mp_x86.c revision 235622
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/i386/i386/mp_machdep.c 235622 2012-05-18 18:55:58Z iwasaki $");
28
29#include "opt_apic.h"
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_pmap.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#if !defined(lint)
37#if !defined(SMP)
38#error How did you get here?
39#endif
40
41#ifndef DEV_APIC
42#error The apic device is required for SMP, add "device apic" to your config file.
43#endif
44#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
45#error SMP not supported with CPU_DISABLE_CMPXCHG
46#endif
47#endif /* not lint */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bus.h>
52#include <sys/cons.h>	/* cngetc() */
53#include <sys/cpuset.h>
54#ifdef GPROF
55#include <sys/gmon.h>
56#endif
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/memrange.h>
62#include <sys/mutex.h>
63#include <sys/pcpu.h>
64#include <sys/proc.h>
65#include <sys/sched.h>
66#include <sys/smp.h>
67#include <sys/sysctl.h>
68
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#include <vm/vm_kern.h>
73#include <vm/vm_extern.h>
74
75#include <x86/apicreg.h>
76#include <machine/clock.h>
77#include <machine/cputypes.h>
78#include <x86/mca.h>
79#include <machine/md_var.h>
80#include <machine/pcb.h>
81#include <machine/psl.h>
82#include <machine/smp.h>
83#include <machine/specialreg.h>
84
85#define WARMBOOT_TARGET		0
86#define WARMBOOT_OFF		(KERNBASE + 0x0467)
87#define WARMBOOT_SEG		(KERNBASE + 0x0469)
88
89#define CMOS_REG		(0x70)
90#define CMOS_DATA		(0x71)
91#define BIOS_RESET		(0x0f)
92#define BIOS_WARM		(0x0a)
93
94/*
95 * this code MUST be enabled here and in mpboot.s.
96 * it follows the very early stages of AP boot by placing values in CMOS ram.
97 * it NORMALLY will never be needed and thus the primitive method for enabling.
98 *
99#define CHECK_POINTS
100 */
101
102#if defined(CHECK_POINTS) && !defined(PC98)
103#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
104#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
105
106#define CHECK_INIT(D);				\
107	CHECK_WRITE(0x34, (D));			\
108	CHECK_WRITE(0x35, (D));			\
109	CHECK_WRITE(0x36, (D));			\
110	CHECK_WRITE(0x37, (D));			\
111	CHECK_WRITE(0x38, (D));			\
112	CHECK_WRITE(0x39, (D));
113
114#define CHECK_PRINT(S);				\
115	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
116	   (S),					\
117	   CHECK_READ(0x34),			\
118	   CHECK_READ(0x35),			\
119	   CHECK_READ(0x36),			\
120	   CHECK_READ(0x37),			\
121	   CHECK_READ(0x38),			\
122	   CHECK_READ(0x39));
123
124#else				/* CHECK_POINTS */
125
126#define CHECK_INIT(D)
127#define CHECK_PRINT(S)
128#define CHECK_WRITE(A, D)
129
130#endif				/* CHECK_POINTS */
131
132/* lock region used by kernel profiling */
133int	mcount_lock;
134
135int	mp_naps;		/* # of Applications processors */
136int	boot_cpu_id = -1;	/* designated BSP */
137
138extern	struct pcpu __pcpu[];
139
140/* AP uses this during bootstrap.  Do not staticize.  */
141char *bootSTK;
142static int bootAP;
143
144/* Free these after use */
145void *bootstacks[MAXCPU];
146static void *dpcpu;
147
148struct pcb stoppcbs[MAXCPU];
149struct pcb **susppcbs = NULL;
150
151/* Variables needed for SMP tlb shootdown. */
152vm_offset_t smp_tlb_addr1;
153vm_offset_t smp_tlb_addr2;
154volatile int smp_tlb_wait;
155
156#ifdef COUNT_IPIS
157/* Interrupt counts. */
158static u_long *ipi_preempt_counts[MAXCPU];
159static u_long *ipi_ast_counts[MAXCPU];
160u_long *ipi_invltlb_counts[MAXCPU];
161u_long *ipi_invlrng_counts[MAXCPU];
162u_long *ipi_invlpg_counts[MAXCPU];
163u_long *ipi_invlcache_counts[MAXCPU];
164u_long *ipi_rendezvous_counts[MAXCPU];
165u_long *ipi_lazypmap_counts[MAXCPU];
166static u_long *ipi_hardclock_counts[MAXCPU];
167#endif
168
169/*
170 * Local data and functions.
171 */
172
173static volatile cpuset_t ipi_nmi_pending;
174
175/* used to hold the AP's until we are ready to release them */
176static struct mtx ap_boot_mtx;
177
178/* Set to 1 once we're ready to let the APs out of the pen. */
179static volatile int aps_ready = 0;
180
181/*
182 * Store data from cpu_add() until later in the boot when we actually setup
183 * the APs.
184 */
185struct cpu_info {
186	int	cpu_present:1;
187	int	cpu_bsp:1;
188	int	cpu_disabled:1;
189	int	cpu_hyperthread:1;
190} static cpu_info[MAX_APIC_ID + 1];
191int cpu_apic_ids[MAXCPU];
192int apic_cpuids[MAX_APIC_ID + 1];
193
194/* Holds pending bitmap based IPIs per CPU */
195static volatile u_int cpu_ipi_pending[MAXCPU];
196
197static u_int boot_address;
198static int cpu_logical;			/* logical cpus per core */
199static int cpu_cores;			/* cores per package */
200
201static void	assign_cpu_ids(void);
202static void	install_ap_tramp(void);
203static void	set_interrupt_apic_ids(void);
204static int	start_all_aps(void);
205static int	start_ap(int apic_id);
206static void	release_aps(void *dummy);
207
208static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
209static int	hyperthreading_allowed = 1;
210
211static void
212mem_range_AP_init(void)
213{
214	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
215		mem_range_softc.mr_op->initAP(&mem_range_softc);
216}
217
218static void
219topo_probe_amd(void)
220{
221	int core_id_bits;
222	int id;
223
224	/* AMD processors do not support HTT. */
225	cpu_logical = 1;
226
227	if ((amd_feature2 & AMDID2_CMP) == 0) {
228		cpu_cores = 1;
229		return;
230	}
231
232	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
233	    AMDID_COREID_SIZE_SHIFT;
234	if (core_id_bits == 0) {
235		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
236		return;
237	}
238
239	/* Fam 10h and newer should get here. */
240	for (id = 0; id <= MAX_APIC_ID; id++) {
241		/* Check logical CPU availability. */
242		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
243			continue;
244		/* Check if logical CPU has the same package ID. */
245		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
246			continue;
247		cpu_cores++;
248	}
249}
250
251/*
252 * Round up to the next power of two, if necessary, and then
253 * take log2.
254 * Returns -1 if argument is zero.
255 */
256static __inline int
257mask_width(u_int x)
258{
259
260	return (fls(x << (1 - powerof2(x))) - 1);
261}
262
263static void
264topo_probe_0x4(void)
265{
266	u_int p[4];
267	int pkg_id_bits;
268	int core_id_bits;
269	int max_cores;
270	int max_logical;
271	int id;
272
273	/* Both zero and one here mean one logical processor per package. */
274	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
275	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
276	if (max_logical <= 1)
277		return;
278
279	/*
280	 * Because of uniformity assumption we examine only
281	 * those logical processors that belong to the same
282	 * package as BSP.  Further, we count number of
283	 * logical processors that belong to the same core
284	 * as BSP thus deducing number of threads per core.
285	 */
286	if (cpu_high >= 0x4) {
287		cpuid_count(0x04, 0, p);
288		max_cores = ((p[0] >> 26) & 0x3f) + 1;
289	} else
290		max_cores = 1;
291	core_id_bits = mask_width(max_logical/max_cores);
292	if (core_id_bits < 0)
293		return;
294	pkg_id_bits = core_id_bits + mask_width(max_cores);
295
296	for (id = 0; id <= MAX_APIC_ID; id++) {
297		/* Check logical CPU availability. */
298		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
299			continue;
300		/* Check if logical CPU has the same package ID. */
301		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
302			continue;
303		cpu_cores++;
304		/* Check if logical CPU has the same package and core IDs. */
305		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
306			cpu_logical++;
307	}
308
309	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
310	    ("topo_probe_0x4 couldn't find BSP"));
311
312	cpu_cores /= cpu_logical;
313	hyperthreading_cpus = cpu_logical;
314}
315
316static void
317topo_probe_0xb(void)
318{
319	u_int p[4];
320	int bits;
321	int cnt;
322	int i;
323	int logical;
324	int type;
325	int x;
326
327	/* We only support three levels for now. */
328	for (i = 0; i < 3; i++) {
329		cpuid_count(0x0b, i, p);
330
331		/* Fall back if CPU leaf 11 doesn't really exist. */
332		if (i == 0 && p[1] == 0) {
333			topo_probe_0x4();
334			return;
335		}
336
337		bits = p[0] & 0x1f;
338		logical = p[1] &= 0xffff;
339		type = (p[2] >> 8) & 0xff;
340		if (type == 0 || logical == 0)
341			break;
342		/*
343		 * Because of uniformity assumption we examine only
344		 * those logical processors that belong to the same
345		 * package as BSP.
346		 */
347		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
348			if (!cpu_info[x].cpu_present ||
349			    cpu_info[x].cpu_disabled)
350				continue;
351			if (x >> bits == boot_cpu_id >> bits)
352				cnt++;
353		}
354		if (type == CPUID_TYPE_SMT)
355			cpu_logical = cnt;
356		else if (type == CPUID_TYPE_CORE)
357			cpu_cores = cnt;
358	}
359	if (cpu_logical == 0)
360		cpu_logical = 1;
361	cpu_cores /= cpu_logical;
362}
363
364/*
365 * Both topology discovery code and code that consumes topology
366 * information assume top-down uniformity of the topology.
367 * That is, all physical packages must be identical and each
368 * core in a package must have the same number of threads.
369 * Topology information is queried only on BSP, on which this
370 * code runs and for which it can query CPUID information.
371 * Then topology is extrapolated on all packages using the
372 * uniformity assumption.
373 */
374static void
375topo_probe(void)
376{
377	static int cpu_topo_probed = 0;
378
379	if (cpu_topo_probed)
380		return;
381
382	CPU_ZERO(&logical_cpus_mask);
383	if (mp_ncpus <= 1)
384		cpu_cores = cpu_logical = 1;
385	else if (cpu_vendor_id == CPU_VENDOR_AMD)
386		topo_probe_amd();
387	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
388		/*
389		 * See Intel(R) 64 Architecture Processor
390		 * Topology Enumeration article for details.
391		 *
392		 * Note that 0x1 <= cpu_high < 4 case should be
393		 * compatible with topo_probe_0x4() logic when
394		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
395		 * or it should trigger the fallback otherwise.
396		 */
397		if (cpu_high >= 0xb)
398			topo_probe_0xb();
399		else if (cpu_high >= 0x1)
400			topo_probe_0x4();
401	}
402
403	/*
404	 * Fallback: assume each logical CPU is in separate
405	 * physical package.  That is, no multi-core, no SMT.
406	 */
407	if (cpu_cores == 0 || cpu_logical == 0)
408		cpu_cores = cpu_logical = 1;
409	cpu_topo_probed = 1;
410}
411
412struct cpu_group *
413cpu_topo(void)
414{
415	int cg_flags;
416
417	/*
418	 * Determine whether any threading flags are
419	 * necessry.
420	 */
421	topo_probe();
422	if (cpu_logical > 1 && hyperthreading_cpus)
423		cg_flags = CG_FLAG_HTT;
424	else if (cpu_logical > 1)
425		cg_flags = CG_FLAG_SMT;
426	else
427		cg_flags = 0;
428	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
429		printf("WARNING: Non-uniform processors.\n");
430		printf("WARNING: Using suboptimal topology.\n");
431		return (smp_topo_none());
432	}
433	/*
434	 * No multi-core or hyper-threaded.
435	 */
436	if (cpu_logical * cpu_cores == 1)
437		return (smp_topo_none());
438	/*
439	 * Only HTT no multi-core.
440	 */
441	if (cpu_logical > 1 && cpu_cores == 1)
442		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
443	/*
444	 * Only multi-core no HTT.
445	 */
446	if (cpu_cores > 1 && cpu_logical == 1)
447		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
448	/*
449	 * Both HTT and multi-core.
450	 */
451	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
452	    CG_SHARE_L1, cpu_logical, cg_flags));
453}
454
455
456/*
457 * Calculate usable address in base memory for AP trampoline code.
458 */
459u_int
460mp_bootaddress(u_int basemem)
461{
462
463	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
464	if ((basemem - boot_address) < bootMP_size)
465		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
466
467	return boot_address;
468}
469
470void
471cpu_add(u_int apic_id, char boot_cpu)
472{
473
474	if (apic_id > MAX_APIC_ID) {
475		panic("SMP: APIC ID %d too high", apic_id);
476		return;
477	}
478	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
479	    apic_id));
480	cpu_info[apic_id].cpu_present = 1;
481	if (boot_cpu) {
482		KASSERT(boot_cpu_id == -1,
483		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
484		    boot_cpu_id));
485		boot_cpu_id = apic_id;
486		cpu_info[apic_id].cpu_bsp = 1;
487	}
488	if (mp_ncpus < MAXCPU) {
489		mp_ncpus++;
490		mp_maxid = mp_ncpus - 1;
491	}
492	if (bootverbose)
493		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
494		    "AP");
495}
496
497void
498cpu_mp_setmaxid(void)
499{
500
501	/*
502	 * mp_maxid should be already set by calls to cpu_add().
503	 * Just sanity check its value here.
504	 */
505	if (mp_ncpus == 0)
506		KASSERT(mp_maxid == 0,
507		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
508	else if (mp_ncpus == 1)
509		mp_maxid = 0;
510	else
511		KASSERT(mp_maxid >= mp_ncpus - 1,
512		    ("%s: counters out of sync: max %d, count %d", __func__,
513			mp_maxid, mp_ncpus));
514}
515
516int
517cpu_mp_probe(void)
518{
519
520	/*
521	 * Always record BSP in CPU map so that the mbuf init code works
522	 * correctly.
523	 */
524	CPU_SETOF(0, &all_cpus);
525	if (mp_ncpus == 0) {
526		/*
527		 * No CPUs were found, so this must be a UP system.  Setup
528		 * the variables to represent a system with a single CPU
529		 * with an id of 0.
530		 */
531		mp_ncpus = 1;
532		return (0);
533	}
534
535	/* At least one CPU was found. */
536	if (mp_ncpus == 1) {
537		/*
538		 * One CPU was found, so this must be a UP system with
539		 * an I/O APIC.
540		 */
541		mp_maxid = 0;
542		return (0);
543	}
544
545	/* At least two CPUs were found. */
546	return (1);
547}
548
549/*
550 * Initialize the IPI handlers and start up the AP's.
551 */
552void
553cpu_mp_start(void)
554{
555	int i;
556
557	/* Initialize the logical ID to APIC ID table. */
558	for (i = 0; i < MAXCPU; i++) {
559		cpu_apic_ids[i] = -1;
560		cpu_ipi_pending[i] = 0;
561	}
562
563	/* Install an inter-CPU IPI for TLB invalidation */
564	setidt(IPI_INVLTLB, IDTVEC(invltlb),
565	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
566	setidt(IPI_INVLPG, IDTVEC(invlpg),
567	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
568	setidt(IPI_INVLRNG, IDTVEC(invlrng),
569	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
570
571	/* Install an inter-CPU IPI for cache invalidation. */
572	setidt(IPI_INVLCACHE, IDTVEC(invlcache),
573	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
574
575	/* Install an inter-CPU IPI for lazy pmap release */
576	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
577	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
578
579	/* Install an inter-CPU IPI for all-CPU rendezvous */
580	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
581	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
582
583	/* Install generic inter-CPU IPI handler */
584	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
585	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
586
587	/* Install an inter-CPU IPI for CPU stop/restart */
588	setidt(IPI_STOP, IDTVEC(cpustop),
589	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
590
591	/* Install an inter-CPU IPI for CPU suspend/resume */
592	setidt(IPI_SUSPEND, IDTVEC(cpususpend),
593	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
594
595	/* Set boot_cpu_id if needed. */
596	if (boot_cpu_id == -1) {
597		boot_cpu_id = PCPU_GET(apic_id);
598		cpu_info[boot_cpu_id].cpu_bsp = 1;
599	} else
600		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
601		    ("BSP's APIC ID doesn't match boot_cpu_id"));
602
603	/* Probe logical/physical core configuration. */
604	topo_probe();
605
606	assign_cpu_ids();
607
608	/* Start each Application Processor */
609	start_all_aps();
610
611	set_interrupt_apic_ids();
612}
613
614
615/*
616 * Print various information about the SMP system hardware and setup.
617 */
618void
619cpu_mp_announce(void)
620{
621	const char *hyperthread;
622	int i;
623
624	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
625	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
626	if (hyperthreading_cpus > 1)
627	    printf(" x %d HTT threads", cpu_logical);
628	else if (cpu_logical > 1)
629	    printf(" x %d SMT threads", cpu_logical);
630	printf("\n");
631
632	/* List active CPUs first. */
633	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
634	for (i = 1; i < mp_ncpus; i++) {
635		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
636			hyperthread = "/HT";
637		else
638			hyperthread = "";
639		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
640		    cpu_apic_ids[i]);
641	}
642
643	/* List disabled CPUs last. */
644	for (i = 0; i <= MAX_APIC_ID; i++) {
645		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
646			continue;
647		if (cpu_info[i].cpu_hyperthread)
648			hyperthread = "/HT";
649		else
650			hyperthread = "";
651		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
652		    i);
653	}
654}
655
656/*
657 * AP CPU's call this to initialize themselves.
658 */
659void
660init_secondary(void)
661{
662	struct pcpu *pc;
663	vm_offset_t addr;
664	int	gsel_tss;
665	int	x, myid;
666	u_int	cpuid, cr0;
667
668	/* bootAP is set in start_ap() to our ID. */
669	myid = bootAP;
670
671	/* Get per-cpu data */
672	pc = &__pcpu[myid];
673
674	/* prime data page for it to use */
675	pcpu_init(pc, myid, sizeof(struct pcpu));
676	dpcpu_init(dpcpu, myid);
677	pc->pc_apic_id = cpu_apic_ids[myid];
678	pc->pc_prvspace = pc;
679	pc->pc_curthread = 0;
680
681	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
682	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
683
684	for (x = 0; x < NGDT; x++) {
685		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
686	}
687
688	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
689	r_gdt.rd_base = (int) &gdt[myid * NGDT];
690	lgdt(&r_gdt);			/* does magic intra-segment return */
691
692	lidt(&r_idt);
693
694	lldt(_default_ldt);
695	PCPU_SET(currentldt, _default_ldt);
696
697	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
698	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
699	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
700	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
701	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
702	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
703	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
704	ltr(gsel_tss);
705
706	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
707
708	/*
709	 * Set to a known state:
710	 * Set by mpboot.s: CR0_PG, CR0_PE
711	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
712	 */
713	cr0 = rcr0();
714	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
715	load_cr0(cr0);
716	CHECK_WRITE(0x38, 5);
717
718	/* Disable local APIC just to be sure. */
719	lapic_disable();
720
721	/* signal our startup to the BSP. */
722	mp_naps++;
723	CHECK_WRITE(0x39, 6);
724
725	/* Spin until the BSP releases the AP's. */
726	while (!aps_ready)
727		ia32_pause();
728
729	/* BSP may have changed PTD while we were waiting */
730	invltlb();
731	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
732		invlpg(addr);
733
734#if defined(I586_CPU) && !defined(NO_F00F_HACK)
735	lidt(&r_idt);
736#endif
737
738	/* Initialize the PAT MSR if present. */
739	pmap_init_pat();
740
741	/* set up CPU registers and state */
742	cpu_setregs();
743
744	/* set up FPU state on the AP */
745	npxinit();
746
747	/* set up SSE registers */
748	enable_sse();
749
750#ifdef PAE
751	/* Enable the PTE no-execute bit. */
752	if ((amd_feature & AMDID_NX) != 0) {
753		uint64_t msr;
754
755		msr = rdmsr(MSR_EFER) | EFER_NXE;
756		wrmsr(MSR_EFER, msr);
757	}
758#endif
759
760	/* A quick check from sanity claus */
761	cpuid = PCPU_GET(cpuid);
762	if (PCPU_GET(apic_id) != lapic_id()) {
763		printf("SMP: cpuid = %d\n", cpuid);
764		printf("SMP: actual apic_id = %d\n", lapic_id());
765		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
766		panic("cpuid mismatch! boom!!");
767	}
768
769	/* Initialize curthread. */
770	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
771	PCPU_SET(curthread, PCPU_GET(idlethread));
772
773	mca_init();
774
775	mtx_lock_spin(&ap_boot_mtx);
776
777	/* Init local apic for irq's */
778	lapic_setup(1);
779
780	/* Set memory range attributes for this CPU to match the BSP */
781	mem_range_AP_init();
782
783	smp_cpus++;
784
785	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
786	printf("SMP: AP CPU #%d Launched!\n", cpuid);
787
788	/* Determine if we are a logical CPU. */
789	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
790	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
791		CPU_SET(cpuid, &logical_cpus_mask);
792
793	if (bootverbose)
794		lapic_dump("AP");
795
796	if (smp_cpus == mp_ncpus) {
797		/* enable IPI's, tlb shootdown, freezes etc */
798		atomic_store_rel_int(&smp_started, 1);
799		smp_active = 1;	 /* historic */
800	}
801
802	mtx_unlock_spin(&ap_boot_mtx);
803
804	/* Wait until all the AP's are up. */
805	while (smp_started == 0)
806		ia32_pause();
807
808	/* Start per-CPU event timers. */
809	cpu_initclocks_ap();
810
811	/* Enter the scheduler. */
812	sched_throw(NULL);
813
814	panic("scheduler returned us to %s", __func__);
815	/* NOTREACHED */
816}
817
818/*******************************************************************
819 * local functions and data
820 */
821
822/*
823 * We tell the I/O APIC code about all the CPUs we want to receive
824 * interrupts.  If we don't want certain CPUs to receive IRQs we
825 * can simply not tell the I/O APIC code about them in this function.
826 */
827static void
828set_interrupt_apic_ids(void)
829{
830	u_int i, apic_id;
831
832	for (i = 0; i < MAXCPU; i++) {
833		apic_id = cpu_apic_ids[i];
834		if (apic_id == -1)
835			continue;
836		if (cpu_info[apic_id].cpu_disabled)
837			continue;
838
839		/* Don't let hyperthreads service interrupts. */
840		if (hyperthreading_cpus > 1 &&
841		    apic_id % hyperthreading_cpus != 0)
842			continue;
843
844		intr_add_cpu(i);
845	}
846}
847
848/*
849 * Assign logical CPU IDs to local APICs.
850 */
851static void
852assign_cpu_ids(void)
853{
854	u_int i;
855
856	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
857	    &hyperthreading_allowed);
858
859	/* Check for explicitly disabled CPUs. */
860	for (i = 0; i <= MAX_APIC_ID; i++) {
861		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
862			continue;
863
864		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
865			cpu_info[i].cpu_hyperthread = 1;
866
867			/*
868			 * Don't use HT CPU if it has been disabled by a
869			 * tunable.
870			 */
871			if (hyperthreading_allowed == 0) {
872				cpu_info[i].cpu_disabled = 1;
873				continue;
874			}
875		}
876
877		/* Don't use this CPU if it has been disabled by a tunable. */
878		if (resource_disabled("lapic", i)) {
879			cpu_info[i].cpu_disabled = 1;
880			continue;
881		}
882	}
883
884	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
885		hyperthreading_cpus = 0;
886		cpu_logical = 1;
887	}
888
889	/*
890	 * Assign CPU IDs to local APIC IDs and disable any CPUs
891	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
892	 *
893	 * To minimize confusion for userland, we attempt to number
894	 * CPUs such that all threads and cores in a package are
895	 * grouped together.  For now we assume that the BSP is always
896	 * the first thread in a package and just start adding APs
897	 * starting with the BSP's APIC ID.
898	 */
899	mp_ncpus = 1;
900	cpu_apic_ids[0] = boot_cpu_id;
901	apic_cpuids[boot_cpu_id] = 0;
902	for (i = boot_cpu_id + 1; i != boot_cpu_id;
903	     i == MAX_APIC_ID ? i = 0 : i++) {
904		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
905		    cpu_info[i].cpu_disabled)
906			continue;
907
908		if (mp_ncpus < MAXCPU) {
909			cpu_apic_ids[mp_ncpus] = i;
910			apic_cpuids[i] = mp_ncpus;
911			mp_ncpus++;
912		} else
913			cpu_info[i].cpu_disabled = 1;
914	}
915	KASSERT(mp_maxid >= mp_ncpus - 1,
916	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
917	    mp_ncpus));
918}
919
920/*
921 * start each AP in our list
922 */
923/* Lowest 1MB is already mapped: don't touch*/
924#define TMPMAP_START 1
925static int
926start_all_aps(void)
927{
928#ifndef PC98
929	u_char mpbiosreason;
930#endif
931	u_int32_t mpbioswarmvec;
932	int apic_id, cpu, i;
933
934	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
935
936	/* install the AP 1st level boot code */
937	install_ap_tramp();
938
939	/* save the current value of the warm-start vector */
940	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
941#ifndef PC98
942	outb(CMOS_REG, BIOS_RESET);
943	mpbiosreason = inb(CMOS_DATA);
944#endif
945
946	/* set up temporary P==V mapping for AP boot */
947	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
948	for (i = TMPMAP_START; i < NKPT; i++)
949		PTD[i] = PTD[KPTDI + i];
950	invltlb();
951
952	/* start each AP */
953	for (cpu = 1; cpu < mp_ncpus; cpu++) {
954		apic_id = cpu_apic_ids[cpu];
955
956		/* allocate and set up a boot stack data page */
957		bootstacks[cpu] =
958		    (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
959		dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
960		/* setup a vector to our boot code */
961		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
962		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
963#ifndef PC98
964		outb(CMOS_REG, BIOS_RESET);
965		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
966#endif
967
968		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
969		bootAP = cpu;
970
971		/* attempt to start the Application Processor */
972		CHECK_INIT(99);	/* setup checkpoints */
973		if (!start_ap(apic_id)) {
974			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
975			CHECK_PRINT("trace");	/* show checkpoints */
976			/* better panic as the AP may be running loose */
977			printf("panic y/n? [y] ");
978			if (cngetc() != 'n')
979				panic("bye-bye");
980		}
981		CHECK_PRINT("trace");		/* show checkpoints */
982
983		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
984	}
985
986	/* restore the warmstart vector */
987	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
988
989#ifndef PC98
990	outb(CMOS_REG, BIOS_RESET);
991	outb(CMOS_DATA, mpbiosreason);
992#endif
993
994	/* Undo V==P hack from above */
995	for (i = TMPMAP_START; i < NKPT; i++)
996		PTD[i] = 0;
997	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
998
999	/* number of APs actually started */
1000	return mp_naps;
1001}
1002
1003/*
1004 * load the 1st level AP boot code into base memory.
1005 */
1006
1007/* targets for relocation */
1008extern void bigJump(void);
1009extern void bootCodeSeg(void);
1010extern void bootDataSeg(void);
1011extern void MPentry(void);
1012extern u_int MP_GDT;
1013extern u_int mp_gdtbase;
1014
1015static void
1016install_ap_tramp(void)
1017{
1018	int     x;
1019	int     size = *(int *) ((u_long) & bootMP_size);
1020	vm_offset_t va = boot_address + KERNBASE;
1021	u_char *src = (u_char *) ((u_long) bootMP);
1022	u_char *dst = (u_char *) va;
1023	u_int   boot_base = (u_int) bootMP;
1024	u_int8_t *dst8;
1025	u_int16_t *dst16;
1026	u_int32_t *dst32;
1027
1028	KASSERT (size <= PAGE_SIZE,
1029	    ("'size' do not fit into PAGE_SIZE, as expected."));
1030	pmap_kenter(va, boot_address);
1031	pmap_invalidate_page (kernel_pmap, va);
1032	for (x = 0; x < size; ++x)
1033		*dst++ = *src++;
1034
1035	/*
1036	 * modify addresses in code we just moved to basemem. unfortunately we
1037	 * need fairly detailed info about mpboot.s for this to work.  changes
1038	 * to mpboot.s might require changes here.
1039	 */
1040
1041	/* boot code is located in KERNEL space */
1042	dst = (u_char *) va;
1043
1044	/* modify the lgdt arg */
1045	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1046	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
1047
1048	/* modify the ljmp target for MPentry() */
1049	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1050	*dst32 = ((u_int) MPentry - KERNBASE);
1051
1052	/* modify the target for boot code segment */
1053	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1054	dst8 = (u_int8_t *) (dst16 + 1);
1055	*dst16 = (u_int) boot_address & 0xffff;
1056	*dst8 = ((u_int) boot_address >> 16) & 0xff;
1057
1058	/* modify the target for boot data segment */
1059	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1060	dst8 = (u_int8_t *) (dst16 + 1);
1061	*dst16 = (u_int) boot_address & 0xffff;
1062	*dst8 = ((u_int) boot_address >> 16) & 0xff;
1063}
1064
1065/*
1066 * This function starts the AP (application processor) identified
1067 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1068 * to accomplish this.  This is necessary because of the nuances
1069 * of the different hardware we might encounter.  It isn't pretty,
1070 * but it seems to work.
1071 */
1072static int
1073start_ap(int apic_id)
1074{
1075	int vector, ms;
1076	int cpus;
1077
1078	/* calculate the vector */
1079	vector = (boot_address >> 12) & 0xff;
1080
1081	/* used as a watchpoint to signal AP startup */
1082	cpus = mp_naps;
1083
1084	/*
1085	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1086	 * and running the target CPU. OR this INIT IPI might be latched (P5
1087	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1088	 * ignored.
1089	 */
1090
1091	/* do an INIT IPI: assert RESET */
1092	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1093	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1094
1095	/* wait for pending status end */
1096	lapic_ipi_wait(-1);
1097
1098	/* do an INIT IPI: deassert RESET */
1099	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
1100	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
1101
1102	/* wait for pending status end */
1103	DELAY(10000);		/* wait ~10mS */
1104	lapic_ipi_wait(-1);
1105
1106	/*
1107	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1108	 * latched, (P5 bug) this 1st STARTUP would then terminate
1109	 * immediately, and the previously started INIT IPI would continue. OR
1110	 * the previous INIT IPI has already run. and this STARTUP IPI will
1111	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1112	 * will run.
1113	 */
1114
1115	/* do a STARTUP IPI */
1116	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1117	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1118	    vector, apic_id);
1119	lapic_ipi_wait(-1);
1120	DELAY(200);		/* wait ~200uS */
1121
1122	/*
1123	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1124	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1125	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1126	 * recognized after hardware RESET or INIT IPI.
1127	 */
1128
1129	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1130	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1131	    vector, apic_id);
1132	lapic_ipi_wait(-1);
1133	DELAY(200);		/* wait ~200uS */
1134
1135	/* Wait up to 5 seconds for it to start. */
1136	for (ms = 0; ms < 5000; ms++) {
1137		if (mp_naps > cpus)
1138			return 1;	/* return SUCCESS */
1139		DELAY(1000);
1140	}
1141	return 0;		/* return FAILURE */
1142}
1143
1144#ifdef COUNT_XINVLTLB_HITS
1145u_int xhits_gbl[MAXCPU];
1146u_int xhits_pg[MAXCPU];
1147u_int xhits_rng[MAXCPU];
1148static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1149SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1150    sizeof(xhits_gbl), "IU", "");
1151SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1152    sizeof(xhits_pg), "IU", "");
1153SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1154    sizeof(xhits_rng), "IU", "");
1155
1156u_int ipi_global;
1157u_int ipi_page;
1158u_int ipi_range;
1159u_int ipi_range_size;
1160SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1161SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1162SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1163SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
1164    0, "");
1165
1166u_int ipi_masked_global;
1167u_int ipi_masked_page;
1168u_int ipi_masked_range;
1169u_int ipi_masked_range_size;
1170SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1171    &ipi_masked_global, 0, "");
1172SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1173    &ipi_masked_page, 0, "");
1174SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1175    &ipi_masked_range, 0, "");
1176SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1177    &ipi_masked_range_size, 0, "");
1178#endif /* COUNT_XINVLTLB_HITS */
1179
1180/*
1181 * Send an IPI to specified CPU handling the bitmap logic.
1182 */
1183static void
1184ipi_send_cpu(int cpu, u_int ipi)
1185{
1186	u_int bitmap, old_pending, new_pending;
1187
1188	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1189
1190	if (IPI_IS_BITMAPED(ipi)) {
1191		bitmap = 1 << ipi;
1192		ipi = IPI_BITMAP_VECTOR;
1193		do {
1194			old_pending = cpu_ipi_pending[cpu];
1195			new_pending = old_pending | bitmap;
1196		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1197		    old_pending, new_pending));
1198		if (old_pending)
1199			return;
1200	}
1201	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1202}
1203
1204/*
1205 * Flush the TLB on all other CPU's
1206 */
1207static void
1208smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1209{
1210	u_int ncpu;
1211
1212	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1213	if (ncpu < 1)
1214		return;		/* no other cpus */
1215	if (!(read_eflags() & PSL_I))
1216		panic("%s: interrupts disabled", __func__);
1217	mtx_lock_spin(&smp_ipi_mtx);
1218	smp_tlb_addr1 = addr1;
1219	smp_tlb_addr2 = addr2;
1220	atomic_store_rel_int(&smp_tlb_wait, 0);
1221	ipi_all_but_self(vector);
1222	while (smp_tlb_wait < ncpu)
1223		ia32_pause();
1224	mtx_unlock_spin(&smp_ipi_mtx);
1225}
1226
1227static void
1228smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1229{
1230	int cpu, ncpu, othercpus;
1231
1232	othercpus = mp_ncpus - 1;
1233	if (CPU_ISFULLSET(&mask)) {
1234		if (othercpus < 1)
1235			return;
1236	} else {
1237		CPU_CLR(PCPU_GET(cpuid), &mask);
1238		if (CPU_EMPTY(&mask))
1239			return;
1240	}
1241	if (!(read_eflags() & PSL_I))
1242		panic("%s: interrupts disabled", __func__);
1243	mtx_lock_spin(&smp_ipi_mtx);
1244	smp_tlb_addr1 = addr1;
1245	smp_tlb_addr2 = addr2;
1246	atomic_store_rel_int(&smp_tlb_wait, 0);
1247	if (CPU_ISFULLSET(&mask)) {
1248		ncpu = othercpus;
1249		ipi_all_but_self(vector);
1250	} else {
1251		ncpu = 0;
1252		while ((cpu = cpusetobj_ffs(&mask)) != 0) {
1253			cpu--;
1254			CPU_CLR(cpu, &mask);
1255			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu,
1256			    vector);
1257			ipi_send_cpu(cpu, vector);
1258			ncpu++;
1259		}
1260	}
1261	while (smp_tlb_wait < ncpu)
1262		ia32_pause();
1263	mtx_unlock_spin(&smp_ipi_mtx);
1264}
1265
1266void
1267smp_cache_flush(void)
1268{
1269
1270	if (smp_started)
1271		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1272}
1273
1274void
1275smp_invltlb(void)
1276{
1277
1278	if (smp_started) {
1279		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1280#ifdef COUNT_XINVLTLB_HITS
1281		ipi_global++;
1282#endif
1283	}
1284}
1285
1286void
1287smp_invlpg(vm_offset_t addr)
1288{
1289
1290	if (smp_started) {
1291		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1292#ifdef COUNT_XINVLTLB_HITS
1293		ipi_page++;
1294#endif
1295	}
1296}
1297
1298void
1299smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1300{
1301
1302	if (smp_started) {
1303		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1304#ifdef COUNT_XINVLTLB_HITS
1305		ipi_range++;
1306		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1307#endif
1308	}
1309}
1310
1311void
1312smp_masked_invltlb(cpuset_t mask)
1313{
1314
1315	if (smp_started) {
1316		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1317#ifdef COUNT_XINVLTLB_HITS
1318		ipi_masked_global++;
1319#endif
1320	}
1321}
1322
1323void
1324smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
1325{
1326
1327	if (smp_started) {
1328		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1329#ifdef COUNT_XINVLTLB_HITS
1330		ipi_masked_page++;
1331#endif
1332	}
1333}
1334
1335void
1336smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
1337{
1338
1339	if (smp_started) {
1340		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1341#ifdef COUNT_XINVLTLB_HITS
1342		ipi_masked_range++;
1343		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1344#endif
1345	}
1346}
1347
1348void
1349ipi_bitmap_handler(struct trapframe frame)
1350{
1351	struct trapframe *oldframe;
1352	struct thread *td;
1353	int cpu = PCPU_GET(cpuid);
1354	u_int ipi_bitmap;
1355
1356	critical_enter();
1357	td = curthread;
1358	td->td_intr_nesting_level++;
1359	oldframe = td->td_intr_frame;
1360	td->td_intr_frame = &frame;
1361	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1362	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1363#ifdef COUNT_IPIS
1364		(*ipi_preempt_counts[cpu])++;
1365#endif
1366		sched_preempt(td);
1367	}
1368	if (ipi_bitmap & (1 << IPI_AST)) {
1369#ifdef COUNT_IPIS
1370		(*ipi_ast_counts[cpu])++;
1371#endif
1372		/* Nothing to do for AST */
1373	}
1374	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1375#ifdef COUNT_IPIS
1376		(*ipi_hardclock_counts[cpu])++;
1377#endif
1378		hardclockintr();
1379	}
1380	td->td_intr_frame = oldframe;
1381	td->td_intr_nesting_level--;
1382	critical_exit();
1383}
1384
1385/*
1386 * send an IPI to a set of cpus.
1387 */
1388void
1389ipi_selected(cpuset_t cpus, u_int ipi)
1390{
1391	int cpu;
1392
1393	/*
1394	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1395	 * of help in order to understand what is the source.
1396	 * Set the mask of receiving CPUs for this purpose.
1397	 */
1398	if (ipi == IPI_STOP_HARD)
1399		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1400
1401	while ((cpu = cpusetobj_ffs(&cpus)) != 0) {
1402		cpu--;
1403		CPU_CLR(cpu, &cpus);
1404		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1405		ipi_send_cpu(cpu, ipi);
1406	}
1407}
1408
1409/*
1410 * send an IPI to a specific CPU.
1411 */
1412void
1413ipi_cpu(int cpu, u_int ipi)
1414{
1415
1416	/*
1417	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1418	 * of help in order to understand what is the source.
1419	 * Set the mask of receiving CPUs for this purpose.
1420	 */
1421	if (ipi == IPI_STOP_HARD)
1422		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1423
1424	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1425	ipi_send_cpu(cpu, ipi);
1426}
1427
1428/*
1429 * send an IPI to all CPUs EXCEPT myself
1430 */
1431void
1432ipi_all_but_self(u_int ipi)
1433{
1434	cpuset_t other_cpus;
1435
1436	other_cpus = all_cpus;
1437	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1438	if (IPI_IS_BITMAPED(ipi)) {
1439		ipi_selected(other_cpus, ipi);
1440		return;
1441	}
1442
1443	/*
1444	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1445	 * of help in order to understand what is the source.
1446	 * Set the mask of receiving CPUs for this purpose.
1447	 */
1448	if (ipi == IPI_STOP_HARD)
1449		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1450
1451	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1452	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1453}
1454
1455int
1456ipi_nmi_handler()
1457{
1458	u_int cpuid;
1459
1460	/*
1461	 * As long as there is not a simple way to know about a NMI's
1462	 * source, if the bitmask for the current CPU is present in
1463	 * the global pending bitword an IPI_STOP_HARD has been issued
1464	 * and should be handled.
1465	 */
1466	cpuid = PCPU_GET(cpuid);
1467	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1468		return (1);
1469
1470	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1471	cpustop_handler();
1472	return (0);
1473}
1474
1475/*
1476 * Handle an IPI_STOP by saving our current context and spinning until we
1477 * are resumed.
1478 */
1479void
1480cpustop_handler(void)
1481{
1482	u_int cpu;
1483
1484	cpu = PCPU_GET(cpuid);
1485
1486	savectx(&stoppcbs[cpu]);
1487
1488	/* Indicate that we are stopped */
1489	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1490
1491	/* Wait for restart */
1492	while (!CPU_ISSET(cpu, &started_cpus))
1493	    ia32_pause();
1494
1495	CPU_CLR_ATOMIC(cpu, &started_cpus);
1496	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1497
1498	if (cpu == 0 && cpustop_restartfunc != NULL) {
1499		cpustop_restartfunc();
1500		cpustop_restartfunc = NULL;
1501	}
1502}
1503
1504/*
1505 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1506 * are resumed.
1507 */
1508void
1509cpususpend_handler(void)
1510{
1511	u_int cpu;
1512
1513	cpu = PCPU_GET(cpuid);
1514
1515	if (suspendctx(susppcbs[cpu])) {
1516		wbinvd();
1517		CPU_SET_ATOMIC(cpu, &stopped_cpus);
1518	} else {
1519		pmap_init_pat();
1520		PCPU_SET(switchtime, 0);
1521		PCPU_SET(switchticks, ticks);
1522		susppcbs[cpu]->pcb_eip = 0;
1523	}
1524
1525	/* Wait for resume */
1526	while (!CPU_ISSET(cpu, &started_cpus))
1527		ia32_pause();
1528
1529	CPU_CLR_ATOMIC(cpu, &started_cpus);
1530	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1531
1532	/* Resume MCA and local APIC */
1533	mca_resume();
1534	lapic_setup(0);
1535}
1536/*
1537 * This is called once the rest of the system is up and running and we're
1538 * ready to let the AP's out of the pen.
1539 */
1540static void
1541release_aps(void *dummy __unused)
1542{
1543
1544	if (mp_ncpus == 1)
1545		return;
1546	atomic_store_rel_int(&aps_ready, 1);
1547	while (smp_started == 0)
1548		ia32_pause();
1549}
1550SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1551
1552#ifdef COUNT_IPIS
1553/*
1554 * Setup interrupt counters for IPI handlers.
1555 */
1556static void
1557mp_ipi_intrcnt(void *dummy)
1558{
1559	char buf[64];
1560	int i;
1561
1562	CPU_FOREACH(i) {
1563		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1564		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1565		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1566		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1567		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1568		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1569		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1570		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1571		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1572		intrcnt_add(buf, &ipi_preempt_counts[i]);
1573		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1574		intrcnt_add(buf, &ipi_ast_counts[i]);
1575		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1576		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1577		snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
1578		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1579		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1580		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1581	}
1582}
1583SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1584#endif
1585