mp_x86.c revision 291688
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2003, by Peter Wemm
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/x86/x86/mp_x86.c 291688 2015-12-03 11:14:14Z kib $");
29
30#ifdef __i386__
31#include "opt_apic.h"
32#endif
33#include "opt_cpu.h"
34#include "opt_kstack_pages.h"
35#include "opt_pmap.h"
36#include "opt_sched.h"
37#include "opt_smp.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/bus.h>
42#include <sys/cons.h>	/* cngetc() */
43#include <sys/cpuset.h>
44#ifdef GPROF
45#include <sys/gmon.h>
46#endif
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/memrange.h>
52#include <sys/mutex.h>
53#include <sys/pcpu.h>
54#include <sys/proc.h>
55#include <sys/sched.h>
56#include <sys/smp.h>
57#include <sys/sysctl.h>
58
59#include <vm/vm.h>
60#include <vm/vm_param.h>
61#include <vm/pmap.h>
62#include <vm/vm_kern.h>
63#include <vm/vm_extern.h>
64
65#include <x86/apicreg.h>
66#include <machine/clock.h>
67#include <machine/cputypes.h>
68#include <x86/mca.h>
69#include <machine/md_var.h>
70#include <machine/pcb.h>
71#include <machine/psl.h>
72#include <machine/smp.h>
73#include <machine/specialreg.h>
74#include <machine/cpu.h>
75
76#define WARMBOOT_TARGET		0
77#define WARMBOOT_OFF		(KERNBASE + 0x0467)
78#define WARMBOOT_SEG		(KERNBASE + 0x0469)
79
80#define CMOS_REG		(0x70)
81#define CMOS_DATA		(0x71)
82#define BIOS_RESET		(0x0f)
83#define BIOS_WARM		(0x0a)
84
85/* lock region used by kernel profiling */
86int	mcount_lock;
87
88int	mp_naps;		/* # of Applications processors */
89int	boot_cpu_id = -1;	/* designated BSP */
90
91extern	struct pcpu __pcpu[];
92
93/* AP uses this during bootstrap.  Do not staticize.  */
94char *bootSTK;
95int bootAP;
96
97/* Free these after use */
98void *bootstacks[MAXCPU];
99void *dpcpu;
100
101struct pcb stoppcbs[MAXCPU];
102struct susppcb **susppcbs;
103
104#ifdef COUNT_IPIS
105/* Interrupt counts. */
106static u_long *ipi_preempt_counts[MAXCPU];
107static u_long *ipi_ast_counts[MAXCPU];
108u_long *ipi_invltlb_counts[MAXCPU];
109u_long *ipi_invlrng_counts[MAXCPU];
110u_long *ipi_invlpg_counts[MAXCPU];
111u_long *ipi_invlcache_counts[MAXCPU];
112u_long *ipi_rendezvous_counts[MAXCPU];
113static u_long *ipi_hardclock_counts[MAXCPU];
114#endif
115
116/* Default cpu_ops implementation. */
117struct cpu_ops cpu_ops;
118
119/*
120 * Local data and functions.
121 */
122
123static volatile cpuset_t ipi_stop_nmi_pending;
124
125/* used to hold the AP's until we are ready to release them */
126struct mtx ap_boot_mtx;
127
128/* Set to 1 once we're ready to let the APs out of the pen. */
129volatile int aps_ready = 0;
130
131/*
132 * Store data from cpu_add() until later in the boot when we actually setup
133 * the APs.
134 */
135struct cpu_info cpu_info[MAX_APIC_ID + 1];
136int cpu_apic_ids[MAXCPU];
137int apic_cpuids[MAX_APIC_ID + 1];
138
139/* Holds pending bitmap based IPIs per CPU */
140volatile u_int cpu_ipi_pending[MAXCPU];
141
142int cpu_logical;		/* logical cpus per core */
143int cpu_cores;			/* cores per package */
144
145static void	release_aps(void *dummy);
146
147static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
148static int	hyperthreading_allowed = 1;
149
150void
151mem_range_AP_init(void)
152{
153
154	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
155		mem_range_softc.mr_op->initAP(&mem_range_softc);
156}
157
158static void
159topo_probe_amd(void)
160{
161	int core_id_bits;
162	int id;
163
164	/* AMD processors do not support HTT. */
165	cpu_logical = 1;
166
167	if ((amd_feature2 & AMDID2_CMP) == 0) {
168		cpu_cores = 1;
169		return;
170	}
171
172	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
173	    AMDID_COREID_SIZE_SHIFT;
174	if (core_id_bits == 0) {
175		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
176		return;
177	}
178
179	/* Fam 10h and newer should get here. */
180	for (id = 0; id <= MAX_APIC_ID; id++) {
181		/* Check logical CPU availability. */
182		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
183			continue;
184		/* Check if logical CPU has the same package ID. */
185		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
186			continue;
187		cpu_cores++;
188	}
189}
190
191/*
192 * Round up to the next power of two, if necessary, and then
193 * take log2.
194 * Returns -1 if argument is zero.
195 */
196static __inline int
197mask_width(u_int x)
198{
199
200	return (fls(x << (1 - powerof2(x))) - 1);
201}
202
203static void
204topo_probe_0x4(void)
205{
206	u_int p[4];
207	int pkg_id_bits;
208	int core_id_bits;
209	int max_cores;
210	int max_logical;
211	int id;
212
213	/* Both zero and one here mean one logical processor per package. */
214	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
215	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
216	if (max_logical <= 1)
217		return;
218
219	/*
220	 * Because of uniformity assumption we examine only
221	 * those logical processors that belong to the same
222	 * package as BSP.  Further, we count number of
223	 * logical processors that belong to the same core
224	 * as BSP thus deducing number of threads per core.
225	 */
226	if (cpu_high >= 0x4) {
227		cpuid_count(0x04, 0, p);
228		max_cores = ((p[0] >> 26) & 0x3f) + 1;
229	} else
230		max_cores = 1;
231	core_id_bits = mask_width(max_logical/max_cores);
232	if (core_id_bits < 0)
233		return;
234	pkg_id_bits = core_id_bits + mask_width(max_cores);
235
236	for (id = 0; id <= MAX_APIC_ID; id++) {
237		/* Check logical CPU availability. */
238		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
239			continue;
240		/* Check if logical CPU has the same package ID. */
241		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
242			continue;
243		cpu_cores++;
244		/* Check if logical CPU has the same package and core IDs. */
245		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
246			cpu_logical++;
247	}
248
249	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
250	    ("topo_probe_0x4 couldn't find BSP"));
251
252	cpu_cores /= cpu_logical;
253	hyperthreading_cpus = cpu_logical;
254}
255
256static void
257topo_probe_0xb(void)
258{
259	u_int p[4];
260	int bits;
261	int cnt;
262	int i;
263	int logical;
264	int type;
265	int x;
266
267	/* We only support three levels for now. */
268	for (i = 0; i < 3; i++) {
269		cpuid_count(0x0b, i, p);
270
271		/* Fall back if CPU leaf 11 doesn't really exist. */
272		if (i == 0 && p[1] == 0) {
273			topo_probe_0x4();
274			return;
275		}
276
277		bits = p[0] & 0x1f;
278		logical = p[1] &= 0xffff;
279		type = (p[2] >> 8) & 0xff;
280		if (type == 0 || logical == 0)
281			break;
282		/*
283		 * Because of uniformity assumption we examine only
284		 * those logical processors that belong to the same
285		 * package as BSP.
286		 */
287		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
288			if (!cpu_info[x].cpu_present ||
289			    cpu_info[x].cpu_disabled)
290				continue;
291			if (x >> bits == boot_cpu_id >> bits)
292				cnt++;
293		}
294		if (type == CPUID_TYPE_SMT)
295			cpu_logical = cnt;
296		else if (type == CPUID_TYPE_CORE)
297			cpu_cores = cnt;
298	}
299	if (cpu_logical == 0)
300		cpu_logical = 1;
301	cpu_cores /= cpu_logical;
302}
303
304/*
305 * Both topology discovery code and code that consumes topology
306 * information assume top-down uniformity of the topology.
307 * That is, all physical packages must be identical and each
308 * core in a package must have the same number of threads.
309 * Topology information is queried only on BSP, on which this
310 * code runs and for which it can query CPUID information.
311 * Then topology is extrapolated on all packages using the
312 * uniformity assumption.
313 */
314void
315topo_probe(void)
316{
317	static int cpu_topo_probed = 0;
318
319	if (cpu_topo_probed)
320		return;
321
322	CPU_ZERO(&logical_cpus_mask);
323	if (mp_ncpus <= 1)
324		cpu_cores = cpu_logical = 1;
325	else if (cpu_vendor_id == CPU_VENDOR_AMD)
326		topo_probe_amd();
327	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
328		/*
329		 * See Intel(R) 64 Architecture Processor
330		 * Topology Enumeration article for details.
331		 *
332		 * Note that 0x1 <= cpu_high < 4 case should be
333		 * compatible with topo_probe_0x4() logic when
334		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
335		 * or it should trigger the fallback otherwise.
336		 */
337		if (cpu_high >= 0xb)
338			topo_probe_0xb();
339		else if (cpu_high >= 0x1)
340			topo_probe_0x4();
341	}
342
343	/*
344	 * Fallback: assume each logical CPU is in separate
345	 * physical package.  That is, no multi-core, no SMT.
346	 */
347	if (cpu_cores == 0 || cpu_logical == 0)
348		cpu_cores = cpu_logical = 1;
349	cpu_topo_probed = 1;
350}
351
352struct cpu_group *
353cpu_topo(void)
354{
355	int cg_flags;
356
357	/*
358	 * Determine whether any threading flags are
359	 * necessry.
360	 */
361	topo_probe();
362	if (cpu_logical > 1 && hyperthreading_cpus)
363		cg_flags = CG_FLAG_HTT;
364	else if (cpu_logical > 1)
365		cg_flags = CG_FLAG_SMT;
366	else
367		cg_flags = 0;
368	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
369		printf("WARNING: Non-uniform processors.\n");
370		printf("WARNING: Using suboptimal topology.\n");
371		return (smp_topo_none());
372	}
373	/*
374	 * No multi-core or hyper-threaded.
375	 */
376	if (cpu_logical * cpu_cores == 1)
377		return (smp_topo_none());
378	/*
379	 * Only HTT no multi-core.
380	 */
381	if (cpu_logical > 1 && cpu_cores == 1)
382		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
383	/*
384	 * Only multi-core no HTT.
385	 */
386	if (cpu_cores > 1 && cpu_logical == 1)
387		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
388	/*
389	 * Both HTT and multi-core.
390	 */
391	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
392	    CG_SHARE_L1, cpu_logical, cg_flags));
393}
394
395
396void
397cpu_add(u_int apic_id, char boot_cpu)
398{
399
400	if (apic_id > MAX_APIC_ID) {
401		panic("SMP: APIC ID %d too high", apic_id);
402		return;
403	}
404	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
405	    apic_id));
406	cpu_info[apic_id].cpu_present = 1;
407	if (boot_cpu) {
408		KASSERT(boot_cpu_id == -1,
409		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
410		    boot_cpu_id));
411		boot_cpu_id = apic_id;
412		cpu_info[apic_id].cpu_bsp = 1;
413	}
414	if (mp_ncpus < MAXCPU) {
415		mp_ncpus++;
416		mp_maxid = mp_ncpus - 1;
417	}
418	if (bootverbose)
419		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
420		    "AP");
421}
422
423void
424cpu_mp_setmaxid(void)
425{
426
427	/*
428	 * mp_ncpus and mp_maxid should be already set by calls to cpu_add().
429	 * If there were no calls to cpu_add() assume this is a UP system.
430	 */
431	if (mp_ncpus == 0)
432		mp_ncpus = 1;
433}
434
435int
436cpu_mp_probe(void)
437{
438
439	/*
440	 * Always record BSP in CPU map so that the mbuf init code works
441	 * correctly.
442	 */
443	CPU_SETOF(0, &all_cpus);
444	return (mp_ncpus > 1);
445}
446
447/*
448 * Print various information about the SMP system hardware and setup.
449 */
450void
451cpu_mp_announce(void)
452{
453	const char *hyperthread;
454	int i;
455
456	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
457	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
458	if (hyperthreading_cpus > 1)
459	    printf(" x %d HTT threads", cpu_logical);
460	else if (cpu_logical > 1)
461	    printf(" x %d SMT threads", cpu_logical);
462	printf("\n");
463
464	/* List active CPUs first. */
465	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
466	for (i = 1; i < mp_ncpus; i++) {
467		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
468			hyperthread = "/HT";
469		else
470			hyperthread = "";
471		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
472		    cpu_apic_ids[i]);
473	}
474
475	/* List disabled CPUs last. */
476	for (i = 0; i <= MAX_APIC_ID; i++) {
477		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
478			continue;
479		if (cpu_info[i].cpu_hyperthread)
480			hyperthread = "/HT";
481		else
482			hyperthread = "";
483		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
484		    i);
485	}
486}
487
488void
489init_secondary_tail(void)
490{
491	u_int cpuid;
492
493	/*
494	 * On real hardware, switch to x2apic mode if possible.  Do it
495	 * after aps_ready was signalled, to avoid manipulating the
496	 * mode while BSP might still want to send some IPI to us
497	 * (second startup IPI is ignored on modern hardware etc).
498	 */
499	lapic_xapic_mode();
500
501	/* Initialize the PAT MSR. */
502	pmap_init_pat();
503
504	/* set up CPU registers and state */
505	cpu_setregs();
506
507	/* set up SSE/NX */
508	initializecpu();
509
510	/* set up FPU state on the AP */
511#ifdef __amd64__
512	fpuinit();
513#else
514	npxinit(false);
515#endif
516
517	if (cpu_ops.cpu_init)
518		cpu_ops.cpu_init();
519
520	/* A quick check from sanity claus */
521	cpuid = PCPU_GET(cpuid);
522	if (PCPU_GET(apic_id) != lapic_id()) {
523		printf("SMP: cpuid = %d\n", cpuid);
524		printf("SMP: actual apic_id = %d\n", lapic_id());
525		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
526		panic("cpuid mismatch! boom!!");
527	}
528
529	/* Initialize curthread. */
530	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
531	PCPU_SET(curthread, PCPU_GET(idlethread));
532
533	mca_init();
534
535	mtx_lock_spin(&ap_boot_mtx);
536
537	/* Init local apic for irq's */
538	lapic_setup(1);
539
540	/* Set memory range attributes for this CPU to match the BSP */
541	mem_range_AP_init();
542
543	smp_cpus++;
544
545	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
546	printf("SMP: AP CPU #%d Launched!\n", cpuid);
547
548	/* Determine if we are a logical CPU. */
549	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
550	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
551		CPU_SET(cpuid, &logical_cpus_mask);
552
553	if (bootverbose)
554		lapic_dump("AP");
555
556	if (smp_cpus == mp_ncpus) {
557		/* enable IPI's, tlb shootdown, freezes etc */
558		atomic_store_rel_int(&smp_started, 1);
559	}
560
561#ifdef __amd64__
562	/*
563	 * Enable global pages TLB extension
564	 * This also implicitly flushes the TLB
565	 */
566	load_cr4(rcr4() | CR4_PGE);
567	if (pmap_pcid_enabled)
568		load_cr4(rcr4() | CR4_PCIDE);
569	load_ds(_udatasel);
570	load_es(_udatasel);
571	load_fs(_ufssel);
572#endif
573
574	mtx_unlock_spin(&ap_boot_mtx);
575
576	/* Wait until all the AP's are up. */
577	while (atomic_load_acq_int(&smp_started) == 0)
578		ia32_pause();
579
580	/* Start per-CPU event timers. */
581	cpu_initclocks_ap();
582
583	sched_throw(NULL);
584
585	panic("scheduler returned us to %s", __func__);
586	/* NOTREACHED */
587}
588
589/*******************************************************************
590 * local functions and data
591 */
592
593/*
594 * We tell the I/O APIC code about all the CPUs we want to receive
595 * interrupts.  If we don't want certain CPUs to receive IRQs we
596 * can simply not tell the I/O APIC code about them in this function.
597 * We also do not tell it about the BSP since it tells itself about
598 * the BSP internally to work with UP kernels and on UP machines.
599 */
600void
601set_interrupt_apic_ids(void)
602{
603	u_int i, apic_id;
604
605	for (i = 0; i < MAXCPU; i++) {
606		apic_id = cpu_apic_ids[i];
607		if (apic_id == -1)
608			continue;
609		if (cpu_info[apic_id].cpu_bsp)
610			continue;
611		if (cpu_info[apic_id].cpu_disabled)
612			continue;
613
614		/* Don't let hyperthreads service interrupts. */
615		if (cpu_logical > 1 &&
616		    apic_id % cpu_logical != 0)
617			continue;
618
619		intr_add_cpu(i);
620	}
621}
622
623/*
624 * Assign logical CPU IDs to local APICs.
625 */
626void
627assign_cpu_ids(void)
628{
629	u_int i;
630
631	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
632	    &hyperthreading_allowed);
633
634	/* Check for explicitly disabled CPUs. */
635	for (i = 0; i <= MAX_APIC_ID; i++) {
636		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
637			continue;
638
639		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
640			cpu_info[i].cpu_hyperthread = 1;
641
642			/*
643			 * Don't use HT CPU if it has been disabled by a
644			 * tunable.
645			 */
646			if (hyperthreading_allowed == 0) {
647				cpu_info[i].cpu_disabled = 1;
648				continue;
649			}
650		}
651
652		/* Don't use this CPU if it has been disabled by a tunable. */
653		if (resource_disabled("lapic", i)) {
654			cpu_info[i].cpu_disabled = 1;
655			continue;
656		}
657	}
658
659	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
660		hyperthreading_cpus = 0;
661		cpu_logical = 1;
662	}
663
664	/*
665	 * Assign CPU IDs to local APIC IDs and disable any CPUs
666	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
667	 *
668	 * To minimize confusion for userland, we attempt to number
669	 * CPUs such that all threads and cores in a package are
670	 * grouped together.  For now we assume that the BSP is always
671	 * the first thread in a package and just start adding APs
672	 * starting with the BSP's APIC ID.
673	 */
674	mp_ncpus = 1;
675	cpu_apic_ids[0] = boot_cpu_id;
676	apic_cpuids[boot_cpu_id] = 0;
677	for (i = boot_cpu_id + 1; i != boot_cpu_id;
678	     i == MAX_APIC_ID ? i = 0 : i++) {
679		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
680		    cpu_info[i].cpu_disabled)
681			continue;
682
683		if (mp_ncpus < MAXCPU) {
684			cpu_apic_ids[mp_ncpus] = i;
685			apic_cpuids[i] = mp_ncpus;
686			mp_ncpus++;
687		} else
688			cpu_info[i].cpu_disabled = 1;
689	}
690	KASSERT(mp_maxid >= mp_ncpus - 1,
691	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
692	    mp_ncpus));
693}
694
695#ifdef COUNT_XINVLTLB_HITS
696u_int xhits_gbl[MAXCPU];
697u_int xhits_pg[MAXCPU];
698u_int xhits_rng[MAXCPU];
699static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
700SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
701    sizeof(xhits_gbl), "IU", "");
702SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
703    sizeof(xhits_pg), "IU", "");
704SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
705    sizeof(xhits_rng), "IU", "");
706
707u_int ipi_global;
708u_int ipi_page;
709u_int ipi_range;
710u_int ipi_range_size;
711SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
712SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
713SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
714SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
715    0, "");
716#endif /* COUNT_XINVLTLB_HITS */
717
718/*
719 * Init and startup IPI.
720 */
721void
722ipi_startup(int apic_id, int vector)
723{
724
725	/*
726	 * This attempts to follow the algorithm described in the
727	 * Intel Multiprocessor Specification v1.4 in section B.4.
728	 * For each IPI, we allow the local APIC ~20us to deliver the
729	 * IPI.  If that times out, we panic.
730	 */
731
732	/*
733	 * first we do an INIT IPI: this INIT IPI might be run, resetting
734	 * and running the target CPU. OR this INIT IPI might be latched (P5
735	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
736	 * ignored.
737	 */
738	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
739	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
740	lapic_ipi_wait(100);
741
742	/* Explicitly deassert the INIT IPI. */
743	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
744	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT,
745	    apic_id);
746
747	DELAY(10000);		/* wait ~10mS */
748
749	/*
750	 * next we do a STARTUP IPI: the previous INIT IPI might still be
751	 * latched, (P5 bug) this 1st STARTUP would then terminate
752	 * immediately, and the previously started INIT IPI would continue. OR
753	 * the previous INIT IPI has already run. and this STARTUP IPI will
754	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
755	 * will run.
756	 */
757	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
758	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
759	    vector, apic_id);
760	if (!lapic_ipi_wait(100))
761		panic("Failed to deliver first STARTUP IPI to APIC %d",
762		    apic_id);
763	DELAY(200);		/* wait ~200uS */
764
765	/*
766	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
767	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
768	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
769	 * recognized after hardware RESET or INIT IPI.
770	 */
771	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
772	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
773	    vector, apic_id);
774	if (!lapic_ipi_wait(100))
775		panic("Failed to deliver second STARTUP IPI to APIC %d",
776		    apic_id);
777
778	DELAY(200);		/* wait ~200uS */
779}
780
781/*
782 * Send an IPI to specified CPU handling the bitmap logic.
783 */
784void
785ipi_send_cpu(int cpu, u_int ipi)
786{
787	u_int bitmap, old_pending, new_pending;
788
789	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
790
791	if (IPI_IS_BITMAPED(ipi)) {
792		bitmap = 1 << ipi;
793		ipi = IPI_BITMAP_VECTOR;
794		do {
795			old_pending = cpu_ipi_pending[cpu];
796			new_pending = old_pending | bitmap;
797		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
798		    old_pending, new_pending));
799		if (old_pending)
800			return;
801	}
802	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
803}
804
805void
806ipi_bitmap_handler(struct trapframe frame)
807{
808	struct trapframe *oldframe;
809	struct thread *td;
810	int cpu = PCPU_GET(cpuid);
811	u_int ipi_bitmap;
812
813	critical_enter();
814	td = curthread;
815	td->td_intr_nesting_level++;
816	oldframe = td->td_intr_frame;
817	td->td_intr_frame = &frame;
818	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
819	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
820#ifdef COUNT_IPIS
821		(*ipi_preempt_counts[cpu])++;
822#endif
823		sched_preempt(td);
824	}
825	if (ipi_bitmap & (1 << IPI_AST)) {
826#ifdef COUNT_IPIS
827		(*ipi_ast_counts[cpu])++;
828#endif
829		/* Nothing to do for AST */
830	}
831	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
832#ifdef COUNT_IPIS
833		(*ipi_hardclock_counts[cpu])++;
834#endif
835		hardclockintr();
836	}
837	td->td_intr_frame = oldframe;
838	td->td_intr_nesting_level--;
839	critical_exit();
840}
841
842/*
843 * send an IPI to a set of cpus.
844 */
845void
846ipi_selected(cpuset_t cpus, u_int ipi)
847{
848	int cpu;
849
850	/*
851	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
852	 * of help in order to understand what is the source.
853	 * Set the mask of receiving CPUs for this purpose.
854	 */
855	if (ipi == IPI_STOP_HARD)
856		CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &cpus);
857
858	while ((cpu = CPU_FFS(&cpus)) != 0) {
859		cpu--;
860		CPU_CLR(cpu, &cpus);
861		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
862		ipi_send_cpu(cpu, ipi);
863	}
864}
865
866/*
867 * send an IPI to a specific CPU.
868 */
869void
870ipi_cpu(int cpu, u_int ipi)
871{
872
873	/*
874	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
875	 * of help in order to understand what is the source.
876	 * Set the mask of receiving CPUs for this purpose.
877	 */
878	if (ipi == IPI_STOP_HARD)
879		CPU_SET_ATOMIC(cpu, &ipi_stop_nmi_pending);
880
881	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
882	ipi_send_cpu(cpu, ipi);
883}
884
885/*
886 * send an IPI to all CPUs EXCEPT myself
887 */
888void
889ipi_all_but_self(u_int ipi)
890{
891	cpuset_t other_cpus;
892
893	other_cpus = all_cpus;
894	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
895	if (IPI_IS_BITMAPED(ipi)) {
896		ipi_selected(other_cpus, ipi);
897		return;
898	}
899
900	/*
901	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
902	 * of help in order to understand what is the source.
903	 * Set the mask of receiving CPUs for this purpose.
904	 */
905	if (ipi == IPI_STOP_HARD)
906		CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &other_cpus);
907
908	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
909	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
910}
911
912int
913ipi_nmi_handler()
914{
915	u_int cpuid;
916
917	/*
918	 * As long as there is not a simple way to know about a NMI's
919	 * source, if the bitmask for the current CPU is present in
920	 * the global pending bitword an IPI_STOP_HARD has been issued
921	 * and should be handled.
922	 */
923	cpuid = PCPU_GET(cpuid);
924	if (!CPU_ISSET(cpuid, &ipi_stop_nmi_pending))
925		return (1);
926
927	CPU_CLR_ATOMIC(cpuid, &ipi_stop_nmi_pending);
928	cpustop_handler();
929	return (0);
930}
931
932/*
933 * Handle an IPI_STOP by saving our current context and spinning until we
934 * are resumed.
935 */
936void
937cpustop_handler(void)
938{
939	u_int cpu;
940
941	cpu = PCPU_GET(cpuid);
942
943	savectx(&stoppcbs[cpu]);
944
945	/* Indicate that we are stopped */
946	CPU_SET_ATOMIC(cpu, &stopped_cpus);
947
948	/* Wait for restart */
949	while (!CPU_ISSET(cpu, &started_cpus))
950	    ia32_pause();
951
952	CPU_CLR_ATOMIC(cpu, &started_cpus);
953	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
954
955#if defined(__amd64__) && defined(DDB)
956	amd64_db_resume_dbreg();
957#endif
958
959	if (cpu == 0 && cpustop_restartfunc != NULL) {
960		cpustop_restartfunc();
961		cpustop_restartfunc = NULL;
962	}
963}
964
965/*
966 * Handle an IPI_SUSPEND by saving our current context and spinning until we
967 * are resumed.
968 */
969void
970cpususpend_handler(void)
971{
972	u_int cpu;
973
974	mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
975
976	cpu = PCPU_GET(cpuid);
977	if (savectx(&susppcbs[cpu]->sp_pcb)) {
978#ifdef __amd64__
979		fpususpend(susppcbs[cpu]->sp_fpususpend);
980#else
981		npxsuspend(susppcbs[cpu]->sp_fpususpend);
982#endif
983		wbinvd();
984		CPU_SET_ATOMIC(cpu, &suspended_cpus);
985	} else {
986#ifdef __amd64__
987		fpuresume(susppcbs[cpu]->sp_fpususpend);
988#else
989		npxresume(susppcbs[cpu]->sp_fpususpend);
990#endif
991		pmap_init_pat();
992		initializecpu();
993		PCPU_SET(switchtime, 0);
994		PCPU_SET(switchticks, ticks);
995
996		/* Indicate that we are resumed */
997		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
998	}
999
1000	/* Wait for resume */
1001	while (!CPU_ISSET(cpu, &started_cpus))
1002		ia32_pause();
1003
1004	if (cpu_ops.cpu_resume)
1005		cpu_ops.cpu_resume();
1006#ifdef __amd64__
1007	if (vmm_resume_p)
1008		vmm_resume_p();
1009#endif
1010
1011	/* Resume MCA and local APIC */
1012	lapic_xapic_mode();
1013	mca_resume();
1014	lapic_setup(0);
1015
1016	/* Indicate that we are resumed */
1017	CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1018	CPU_CLR_ATOMIC(cpu, &started_cpus);
1019}
1020
1021
1022void
1023invlcache_handler(void)
1024{
1025#ifdef COUNT_IPIS
1026	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
1027#endif /* COUNT_IPIS */
1028
1029	wbinvd();
1030	atomic_add_int(&smp_tlb_wait, 1);
1031}
1032
1033/*
1034 * This is called once the rest of the system is up and running and we're
1035 * ready to let the AP's out of the pen.
1036 */
1037static void
1038release_aps(void *dummy __unused)
1039{
1040
1041	if (mp_ncpus == 1)
1042		return;
1043	atomic_store_rel_int(&aps_ready, 1);
1044	while (smp_started == 0)
1045		ia32_pause();
1046}
1047SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1048
1049#ifdef COUNT_IPIS
1050/*
1051 * Setup interrupt counters for IPI handlers.
1052 */
1053static void
1054mp_ipi_intrcnt(void *dummy)
1055{
1056	char buf[64];
1057	int i;
1058
1059	CPU_FOREACH(i) {
1060		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1061		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1062		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1063		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1064		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1065		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1066		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1067		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1068		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1069		intrcnt_add(buf, &ipi_preempt_counts[i]);
1070		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1071		intrcnt_add(buf, &ipi_ast_counts[i]);
1072		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1073		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1074		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1075		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1076	}
1077}
1078SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1079#endif
1080
1081/*
1082 * Flush the TLB on other CPU's
1083 */
1084
1085/* Variables needed for SMP tlb shootdown. */
1086static vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
1087pmap_t smp_tlb_pmap;
1088volatile int smp_tlb_wait;
1089
1090#ifdef __amd64__
1091#define	read_eflags() read_rflags()
1092#endif
1093
1094static void
1095smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
1096    vm_offset_t addr1, vm_offset_t addr2)
1097{
1098	int cpu, ncpu, othercpus;
1099
1100	othercpus = mp_ncpus - 1;	/* does not shootdown self */
1101
1102	/*
1103	 * Check for other cpus.  Return if none.
1104	 */
1105	if (CPU_ISFULLSET(&mask)) {
1106		if (othercpus < 1)
1107			return;
1108	} else {
1109		CPU_CLR(PCPU_GET(cpuid), &mask);
1110		if (CPU_EMPTY(&mask))
1111			return;
1112	}
1113
1114	if (!(read_eflags() & PSL_I))
1115		panic("%s: interrupts disabled", __func__);
1116	mtx_lock_spin(&smp_ipi_mtx);
1117	smp_tlb_addr1 = addr1;
1118	smp_tlb_addr2 = addr2;
1119	smp_tlb_pmap = pmap;
1120	smp_tlb_wait =  0;
1121	if (CPU_ISFULLSET(&mask)) {
1122		ncpu = othercpus;
1123		ipi_all_but_self(vector);
1124	} else {
1125		ncpu = 0;
1126		while ((cpu = CPU_FFS(&mask)) != 0) {
1127			cpu--;
1128			CPU_CLR(cpu, &mask);
1129			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
1130			    cpu, vector);
1131			ipi_send_cpu(cpu, vector);
1132			ncpu++;
1133		}
1134	}
1135	while (smp_tlb_wait < ncpu)
1136		ia32_pause();
1137	mtx_unlock_spin(&smp_ipi_mtx);
1138}
1139
1140void
1141smp_masked_invltlb(cpuset_t mask, pmap_t pmap)
1142{
1143
1144	if (smp_started) {
1145		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0);
1146#ifdef COUNT_XINVLTLB_HITS
1147		ipi_global++;
1148#endif
1149	}
1150}
1151
1152void
1153smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
1154{
1155
1156	if (smp_started) {
1157		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, NULL, addr, 0);
1158#ifdef COUNT_XINVLTLB_HITS
1159		ipi_page++;
1160#endif
1161	}
1162}
1163
1164void
1165smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
1166{
1167
1168	if (smp_started) {
1169		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, NULL,
1170		    addr1, addr2);
1171#ifdef COUNT_XINVLTLB_HITS
1172		ipi_range++;
1173		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1174#endif
1175	}
1176}
1177
1178void
1179smp_cache_flush(void)
1180{
1181
1182	if (smp_started) {
1183		smp_targeted_tlb_shootdown(all_cpus, IPI_INVLCACHE, NULL,
1184		    0, 0);
1185	}
1186}
1187
1188/*
1189 * Handlers for TLB related IPIs
1190 */
1191void
1192invltlb_handler(void)
1193{
1194#ifdef COUNT_XINVLTLB_HITS
1195	xhits_gbl[PCPU_GET(cpuid)]++;
1196#endif /* COUNT_XINVLTLB_HITS */
1197#ifdef COUNT_IPIS
1198	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
1199#endif /* COUNT_IPIS */
1200
1201	if (smp_tlb_pmap == kernel_pmap)
1202		invltlb_glob();
1203	else
1204		invltlb();
1205	atomic_add_int(&smp_tlb_wait, 1);
1206}
1207
1208void
1209invlpg_handler(void)
1210{
1211#ifdef COUNT_XINVLTLB_HITS
1212	xhits_pg[PCPU_GET(cpuid)]++;
1213#endif /* COUNT_XINVLTLB_HITS */
1214#ifdef COUNT_IPIS
1215	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
1216#endif /* COUNT_IPIS */
1217
1218	invlpg(smp_tlb_addr1);
1219	atomic_add_int(&smp_tlb_wait, 1);
1220}
1221
1222void
1223invlrng_handler(void)
1224{
1225	vm_offset_t addr;
1226
1227#ifdef COUNT_XINVLTLB_HITS
1228	xhits_rng[PCPU_GET(cpuid)]++;
1229#endif /* COUNT_XINVLTLB_HITS */
1230#ifdef COUNT_IPIS
1231	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
1232#endif /* COUNT_IPIS */
1233
1234	addr = smp_tlb_addr1;
1235	do {
1236		invlpg(addr);
1237		addr += PAGE_SIZE;
1238	} while (addr < smp_tlb_addr2);
1239
1240	atomic_add_int(&smp_tlb_wait, 1);
1241}
1242