mp_x86.c revision 209059
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/i386/i386/mp_machdep.c 209059 2010-06-11 18:46:34Z jhb $");
28
29#include "opt_apic.h"
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_pmap.h"
34#include "opt_sched.h"
35#include "opt_smp.h"
36
37#if !defined(lint)
38#if !defined(SMP)
39#error How did you get here?
40#endif
41
42#ifndef DEV_APIC
43#error The apic device is required for SMP, add "device apic" to your config file.
44#endif
45#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
46#error SMP not supported with CPU_DISABLE_CMPXCHG
47#endif
48#endif /* not lint */
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/bus.h>
53#include <sys/cons.h>	/* cngetc() */
54#ifdef GPROF
55#include <sys/gmon.h>
56#endif
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/memrange.h>
62#include <sys/mutex.h>
63#include <sys/pcpu.h>
64#include <sys/proc.h>
65#include <sys/sched.h>
66#include <sys/smp.h>
67#include <sys/sysctl.h>
68
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#include <vm/vm_kern.h>
73#include <vm/vm_extern.h>
74
75#include <machine/apicreg.h>
76#include <machine/clock.h>
77#include <machine/cputypes.h>
78#include <machine/mca.h>
79#include <machine/md_var.h>
80#include <machine/mp_watchdog.h>
81#include <machine/pcb.h>
82#include <machine/psl.h>
83#include <machine/smp.h>
84#include <machine/specialreg.h>
85
86#define WARMBOOT_TARGET		0
87#define WARMBOOT_OFF		(KERNBASE + 0x0467)
88#define WARMBOOT_SEG		(KERNBASE + 0x0469)
89
90#define CMOS_REG		(0x70)
91#define CMOS_DATA		(0x71)
92#define BIOS_RESET		(0x0f)
93#define BIOS_WARM		(0x0a)
94
95/*
96 * this code MUST be enabled here and in mpboot.s.
97 * it follows the very early stages of AP boot by placing values in CMOS ram.
98 * it NORMALLY will never be needed and thus the primitive method for enabling.
99 *
100#define CHECK_POINTS
101 */
102
103#if defined(CHECK_POINTS) && !defined(PC98)
104#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
105#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
106
107#define CHECK_INIT(D);				\
108	CHECK_WRITE(0x34, (D));			\
109	CHECK_WRITE(0x35, (D));			\
110	CHECK_WRITE(0x36, (D));			\
111	CHECK_WRITE(0x37, (D));			\
112	CHECK_WRITE(0x38, (D));			\
113	CHECK_WRITE(0x39, (D));
114
115#define CHECK_PRINT(S);				\
116	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
117	   (S),					\
118	   CHECK_READ(0x34),			\
119	   CHECK_READ(0x35),			\
120	   CHECK_READ(0x36),			\
121	   CHECK_READ(0x37),			\
122	   CHECK_READ(0x38),			\
123	   CHECK_READ(0x39));
124
125#else				/* CHECK_POINTS */
126
127#define CHECK_INIT(D)
128#define CHECK_PRINT(S)
129#define CHECK_WRITE(A, D)
130
131#endif				/* CHECK_POINTS */
132
133/* lock region used by kernel profiling */
134int	mcount_lock;
135
136int	mp_naps;		/* # of Applications processors */
137int	boot_cpu_id = -1;	/* designated BSP */
138
139extern	struct pcpu __pcpu[];
140
141/* AP uses this during bootstrap.  Do not staticize.  */
142char *bootSTK;
143static int bootAP;
144
145/* Free these after use */
146void *bootstacks[MAXCPU];
147static void *dpcpu;
148
149/* Hotwire a 0->4MB V==P mapping */
150extern pt_entry_t *KPTphys;
151
152struct pcb stoppcbs[MAXCPU];
153
154/* Variables needed for SMP tlb shootdown. */
155vm_offset_t smp_tlb_addr1;
156vm_offset_t smp_tlb_addr2;
157volatile int smp_tlb_wait;
158
159#ifdef COUNT_IPIS
160/* Interrupt counts. */
161static u_long *ipi_preempt_counts[MAXCPU];
162static u_long *ipi_ast_counts[MAXCPU];
163u_long *ipi_invltlb_counts[MAXCPU];
164u_long *ipi_invlrng_counts[MAXCPU];
165u_long *ipi_invlpg_counts[MAXCPU];
166u_long *ipi_invlcache_counts[MAXCPU];
167u_long *ipi_rendezvous_counts[MAXCPU];
168u_long *ipi_lazypmap_counts[MAXCPU];
169#endif
170
171/*
172 * Local data and functions.
173 */
174
175static u_int logical_cpus;
176static volatile cpumask_t ipi_nmi_pending;
177
178/* used to hold the AP's until we are ready to release them */
179static struct mtx ap_boot_mtx;
180
181/* Set to 1 once we're ready to let the APs out of the pen. */
182static volatile int aps_ready = 0;
183
184/*
185 * Store data from cpu_add() until later in the boot when we actually setup
186 * the APs.
187 */
188struct cpu_info {
189	int	cpu_present:1;
190	int	cpu_bsp:1;
191	int	cpu_disabled:1;
192	int	cpu_hyperthread:1;
193} static cpu_info[MAX_APIC_ID + 1];
194int cpu_apic_ids[MAXCPU];
195int apic_cpuids[MAX_APIC_ID + 1];
196
197/* Holds pending bitmap based IPIs per CPU */
198static volatile u_int cpu_ipi_pending[MAXCPU];
199
200static u_int boot_address;
201static int cpu_logical;
202static int cpu_cores;
203
204static void	assign_cpu_ids(void);
205static void	install_ap_tramp(void);
206static void	set_interrupt_apic_ids(void);
207static int	start_all_aps(void);
208static int	start_ap(int apic_id);
209static void	release_aps(void *dummy);
210
211static int	hlt_logical_cpus;
212static u_int	hyperthreading_cpus;
213static cpumask_t	hyperthreading_cpus_mask;
214static int	hyperthreading_allowed = 1;
215static struct	sysctl_ctx_list logical_cpu_clist;
216
217static void
218mem_range_AP_init(void)
219{
220	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
221		mem_range_softc.mr_op->initAP(&mem_range_softc);
222}
223
224static void
225topo_probe_0xb(void)
226{
227	int logical;
228	int p[4];
229	int bits;
230	int type;
231	int cnt;
232	int i;
233	int x;
234
235	/* We only support two levels for now. */
236	for (i = 0; i < 3; i++) {
237		cpuid_count(0x0B, i, p);
238		bits = p[0] & 0x1f;
239		logical = p[1] &= 0xffff;
240		type = (p[2] >> 8) & 0xff;
241		if (type == 0 || logical == 0)
242			break;
243		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
244			if (!cpu_info[x].cpu_present ||
245			    cpu_info[x].cpu_disabled)
246				continue;
247			if (x >> bits == boot_cpu_id >> bits)
248				cnt++;
249		}
250		if (type == CPUID_TYPE_SMT)
251			cpu_logical = cnt;
252		else if (type == CPUID_TYPE_CORE)
253			cpu_cores = cnt;
254	}
255	if (cpu_logical == 0)
256		cpu_logical = 1;
257	cpu_cores /= cpu_logical;
258}
259
260static void
261topo_probe_0x4(void)
262{
263	u_int threads_per_cache, p[4];
264	u_int htt, cmp;
265	int i;
266
267	htt = cmp = 1;
268	/*
269	 * If this CPU supports HTT or CMP then mention the
270	 * number of physical/logical cores it contains.
271	 */
272	if (cpu_feature & CPUID_HTT)
273		htt = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
274	if (cpu_vendor_id == CPU_VENDOR_AMD && (amd_feature2 & AMDID2_CMP))
275		cmp = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
276	else if (cpu_vendor_id == CPU_VENDOR_INTEL && (cpu_high >= 4)) {
277		cpuid_count(4, 0, p);
278		if ((p[0] & 0x1f) != 0)
279			cmp = ((p[0] >> 26) & 0x3f) + 1;
280	}
281	cpu_cores = cmp;
282	cpu_logical = htt / cmp;
283
284	/* Setup the initial logical CPUs info. */
285	if (cpu_feature & CPUID_HTT)
286		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
287
288	/*
289	 * Work out if hyperthreading is *really* enabled.  This
290	 * is made really ugly by the fact that processors lie: Dual
291	 * core processors claim to be hyperthreaded even when they're
292	 * not, presumably because they want to be treated the same
293	 * way as HTT with respect to per-cpu software licensing.
294	 * At the time of writing (May 12, 2005) the only hyperthreaded
295	 * cpus are from Intel, and Intel's dual-core processors can be
296	 * identified via the "deterministic cache parameters" cpuid
297	 * calls.
298	 */
299	/*
300	 * First determine if this is an Intel processor which claims
301	 * to have hyperthreading support.
302	 */
303	if ((cpu_feature & CPUID_HTT) && cpu_vendor_id == CPU_VENDOR_INTEL) {
304		/*
305		 * If the "deterministic cache parameters" cpuid calls
306		 * are available, use them.
307		 */
308		if (cpu_high >= 4) {
309			/* Ask the processor about the L1 cache. */
310			for (i = 0; i < 1; i++) {
311				cpuid_count(4, i, p);
312				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
313				if (hyperthreading_cpus < threads_per_cache)
314					hyperthreading_cpus = threads_per_cache;
315				if ((p[0] & 0x1f) == 0)
316					break;
317			}
318		}
319
320		/*
321		 * If the deterministic cache parameters are not
322		 * available, or if no caches were reported to exist,
323		 * just accept what the HTT flag indicated.
324		 */
325		if (hyperthreading_cpus == 0)
326			hyperthreading_cpus = logical_cpus;
327	}
328}
329
330static void
331topo_probe(void)
332{
333	static int cpu_topo_probed = 0;
334
335	if (cpu_topo_probed)
336		return;
337
338	logical_cpus = logical_cpus_mask = 0;
339	if (cpu_high >= 0xb)
340		topo_probe_0xb();
341	else if (cpu_high)
342		topo_probe_0x4();
343	if (cpu_cores == 0)
344		cpu_cores = mp_ncpus > 0 ? mp_ncpus : 1;
345	if (cpu_logical == 0)
346		cpu_logical = 1;
347	cpu_topo_probed = 1;
348}
349
350struct cpu_group *
351cpu_topo(void)
352{
353	int cg_flags;
354
355	/*
356	 * Determine whether any threading flags are
357	 * necessry.
358	 */
359	topo_probe();
360	if (cpu_logical > 1 && hyperthreading_cpus)
361		cg_flags = CG_FLAG_HTT;
362	else if (cpu_logical > 1)
363		cg_flags = CG_FLAG_SMT;
364	else
365		cg_flags = 0;
366	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
367		printf("WARNING: Non-uniform processors.\n");
368		printf("WARNING: Using suboptimal topology.\n");
369		return (smp_topo_none());
370	}
371	/*
372	 * No multi-core or hyper-threaded.
373	 */
374	if (cpu_logical * cpu_cores == 1)
375		return (smp_topo_none());
376	/*
377	 * Only HTT no multi-core.
378	 */
379	if (cpu_logical > 1 && cpu_cores == 1)
380		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
381	/*
382	 * Only multi-core no HTT.
383	 */
384	if (cpu_cores > 1 && cpu_logical == 1)
385		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
386	/*
387	 * Both HTT and multi-core.
388	 */
389	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
390	    CG_SHARE_L1, cpu_logical, cg_flags));
391}
392
393
394/*
395 * Calculate usable address in base memory for AP trampoline code.
396 */
397u_int
398mp_bootaddress(u_int basemem)
399{
400
401	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
402	if ((basemem - boot_address) < bootMP_size)
403		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
404
405	return boot_address;
406}
407
408void
409cpu_add(u_int apic_id, char boot_cpu)
410{
411
412	if (apic_id > MAX_APIC_ID) {
413		panic("SMP: APIC ID %d too high", apic_id);
414		return;
415	}
416	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
417	    apic_id));
418	cpu_info[apic_id].cpu_present = 1;
419	if (boot_cpu) {
420		KASSERT(boot_cpu_id == -1,
421		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
422		    boot_cpu_id));
423		boot_cpu_id = apic_id;
424		cpu_info[apic_id].cpu_bsp = 1;
425	}
426	if (mp_ncpus < MAXCPU)
427		mp_ncpus++;
428	if (bootverbose)
429		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
430		    "AP");
431}
432
433void
434cpu_mp_setmaxid(void)
435{
436
437	mp_maxid = MAXCPU - 1;
438}
439
440int
441cpu_mp_probe(void)
442{
443
444	/*
445	 * Always record BSP in CPU map so that the mbuf init code works
446	 * correctly.
447	 */
448	all_cpus = 1;
449	if (mp_ncpus == 0) {
450		/*
451		 * No CPUs were found, so this must be a UP system.  Setup
452		 * the variables to represent a system with a single CPU
453		 * with an id of 0.
454		 */
455		mp_ncpus = 1;
456		return (0);
457	}
458
459	/* At least one CPU was found. */
460	if (mp_ncpus == 1) {
461		/*
462		 * One CPU was found, so this must be a UP system with
463		 * an I/O APIC.
464		 */
465		return (0);
466	}
467
468	/* At least two CPUs were found. */
469	return (1);
470}
471
472/*
473 * Initialize the IPI handlers and start up the AP's.
474 */
475void
476cpu_mp_start(void)
477{
478	int i;
479
480	/* Initialize the logical ID to APIC ID table. */
481	for (i = 0; i < MAXCPU; i++) {
482		cpu_apic_ids[i] = -1;
483		cpu_ipi_pending[i] = 0;
484	}
485
486	/* Install an inter-CPU IPI for TLB invalidation */
487	setidt(IPI_INVLTLB, IDTVEC(invltlb),
488	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
489	setidt(IPI_INVLPG, IDTVEC(invlpg),
490	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
491	setidt(IPI_INVLRNG, IDTVEC(invlrng),
492	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
493
494	/* Install an inter-CPU IPI for cache invalidation. */
495	setidt(IPI_INVLCACHE, IDTVEC(invlcache),
496	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
497
498	/* Install an inter-CPU IPI for lazy pmap release */
499	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
500	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
501
502	/* Install an inter-CPU IPI for all-CPU rendezvous */
503	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
504	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
505
506	/* Install generic inter-CPU IPI handler */
507	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
508	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
509
510	/* Install an inter-CPU IPI for CPU stop/restart */
511	setidt(IPI_STOP, IDTVEC(cpustop),
512	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
513
514
515	/* Set boot_cpu_id if needed. */
516	if (boot_cpu_id == -1) {
517		boot_cpu_id = PCPU_GET(apic_id);
518		cpu_info[boot_cpu_id].cpu_bsp = 1;
519	} else
520		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
521		    ("BSP's APIC ID doesn't match boot_cpu_id"));
522
523	/* Probe logical/physical core configuration. */
524	topo_probe();
525
526	assign_cpu_ids();
527
528	/* Start each Application Processor */
529	start_all_aps();
530
531	set_interrupt_apic_ids();
532}
533
534
535/*
536 * Print various information about the SMP system hardware and setup.
537 */
538void
539cpu_mp_announce(void)
540{
541	const char *hyperthread;
542	int i;
543
544	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
545	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
546	if (hyperthreading_cpus > 1)
547	    printf(" x %d HTT threads", cpu_logical);
548	else if (cpu_logical > 1)
549	    printf(" x %d SMT threads", cpu_logical);
550	printf("\n");
551
552	/* List active CPUs first. */
553	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
554	for (i = 1; i < mp_ncpus; i++) {
555		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
556			hyperthread = "/HT";
557		else
558			hyperthread = "";
559		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
560		    cpu_apic_ids[i]);
561	}
562
563	/* List disabled CPUs last. */
564	for (i = 0; i <= MAX_APIC_ID; i++) {
565		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
566			continue;
567		if (cpu_info[i].cpu_hyperthread)
568			hyperthread = "/HT";
569		else
570			hyperthread = "";
571		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
572		    i);
573	}
574}
575
576/*
577 * AP CPU's call this to initialize themselves.
578 */
579void
580init_secondary(void)
581{
582	struct pcpu *pc;
583	vm_offset_t addr;
584	int	gsel_tss;
585	int	x, myid;
586	u_int	cr0;
587
588	/* bootAP is set in start_ap() to our ID. */
589	myid = bootAP;
590
591	/* Get per-cpu data */
592	pc = &__pcpu[myid];
593
594	/* prime data page for it to use */
595	pcpu_init(pc, myid, sizeof(struct pcpu));
596	dpcpu_init(dpcpu, myid);
597	pc->pc_apic_id = cpu_apic_ids[myid];
598	pc->pc_prvspace = pc;
599	pc->pc_curthread = 0;
600
601	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
602	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
603
604	for (x = 0; x < NGDT; x++) {
605		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
606	}
607
608	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
609	r_gdt.rd_base = (int) &gdt[myid * NGDT];
610	lgdt(&r_gdt);			/* does magic intra-segment return */
611
612	lidt(&r_idt);
613
614	lldt(_default_ldt);
615	PCPU_SET(currentldt, _default_ldt);
616
617	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
618	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
619	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
620	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
621	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
622	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
623	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
624	ltr(gsel_tss);
625
626	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
627
628	/*
629	 * Set to a known state:
630	 * Set by mpboot.s: CR0_PG, CR0_PE
631	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
632	 */
633	cr0 = rcr0();
634	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
635	load_cr0(cr0);
636	CHECK_WRITE(0x38, 5);
637
638	/* Disable local APIC just to be sure. */
639	lapic_disable();
640
641	/* signal our startup to the BSP. */
642	mp_naps++;
643	CHECK_WRITE(0x39, 6);
644
645	/* Spin until the BSP releases the AP's. */
646	while (!aps_ready)
647		ia32_pause();
648
649	/* BSP may have changed PTD while we were waiting */
650	invltlb();
651	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
652		invlpg(addr);
653
654#if defined(I586_CPU) && !defined(NO_F00F_HACK)
655	lidt(&r_idt);
656#endif
657
658	/* Initialize the PAT MSR if present. */
659	pmap_init_pat();
660
661	/* set up CPU registers and state */
662	cpu_setregs();
663
664	/* set up FPU state on the AP */
665	npxinit();
666
667	/* set up SSE registers */
668	enable_sse();
669
670#ifdef PAE
671	/* Enable the PTE no-execute bit. */
672	if ((amd_feature & AMDID_NX) != 0) {
673		uint64_t msr;
674
675		msr = rdmsr(MSR_EFER) | EFER_NXE;
676		wrmsr(MSR_EFER, msr);
677	}
678#endif
679
680	/* A quick check from sanity claus */
681	if (PCPU_GET(apic_id) != lapic_id()) {
682		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
683		printf("SMP: actual apic_id = %d\n", lapic_id());
684		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
685		panic("cpuid mismatch! boom!!");
686	}
687
688	/* Initialize curthread. */
689	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
690	PCPU_SET(curthread, PCPU_GET(idlethread));
691
692	mca_init();
693
694	mtx_lock_spin(&ap_boot_mtx);
695
696	/* Init local apic for irq's */
697	lapic_setup(1);
698
699	/* Set memory range attributes for this CPU to match the BSP */
700	mem_range_AP_init();
701
702	smp_cpus++;
703
704	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
705	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
706
707	/* Determine if we are a logical CPU. */
708	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
709		logical_cpus_mask |= PCPU_GET(cpumask);
710
711	/* Determine if we are a hyperthread. */
712	if (hyperthreading_cpus > 1 &&
713	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
714		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
715
716	/* Build our map of 'other' CPUs. */
717	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
718
719	if (bootverbose)
720		lapic_dump("AP");
721
722	if (smp_cpus == mp_ncpus) {
723		/* enable IPI's, tlb shootdown, freezes etc */
724		atomic_store_rel_int(&smp_started, 1);
725		smp_active = 1;	 /* historic */
726	}
727
728	mtx_unlock_spin(&ap_boot_mtx);
729
730	/* wait until all the AP's are up */
731	while (smp_started == 0)
732		ia32_pause();
733
734	/* enter the scheduler */
735	sched_throw(NULL);
736
737	panic("scheduler returned us to %s", __func__);
738	/* NOTREACHED */
739}
740
741/*******************************************************************
742 * local functions and data
743 */
744
745/*
746 * We tell the I/O APIC code about all the CPUs we want to receive
747 * interrupts.  If we don't want certain CPUs to receive IRQs we
748 * can simply not tell the I/O APIC code about them in this function.
749 * We also do not tell it about the BSP since it tells itself about
750 * the BSP internally to work with UP kernels and on UP machines.
751 */
752static void
753set_interrupt_apic_ids(void)
754{
755	u_int i, apic_id;
756
757	for (i = 0; i < MAXCPU; i++) {
758		apic_id = cpu_apic_ids[i];
759		if (apic_id == -1)
760			continue;
761		if (cpu_info[apic_id].cpu_bsp)
762			continue;
763		if (cpu_info[apic_id].cpu_disabled)
764			continue;
765
766		/* Don't let hyperthreads service interrupts. */
767		if (hyperthreading_cpus > 1 &&
768		    apic_id % hyperthreading_cpus != 0)
769			continue;
770
771		intr_add_cpu(i);
772	}
773}
774
775/*
776 * Assign logical CPU IDs to local APICs.
777 */
778static void
779assign_cpu_ids(void)
780{
781	u_int i;
782
783	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
784	    &hyperthreading_allowed);
785
786	/* Check for explicitly disabled CPUs. */
787	for (i = 0; i <= MAX_APIC_ID; i++) {
788		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
789			continue;
790
791		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
792			cpu_info[i].cpu_hyperthread = 1;
793#if defined(SCHED_ULE)
794			/*
795			 * Don't use HT CPU if it has been disabled by a
796			 * tunable.
797			 */
798			if (hyperthreading_allowed == 0) {
799				cpu_info[i].cpu_disabled = 1;
800				continue;
801			}
802#endif
803		}
804
805		/* Don't use this CPU if it has been disabled by a tunable. */
806		if (resource_disabled("lapic", i)) {
807			cpu_info[i].cpu_disabled = 1;
808			continue;
809		}
810	}
811
812	/*
813	 * Assign CPU IDs to local APIC IDs and disable any CPUs
814	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
815	 *
816	 * To minimize confusion for userland, we attempt to number
817	 * CPUs such that all threads and cores in a package are
818	 * grouped together.  For now we assume that the BSP is always
819	 * the first thread in a package and just start adding APs
820	 * starting with the BSP's APIC ID.
821	 */
822	mp_ncpus = 1;
823	cpu_apic_ids[0] = boot_cpu_id;
824	apic_cpuids[boot_cpu_id] = 0;
825	for (i = boot_cpu_id + 1; i != boot_cpu_id;
826	     i == MAX_APIC_ID ? i = 0 : i++) {
827		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
828		    cpu_info[i].cpu_disabled)
829			continue;
830
831		if (mp_ncpus < MAXCPU) {
832			cpu_apic_ids[mp_ncpus] = i;
833			apic_cpuids[i] = mp_ncpus;
834			mp_ncpus++;
835		} else
836			cpu_info[i].cpu_disabled = 1;
837	}
838	KASSERT(mp_maxid >= mp_ncpus - 1,
839	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
840	    mp_ncpus));
841}
842
843/*
844 * start each AP in our list
845 */
846/* Lowest 1MB is already mapped: don't touch*/
847#define TMPMAP_START 1
848static int
849start_all_aps(void)
850{
851#ifndef PC98
852	u_char mpbiosreason;
853#endif
854	uintptr_t kptbase;
855	u_int32_t mpbioswarmvec;
856	int apic_id, cpu, i;
857
858	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
859
860	/* install the AP 1st level boot code */
861	install_ap_tramp();
862
863	/* save the current value of the warm-start vector */
864	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
865#ifndef PC98
866	outb(CMOS_REG, BIOS_RESET);
867	mpbiosreason = inb(CMOS_DATA);
868#endif
869
870	/* set up temporary P==V mapping for AP boot */
871	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
872
873	kptbase = (uintptr_t)(void *)KPTphys;
874	for (i = TMPMAP_START; i < NKPT; i++)
875		PTD[i] = (pd_entry_t)(PG_V | PG_RW |
876		    ((kptbase + i * PAGE_SIZE) & PG_FRAME));
877	invltlb();
878
879	/* start each AP */
880	for (cpu = 1; cpu < mp_ncpus; cpu++) {
881		apic_id = cpu_apic_ids[cpu];
882
883		/* allocate and set up a boot stack data page */
884		bootstacks[cpu] =
885		    (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
886		dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
887		/* setup a vector to our boot code */
888		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
889		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
890#ifndef PC98
891		outb(CMOS_REG, BIOS_RESET);
892		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
893#endif
894
895		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
896		bootAP = cpu;
897
898		/* attempt to start the Application Processor */
899		CHECK_INIT(99);	/* setup checkpoints */
900		if (!start_ap(apic_id)) {
901			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
902			CHECK_PRINT("trace");	/* show checkpoints */
903			/* better panic as the AP may be running loose */
904			printf("panic y/n? [y] ");
905			if (cngetc() != 'n')
906				panic("bye-bye");
907		}
908		CHECK_PRINT("trace");		/* show checkpoints */
909
910		all_cpus |= (1 << cpu);		/* record AP in CPU map */
911	}
912
913	/* build our map of 'other' CPUs */
914	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
915
916	/* restore the warmstart vector */
917	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
918
919#ifndef PC98
920	outb(CMOS_REG, BIOS_RESET);
921	outb(CMOS_DATA, mpbiosreason);
922#endif
923
924	/* Undo V==P hack from above */
925	for (i = TMPMAP_START; i < NKPT; i++)
926		PTD[i] = 0;
927	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
928
929	/* number of APs actually started */
930	return mp_naps;
931}
932
933/*
934 * load the 1st level AP boot code into base memory.
935 */
936
937/* targets for relocation */
938extern void bigJump(void);
939extern void bootCodeSeg(void);
940extern void bootDataSeg(void);
941extern void MPentry(void);
942extern u_int MP_GDT;
943extern u_int mp_gdtbase;
944
945static void
946install_ap_tramp(void)
947{
948	int     x;
949	int     size = *(int *) ((u_long) & bootMP_size);
950	vm_offset_t va = boot_address + KERNBASE;
951	u_char *src = (u_char *) ((u_long) bootMP);
952	u_char *dst = (u_char *) va;
953	u_int   boot_base = (u_int) bootMP;
954	u_int8_t *dst8;
955	u_int16_t *dst16;
956	u_int32_t *dst32;
957
958	KASSERT (size <= PAGE_SIZE,
959	    ("'size' do not fit into PAGE_SIZE, as expected."));
960	pmap_kenter(va, boot_address);
961	pmap_invalidate_page (kernel_pmap, va);
962	for (x = 0; x < size; ++x)
963		*dst++ = *src++;
964
965	/*
966	 * modify addresses in code we just moved to basemem. unfortunately we
967	 * need fairly detailed info about mpboot.s for this to work.  changes
968	 * to mpboot.s might require changes here.
969	 */
970
971	/* boot code is located in KERNEL space */
972	dst = (u_char *) va;
973
974	/* modify the lgdt arg */
975	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
976	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
977
978	/* modify the ljmp target for MPentry() */
979	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
980	*dst32 = ((u_int) MPentry - KERNBASE);
981
982	/* modify the target for boot code segment */
983	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
984	dst8 = (u_int8_t *) (dst16 + 1);
985	*dst16 = (u_int) boot_address & 0xffff;
986	*dst8 = ((u_int) boot_address >> 16) & 0xff;
987
988	/* modify the target for boot data segment */
989	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
990	dst8 = (u_int8_t *) (dst16 + 1);
991	*dst16 = (u_int) boot_address & 0xffff;
992	*dst8 = ((u_int) boot_address >> 16) & 0xff;
993}
994
995/*
996 * This function starts the AP (application processor) identified
997 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
998 * to accomplish this.  This is necessary because of the nuances
999 * of the different hardware we might encounter.  It isn't pretty,
1000 * but it seems to work.
1001 */
1002static int
1003start_ap(int apic_id)
1004{
1005	int vector, ms;
1006	int cpus;
1007
1008	/* calculate the vector */
1009	vector = (boot_address >> 12) & 0xff;
1010
1011	/* used as a watchpoint to signal AP startup */
1012	cpus = mp_naps;
1013
1014	/*
1015	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
1016	 * and running the target CPU. OR this INIT IPI might be latched (P5
1017	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1018	 * ignored.
1019	 */
1020
1021	/* do an INIT IPI: assert RESET */
1022	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1023	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1024
1025	/* wait for pending status end */
1026	lapic_ipi_wait(-1);
1027
1028	/* do an INIT IPI: deassert RESET */
1029	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
1030	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
1031
1032	/* wait for pending status end */
1033	DELAY(10000);		/* wait ~10mS */
1034	lapic_ipi_wait(-1);
1035
1036	/*
1037	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1038	 * latched, (P5 bug) this 1st STARTUP would then terminate
1039	 * immediately, and the previously started INIT IPI would continue. OR
1040	 * the previous INIT IPI has already run. and this STARTUP IPI will
1041	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1042	 * will run.
1043	 */
1044
1045	/* do a STARTUP IPI */
1046	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1047	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1048	    vector, apic_id);
1049	lapic_ipi_wait(-1);
1050	DELAY(200);		/* wait ~200uS */
1051
1052	/*
1053	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1054	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1055	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1056	 * recognized after hardware RESET or INIT IPI.
1057	 */
1058
1059	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1060	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1061	    vector, apic_id);
1062	lapic_ipi_wait(-1);
1063	DELAY(200);		/* wait ~200uS */
1064
1065	/* Wait up to 5 seconds for it to start. */
1066	for (ms = 0; ms < 5000; ms++) {
1067		if (mp_naps > cpus)
1068			return 1;	/* return SUCCESS */
1069		DELAY(1000);
1070	}
1071	return 0;		/* return FAILURE */
1072}
1073
1074#ifdef COUNT_XINVLTLB_HITS
1075u_int xhits_gbl[MAXCPU];
1076u_int xhits_pg[MAXCPU];
1077u_int xhits_rng[MAXCPU];
1078SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1079SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1080    sizeof(xhits_gbl), "IU", "");
1081SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1082    sizeof(xhits_pg), "IU", "");
1083SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1084    sizeof(xhits_rng), "IU", "");
1085
1086u_int ipi_global;
1087u_int ipi_page;
1088u_int ipi_range;
1089u_int ipi_range_size;
1090SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1091SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1092SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1093SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
1094    0, "");
1095
1096u_int ipi_masked_global;
1097u_int ipi_masked_page;
1098u_int ipi_masked_range;
1099u_int ipi_masked_range_size;
1100SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1101    &ipi_masked_global, 0, "");
1102SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1103    &ipi_masked_page, 0, "");
1104SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1105    &ipi_masked_range, 0, "");
1106SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1107    &ipi_masked_range_size, 0, "");
1108#endif /* COUNT_XINVLTLB_HITS */
1109
1110/*
1111 * Flush the TLB on all other CPU's
1112 */
1113static void
1114smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1115{
1116	u_int ncpu;
1117
1118	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1119	if (ncpu < 1)
1120		return;		/* no other cpus */
1121	if (!(read_eflags() & PSL_I))
1122		panic("%s: interrupts disabled", __func__);
1123	mtx_lock_spin(&smp_ipi_mtx);
1124	smp_tlb_addr1 = addr1;
1125	smp_tlb_addr2 = addr2;
1126	atomic_store_rel_int(&smp_tlb_wait, 0);
1127	ipi_all_but_self(vector);
1128	while (smp_tlb_wait < ncpu)
1129		ia32_pause();
1130	mtx_unlock_spin(&smp_ipi_mtx);
1131}
1132
1133static void
1134smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1135{
1136	int ncpu, othercpus;
1137
1138	othercpus = mp_ncpus - 1;
1139	if (mask == (u_int)-1) {
1140		ncpu = othercpus;
1141		if (ncpu < 1)
1142			return;
1143	} else {
1144		mask &= ~PCPU_GET(cpumask);
1145		if (mask == 0)
1146			return;
1147		ncpu = bitcount32(mask);
1148		if (ncpu > othercpus) {
1149			/* XXX this should be a panic offence */
1150			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
1151			    ncpu, othercpus);
1152			ncpu = othercpus;
1153		}
1154		/* XXX should be a panic, implied by mask == 0 above */
1155		if (ncpu < 1)
1156			return;
1157	}
1158	if (!(read_eflags() & PSL_I))
1159		panic("%s: interrupts disabled", __func__);
1160	mtx_lock_spin(&smp_ipi_mtx);
1161	smp_tlb_addr1 = addr1;
1162	smp_tlb_addr2 = addr2;
1163	atomic_store_rel_int(&smp_tlb_wait, 0);
1164	if (mask == (u_int)-1)
1165		ipi_all_but_self(vector);
1166	else
1167		ipi_selected(mask, vector);
1168	while (smp_tlb_wait < ncpu)
1169		ia32_pause();
1170	mtx_unlock_spin(&smp_ipi_mtx);
1171}
1172
1173void
1174smp_cache_flush(void)
1175{
1176
1177	if (smp_started)
1178		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1179}
1180
1181void
1182smp_invltlb(void)
1183{
1184
1185	if (smp_started) {
1186		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1187#ifdef COUNT_XINVLTLB_HITS
1188		ipi_global++;
1189#endif
1190	}
1191}
1192
1193void
1194smp_invlpg(vm_offset_t addr)
1195{
1196
1197	if (smp_started) {
1198		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1199#ifdef COUNT_XINVLTLB_HITS
1200		ipi_page++;
1201#endif
1202	}
1203}
1204
1205void
1206smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1207{
1208
1209	if (smp_started) {
1210		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1211#ifdef COUNT_XINVLTLB_HITS
1212		ipi_range++;
1213		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1214#endif
1215	}
1216}
1217
1218void
1219smp_masked_invltlb(cpumask_t mask)
1220{
1221
1222	if (smp_started) {
1223		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1224#ifdef COUNT_XINVLTLB_HITS
1225		ipi_masked_global++;
1226#endif
1227	}
1228}
1229
1230void
1231smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
1232{
1233
1234	if (smp_started) {
1235		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1236#ifdef COUNT_XINVLTLB_HITS
1237		ipi_masked_page++;
1238#endif
1239	}
1240}
1241
1242void
1243smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
1244{
1245
1246	if (smp_started) {
1247		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1248#ifdef COUNT_XINVLTLB_HITS
1249		ipi_masked_range++;
1250		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1251#endif
1252	}
1253}
1254
1255void
1256ipi_bitmap_handler(struct trapframe frame)
1257{
1258	int cpu = PCPU_GET(cpuid);
1259	u_int ipi_bitmap;
1260
1261	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1262
1263	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1264#ifdef COUNT_IPIS
1265		(*ipi_preempt_counts[cpu])++;
1266#endif
1267		sched_preempt(curthread);
1268	}
1269
1270	if (ipi_bitmap & (1 << IPI_AST)) {
1271#ifdef COUNT_IPIS
1272		(*ipi_ast_counts[cpu])++;
1273#endif
1274		/* Nothing to do for AST */
1275	}
1276
1277	if (ipi_bitmap & (1 << IPI_HARDCLOCK))
1278		hardclockintr(&frame);
1279
1280	if (ipi_bitmap & (1 << IPI_STATCLOCK))
1281		statclockintr(&frame);
1282}
1283
1284/*
1285 * send an IPI to a set of cpus.
1286 */
1287void
1288ipi_selected(cpumask_t cpus, u_int ipi)
1289{
1290	int cpu;
1291	u_int bitmap = 0;
1292	u_int old_pending;
1293	u_int new_pending;
1294
1295	if (IPI_IS_BITMAPED(ipi)) {
1296		bitmap = 1 << ipi;
1297		ipi = IPI_BITMAP_VECTOR;
1298	}
1299
1300	/*
1301	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1302	 * of help in order to understand what is the source.
1303	 * Set the mask of receiving CPUs for this purpose.
1304	 */
1305	if (ipi == IPI_STOP_HARD)
1306		atomic_set_int(&ipi_nmi_pending, cpus);
1307
1308	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1309	while ((cpu = ffs(cpus)) != 0) {
1310		cpu--;
1311		cpus &= ~(1 << cpu);
1312
1313		KASSERT(cpu_apic_ids[cpu] != -1,
1314		    ("IPI to non-existent CPU %d", cpu));
1315
1316		if (bitmap) {
1317			do {
1318				old_pending = cpu_ipi_pending[cpu];
1319				new_pending = old_pending | bitmap;
1320			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1321
1322			if (old_pending)
1323				continue;
1324		}
1325
1326		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1327	}
1328
1329}
1330
1331/*
1332 * send an IPI to all CPUs EXCEPT myself
1333 */
1334void
1335ipi_all_but_self(u_int ipi)
1336{
1337
1338	if (IPI_IS_BITMAPED(ipi)) {
1339		ipi_selected(PCPU_GET(other_cpus), ipi);
1340		return;
1341	}
1342
1343	/*
1344	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1345	 * of help in order to understand what is the source.
1346	 * Set the mask of receiving CPUs for this purpose.
1347	 */
1348	if (ipi == IPI_STOP_HARD)
1349		atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
1350	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1351	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1352}
1353
1354int
1355ipi_nmi_handler()
1356{
1357	cpumask_t cpumask;
1358
1359	/*
1360	 * As long as there is not a simple way to know about a NMI's
1361	 * source, if the bitmask for the current CPU is present in
1362	 * the global pending bitword an IPI_STOP_HARD has been issued
1363	 * and should be handled.
1364	 */
1365	cpumask = PCPU_GET(cpumask);
1366	if ((ipi_nmi_pending & cpumask) == 0)
1367		return (1);
1368
1369	atomic_clear_int(&ipi_nmi_pending, cpumask);
1370	cpustop_handler();
1371	return (0);
1372}
1373
1374/*
1375 * Handle an IPI_STOP by saving our current context and spinning until we
1376 * are resumed.
1377 */
1378void
1379cpustop_handler(void)
1380{
1381	int cpu = PCPU_GET(cpuid);
1382	int cpumask = PCPU_GET(cpumask);
1383
1384	savectx(&stoppcbs[cpu]);
1385
1386	/* Indicate that we are stopped */
1387	atomic_set_int(&stopped_cpus, cpumask);
1388
1389	/* Wait for restart */
1390	while (!(started_cpus & cpumask))
1391	    ia32_pause();
1392
1393	atomic_clear_int(&started_cpus, cpumask);
1394	atomic_clear_int(&stopped_cpus, cpumask);
1395
1396	if (cpu == 0 && cpustop_restartfunc != NULL) {
1397		cpustop_restartfunc();
1398		cpustop_restartfunc = NULL;
1399	}
1400}
1401
1402/*
1403 * This is called once the rest of the system is up and running and we're
1404 * ready to let the AP's out of the pen.
1405 */
1406static void
1407release_aps(void *dummy __unused)
1408{
1409
1410	if (mp_ncpus == 1)
1411		return;
1412	atomic_store_rel_int(&aps_ready, 1);
1413	while (smp_started == 0)
1414		ia32_pause();
1415}
1416SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1417
1418static int
1419sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1420{
1421	cpumask_t mask;
1422	int error;
1423
1424	mask = hlt_cpus_mask;
1425	error = sysctl_handle_int(oidp, &mask, 0, req);
1426	if (error || !req->newptr)
1427		return (error);
1428
1429	if (logical_cpus_mask != 0 &&
1430	    (mask & logical_cpus_mask) == logical_cpus_mask)
1431		hlt_logical_cpus = 1;
1432	else
1433		hlt_logical_cpus = 0;
1434
1435	if (! hyperthreading_allowed)
1436		mask |= hyperthreading_cpus_mask;
1437
1438	if ((mask & all_cpus) == all_cpus)
1439		mask &= ~(1<<0);
1440	hlt_cpus_mask = mask;
1441	return (error);
1442}
1443SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1444    0, 0, sysctl_hlt_cpus, "IU",
1445    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1446
1447static int
1448sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1449{
1450	int disable, error;
1451
1452	disable = hlt_logical_cpus;
1453	error = sysctl_handle_int(oidp, &disable, 0, req);
1454	if (error || !req->newptr)
1455		return (error);
1456
1457	if (disable)
1458		hlt_cpus_mask |= logical_cpus_mask;
1459	else
1460		hlt_cpus_mask &= ~logical_cpus_mask;
1461
1462	if (! hyperthreading_allowed)
1463		hlt_cpus_mask |= hyperthreading_cpus_mask;
1464
1465	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1466		hlt_cpus_mask &= ~(1<<0);
1467
1468	hlt_logical_cpus = disable;
1469	return (error);
1470}
1471
1472static int
1473sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1474{
1475	int allowed, error;
1476
1477	allowed = hyperthreading_allowed;
1478	error = sysctl_handle_int(oidp, &allowed, 0, req);
1479	if (error || !req->newptr)
1480		return (error);
1481
1482#ifdef SCHED_ULE
1483	/*
1484	 * SCHED_ULE doesn't allow enabling/disabling HT cores at
1485	 * run-time.
1486	 */
1487	if (allowed != hyperthreading_allowed)
1488		return (ENOTSUP);
1489	return (error);
1490#endif
1491
1492	if (allowed)
1493		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1494	else
1495		hlt_cpus_mask |= hyperthreading_cpus_mask;
1496
1497	if (logical_cpus_mask != 0 &&
1498	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1499		hlt_logical_cpus = 1;
1500	else
1501		hlt_logical_cpus = 0;
1502
1503	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1504		hlt_cpus_mask &= ~(1<<0);
1505
1506	hyperthreading_allowed = allowed;
1507	return (error);
1508}
1509
1510static void
1511cpu_hlt_setup(void *dummy __unused)
1512{
1513
1514	if (logical_cpus_mask != 0) {
1515		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1516		    &hlt_logical_cpus);
1517		sysctl_ctx_init(&logical_cpu_clist);
1518		SYSCTL_ADD_PROC(&logical_cpu_clist,
1519		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1520		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1521		    sysctl_hlt_logical_cpus, "IU", "");
1522		SYSCTL_ADD_UINT(&logical_cpu_clist,
1523		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1524		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1525		    &logical_cpus_mask, 0, "");
1526
1527		if (hlt_logical_cpus)
1528			hlt_cpus_mask |= logical_cpus_mask;
1529
1530		/*
1531		 * If necessary for security purposes, force
1532		 * hyperthreading off, regardless of the value
1533		 * of hlt_logical_cpus.
1534		 */
1535		if (hyperthreading_cpus_mask) {
1536			SYSCTL_ADD_PROC(&logical_cpu_clist,
1537			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1538			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1539			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1540			if (! hyperthreading_allowed)
1541				hlt_cpus_mask |= hyperthreading_cpus_mask;
1542		}
1543	}
1544}
1545SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1546
1547int
1548mp_grab_cpu_hlt(void)
1549{
1550	u_int mask = PCPU_GET(cpumask);
1551#ifdef MP_WATCHDOG
1552	u_int cpuid = PCPU_GET(cpuid);
1553#endif
1554	int retval;
1555
1556#ifdef MP_WATCHDOG
1557	ap_watchdog(cpuid);
1558#endif
1559
1560	retval = mask & hlt_cpus_mask;
1561	while (mask & hlt_cpus_mask)
1562		__asm __volatile("sti; hlt" : : : "memory");
1563	return (retval);
1564}
1565
1566#ifdef COUNT_IPIS
1567/*
1568 * Setup interrupt counters for IPI handlers.
1569 */
1570static void
1571mp_ipi_intrcnt(void *dummy)
1572{
1573	char buf[64];
1574	int i;
1575
1576	CPU_FOREACH(i) {
1577		snprintf(buf, sizeof(buf), "cpu%d: invltlb", i);
1578		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1579		snprintf(buf, sizeof(buf), "cpu%d: invlrng", i);
1580		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1581		snprintf(buf, sizeof(buf), "cpu%d: invlpg", i);
1582		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1583		snprintf(buf, sizeof(buf), "cpu%d: preempt", i);
1584		intrcnt_add(buf, &ipi_preempt_counts[i]);
1585		snprintf(buf, sizeof(buf), "cpu%d: ast", i);
1586		intrcnt_add(buf, &ipi_ast_counts[i]);
1587		snprintf(buf, sizeof(buf), "cpu%d: rendezvous", i);
1588		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1589		snprintf(buf, sizeof(buf), "cpu%d: lazypmap", i);
1590		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1591	}
1592}
1593SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1594#endif
1595