mp_x86.c revision 211151
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/i386/i386/mp_machdep.c 211151 2010-08-10 18:29:39Z attilio $");
28
29#include "opt_apic.h"
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_pmap.h"
34#include "opt_sched.h"
35#include "opt_smp.h"
36
37#if !defined(lint)
38#if !defined(SMP)
39#error How did you get here?
40#endif
41
42#ifndef DEV_APIC
43#error The apic device is required for SMP, add "device apic" to your config file.
44#endif
45#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
46#error SMP not supported with CPU_DISABLE_CMPXCHG
47#endif
48#endif /* not lint */
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/bus.h>
53#include <sys/cons.h>	/* cngetc() */
54#ifdef GPROF
55#include <sys/gmon.h>
56#endif
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/memrange.h>
62#include <sys/mutex.h>
63#include <sys/pcpu.h>
64#include <sys/proc.h>
65#include <sys/sched.h>
66#include <sys/smp.h>
67#include <sys/sysctl.h>
68
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#include <vm/vm_kern.h>
73#include <vm/vm_extern.h>
74
75#include <machine/apicreg.h>
76#include <machine/clock.h>
77#include <machine/cputypes.h>
78#include <machine/mca.h>
79#include <machine/md_var.h>
80#include <machine/mp_watchdog.h>
81#include <machine/pcb.h>
82#include <machine/psl.h>
83#include <machine/smp.h>
84#include <machine/specialreg.h>
85
86#define WARMBOOT_TARGET		0
87#define WARMBOOT_OFF		(KERNBASE + 0x0467)
88#define WARMBOOT_SEG		(KERNBASE + 0x0469)
89
90#define CMOS_REG		(0x70)
91#define CMOS_DATA		(0x71)
92#define BIOS_RESET		(0x0f)
93#define BIOS_WARM		(0x0a)
94
95/*
96 * this code MUST be enabled here and in mpboot.s.
97 * it follows the very early stages of AP boot by placing values in CMOS ram.
98 * it NORMALLY will never be needed and thus the primitive method for enabling.
99 *
100#define CHECK_POINTS
101 */
102
103#if defined(CHECK_POINTS) && !defined(PC98)
104#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
105#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
106
107#define CHECK_INIT(D);				\
108	CHECK_WRITE(0x34, (D));			\
109	CHECK_WRITE(0x35, (D));			\
110	CHECK_WRITE(0x36, (D));			\
111	CHECK_WRITE(0x37, (D));			\
112	CHECK_WRITE(0x38, (D));			\
113	CHECK_WRITE(0x39, (D));
114
115#define CHECK_PRINT(S);				\
116	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
117	   (S),					\
118	   CHECK_READ(0x34),			\
119	   CHECK_READ(0x35),			\
120	   CHECK_READ(0x36),			\
121	   CHECK_READ(0x37),			\
122	   CHECK_READ(0x38),			\
123	   CHECK_READ(0x39));
124
125#else				/* CHECK_POINTS */
126
127#define CHECK_INIT(D)
128#define CHECK_PRINT(S)
129#define CHECK_WRITE(A, D)
130
131#endif				/* CHECK_POINTS */
132
133/* lock region used by kernel profiling */
134int	mcount_lock;
135
136int	mp_naps;		/* # of Applications processors */
137int	boot_cpu_id = -1;	/* designated BSP */
138
139extern	struct pcpu __pcpu[];
140
141/* AP uses this during bootstrap.  Do not staticize.  */
142char *bootSTK;
143static int bootAP;
144
145/* Free these after use */
146void *bootstacks[MAXCPU];
147static void *dpcpu;
148
149/* Hotwire a 0->4MB V==P mapping */
150extern pt_entry_t *KPTphys;
151
152struct pcb stoppcbs[MAXCPU];
153
154/* Variables needed for SMP tlb shootdown. */
155vm_offset_t smp_tlb_addr1;
156vm_offset_t smp_tlb_addr2;
157volatile int smp_tlb_wait;
158
159#ifdef COUNT_IPIS
160/* Interrupt counts. */
161static u_long *ipi_preempt_counts[MAXCPU];
162static u_long *ipi_ast_counts[MAXCPU];
163u_long *ipi_invltlb_counts[MAXCPU];
164u_long *ipi_invlrng_counts[MAXCPU];
165u_long *ipi_invlpg_counts[MAXCPU];
166u_long *ipi_invlcache_counts[MAXCPU];
167u_long *ipi_rendezvous_counts[MAXCPU];
168u_long *ipi_lazypmap_counts[MAXCPU];
169static u_long *ipi_hardclock_counts[MAXCPU];
170static u_long *ipi_statclock_counts[MAXCPU];
171#endif
172
173/*
174 * Local data and functions.
175 */
176
177static cpumask_t logical_cpus;
178static volatile cpumask_t ipi_nmi_pending;
179
180/* used to hold the AP's until we are ready to release them */
181static struct mtx ap_boot_mtx;
182
183/* Set to 1 once we're ready to let the APs out of the pen. */
184static volatile int aps_ready = 0;
185
186/*
187 * Store data from cpu_add() until later in the boot when we actually setup
188 * the APs.
189 */
190struct cpu_info {
191	int	cpu_present:1;
192	int	cpu_bsp:1;
193	int	cpu_disabled:1;
194	int	cpu_hyperthread:1;
195} static cpu_info[MAX_APIC_ID + 1];
196int cpu_apic_ids[MAXCPU];
197int apic_cpuids[MAX_APIC_ID + 1];
198
199/* Holds pending bitmap based IPIs per CPU */
200static volatile u_int cpu_ipi_pending[MAXCPU];
201
202static u_int boot_address;
203static int cpu_logical;
204static int cpu_cores;
205
206static void	assign_cpu_ids(void);
207static void	install_ap_tramp(void);
208static void	set_interrupt_apic_ids(void);
209static int	start_all_aps(void);
210static int	start_ap(int apic_id);
211static void	release_aps(void *dummy);
212
213static cpumask_t	hlt_logical_cpus;
214static cpumask_t	hyperthreading_cpus;
215static cpumask_t	hyperthreading_cpus_mask;
216static int	hyperthreading_allowed = 1;
217static struct	sysctl_ctx_list logical_cpu_clist;
218
219static void
220mem_range_AP_init(void)
221{
222	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
223		mem_range_softc.mr_op->initAP(&mem_range_softc);
224}
225
226static void
227topo_probe_0xb(void)
228{
229	int logical;
230	int p[4];
231	int bits;
232	int type;
233	int cnt;
234	int i;
235	int x;
236
237	/* We only support two levels for now. */
238	for (i = 0; i < 3; i++) {
239		cpuid_count(0x0B, i, p);
240		bits = p[0] & 0x1f;
241		logical = p[1] &= 0xffff;
242		type = (p[2] >> 8) & 0xff;
243		if (type == 0 || logical == 0)
244			break;
245		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
246			if (!cpu_info[x].cpu_present ||
247			    cpu_info[x].cpu_disabled)
248				continue;
249			if (x >> bits == boot_cpu_id >> bits)
250				cnt++;
251		}
252		if (type == CPUID_TYPE_SMT)
253			cpu_logical = cnt;
254		else if (type == CPUID_TYPE_CORE)
255			cpu_cores = cnt;
256	}
257	if (cpu_logical == 0)
258		cpu_logical = 1;
259	cpu_cores /= cpu_logical;
260}
261
262static void
263topo_probe_0x4(void)
264{
265	u_int threads_per_cache, p[4];
266	u_int htt, cmp;
267	int i;
268
269	htt = cmp = 1;
270	/*
271	 * If this CPU supports HTT or CMP then mention the
272	 * number of physical/logical cores it contains.
273	 */
274	if (cpu_feature & CPUID_HTT)
275		htt = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
276	if (cpu_vendor_id == CPU_VENDOR_AMD && (amd_feature2 & AMDID2_CMP))
277		cmp = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
278	else if (cpu_vendor_id == CPU_VENDOR_INTEL && (cpu_high >= 4)) {
279		cpuid_count(4, 0, p);
280		if ((p[0] & 0x1f) != 0)
281			cmp = ((p[0] >> 26) & 0x3f) + 1;
282	}
283	cpu_cores = cmp;
284	cpu_logical = htt / cmp;
285
286	/* Setup the initial logical CPUs info. */
287	if (cpu_feature & CPUID_HTT)
288		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
289
290	/*
291	 * Work out if hyperthreading is *really* enabled.  This
292	 * is made really ugly by the fact that processors lie: Dual
293	 * core processors claim to be hyperthreaded even when they're
294	 * not, presumably because they want to be treated the same
295	 * way as HTT with respect to per-cpu software licensing.
296	 * At the time of writing (May 12, 2005) the only hyperthreaded
297	 * cpus are from Intel, and Intel's dual-core processors can be
298	 * identified via the "deterministic cache parameters" cpuid
299	 * calls.
300	 */
301	/*
302	 * First determine if this is an Intel processor which claims
303	 * to have hyperthreading support.
304	 */
305	if ((cpu_feature & CPUID_HTT) && cpu_vendor_id == CPU_VENDOR_INTEL) {
306		/*
307		 * If the "deterministic cache parameters" cpuid calls
308		 * are available, use them.
309		 */
310		if (cpu_high >= 4) {
311			/* Ask the processor about the L1 cache. */
312			for (i = 0; i < 1; i++) {
313				cpuid_count(4, i, p);
314				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
315				if (hyperthreading_cpus < threads_per_cache)
316					hyperthreading_cpus = threads_per_cache;
317				if ((p[0] & 0x1f) == 0)
318					break;
319			}
320		}
321
322		/*
323		 * If the deterministic cache parameters are not
324		 * available, or if no caches were reported to exist,
325		 * just accept what the HTT flag indicated.
326		 */
327		if (hyperthreading_cpus == 0)
328			hyperthreading_cpus = logical_cpus;
329	}
330}
331
332static void
333topo_probe(void)
334{
335	static int cpu_topo_probed = 0;
336
337	if (cpu_topo_probed)
338		return;
339
340	logical_cpus = logical_cpus_mask = 0;
341	if (cpu_high >= 0xb)
342		topo_probe_0xb();
343	else if (cpu_high)
344		topo_probe_0x4();
345	if (cpu_cores == 0)
346		cpu_cores = mp_ncpus > 0 ? mp_ncpus : 1;
347	if (cpu_logical == 0)
348		cpu_logical = 1;
349	cpu_topo_probed = 1;
350}
351
352struct cpu_group *
353cpu_topo(void)
354{
355	int cg_flags;
356
357	/*
358	 * Determine whether any threading flags are
359	 * necessry.
360	 */
361	topo_probe();
362	if (cpu_logical > 1 && hyperthreading_cpus)
363		cg_flags = CG_FLAG_HTT;
364	else if (cpu_logical > 1)
365		cg_flags = CG_FLAG_SMT;
366	else
367		cg_flags = 0;
368	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
369		printf("WARNING: Non-uniform processors.\n");
370		printf("WARNING: Using suboptimal topology.\n");
371		return (smp_topo_none());
372	}
373	/*
374	 * No multi-core or hyper-threaded.
375	 */
376	if (cpu_logical * cpu_cores == 1)
377		return (smp_topo_none());
378	/*
379	 * Only HTT no multi-core.
380	 */
381	if (cpu_logical > 1 && cpu_cores == 1)
382		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
383	/*
384	 * Only multi-core no HTT.
385	 */
386	if (cpu_cores > 1 && cpu_logical == 1)
387		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
388	/*
389	 * Both HTT and multi-core.
390	 */
391	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
392	    CG_SHARE_L1, cpu_logical, cg_flags));
393}
394
395
396/*
397 * Calculate usable address in base memory for AP trampoline code.
398 */
399u_int
400mp_bootaddress(u_int basemem)
401{
402
403	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
404	if ((basemem - boot_address) < bootMP_size)
405		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
406
407	return boot_address;
408}
409
410void
411cpu_add(u_int apic_id, char boot_cpu)
412{
413
414	if (apic_id > MAX_APIC_ID) {
415		panic("SMP: APIC ID %d too high", apic_id);
416		return;
417	}
418	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
419	    apic_id));
420	cpu_info[apic_id].cpu_present = 1;
421	if (boot_cpu) {
422		KASSERT(boot_cpu_id == -1,
423		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
424		    boot_cpu_id));
425		boot_cpu_id = apic_id;
426		cpu_info[apic_id].cpu_bsp = 1;
427	}
428	if (mp_ncpus < MAXCPU)
429		mp_ncpus++;
430	if (bootverbose)
431		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
432		    "AP");
433}
434
435void
436cpu_mp_setmaxid(void)
437{
438
439	mp_maxid = MAXCPU - 1;
440}
441
442int
443cpu_mp_probe(void)
444{
445
446	/*
447	 * Always record BSP in CPU map so that the mbuf init code works
448	 * correctly.
449	 */
450	all_cpus = 1;
451	if (mp_ncpus == 0) {
452		/*
453		 * No CPUs were found, so this must be a UP system.  Setup
454		 * the variables to represent a system with a single CPU
455		 * with an id of 0.
456		 */
457		mp_ncpus = 1;
458		return (0);
459	}
460
461	/* At least one CPU was found. */
462	if (mp_ncpus == 1) {
463		/*
464		 * One CPU was found, so this must be a UP system with
465		 * an I/O APIC.
466		 */
467		return (0);
468	}
469
470	/* At least two CPUs were found. */
471	return (1);
472}
473
474/*
475 * Initialize the IPI handlers and start up the AP's.
476 */
477void
478cpu_mp_start(void)
479{
480	int i;
481
482	/* Initialize the logical ID to APIC ID table. */
483	for (i = 0; i < MAXCPU; i++) {
484		cpu_apic_ids[i] = -1;
485		cpu_ipi_pending[i] = 0;
486	}
487
488	/* Install an inter-CPU IPI for TLB invalidation */
489	setidt(IPI_INVLTLB, IDTVEC(invltlb),
490	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
491	setidt(IPI_INVLPG, IDTVEC(invlpg),
492	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
493	setidt(IPI_INVLRNG, IDTVEC(invlrng),
494	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
495
496	/* Install an inter-CPU IPI for cache invalidation. */
497	setidt(IPI_INVLCACHE, IDTVEC(invlcache),
498	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
499
500	/* Install an inter-CPU IPI for lazy pmap release */
501	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
502	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
503
504	/* Install an inter-CPU IPI for all-CPU rendezvous */
505	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
506	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
507
508	/* Install generic inter-CPU IPI handler */
509	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
510	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
511
512	/* Install an inter-CPU IPI for CPU stop/restart */
513	setidt(IPI_STOP, IDTVEC(cpustop),
514	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
515
516
517	/* Set boot_cpu_id if needed. */
518	if (boot_cpu_id == -1) {
519		boot_cpu_id = PCPU_GET(apic_id);
520		cpu_info[boot_cpu_id].cpu_bsp = 1;
521	} else
522		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
523		    ("BSP's APIC ID doesn't match boot_cpu_id"));
524
525	/* Probe logical/physical core configuration. */
526	topo_probe();
527
528	assign_cpu_ids();
529
530	/* Start each Application Processor */
531	start_all_aps();
532
533	set_interrupt_apic_ids();
534}
535
536
537/*
538 * Print various information about the SMP system hardware and setup.
539 */
540void
541cpu_mp_announce(void)
542{
543	const char *hyperthread;
544	int i;
545
546	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
547	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
548	if (hyperthreading_cpus > 1)
549	    printf(" x %d HTT threads", cpu_logical);
550	else if (cpu_logical > 1)
551	    printf(" x %d SMT threads", cpu_logical);
552	printf("\n");
553
554	/* List active CPUs first. */
555	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
556	for (i = 1; i < mp_ncpus; i++) {
557		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
558			hyperthread = "/HT";
559		else
560			hyperthread = "";
561		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
562		    cpu_apic_ids[i]);
563	}
564
565	/* List disabled CPUs last. */
566	for (i = 0; i <= MAX_APIC_ID; i++) {
567		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
568			continue;
569		if (cpu_info[i].cpu_hyperthread)
570			hyperthread = "/HT";
571		else
572			hyperthread = "";
573		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
574		    i);
575	}
576}
577
578/*
579 * AP CPU's call this to initialize themselves.
580 */
581void
582init_secondary(void)
583{
584	struct pcpu *pc;
585	vm_offset_t addr;
586	int	gsel_tss;
587	int	x, myid;
588	u_int	cr0;
589
590	/* bootAP is set in start_ap() to our ID. */
591	myid = bootAP;
592
593	/* Get per-cpu data */
594	pc = &__pcpu[myid];
595
596	/* prime data page for it to use */
597	pcpu_init(pc, myid, sizeof(struct pcpu));
598	dpcpu_init(dpcpu, myid);
599	pc->pc_apic_id = cpu_apic_ids[myid];
600	pc->pc_prvspace = pc;
601	pc->pc_curthread = 0;
602
603	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
604	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
605
606	for (x = 0; x < NGDT; x++) {
607		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
608	}
609
610	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
611	r_gdt.rd_base = (int) &gdt[myid * NGDT];
612	lgdt(&r_gdt);			/* does magic intra-segment return */
613
614	lidt(&r_idt);
615
616	lldt(_default_ldt);
617	PCPU_SET(currentldt, _default_ldt);
618
619	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
620	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
621	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
622	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
623	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
624	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
625	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
626	ltr(gsel_tss);
627
628	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
629
630	/*
631	 * Set to a known state:
632	 * Set by mpboot.s: CR0_PG, CR0_PE
633	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
634	 */
635	cr0 = rcr0();
636	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
637	load_cr0(cr0);
638	CHECK_WRITE(0x38, 5);
639
640	/* Disable local APIC just to be sure. */
641	lapic_disable();
642
643	/* signal our startup to the BSP. */
644	mp_naps++;
645	CHECK_WRITE(0x39, 6);
646
647	/* Spin until the BSP releases the AP's. */
648	while (!aps_ready)
649		ia32_pause();
650
651	/* BSP may have changed PTD while we were waiting */
652	invltlb();
653	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
654		invlpg(addr);
655
656#if defined(I586_CPU) && !defined(NO_F00F_HACK)
657	lidt(&r_idt);
658#endif
659
660	/* Initialize the PAT MSR if present. */
661	pmap_init_pat();
662
663	/* set up CPU registers and state */
664	cpu_setregs();
665
666	/* set up FPU state on the AP */
667	npxinit();
668
669	/* set up SSE registers */
670	enable_sse();
671
672#ifdef PAE
673	/* Enable the PTE no-execute bit. */
674	if ((amd_feature & AMDID_NX) != 0) {
675		uint64_t msr;
676
677		msr = rdmsr(MSR_EFER) | EFER_NXE;
678		wrmsr(MSR_EFER, msr);
679	}
680#endif
681
682	/* A quick check from sanity claus */
683	if (PCPU_GET(apic_id) != lapic_id()) {
684		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
685		printf("SMP: actual apic_id = %d\n", lapic_id());
686		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
687		panic("cpuid mismatch! boom!!");
688	}
689
690	/* Initialize curthread. */
691	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
692	PCPU_SET(curthread, PCPU_GET(idlethread));
693
694	mca_init();
695
696	mtx_lock_spin(&ap_boot_mtx);
697
698	/* Init local apic for irq's */
699	lapic_setup(1);
700
701	/* Set memory range attributes for this CPU to match the BSP */
702	mem_range_AP_init();
703
704	smp_cpus++;
705
706	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
707	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
708
709	/* Determine if we are a logical CPU. */
710	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
711		logical_cpus_mask |= PCPU_GET(cpumask);
712
713	/* Determine if we are a hyperthread. */
714	if (hyperthreading_cpus > 1 &&
715	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
716		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
717
718	/* Build our map of 'other' CPUs. */
719	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
720
721	if (bootverbose)
722		lapic_dump("AP");
723
724	if (smp_cpus == mp_ncpus) {
725		/* enable IPI's, tlb shootdown, freezes etc */
726		atomic_store_rel_int(&smp_started, 1);
727		smp_active = 1;	 /* historic */
728	}
729
730	mtx_unlock_spin(&ap_boot_mtx);
731
732	/* Wait until all the AP's are up. */
733	while (smp_started == 0)
734		ia32_pause();
735
736	/* Start per-CPU event timers. */
737	cpu_initclocks_ap();
738
739	/* Enter the scheduler. */
740	sched_throw(NULL);
741
742	panic("scheduler returned us to %s", __func__);
743	/* NOTREACHED */
744}
745
746/*******************************************************************
747 * local functions and data
748 */
749
750/*
751 * We tell the I/O APIC code about all the CPUs we want to receive
752 * interrupts.  If we don't want certain CPUs to receive IRQs we
753 * can simply not tell the I/O APIC code about them in this function.
754 * We also do not tell it about the BSP since it tells itself about
755 * the BSP internally to work with UP kernels and on UP machines.
756 */
757static void
758set_interrupt_apic_ids(void)
759{
760	u_int i, apic_id;
761
762	for (i = 0; i < MAXCPU; i++) {
763		apic_id = cpu_apic_ids[i];
764		if (apic_id == -1)
765			continue;
766		if (cpu_info[apic_id].cpu_bsp)
767			continue;
768		if (cpu_info[apic_id].cpu_disabled)
769			continue;
770
771		/* Don't let hyperthreads service interrupts. */
772		if (hyperthreading_cpus > 1 &&
773		    apic_id % hyperthreading_cpus != 0)
774			continue;
775
776		intr_add_cpu(i);
777	}
778}
779
780/*
781 * Assign logical CPU IDs to local APICs.
782 */
783static void
784assign_cpu_ids(void)
785{
786	u_int i;
787
788	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
789	    &hyperthreading_allowed);
790
791	/* Check for explicitly disabled CPUs. */
792	for (i = 0; i <= MAX_APIC_ID; i++) {
793		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
794			continue;
795
796		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
797			cpu_info[i].cpu_hyperthread = 1;
798#if defined(SCHED_ULE)
799			/*
800			 * Don't use HT CPU if it has been disabled by a
801			 * tunable.
802			 */
803			if (hyperthreading_allowed == 0) {
804				cpu_info[i].cpu_disabled = 1;
805				continue;
806			}
807#endif
808		}
809
810		/* Don't use this CPU if it has been disabled by a tunable. */
811		if (resource_disabled("lapic", i)) {
812			cpu_info[i].cpu_disabled = 1;
813			continue;
814		}
815	}
816
817	/*
818	 * Assign CPU IDs to local APIC IDs and disable any CPUs
819	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
820	 *
821	 * To minimize confusion for userland, we attempt to number
822	 * CPUs such that all threads and cores in a package are
823	 * grouped together.  For now we assume that the BSP is always
824	 * the first thread in a package and just start adding APs
825	 * starting with the BSP's APIC ID.
826	 */
827	mp_ncpus = 1;
828	cpu_apic_ids[0] = boot_cpu_id;
829	apic_cpuids[boot_cpu_id] = 0;
830	for (i = boot_cpu_id + 1; i != boot_cpu_id;
831	     i == MAX_APIC_ID ? i = 0 : i++) {
832		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
833		    cpu_info[i].cpu_disabled)
834			continue;
835
836		if (mp_ncpus < MAXCPU) {
837			cpu_apic_ids[mp_ncpus] = i;
838			apic_cpuids[i] = mp_ncpus;
839			mp_ncpus++;
840		} else
841			cpu_info[i].cpu_disabled = 1;
842	}
843	KASSERT(mp_maxid >= mp_ncpus - 1,
844	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
845	    mp_ncpus));
846}
847
848/*
849 * start each AP in our list
850 */
851/* Lowest 1MB is already mapped: don't touch*/
852#define TMPMAP_START 1
853static int
854start_all_aps(void)
855{
856#ifndef PC98
857	u_char mpbiosreason;
858#endif
859	uintptr_t kptbase;
860	u_int32_t mpbioswarmvec;
861	int apic_id, cpu, i;
862
863	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
864
865	/* install the AP 1st level boot code */
866	install_ap_tramp();
867
868	/* save the current value of the warm-start vector */
869	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
870#ifndef PC98
871	outb(CMOS_REG, BIOS_RESET);
872	mpbiosreason = inb(CMOS_DATA);
873#endif
874
875	/* set up temporary P==V mapping for AP boot */
876	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
877
878	kptbase = (uintptr_t)(void *)KPTphys;
879	for (i = TMPMAP_START; i < NKPT; i++)
880		PTD[i] = (pd_entry_t)(PG_V | PG_RW |
881		    ((kptbase + i * PAGE_SIZE) & PG_FRAME));
882	invltlb();
883
884	/* start each AP */
885	for (cpu = 1; cpu < mp_ncpus; cpu++) {
886		apic_id = cpu_apic_ids[cpu];
887
888		/* allocate and set up a boot stack data page */
889		bootstacks[cpu] =
890		    (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
891		dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
892		/* setup a vector to our boot code */
893		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
894		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
895#ifndef PC98
896		outb(CMOS_REG, BIOS_RESET);
897		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
898#endif
899
900		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
901		bootAP = cpu;
902
903		/* attempt to start the Application Processor */
904		CHECK_INIT(99);	/* setup checkpoints */
905		if (!start_ap(apic_id)) {
906			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
907			CHECK_PRINT("trace");	/* show checkpoints */
908			/* better panic as the AP may be running loose */
909			printf("panic y/n? [y] ");
910			if (cngetc() != 'n')
911				panic("bye-bye");
912		}
913		CHECK_PRINT("trace");		/* show checkpoints */
914
915		all_cpus |= (1 << cpu);		/* record AP in CPU map */
916	}
917
918	/* build our map of 'other' CPUs */
919	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
920
921	/* restore the warmstart vector */
922	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
923
924#ifndef PC98
925	outb(CMOS_REG, BIOS_RESET);
926	outb(CMOS_DATA, mpbiosreason);
927#endif
928
929	/* Undo V==P hack from above */
930	for (i = TMPMAP_START; i < NKPT; i++)
931		PTD[i] = 0;
932	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
933
934	/* number of APs actually started */
935	return mp_naps;
936}
937
938/*
939 * load the 1st level AP boot code into base memory.
940 */
941
942/* targets for relocation */
943extern void bigJump(void);
944extern void bootCodeSeg(void);
945extern void bootDataSeg(void);
946extern void MPentry(void);
947extern u_int MP_GDT;
948extern u_int mp_gdtbase;
949
950static void
951install_ap_tramp(void)
952{
953	int     x;
954	int     size = *(int *) ((u_long) & bootMP_size);
955	vm_offset_t va = boot_address + KERNBASE;
956	u_char *src = (u_char *) ((u_long) bootMP);
957	u_char *dst = (u_char *) va;
958	u_int   boot_base = (u_int) bootMP;
959	u_int8_t *dst8;
960	u_int16_t *dst16;
961	u_int32_t *dst32;
962
963	KASSERT (size <= PAGE_SIZE,
964	    ("'size' do not fit into PAGE_SIZE, as expected."));
965	pmap_kenter(va, boot_address);
966	pmap_invalidate_page (kernel_pmap, va);
967	for (x = 0; x < size; ++x)
968		*dst++ = *src++;
969
970	/*
971	 * modify addresses in code we just moved to basemem. unfortunately we
972	 * need fairly detailed info about mpboot.s for this to work.  changes
973	 * to mpboot.s might require changes here.
974	 */
975
976	/* boot code is located in KERNEL space */
977	dst = (u_char *) va;
978
979	/* modify the lgdt arg */
980	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
981	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
982
983	/* modify the ljmp target for MPentry() */
984	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
985	*dst32 = ((u_int) MPentry - KERNBASE);
986
987	/* modify the target for boot code segment */
988	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
989	dst8 = (u_int8_t *) (dst16 + 1);
990	*dst16 = (u_int) boot_address & 0xffff;
991	*dst8 = ((u_int) boot_address >> 16) & 0xff;
992
993	/* modify the target for boot data segment */
994	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
995	dst8 = (u_int8_t *) (dst16 + 1);
996	*dst16 = (u_int) boot_address & 0xffff;
997	*dst8 = ((u_int) boot_address >> 16) & 0xff;
998}
999
1000/*
1001 * This function starts the AP (application processor) identified
1002 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1003 * to accomplish this.  This is necessary because of the nuances
1004 * of the different hardware we might encounter.  It isn't pretty,
1005 * but it seems to work.
1006 */
1007static int
1008start_ap(int apic_id)
1009{
1010	int vector, ms;
1011	int cpus;
1012
1013	/* calculate the vector */
1014	vector = (boot_address >> 12) & 0xff;
1015
1016	/* used as a watchpoint to signal AP startup */
1017	cpus = mp_naps;
1018
1019	/*
1020	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1021	 * and running the target CPU. OR this INIT IPI might be latched (P5
1022	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1023	 * ignored.
1024	 */
1025
1026	/* do an INIT IPI: assert RESET */
1027	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1028	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1029
1030	/* wait for pending status end */
1031	lapic_ipi_wait(-1);
1032
1033	/* do an INIT IPI: deassert RESET */
1034	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
1035	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
1036
1037	/* wait for pending status end */
1038	DELAY(10000);		/* wait ~10mS */
1039	lapic_ipi_wait(-1);
1040
1041	/*
1042	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1043	 * latched, (P5 bug) this 1st STARTUP would then terminate
1044	 * immediately, and the previously started INIT IPI would continue. OR
1045	 * the previous INIT IPI has already run. and this STARTUP IPI will
1046	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1047	 * will run.
1048	 */
1049
1050	/* do a STARTUP IPI */
1051	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1052	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1053	    vector, apic_id);
1054	lapic_ipi_wait(-1);
1055	DELAY(200);		/* wait ~200uS */
1056
1057	/*
1058	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1059	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1060	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1061	 * recognized after hardware RESET or INIT IPI.
1062	 */
1063
1064	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1065	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1066	    vector, apic_id);
1067	lapic_ipi_wait(-1);
1068	DELAY(200);		/* wait ~200uS */
1069
1070	/* Wait up to 5 seconds for it to start. */
1071	for (ms = 0; ms < 5000; ms++) {
1072		if (mp_naps > cpus)
1073			return 1;	/* return SUCCESS */
1074		DELAY(1000);
1075	}
1076	return 0;		/* return FAILURE */
1077}
1078
1079#ifdef COUNT_XINVLTLB_HITS
1080u_int xhits_gbl[MAXCPU];
1081u_int xhits_pg[MAXCPU];
1082u_int xhits_rng[MAXCPU];
1083SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1084SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1085    sizeof(xhits_gbl), "IU", "");
1086SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1087    sizeof(xhits_pg), "IU", "");
1088SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1089    sizeof(xhits_rng), "IU", "");
1090
1091u_int ipi_global;
1092u_int ipi_page;
1093u_int ipi_range;
1094u_int ipi_range_size;
1095SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1096SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1097SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1098SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
1099    0, "");
1100
1101u_int ipi_masked_global;
1102u_int ipi_masked_page;
1103u_int ipi_masked_range;
1104u_int ipi_masked_range_size;
1105SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1106    &ipi_masked_global, 0, "");
1107SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1108    &ipi_masked_page, 0, "");
1109SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1110    &ipi_masked_range, 0, "");
1111SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1112    &ipi_masked_range_size, 0, "");
1113#endif /* COUNT_XINVLTLB_HITS */
1114
1115/*
1116 * Flush the TLB on all other CPU's
1117 */
1118static void
1119smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1120{
1121	u_int ncpu;
1122
1123	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1124	if (ncpu < 1)
1125		return;		/* no other cpus */
1126	if (!(read_eflags() & PSL_I))
1127		panic("%s: interrupts disabled", __func__);
1128	mtx_lock_spin(&smp_ipi_mtx);
1129	smp_tlb_addr1 = addr1;
1130	smp_tlb_addr2 = addr2;
1131	atomic_store_rel_int(&smp_tlb_wait, 0);
1132	ipi_all_but_self(vector);
1133	while (smp_tlb_wait < ncpu)
1134		ia32_pause();
1135	mtx_unlock_spin(&smp_ipi_mtx);
1136}
1137
1138static void
1139smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1140{
1141	int ncpu, othercpus;
1142
1143	othercpus = mp_ncpus - 1;
1144	if (mask == (u_int)-1) {
1145		ncpu = othercpus;
1146		if (ncpu < 1)
1147			return;
1148	} else {
1149		mask &= ~PCPU_GET(cpumask);
1150		if (mask == 0)
1151			return;
1152		ncpu = bitcount32(mask);
1153		if (ncpu > othercpus) {
1154			/* XXX this should be a panic offence */
1155			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
1156			    ncpu, othercpus);
1157			ncpu = othercpus;
1158		}
1159		/* XXX should be a panic, implied by mask == 0 above */
1160		if (ncpu < 1)
1161			return;
1162	}
1163	if (!(read_eflags() & PSL_I))
1164		panic("%s: interrupts disabled", __func__);
1165	mtx_lock_spin(&smp_ipi_mtx);
1166	smp_tlb_addr1 = addr1;
1167	smp_tlb_addr2 = addr2;
1168	atomic_store_rel_int(&smp_tlb_wait, 0);
1169	if (mask == (u_int)-1)
1170		ipi_all_but_self(vector);
1171	else
1172		ipi_selected(mask, vector);
1173	while (smp_tlb_wait < ncpu)
1174		ia32_pause();
1175	mtx_unlock_spin(&smp_ipi_mtx);
1176}
1177
1178/*
1179 * Send an IPI to specified CPU handling the bitmap logic.
1180 */
1181static void
1182ipi_send_cpu(int cpu, u_int ipi)
1183{
1184	u_int bitmap, old_pending, new_pending;
1185
1186	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1187
1188	if (IPI_IS_BITMAPED(ipi)) {
1189		bitmap = 1 << ipi;
1190		ipi = IPI_BITMAP_VECTOR;
1191		do {
1192			old_pending = cpu_ipi_pending[cpu];
1193			new_pending = old_pending | bitmap;
1194		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1195		    old_pending, new_pending));
1196		if (old_pending)
1197			return;
1198	}
1199	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1200}
1201
1202void
1203smp_cache_flush(void)
1204{
1205
1206	if (smp_started)
1207		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1208}
1209
1210void
1211smp_invltlb(void)
1212{
1213
1214	if (smp_started) {
1215		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1216#ifdef COUNT_XINVLTLB_HITS
1217		ipi_global++;
1218#endif
1219	}
1220}
1221
1222void
1223smp_invlpg(vm_offset_t addr)
1224{
1225
1226	if (smp_started) {
1227		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1228#ifdef COUNT_XINVLTLB_HITS
1229		ipi_page++;
1230#endif
1231	}
1232}
1233
1234void
1235smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1236{
1237
1238	if (smp_started) {
1239		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1240#ifdef COUNT_XINVLTLB_HITS
1241		ipi_range++;
1242		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1243#endif
1244	}
1245}
1246
1247void
1248smp_masked_invltlb(cpumask_t mask)
1249{
1250
1251	if (smp_started) {
1252		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1253#ifdef COUNT_XINVLTLB_HITS
1254		ipi_masked_global++;
1255#endif
1256	}
1257}
1258
1259void
1260smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
1261{
1262
1263	if (smp_started) {
1264		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1265#ifdef COUNT_XINVLTLB_HITS
1266		ipi_masked_page++;
1267#endif
1268	}
1269}
1270
1271void
1272smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
1273{
1274
1275	if (smp_started) {
1276		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1277#ifdef COUNT_XINVLTLB_HITS
1278		ipi_masked_range++;
1279		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1280#endif
1281	}
1282}
1283
1284void
1285ipi_bitmap_handler(struct trapframe frame)
1286{
1287	int cpu = PCPU_GET(cpuid);
1288	u_int ipi_bitmap;
1289
1290	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1291
1292	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1293#ifdef COUNT_IPIS
1294		(*ipi_preempt_counts[cpu])++;
1295#endif
1296		sched_preempt(curthread);
1297	}
1298	if (ipi_bitmap & (1 << IPI_AST)) {
1299#ifdef COUNT_IPIS
1300		(*ipi_ast_counts[cpu])++;
1301#endif
1302		/* Nothing to do for AST */
1303	}
1304	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1305#ifdef COUNT_IPIS
1306		(*ipi_hardclock_counts[cpu])++;
1307#endif
1308		hardclockintr(&frame);
1309	}
1310	if (ipi_bitmap & (1 << IPI_STATCLOCK)) {
1311#ifdef COUNT_IPIS
1312		(*ipi_statclock_counts[cpu])++;
1313#endif
1314		statclockintr(&frame);
1315	}
1316}
1317
1318/*
1319 * send an IPI to a set of cpus.
1320 */
1321void
1322ipi_selected(cpumask_t cpus, u_int ipi)
1323{
1324	int cpu;
1325
1326	/*
1327	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1328	 * of help in order to understand what is the source.
1329	 * Set the mask of receiving CPUs for this purpose.
1330	 */
1331	if (ipi == IPI_STOP_HARD)
1332		atomic_set_int(&ipi_nmi_pending, cpus);
1333
1334	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1335	while ((cpu = ffs(cpus)) != 0) {
1336		cpu--;
1337		cpus &= ~(1 << cpu);
1338		ipi_send_cpu(cpu, ipi);
1339	}
1340}
1341
1342/*
1343 * send an IPI to a specific CPU.
1344 */
1345void
1346ipi_cpu(int cpu, u_int ipi)
1347{
1348
1349	/*
1350	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1351	 * of help in order to understand what is the source.
1352	 * Set the mask of receiving CPUs for this purpose.
1353	 */
1354	if (ipi == IPI_STOP_HARD)
1355		atomic_set_int(&ipi_nmi_pending, 1 << cpu);
1356
1357	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1358	ipi_send_cpu(cpu, ipi);
1359}
1360
1361/*
1362 * send an IPI to all CPUs EXCEPT myself
1363 */
1364void
1365ipi_all_but_self(u_int ipi)
1366{
1367
1368	if (IPI_IS_BITMAPED(ipi)) {
1369		ipi_selected(PCPU_GET(other_cpus), ipi);
1370		return;
1371	}
1372
1373	/*
1374	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1375	 * of help in order to understand what is the source.
1376	 * Set the mask of receiving CPUs for this purpose.
1377	 */
1378	if (ipi == IPI_STOP_HARD)
1379		atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
1380	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1381	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1382}
1383
1384int
1385ipi_nmi_handler()
1386{
1387	cpumask_t cpumask;
1388
1389	/*
1390	 * As long as there is not a simple way to know about a NMI's
1391	 * source, if the bitmask for the current CPU is present in
1392	 * the global pending bitword an IPI_STOP_HARD has been issued
1393	 * and should be handled.
1394	 */
1395	cpumask = PCPU_GET(cpumask);
1396	if ((ipi_nmi_pending & cpumask) == 0)
1397		return (1);
1398
1399	atomic_clear_int(&ipi_nmi_pending, cpumask);
1400	cpustop_handler();
1401	return (0);
1402}
1403
1404/*
1405 * Handle an IPI_STOP by saving our current context and spinning until we
1406 * are resumed.
1407 */
1408void
1409cpustop_handler(void)
1410{
1411	cpumask_t cpumask;
1412	u_int cpu;
1413
1414	cpu = PCPU_GET(cpuid);
1415	cpumask = PCPU_GET(cpumask);
1416
1417	savectx(&stoppcbs[cpu]);
1418
1419	/* Indicate that we are stopped */
1420	atomic_set_int(&stopped_cpus, cpumask);
1421
1422	/* Wait for restart */
1423	while (!(started_cpus & cpumask))
1424	    ia32_pause();
1425
1426	atomic_clear_int(&started_cpus, cpumask);
1427	atomic_clear_int(&stopped_cpus, cpumask);
1428
1429	if (cpu == 0 && cpustop_restartfunc != NULL) {
1430		cpustop_restartfunc();
1431		cpustop_restartfunc = NULL;
1432	}
1433}
1434
1435/*
1436 * This is called once the rest of the system is up and running and we're
1437 * ready to let the AP's out of the pen.
1438 */
1439static void
1440release_aps(void *dummy __unused)
1441{
1442
1443	if (mp_ncpus == 1)
1444		return;
1445	atomic_store_rel_int(&aps_ready, 1);
1446	while (smp_started == 0)
1447		ia32_pause();
1448}
1449SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1450
1451static int
1452sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1453{
1454	cpumask_t mask;
1455	int error;
1456
1457	mask = hlt_cpus_mask;
1458	error = sysctl_handle_int(oidp, &mask, 0, req);
1459	if (error || !req->newptr)
1460		return (error);
1461
1462	if (logical_cpus_mask != 0 &&
1463	    (mask & logical_cpus_mask) == logical_cpus_mask)
1464		hlt_logical_cpus = 1;
1465	else
1466		hlt_logical_cpus = 0;
1467
1468	if (! hyperthreading_allowed)
1469		mask |= hyperthreading_cpus_mask;
1470
1471	if ((mask & all_cpus) == all_cpus)
1472		mask &= ~(1<<0);
1473	hlt_cpus_mask = mask;
1474	return (error);
1475}
1476SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1477    0, 0, sysctl_hlt_cpus, "IU",
1478    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1479
1480static int
1481sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1482{
1483	int disable, error;
1484
1485	disable = hlt_logical_cpus;
1486	error = sysctl_handle_int(oidp, &disable, 0, req);
1487	if (error || !req->newptr)
1488		return (error);
1489
1490	if (disable)
1491		hlt_cpus_mask |= logical_cpus_mask;
1492	else
1493		hlt_cpus_mask &= ~logical_cpus_mask;
1494
1495	if (! hyperthreading_allowed)
1496		hlt_cpus_mask |= hyperthreading_cpus_mask;
1497
1498	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1499		hlt_cpus_mask &= ~(1<<0);
1500
1501	hlt_logical_cpus = disable;
1502	return (error);
1503}
1504
1505static int
1506sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1507{
1508	int allowed, error;
1509
1510	allowed = hyperthreading_allowed;
1511	error = sysctl_handle_int(oidp, &allowed, 0, req);
1512	if (error || !req->newptr)
1513		return (error);
1514
1515#ifdef SCHED_ULE
1516	/*
1517	 * SCHED_ULE doesn't allow enabling/disabling HT cores at
1518	 * run-time.
1519	 */
1520	if (allowed != hyperthreading_allowed)
1521		return (ENOTSUP);
1522	return (error);
1523#endif
1524
1525	if (allowed)
1526		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1527	else
1528		hlt_cpus_mask |= hyperthreading_cpus_mask;
1529
1530	if (logical_cpus_mask != 0 &&
1531	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1532		hlt_logical_cpus = 1;
1533	else
1534		hlt_logical_cpus = 0;
1535
1536	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1537		hlt_cpus_mask &= ~(1<<0);
1538
1539	hyperthreading_allowed = allowed;
1540	return (error);
1541}
1542
1543static void
1544cpu_hlt_setup(void *dummy __unused)
1545{
1546
1547	if (logical_cpus_mask != 0) {
1548		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1549		    &hlt_logical_cpus);
1550		sysctl_ctx_init(&logical_cpu_clist);
1551		SYSCTL_ADD_PROC(&logical_cpu_clist,
1552		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1553		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1554		    sysctl_hlt_logical_cpus, "IU", "");
1555		SYSCTL_ADD_UINT(&logical_cpu_clist,
1556		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1557		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1558		    &logical_cpus_mask, 0, "");
1559
1560		if (hlt_logical_cpus)
1561			hlt_cpus_mask |= logical_cpus_mask;
1562
1563		/*
1564		 * If necessary for security purposes, force
1565		 * hyperthreading off, regardless of the value
1566		 * of hlt_logical_cpus.
1567		 */
1568		if (hyperthreading_cpus_mask) {
1569			SYSCTL_ADD_PROC(&logical_cpu_clist,
1570			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1571			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1572			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1573			if (! hyperthreading_allowed)
1574				hlt_cpus_mask |= hyperthreading_cpus_mask;
1575		}
1576	}
1577}
1578SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1579
1580int
1581mp_grab_cpu_hlt(void)
1582{
1583	cpumask_t mask;
1584#ifdef MP_WATCHDOG
1585	u_int cpuid;
1586#endif
1587	int retval;
1588
1589	mask = PCPU_GET(cpumask);
1590#ifdef MP_WATCHDOG
1591	cpuid = PCPU_GET(cpuid);
1592	ap_watchdog(cpuid);
1593#endif
1594
1595	retval = mask & hlt_cpus_mask;
1596	while (mask & hlt_cpus_mask)
1597		__asm __volatile("sti; hlt" : : : "memory");
1598	return (retval);
1599}
1600
1601#ifdef COUNT_IPIS
1602/*
1603 * Setup interrupt counters for IPI handlers.
1604 */
1605static void
1606mp_ipi_intrcnt(void *dummy)
1607{
1608	char buf[64];
1609	int i;
1610
1611	CPU_FOREACH(i) {
1612		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1613		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1614		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1615		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1616		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1617		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1618		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1619		intrcnt_add(buf, &ipi_preempt_counts[i]);
1620		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1621		intrcnt_add(buf, &ipi_ast_counts[i]);
1622		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1623		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1624		snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
1625		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1626		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1627		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1628		snprintf(buf, sizeof(buf), "cpu%d:statclock", i);
1629		intrcnt_add(buf, &ipi_statclock_counts[i]);
1630	}
1631}
1632SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1633#endif
1634