}
2075
2076
2077/*
2078 * load the 1st level AP boot code into base memory.
2079 */
2080
2081/* targets for relocation */
2082extern void bigJump(void);
2083extern void bootCodeSeg(void);
2084extern void bootDataSeg(void);
2085extern void MPentry(void);
2086extern u_int MP_GDT;
2087extern u_int mp_gdtbase;
2088
2089static void
2090install_ap_tramp(u_int boot_addr)
2091{
2092	int     x;
2093	int     size = *(int *) ((u_long) & bootMP_size);
2094	u_char *src = (u_char *) ((u_long) bootMP);
2095	u_char *dst = (u_char *) boot_addr + KERNBASE;
2096	u_int   boot_base = (u_int) bootMP;
2097	u_int8_t *dst8;
2098	u_int16_t *dst16;
2099	u_int32_t *dst32;
2100
2101	POSTCODE(INSTALL_AP_TRAMP_POST);
2102
2103	for (x = 0; x < size; ++x)
2104		*dst++ = *src++;
2105
2106	/*
2107	 * modify addresses in code we just moved to basemem. unfortunately we
2108	 * need fairly detailed info about mpboot.s for this to work.  changes
2109	 * to mpboot.s might require changes here.
2110	 */
2111
2112	/* boot code is located in KERNEL space */
2113	dst = (u_char *) boot_addr + KERNBASE;
2114
2115	/* modify the lgdt arg */
2116	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
2117	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
2118
2119	/* modify the ljmp target for MPentry() */
2120	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
2121	*dst32 = ((u_int) MPentry - KERNBASE);
2122
2123	/* modify the target for boot code segment */
2124	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
2125	dst8 = (u_int8_t *) (dst16 + 1);
2126	*dst16 = (u_int) boot_addr & 0xffff;
2127	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2128
2129	/* modify the target for boot data segment */
2130	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
2131	dst8 = (u_int8_t *) (dst16 + 1);
2132	*dst16 = (u_int) boot_addr & 0xffff;
2133	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
2134}
2135
2136
2137/*
2138 * this function starts the AP (application processor) identified
2139 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
2140 * to accomplish this.  This is necessary because of the nuances
2141 * of the different hardware we might encounter.  It ain't pretty,
2142 * but it seems to work.
2143 */
2144static int
2145start_ap(int logical_cpu, u_int boot_addr)
2146{
2147	int     physical_cpu;
2148	int     vector;
2149	int     cpus;
2150	u_long  icr_lo, icr_hi;
2151
2152	POSTCODE(START_AP_POST);
2153
2154	/* get the PHYSICAL APIC ID# */
2155	physical_cpu = CPU_TO_ID(logical_cpu);
2156
2157	/* calculate the vector */
2158	vector = (boot_addr >> 12) & 0xff;
2159
2160	/* used as a watchpoint to signal AP startup */
2161	cpus = mp_ncpus;
2162
2163	/*
2164	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
2165	 * and running the target CPU. OR this INIT IPI might be latched (P5
2166	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
2167	 * ignored.
2168	 */
2169
2170	/* setup the address for the target AP */
2171	icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
2172	icr_hi |= (physical_cpu << 24);
2173	lapic.icr_hi = icr_hi;
2174
2175	/* do an INIT IPI: assert RESET */
2176	icr_lo = lapic.icr_lo & 0xfff00000;
2177	lapic.icr_lo = icr_lo | 0x0000c500;
2178
2179	/* wait for pending status end */
2180	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2181		 /* spin */ ;
2182
2183	/* do an INIT IPI: deassert RESET */
2184	lapic.icr_lo = icr_lo | 0x00008500;
2185
2186	/* wait for pending status end */
2187	u_sleep(10000);		/* wait ~10mS */
2188	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2189		 /* spin */ ;
2190
2191	/*
2192	 * next we do a STARTUP IPI: the previous INIT IPI might still be
2193	 * latched, (P5 bug) this 1st STARTUP would then terminate
2194	 * immediately, and the previously started INIT IPI would continue. OR
2195	 * the previous INIT IPI has already run. and this STARTUP IPI will
2196	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
2197	 * will run.
2198	 */
2199
2200	/* do a STARTUP IPI */
2201	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2202	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2203		 /* spin */ ;
2204	u_sleep(200);		/* wait ~200uS */
2205
2206	/*
2207	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
2208	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
2209	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
2210	 * recognized after hardware RESET or INIT IPI.
2211	 */
2212
2213	lapic.icr_lo = icr_lo | 0x00000600 | vector;
2214	while (lapic.icr_lo & APIC_DELSTAT_MASK)
2215		 /* spin */ ;
2216	u_sleep(200);		/* wait ~200uS */
2217
2218	/* wait for it to start */
2219	set_apic_timer(5000000);/* == 5 seconds */
2220	while (read_apic_timer())
2221		if (mp_ncpus > cpus)
2222			return 1;	/* return SUCCESS */
2223
2224	return 0;		/* return FAILURE */
2225}
2226
2227/*
2228 * Flush the TLB on all other CPU's
2229 *
2230 * XXX: Needs to handshake and wait for completion before proceding.
2231 */
2232void
2233smp_invltlb(void)
2234{
2235#if defined(APIC_IO)
2236	if (smp_started && invltlb_ok)
2237		all_but_self_ipi(XINVLTLB_OFFSET);
2238#endif  /* APIC_IO */
2239}
2240
2241void
2242invlpg(u_int addr)
2243{
2244	__asm   __volatile("invlpg (%0)"::"r"(addr):"memory");
2245
2246	/* send a message to the other CPUs */
2247	smp_invltlb();
2248}
2249
2250void
2251invltlb(void)
2252{
2253	u_long  temp;
2254
2255	/*
2256	 * This should be implemented as load_cr3(rcr3()) when load_cr3() is
2257	 * inlined.
2258	 */
2259	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
2260
2261	/* send a message to the other CPUs */
2262	smp_invltlb();
2263}
2264
2265
2266/*
2267 * When called the executing CPU will send an IPI to all other CPUs
2268 *  requesting that they halt execution.
2269 *
2270 * Usually (but not necessarily) called with 'other_cpus' as its arg.
2271 *
2272 *  - Signals all CPUs in map to stop.
2273 *  - Waits for each to stop.
2274 *
2275 * Returns:
2276 *  -1: error
2277 *   0: NA
2278 *   1: ok
2279 *
2280 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
2281 *            from executing at same time.
2282 */
2283int
2284stop_cpus(u_int map)
2285{
2286	if (!smp_started)
2287		return 0;
2288
2289	/* send the Xcpustop IPI to all CPUs in map */
2290	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
2291
2292	while ((stopped_cpus & map) != map)
2293		/* spin */ ;
2294
2295	return 1;
2296}
2297
2298
2299/*
2300 * Called by a CPU to restart stopped CPUs.
2301 *
2302 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
2303 *
2304 *  - Signals all CPUs in map to restart.
2305 *  - Waits for each to restart.
2306 *
2307 * Returns:
2308 *  -1: error
2309 *   0: NA
2310 *   1: ok
2311 */
2312int
2313restart_cpus(u_int map)
2314{
2315	if (!smp_started)
2316		return 0;
2317
2318	started_cpus = map;		/* signal other cpus to restart */
2319
2320	while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */
2321		/* spin */ ;
2322
2323	return 1;
2324}
2325
2326int smp_active = 0;	/* are the APs allowed to run? */
2327SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
2328
2329/* XXX maybe should be hw.ncpu */
2330static int smp_cpus = 1;	/* how many cpu's running */
2331SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
2332
2333int invltlb_ok = 0;	/* throttle smp_invltlb() till safe */
2334SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
2335
2336/* Warning: Do not staticize.  Used from swtch.s */
2337int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */
2338SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW,
2339	   &do_page_zero_idle, 0, "");
2340
2341/* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */
2342int forward_irq_enabled = 1;
2343SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW,
2344	   &forward_irq_enabled, 0, "");
2345
2346/* Enable forwarding of a signal to a process running on a different CPU */
2347static int forward_signal_enabled = 1;
2348SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
2349	   &forward_signal_enabled, 0, "");
2350
2351/* Enable forwarding of roundrobin to all other cpus */
2352static int forward_roundrobin_enabled = 1;
2353SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
2354	   &forward_roundrobin_enabled, 0, "");
2355
2356/*
2357 * This is called once the rest of the system is up and running and we're
2358 * ready to let the AP's out of the pen.
2359 */
2360void ap_init(void);
2361
2362void
2363ap_init(void)
2364{
2365	u_int	apic_id;
2366
2367	/* lock against other AP's that are waking up */
2368	s_lock(&ap_boot_lock);
2369
2370	/* BSP may have changed PTD while we're waiting for the lock */
2371	cpu_invltlb();
2372
2373	smp_cpus++;
2374
2375#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2376	lidt(&r_idt);
2377#endif
2378
2379	/* Build our map of 'other' CPUs. */
2380	other_cpus = all_cpus & ~(1 << cpuid);
2381
2382	printf("SMP: AP CPU #%d Launched!\n", cpuid);
2383
2384	/* set up CPU registers and state */
2385	cpu_setregs();
2386
2387	/* set up FPU state on the AP */
2388	npxinit(__INITIAL_NPXCW__);
2389
2390	/* A quick check from sanity claus */
2391	apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
2392	if (cpuid != apic_id) {
2393		printf("SMP: cpuid = %d\n", cpuid);
2394		printf("SMP: apic_id = %d\n", apic_id);
2395		printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
2396		panic("cpuid mismatch! boom!!");
2397	}
2398
2399	/* Init local apic for irq's */
2400	apic_initialize();
2401
2402	/* Set memory range attributes for this CPU to match the BSP */
2403	mem_range_AP_init();
2404
2405	/*
2406	 * Activate smp_invltlb, although strictly speaking, this isn't
2407	 * quite correct yet.  We should have a bitfield for cpus willing
2408	 * to accept TLB flush IPI's or something and sync them.
2409	 */
2410	if (smp_cpus == mp_ncpus) {
2411		invltlb_ok = 1;
2412		smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
2413		smp_active = 1;	 /* historic */
2414	}
2415
2416	/* let other AP's wake up now */
2417	s_unlock(&ap_boot_lock);
2418
2419	/* wait until all the AP's are up */
2420	while (smp_started == 0)
2421		; /* nothing */
2422
2423	/*
2424	 * Set curproc to our per-cpu idleproc so that mutexes have
2425	 * something unique to lock with.
2426	 */
2427	PCPU_SET(curproc,idleproc);
2428	PCPU_SET(prevproc,idleproc);
2429
2430	microuptime(&switchtime);
2431	switchticks = ticks;
2432
2433	/* ok, now grab sched_lock and enter the scheduler */
2434	enable_intr();
2435	mtx_enter(&sched_lock, MTX_SPIN);
2436	cpu_throw();	/* doesn't return */
2437
2438	panic("scheduler returned us to ap_init");
2439}
2440
2441#ifdef BETTER_CLOCK
2442
2443#define CHECKSTATE_USER	0
2444#define CHECKSTATE_SYS	1
2445#define CHECKSTATE_INTR	2
2446
2447/* Do not staticize.  Used from apic_vector.s */
2448struct proc*	checkstate_curproc[MAXCPU];
2449int		checkstate_cpustate[MAXCPU];
2450u_long		checkstate_pc[MAXCPU];
2451
2452#define PC_TO_INDEX(pc, prof)				\
2453        ((int)(((u_quad_t)((pc) - (prof)->pr_off) *	\
2454            (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
2455
2456static void
2457addupc_intr_forwarded(struct proc *p, int id, int *astmap)
2458{
2459	int i;
2460	struct uprof *prof;
2461	u_long pc;
2462
2463	pc = checkstate_pc[id];
2464	prof = &p->p_stats->p_prof;
2465	if (pc >= prof->pr_off &&
2466	    (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
2467		if ((p->p_flag & P_OWEUPC) == 0) {
2468			prof->pr_addr = pc;
2469			prof->pr_ticks = 1;
2470			p->p_flag |= P_OWEUPC;
2471		}
2472		*astmap |= (1 << id);
2473	}
2474}
2475
2476static void
2477forwarded_statclock(int id, int pscnt, int *astmap)
2478{
2479	struct pstats *pstats;
2480	long rss;
2481	struct rusage *ru;
2482	struct vmspace *vm;
2483	int cpustate;
2484	struct proc *p;
2485#ifdef GPROF
2486	register struct gmonparam *g;
2487	int i;
2488#endif
2489
2490	p = checkstate_curproc[id];
2491	cpustate = checkstate_cpustate[id];
2492
2493	/* XXX */
2494	if (p->p_ithd)
2495		cpustate = CHECKSTATE_INTR;
2496	else if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2497		cpustate = CHECKSTATE_SYS;
2498
2499	switch (cpustate) {
2500	case CHECKSTATE_USER:
2501		if (p->p_flag & P_PROFIL)
2502			addupc_intr_forwarded(p, id, astmap);
2503		if (pscnt > 1)
2504			return;
2505		p->p_uticks++;
2506		if (p->p_nice > NZERO)
2507			cp_time[CP_NICE]++;
2508		else
2509			cp_time[CP_USER]++;
2510		break;
2511	case CHECKSTATE_SYS:
2512#ifdef GPROF
2513		/*
2514		 * Kernel statistics are just like addupc_intr, only easier.
2515		 */
2516		g = &_gmonparam;
2517		if (g->state == GMON_PROF_ON) {
2518			i = checkstate_pc[id] - g->lowpc;
2519			if (i < g->textsize) {
2520				i /= HISTFRACTION * sizeof(*g->kcount);
2521				g->kcount[i]++;
2522			}
2523		}
2524#endif
2525		if (pscnt > 1)
2526			return;
2527
2528		p->p_sticks++;
2529		if (p == SMP_prvspace[id].globaldata.gd_idleproc)
2530			cp_time[CP_IDLE]++;
2531		else
2532			cp_time[CP_SYS]++;
2533		break;
2534	case CHECKSTATE_INTR:
2535	default:
2536#ifdef GPROF
2537		/*
2538		 * Kernel statistics are just like addupc_intr, only easier.
2539		 */
2540		g = &_gmonparam;
2541		if (g->state == GMON_PROF_ON) {
2542			i = checkstate_pc[id] - g->lowpc;
2543			if (i < g->textsize) {
2544				i /= HISTFRACTION * sizeof(*g->kcount);
2545				g->kcount[i]++;
2546			}
2547		}
2548#endif
2549		if (pscnt > 1)
2550			return;
2551		if (p)
2552			p->p_iticks++;
2553		cp_time[CP_INTR]++;
2554	}
2555	schedclock(p);
2556
2557	/* Update resource usage integrals and maximums. */
2558	if ((pstats = p->p_stats) != NULL &&
2559	    (ru = &pstats->p_ru) != NULL &&
2560	    (vm = p->p_vmspace) != NULL) {
2561		ru->ru_ixrss += pgtok(vm->vm_tsize);
2562		ru->ru_idrss += pgtok(vm->vm_dsize);
2563		ru->ru_isrss += pgtok(vm->vm_ssize);
2564		rss = pgtok(vmspace_resident_count(vm));
2565		if (ru->ru_maxrss < rss)
2566			ru->ru_maxrss = rss;
2567	}
2568}
2569
2570void
2571forward_statclock(int pscnt)
2572{
2573	int map;
2574	int id;
2575	int i;
2576
2577	/* Kludge. We don't yet have separate locks for the interrupts
2578	 * and the kernel. This means that we cannot let the other processors
2579	 * handle complex interrupts while inhibiting them from entering
2580	 * the kernel in a non-interrupt context.
2581	 *
2582	 * What we can do, without changing the locking mechanisms yet,
2583	 * is letting the other processors handle a very simple interrupt
2584	 * (wich determines the processor states), and do the main
2585	 * work ourself.
2586	 */
2587
2588	if (!smp_started || !invltlb_ok || cold || panicstr)
2589		return;
2590
2591	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle ) */
2592
2593	map = other_cpus & ~stopped_cpus ;
2594	checkstate_probed_cpus = 0;
2595	if (map != 0)
2596		selected_apic_ipi(map,
2597				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2598
2599	i = 0;
2600	while (checkstate_probed_cpus != map) {
2601		/* spin */
2602		i++;
2603		if (i == 100000) {
2604#ifdef BETTER_CLOCK_DIAGNOSTIC
2605			printf("forward_statclock: checkstate %x\n",
2606			       checkstate_probed_cpus);
2607#endif
2608			break;
2609		}
2610	}
2611
2612	/*
2613	 * Step 2: walk through other processors processes, update ticks and
2614	 * profiling info.
2615	 */
2616
2617	map = 0;
2618	for (id = 0; id < mp_ncpus; id++) {
2619		if (id == cpuid)
2620			continue;
2621		if (((1 << id) & checkstate_probed_cpus) == 0)
2622			continue;
2623		forwarded_statclock(id, pscnt, &map);
2624	}
2625	if (map != 0) {
2626		checkstate_need_ast |= map;
2627		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2628		i = 0;
2629		while ((checkstate_need_ast & map) != 0) {
2630			/* spin */
2631			i++;
2632			if (i > 100000) {
2633#ifdef BETTER_CLOCK_DIAGNOSTIC
2634				printf("forward_statclock: dropped ast 0x%x\n",
2635				       checkstate_need_ast & map);
2636#endif
2637				break;
2638			}
2639		}
2640	}
2641}
2642
2643void
2644forward_hardclock(int pscnt)
2645{
2646	int map;
2647	int id;
2648	struct proc *p;
2649	struct pstats *pstats;
2650	int i;
2651
2652	/* Kludge. We don't yet have separate locks for the interrupts
2653	 * and the kernel. This means that we cannot let the other processors
2654	 * handle complex interrupts while inhibiting them from entering
2655	 * the kernel in a non-interrupt context.
2656	 *
2657	 * What we can do, without changing the locking mechanisms yet,
2658	 * is letting the other processors handle a very simple interrupt
2659	 * (wich determines the processor states), and do the main
2660	 * work ourself.
2661	 */
2662
2663	if (!smp_started || !invltlb_ok || cold || panicstr)
2664		return;
2665
2666	/* Step 1: Probe state   (user, cpu, interrupt, spinlock, idle) */
2667
2668	map = other_cpus & ~stopped_cpus ;
2669	checkstate_probed_cpus = 0;
2670	if (map != 0)
2671		selected_apic_ipi(map,
2672				  XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
2673
2674	i = 0;
2675	while (checkstate_probed_cpus != map) {
2676		/* spin */
2677		i++;
2678		if (i == 100000) {
2679#ifdef BETTER_CLOCK_DIAGNOSTIC
2680			printf("forward_hardclock: checkstate %x\n",
2681			       checkstate_probed_cpus);
2682#endif
2683			break;
2684		}
2685	}
2686
2687	/*
2688	 * Step 2: walk through other processors processes, update virtual
2689	 * timer and profiling timer. If stathz == 0, also update ticks and
2690	 * profiling info.
2691	 */
2692
2693	map = 0;
2694	for (id = 0; id < mp_ncpus; id++) {
2695		if (id == cpuid)
2696			continue;
2697		if (((1 << id) & checkstate_probed_cpus) == 0)
2698			continue;
2699		p = checkstate_curproc[id];
2700		if (p) {
2701			pstats = p->p_stats;
2702			if (checkstate_cpustate[id] == CHECKSTATE_USER &&
2703			    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
2704			    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
2705				psignal(p, SIGVTALRM);
2706				map |= (1 << id);
2707			}
2708			if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
2709			    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
2710				psignal(p, SIGPROF);
2711				map |= (1 << id);
2712			}
2713		}
2714		if (stathz == 0) {
2715			forwarded_statclock( id, pscnt, &map);
2716		}
2717	}
2718	if (map != 0) {
2719		checkstate_need_ast |= map;
2720		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2721		i = 0;
2722		while ((checkstate_need_ast & map) != 0) {
2723			/* spin */
2724			i++;
2725			if (i > 100000) {
2726#ifdef BETTER_CLOCK_DIAGNOSTIC
2727				printf("forward_hardclock: dropped ast 0x%x\n",
2728				       checkstate_need_ast & map);
2729#endif
2730				break;
2731			}
2732		}
2733	}
2734}
2735
2736#endif /* BETTER_CLOCK */
2737
2738void
2739forward_signal(struct proc *p)
2740{
2741	int map;
2742	int id;
2743	int i;
2744
2745	/* Kludge. We don't yet have separate locks for the interrupts
2746	 * and the kernel. This means that we cannot let the other processors
2747	 * handle complex interrupts while inhibiting them from entering
2748	 * the kernel in a non-interrupt context.
2749	 *
2750	 * What we can do, without changing the locking mechanisms yet,
2751	 * is letting the other processors handle a very simple interrupt
2752	 * (wich determines the processor states), and do the main
2753	 * work ourself.
2754	 */
2755
2756	if (!smp_started || !invltlb_ok || cold || panicstr)
2757		return;
2758	if (!forward_signal_enabled)
2759		return;
2760	while (1) {
2761		if (p->p_stat != SRUN)
2762			return;
2763		id = p->p_oncpu;
2764		if (id == 0xff)
2765			return;
2766		map = (1<<id);
2767		checkstate_need_ast |= map;
2768		selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2769		i = 0;
2770		while ((checkstate_need_ast & map) != 0) {
2771			/* spin */
2772			i++;
2773			if (i > 100000) {
2774#if 0
2775				printf("forward_signal: dropped ast 0x%x\n",
2776				       checkstate_need_ast & map);
2777#endif
2778				break;
2779			}
2780		}
2781		if (id == p->p_oncpu)
2782			return;
2783	}
2784}
2785
2786void
2787forward_roundrobin(void)
2788{
2789	u_int map;
2790	int i;
2791
2792	if (!smp_started || !invltlb_ok || cold || panicstr)
2793		return;
2794	if (!forward_roundrobin_enabled)
2795		return;
2796	resched_cpus |= other_cpus;
2797	map = other_cpus & ~stopped_cpus ;
2798#if 1
2799	selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
2800#else
2801	(void) all_but_self_ipi(XCPUAST_OFFSET);
2802#endif
2803	i = 0;
2804	while ((checkstate_need_ast & map) != 0) {
2805		/* spin */
2806		i++;
2807		if (i > 100000) {
2808#if 0
2809			printf("forward_roundrobin: dropped ast 0x%x\n",
2810			       checkstate_need_ast & map);
2811#endif
2812			break;
2813		}
2814	}
2815}
2816
2817
2818#ifdef APIC_INTR_REORDER
2819/*
2820 *	Maintain mapping from softintr vector to isr bit in local apic.
2821 */
2822void
2823set_lapic_isrloc(int intr, int vector)
2824{
2825	if (intr < 0 || intr > 32)
2826		panic("set_apic_isrloc: bad intr argument: %d",intr);
2827	if (vector < ICU_OFFSET || vector > 255)
2828		panic("set_apic_isrloc: bad vector argument: %d",vector);
2829	apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
2830	apic_isrbit_location[intr].bit = (1<<(vector & 31));
2831}
2832#endif
2833
2834/*
2835 * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
2836 * (if specified), rendezvous, execute the action function (if specified),
2837 * rendezvous again, execute the teardown function (if specified), and then
2838 * resume.
2839 *
2840 * Note that the supplied external functions _must_ be reentrant and aware
2841 * that they are running in parallel and in an unknown lock context.
2842 */
2843static void (*smp_rv_setup_func)(void *arg);
2844static void (*smp_rv_action_func)(void *arg);
2845static void (*smp_rv_teardown_func)(void *arg);
2846static void *smp_rv_func_arg;
2847static volatile int smp_rv_waiters[2];
2848
2849void
2850smp_rendezvous_action(void)
2851{
2852	/* setup function */
2853	if (smp_rv_setup_func != NULL)
2854		smp_rv_setup_func(smp_rv_func_arg);
2855	/* spin on entry rendezvous */
2856	atomic_add_int(&smp_rv_waiters[0], 1);
2857	while (smp_rv_waiters[0] < mp_ncpus)
2858		;
2859	/* action function */
2860	if (smp_rv_action_func != NULL)
2861		smp_rv_action_func(smp_rv_func_arg);
2862	/* spin on exit rendezvous */
2863	atomic_add_int(&smp_rv_waiters[1], 1);
2864	while (smp_rv_waiters[1] < mp_ncpus)
2865		;
2866	/* teardown function */
2867	if (smp_rv_teardown_func != NULL)
2868		smp_rv_teardown_func(smp_rv_func_arg);
2869}
2870
2871void
2872smp_rendezvous(void (* setup_func)(void *),
2873	       void (* action_func)(void *),
2874	       void (* teardown_func)(void *),
2875	       void *arg)
2876{
2877	u_int	efl;
2878
2879	/* obtain rendezvous lock */
2880	s_lock(&smp_rv_lock);		/* XXX sleep here? NOWAIT flag? */
2881
2882	/* set static function pointers */
2883	smp_rv_setup_func = setup_func;
2884	smp_rv_action_func = action_func;
2885	smp_rv_teardown_func = teardown_func;
2886	smp_rv_func_arg = arg;
2887	smp_rv_waiters[0] = 0;
2888	smp_rv_waiters[1] = 0;
2889
2890	/* disable interrupts on this CPU, save interrupt status */
2891	efl = read_eflags();
2892	write_eflags(efl & ~PSL_I);
2893
2894	/* signal other processors, which will enter the IPI with interrupts off */
2895	all_but_self_ipi(XRENDEZVOUS_OFFSET);
2896
2897	/* call executor function */
2898	smp_rendezvous_action();
2899
2900	/* restore interrupt flag */
2901	write_eflags(efl);
2902
2903	/* release lock */
2904	s_unlock(&smp_rv_lock);
2905}
2906
2907void
2908release_aps(void *dummy __unused)
2909{
2910	s_unlock(&ap_boot_lock);
2911}
2912
2913SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
2914