mp_x86.c revision 173592
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/i386/i386/mp_machdep.c 173592 2007-11-13 23:00:24Z peter $");
28
29#include "opt_apic.h"
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#if !defined(lint)
37#if !defined(SMP)
38#error How did you get here?
39#endif
40
41#ifndef DEV_APIC
42#error The apic device is required for SMP, add "device apic" to your config file.
43#endif
44#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
45#error SMP not supported with CPU_DISABLE_CMPXCHG
46#endif
47#endif /* not lint */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bus.h>
52#include <sys/cons.h>	/* cngetc() */
53#ifdef GPROF
54#include <sys/gmon.h>
55#endif
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/lock.h>
59#include <sys/malloc.h>
60#include <sys/memrange.h>
61#include <sys/mutex.h>
62#include <sys/pcpu.h>
63#include <sys/proc.h>
64#include <sys/sched.h>
65#include <sys/smp.h>
66#include <sys/sysctl.h>
67
68#include <vm/vm.h>
69#include <vm/vm_param.h>
70#include <vm/pmap.h>
71#include <vm/vm_kern.h>
72#include <vm/vm_extern.h>
73
74#include <machine/apicreg.h>
75#include <machine/md_var.h>
76#include <machine/mp_watchdog.h>
77#include <machine/pcb.h>
78#include <machine/psl.h>
79#include <machine/smp.h>
80#include <machine/specialreg.h>
81
82#define WARMBOOT_TARGET		0
83#define WARMBOOT_OFF		(KERNBASE + 0x0467)
84#define WARMBOOT_SEG		(KERNBASE + 0x0469)
85
86#define CMOS_REG		(0x70)
87#define CMOS_DATA		(0x71)
88#define BIOS_RESET		(0x0f)
89#define BIOS_WARM		(0x0a)
90
91/*
92 * this code MUST be enabled here and in mpboot.s.
93 * it follows the very early stages of AP boot by placing values in CMOS ram.
94 * it NORMALLY will never be needed and thus the primitive method for enabling.
95 *
96#define CHECK_POINTS
97 */
98
99#if defined(CHECK_POINTS) && !defined(PC98)
100#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
101#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
102
103#define CHECK_INIT(D);				\
104	CHECK_WRITE(0x34, (D));			\
105	CHECK_WRITE(0x35, (D));			\
106	CHECK_WRITE(0x36, (D));			\
107	CHECK_WRITE(0x37, (D));			\
108	CHECK_WRITE(0x38, (D));			\
109	CHECK_WRITE(0x39, (D));
110
111#define CHECK_PRINT(S);				\
112	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
113	   (S),					\
114	   CHECK_READ(0x34),			\
115	   CHECK_READ(0x35),			\
116	   CHECK_READ(0x36),			\
117	   CHECK_READ(0x37),			\
118	   CHECK_READ(0x38),			\
119	   CHECK_READ(0x39));
120
121#else				/* CHECK_POINTS */
122
123#define CHECK_INIT(D)
124#define CHECK_PRINT(S)
125#define CHECK_WRITE(A, D)
126
127#endif				/* CHECK_POINTS */
128
129/* lock region used by kernel profiling */
130int	mcount_lock;
131
132int	mp_naps;		/* # of Applications processors */
133int	boot_cpu_id = -1;	/* designated BSP */
134extern	int nkpt;
135
136extern	struct pcpu __pcpu[];
137
138/*
139 * CPU topology map datastructures for HTT.
140 */
141static struct cpu_group mp_groups[MAXCPU];
142static struct cpu_top mp_top;
143
144/* AP uses this during bootstrap.  Do not staticize.  */
145char *bootSTK;
146static int bootAP;
147
148/* Free these after use */
149void *bootstacks[MAXCPU];
150
151/* Hotwire a 0->4MB V==P mapping */
152extern pt_entry_t *KPTphys;
153
154struct pcb stoppcbs[MAXCPU];
155
156/* Variables needed for SMP tlb shootdown. */
157vm_offset_t smp_tlb_addr1;
158vm_offset_t smp_tlb_addr2;
159volatile int smp_tlb_wait;
160
161#ifdef STOP_NMI
162volatile cpumask_t ipi_nmi_pending;
163
164static void	ipi_nmi_selected(u_int32_t cpus);
165#endif
166
167#ifdef COUNT_IPIS
168/* Interrupt counts. */
169static u_long *ipi_preempt_counts[MAXCPU];
170static u_long *ipi_ast_counts[MAXCPU];
171u_long *ipi_invltlb_counts[MAXCPU];
172u_long *ipi_invlrng_counts[MAXCPU];
173u_long *ipi_invlpg_counts[MAXCPU];
174u_long *ipi_invlcache_counts[MAXCPU];
175u_long *ipi_rendezvous_counts[MAXCPU];
176u_long *ipi_lazypmap_counts[MAXCPU];
177#endif
178
179/*
180 * Local data and functions.
181 */
182
183#ifdef STOP_NMI
184/*
185 * Provide an alternate method of stopping other CPUs. If another CPU has
186 * disabled interrupts the conventional STOP IPI will be blocked. This
187 * NMI-based stop should get through in that case.
188 */
189static int stop_cpus_with_nmi = 1;
190SYSCTL_INT(_debug, OID_AUTO, stop_cpus_with_nmi, CTLTYPE_INT | CTLFLAG_RW,
191    &stop_cpus_with_nmi, 0, "");
192TUNABLE_INT("debug.stop_cpus_with_nmi", &stop_cpus_with_nmi);
193#else
194#define	stop_cpus_with_nmi	0
195#endif
196
197static u_int logical_cpus;
198
199/* used to hold the AP's until we are ready to release them */
200static struct mtx ap_boot_mtx;
201
202/* Set to 1 once we're ready to let the APs out of the pen. */
203static volatile int aps_ready = 0;
204
205/*
206 * Store data from cpu_add() until later in the boot when we actually setup
207 * the APs.
208 */
209struct cpu_info {
210	int	cpu_present:1;
211	int	cpu_bsp:1;
212	int	cpu_disabled:1;
213} static cpu_info[MAX_APIC_ID + 1];
214int cpu_apic_ids[MAXCPU];
215
216/* Holds pending bitmap based IPIs per CPU */
217static volatile u_int cpu_ipi_pending[MAXCPU];
218
219static u_int boot_address;
220
221static void	assign_cpu_ids(void);
222static void	install_ap_tramp(void);
223static void	set_interrupt_apic_ids(void);
224static int	start_all_aps(void);
225static int	start_ap(int apic_id);
226static void	release_aps(void *dummy);
227
228static int	hlt_logical_cpus;
229static u_int	hyperthreading_cpus;
230static cpumask_t	hyperthreading_cpus_mask;
231static int	hyperthreading_allowed = 1;
232static struct	sysctl_ctx_list logical_cpu_clist;
233
234static void
235mem_range_AP_init(void)
236{
237	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
238		mem_range_softc.mr_op->initAP(&mem_range_softc);
239}
240
241void
242mp_topology(void)
243{
244	struct cpu_group *group;
245	int apic_id;
246	int groups;
247	int cpu;
248
249	/* Build the smp_topology map. */
250	/* Nothing to do if there is no HTT support. */
251	if (hyperthreading_cpus <= 1)
252		return;
253	group = &mp_groups[0];
254	groups = 1;
255	for (cpu = 0, apic_id = 0; apic_id <= MAX_APIC_ID; apic_id++) {
256		if (!cpu_info[apic_id].cpu_present)
257			continue;
258		/*
259		 * If the current group has members and we're not a logical
260		 * cpu, create a new group.
261		 */
262		if (group->cg_count != 0 &&
263		    (apic_id % hyperthreading_cpus) == 0) {
264			group++;
265			groups++;
266		}
267		group->cg_count++;
268		group->cg_mask |= 1 << cpu;
269		cpu++;
270	}
271
272	mp_top.ct_count = groups;
273	mp_top.ct_group = mp_groups;
274	smp_topology = &mp_top;
275}
276
277
278/*
279 * Calculate usable address in base memory for AP trampoline code.
280 */
281u_int
282mp_bootaddress(u_int basemem)
283{
284
285	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
286	if ((basemem - boot_address) < bootMP_size)
287		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
288
289	return boot_address;
290}
291
292void
293cpu_add(u_int apic_id, char boot_cpu)
294{
295
296	if (apic_id > MAX_APIC_ID) {
297		panic("SMP: APIC ID %d too high", apic_id);
298		return;
299	}
300	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
301	    apic_id));
302	cpu_info[apic_id].cpu_present = 1;
303	if (boot_cpu) {
304		KASSERT(boot_cpu_id == -1,
305		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
306		    boot_cpu_id));
307		boot_cpu_id = apic_id;
308		cpu_info[apic_id].cpu_bsp = 1;
309	}
310	if (mp_ncpus < MAXCPU)
311		mp_ncpus++;
312	if (bootverbose)
313		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
314		    "AP");
315}
316
317void
318cpu_mp_setmaxid(void)
319{
320
321	mp_maxid = MAXCPU - 1;
322}
323
324int
325cpu_mp_probe(void)
326{
327
328	/*
329	 * Always record BSP in CPU map so that the mbuf init code works
330	 * correctly.
331	 */
332	all_cpus = 1;
333	if (mp_ncpus == 0) {
334		/*
335		 * No CPUs were found, so this must be a UP system.  Setup
336		 * the variables to represent a system with a single CPU
337		 * with an id of 0.
338		 */
339		mp_ncpus = 1;
340		return (0);
341	}
342
343	/* At least one CPU was found. */
344	if (mp_ncpus == 1) {
345		/*
346		 * One CPU was found, so this must be a UP system with
347		 * an I/O APIC.
348		 */
349		return (0);
350	}
351
352	/* At least two CPUs were found. */
353	return (1);
354}
355
356/*
357 * Initialize the IPI handlers and start up the AP's.
358 */
359void
360cpu_mp_start(void)
361{
362	int i;
363	u_int threads_per_cache, p[4];
364
365	/* Initialize the logical ID to APIC ID table. */
366	for (i = 0; i < MAXCPU; i++) {
367		cpu_apic_ids[i] = -1;
368		cpu_ipi_pending[i] = 0;
369	}
370
371	/* Install an inter-CPU IPI for TLB invalidation */
372	setidt(IPI_INVLTLB, IDTVEC(invltlb),
373	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
374	setidt(IPI_INVLPG, IDTVEC(invlpg),
375	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
376	setidt(IPI_INVLRNG, IDTVEC(invlrng),
377	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
378
379	/* Install an inter-CPU IPI for cache invalidation. */
380	setidt(IPI_INVLCACHE, IDTVEC(invlcache),
381	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
382
383	/* Install an inter-CPU IPI for lazy pmap release */
384	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
385	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
386
387	/* Install an inter-CPU IPI for all-CPU rendezvous */
388	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
389	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
390
391	/* Install generic inter-CPU IPI handler */
392	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
393	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
394
395	/* Install an inter-CPU IPI for CPU stop/restart */
396	setidt(IPI_STOP, IDTVEC(cpustop),
397	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
398
399
400	/* Set boot_cpu_id if needed. */
401	if (boot_cpu_id == -1) {
402		boot_cpu_id = PCPU_GET(apic_id);
403		cpu_info[boot_cpu_id].cpu_bsp = 1;
404	} else
405		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
406		    ("BSP's APIC ID doesn't match boot_cpu_id"));
407	cpu_apic_ids[0] = boot_cpu_id;
408
409	assign_cpu_ids();
410
411	/* Start each Application Processor */
412	start_all_aps();
413
414	/* Setup the initial logical CPUs info. */
415	logical_cpus = logical_cpus_mask = 0;
416	if (cpu_feature & CPUID_HTT)
417		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
418
419	/*
420	 * Work out if hyperthreading is *really* enabled.  This
421	 * is made really ugly by the fact that processors lie: Dual
422	 * core processors claim to be hyperthreaded even when they're
423	 * not, presumably because they want to be treated the same
424	 * way as HTT with respect to per-cpu software licensing.
425	 * At the time of writing (May 12, 2005) the only hyperthreaded
426	 * cpus are from Intel, and Intel's dual-core processors can be
427	 * identified via the "deterministic cache parameters" cpuid
428	 * calls.
429	 */
430	/*
431	 * First determine if this is an Intel processor which claims
432	 * to have hyperthreading support.
433	 */
434	if ((cpu_feature & CPUID_HTT) &&
435	    (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
436		/*
437		 * If the "deterministic cache parameters" cpuid calls
438		 * are available, use them.
439		 */
440		if (cpu_high >= 4) {
441			/* Ask the processor about the L1 cache. */
442			for (i = 0; i < 1; i++) {
443				cpuid_count(4, i, p);
444				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
445				if (hyperthreading_cpus < threads_per_cache)
446					hyperthreading_cpus = threads_per_cache;
447				if ((p[0] & 0x1f) == 0)
448					break;
449			}
450		}
451
452		/*
453		 * If the deterministic cache parameters are not
454		 * available, or if no caches were reported to exist,
455		 * just accept what the HTT flag indicated.
456		 */
457		if (hyperthreading_cpus == 0)
458			hyperthreading_cpus = logical_cpus;
459	}
460
461	set_interrupt_apic_ids();
462
463	/* Last, setup the cpu topology now that we have probed CPUs */
464	mp_topology();
465}
466
467
468/*
469 * Print various information about the SMP system hardware and setup.
470 */
471void
472cpu_mp_announce(void)
473{
474	int i, x;
475
476	/* List CPUs */
477	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
478	for (i = 1, x = 0; x <= MAX_APIC_ID; x++) {
479		if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
480			continue;
481		if (cpu_info[x].cpu_disabled)
482			printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
483		else {
484			KASSERT(i < mp_ncpus,
485			    ("mp_ncpus and actual cpus are out of whack"));
486			printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
487		}
488	}
489}
490
491/*
492 * AP CPU's call this to initialize themselves.
493 */
494void
495init_secondary(void)
496{
497	struct pcpu *pc;
498	vm_offset_t addr;
499	int	gsel_tss;
500	int	x, myid;
501	u_int	cr0;
502
503	/* bootAP is set in start_ap() to our ID. */
504	myid = bootAP;
505
506	/* Get per-cpu data */
507	pc = &__pcpu[myid];
508
509	/* prime data page for it to use */
510	pcpu_init(pc, myid, sizeof(struct pcpu));
511	pc->pc_apic_id = cpu_apic_ids[myid];
512	pc->pc_prvspace = pc;
513	pc->pc_curthread = 0;
514
515	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
516	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
517
518	for (x = 0; x < NGDT; x++) {
519		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
520	}
521
522	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
523	r_gdt.rd_base = (int) &gdt[myid * NGDT];
524	lgdt(&r_gdt);			/* does magic intra-segment return */
525
526	lidt(&r_idt);
527
528	lldt(_default_ldt);
529	PCPU_SET(currentldt, _default_ldt);
530
531	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
532	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
533	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
534	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
535	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
536	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
537	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
538	ltr(gsel_tss);
539
540	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
541
542	/*
543	 * Set to a known state:
544	 * Set by mpboot.s: CR0_PG, CR0_PE
545	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
546	 */
547	cr0 = rcr0();
548	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
549	load_cr0(cr0);
550	CHECK_WRITE(0x38, 5);
551
552	/* Disable local APIC just to be sure. */
553	lapic_disable();
554
555	/* signal our startup to the BSP. */
556	mp_naps++;
557	CHECK_WRITE(0x39, 6);
558
559	/* Spin until the BSP releases the AP's. */
560	while (!aps_ready)
561		ia32_pause();
562
563	/* BSP may have changed PTD while we were waiting */
564	invltlb();
565	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
566		invlpg(addr);
567
568#if defined(I586_CPU) && !defined(NO_F00F_HACK)
569	lidt(&r_idt);
570#endif
571
572	/* Initialize the PAT MSR if present. */
573	pmap_init_pat();
574
575	/* set up CPU registers and state */
576	cpu_setregs();
577
578	/* set up FPU state on the AP */
579	npxinit(__INITIAL_NPXCW__);
580
581	/* set up SSE registers */
582	enable_sse();
583
584#ifdef PAE
585	/* Enable the PTE no-execute bit. */
586	if ((amd_feature & AMDID_NX) != 0) {
587		uint64_t msr;
588
589		msr = rdmsr(MSR_EFER) | EFER_NXE;
590		wrmsr(MSR_EFER, msr);
591	}
592#endif
593
594	/* A quick check from sanity claus */
595	if (PCPU_GET(apic_id) != lapic_id()) {
596		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
597		printf("SMP: actual apic_id = %d\n", lapic_id());
598		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
599		panic("cpuid mismatch! boom!!");
600	}
601
602	/* Initialize curthread. */
603	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
604	PCPU_SET(curthread, PCPU_GET(idlethread));
605
606	mtx_lock_spin(&ap_boot_mtx);
607
608	/* Init local apic for irq's */
609	lapic_setup(1);
610
611	/* Set memory range attributes for this CPU to match the BSP */
612	mem_range_AP_init();
613
614	smp_cpus++;
615
616	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
617	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
618
619	/* Determine if we are a logical CPU. */
620	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
621		logical_cpus_mask |= PCPU_GET(cpumask);
622
623	/* Determine if we are a hyperthread. */
624	if (hyperthreading_cpus > 1 &&
625	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
626		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
627
628	/* Build our map of 'other' CPUs. */
629	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
630
631	if (bootverbose)
632		lapic_dump("AP");
633
634	if (smp_cpus == mp_ncpus) {
635		/* enable IPI's, tlb shootdown, freezes etc */
636		atomic_store_rel_int(&smp_started, 1);
637		smp_active = 1;	 /* historic */
638	}
639
640	mtx_unlock_spin(&ap_boot_mtx);
641
642	/* wait until all the AP's are up */
643	while (smp_started == 0)
644		ia32_pause();
645
646	/* enter the scheduler */
647	sched_throw(NULL);
648
649	panic("scheduler returned us to %s", __func__);
650	/* NOTREACHED */
651}
652
653/*******************************************************************
654 * local functions and data
655 */
656
657/*
658 * We tell the I/O APIC code about all the CPUs we want to receive
659 * interrupts.  If we don't want certain CPUs to receive IRQs we
660 * can simply not tell the I/O APIC code about them in this function.
661 * We also do not tell it about the BSP since it tells itself about
662 * the BSP internally to work with UP kernels and on UP machines.
663 */
664static void
665set_interrupt_apic_ids(void)
666{
667	u_int i, apic_id;
668
669	for (i = 0; i < MAXCPU; i++) {
670		apic_id = cpu_apic_ids[i];
671		if (apic_id == -1)
672			continue;
673		if (cpu_info[apic_id].cpu_bsp)
674			continue;
675		if (cpu_info[apic_id].cpu_disabled)
676			continue;
677
678		/* Don't let hyperthreads service interrupts. */
679		if (hyperthreading_cpus > 1 &&
680		    apic_id % hyperthreading_cpus != 0)
681			continue;
682
683		intr_add_cpu(i);
684	}
685}
686
687/*
688 * Assign logical CPU IDs to local APICs.
689 */
690static void
691assign_cpu_ids(void)
692{
693	u_int i;
694
695	/* Check for explicitly disabled CPUs. */
696	for (i = 0; i <= MAX_APIC_ID; i++) {
697		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
698			continue;
699
700		/* Don't use this CPU if it has been disabled by a tunable. */
701		if (resource_disabled("lapic", i)) {
702			cpu_info[i].cpu_disabled = 1;
703			continue;
704		}
705	}
706
707	/*
708	 * Assign CPU IDs to local APIC IDs and disable any CPUs
709	 * beyond MAXCPU.  CPU 0 has already been assigned to the BSP,
710	 * so we only have to assign IDs for APs.
711	 */
712	mp_ncpus = 1;
713	for (i = 0; i <= MAX_APIC_ID; i++) {
714		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
715		    cpu_info[i].cpu_disabled)
716			continue;
717
718		if (mp_ncpus < MAXCPU) {
719			cpu_apic_ids[mp_ncpus] = i;
720			mp_ncpus++;
721		} else
722			cpu_info[i].cpu_disabled = 1;
723	}
724	KASSERT(mp_maxid >= mp_ncpus - 1,
725	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
726	    mp_ncpus));
727}
728
729/*
730 * start each AP in our list
731 */
732static int
733start_all_aps(void)
734{
735#ifndef PC98
736	u_char mpbiosreason;
737#endif
738	uintptr_t kptbase;
739	u_int32_t mpbioswarmvec;
740	int apic_id, cpu, i;
741
742	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
743
744	/* install the AP 1st level boot code */
745	install_ap_tramp();
746
747	/* save the current value of the warm-start vector */
748	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
749#ifndef PC98
750	outb(CMOS_REG, BIOS_RESET);
751	mpbiosreason = inb(CMOS_DATA);
752#endif
753
754	/* set up temporary P==V mapping for AP boot */
755	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
756	kptbase = (uintptr_t)(void *)KPTphys;
757	for (i = 0; i < NKPT; i++)
758		PTD[i] = (pd_entry_t)(PG_V | PG_RW |
759		    ((kptbase + i * PAGE_SIZE) & PG_FRAME));
760	invltlb();
761
762	/* start each AP */
763	for (cpu = 1; cpu < mp_ncpus; cpu++) {
764		apic_id = cpu_apic_ids[cpu];
765
766		/* allocate and set up an idle stack data page */
767		bootstacks[cpu] = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
768
769		/* setup a vector to our boot code */
770		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
771		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
772#ifndef PC98
773		outb(CMOS_REG, BIOS_RESET);
774		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
775#endif
776
777		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
778		bootAP = cpu;
779
780		/* attempt to start the Application Processor */
781		CHECK_INIT(99);	/* setup checkpoints */
782		if (!start_ap(apic_id)) {
783			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
784			CHECK_PRINT("trace");	/* show checkpoints */
785			/* better panic as the AP may be running loose */
786			printf("panic y/n? [y] ");
787			if (cngetc() != 'n')
788				panic("bye-bye");
789		}
790		CHECK_PRINT("trace");		/* show checkpoints */
791
792		all_cpus |= (1 << cpu);		/* record AP in CPU map */
793	}
794
795	/* build our map of 'other' CPUs */
796	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
797
798	/* restore the warmstart vector */
799	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
800
801#ifndef PC98
802	outb(CMOS_REG, BIOS_RESET);
803	outb(CMOS_DATA, mpbiosreason);
804#endif
805
806	/* Undo V==P hack from above */
807	for (i = 0; i < NKPT; i++)
808		PTD[i] = 0;
809	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
810
811	/* number of APs actually started */
812	return mp_naps;
813}
814
815/*
816 * load the 1st level AP boot code into base memory.
817 */
818
819/* targets for relocation */
820extern void bigJump(void);
821extern void bootCodeSeg(void);
822extern void bootDataSeg(void);
823extern void MPentry(void);
824extern u_int MP_GDT;
825extern u_int mp_gdtbase;
826
827static void
828install_ap_tramp(void)
829{
830	int     x;
831	int     size = *(int *) ((u_long) & bootMP_size);
832	vm_offset_t va = boot_address + KERNBASE;
833	u_char *src = (u_char *) ((u_long) bootMP);
834	u_char *dst = (u_char *) va;
835	u_int   boot_base = (u_int) bootMP;
836	u_int8_t *dst8;
837	u_int16_t *dst16;
838	u_int32_t *dst32;
839
840	KASSERT (size <= PAGE_SIZE,
841	    ("'size' do not fit into PAGE_SIZE, as expected."));
842	pmap_kenter(va, boot_address);
843	pmap_invalidate_page (kernel_pmap, va);
844	for (x = 0; x < size; ++x)
845		*dst++ = *src++;
846
847	/*
848	 * modify addresses in code we just moved to basemem. unfortunately we
849	 * need fairly detailed info about mpboot.s for this to work.  changes
850	 * to mpboot.s might require changes here.
851	 */
852
853	/* boot code is located in KERNEL space */
854	dst = (u_char *) va;
855
856	/* modify the lgdt arg */
857	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
858	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
859
860	/* modify the ljmp target for MPentry() */
861	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
862	*dst32 = ((u_int) MPentry - KERNBASE);
863
864	/* modify the target for boot code segment */
865	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
866	dst8 = (u_int8_t *) (dst16 + 1);
867	*dst16 = (u_int) boot_address & 0xffff;
868	*dst8 = ((u_int) boot_address >> 16) & 0xff;
869
870	/* modify the target for boot data segment */
871	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
872	dst8 = (u_int8_t *) (dst16 + 1);
873	*dst16 = (u_int) boot_address & 0xffff;
874	*dst8 = ((u_int) boot_address >> 16) & 0xff;
875}
876
877/*
878 * This function starts the AP (application processor) identified
879 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
880 * to accomplish this.  This is necessary because of the nuances
881 * of the different hardware we might encounter.  It isn't pretty,
882 * but it seems to work.
883 */
884static int
885start_ap(int apic_id)
886{
887	int vector, ms;
888	int cpus;
889
890	/* calculate the vector */
891	vector = (boot_address >> 12) & 0xff;
892
893	/* used as a watchpoint to signal AP startup */
894	cpus = mp_naps;
895
896	/*
897	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
898	 * and running the target CPU. OR this INIT IPI might be latched (P5
899	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
900	 * ignored.
901	 */
902
903	/* do an INIT IPI: assert RESET */
904	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
905	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
906
907	/* wait for pending status end */
908	lapic_ipi_wait(-1);
909
910	/* do an INIT IPI: deassert RESET */
911	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
912	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
913
914	/* wait for pending status end */
915	DELAY(10000);		/* wait ~10mS */
916	lapic_ipi_wait(-1);
917
918	/*
919	 * next we do a STARTUP IPI: the previous INIT IPI might still be
920	 * latched, (P5 bug) this 1st STARTUP would then terminate
921	 * immediately, and the previously started INIT IPI would continue. OR
922	 * the previous INIT IPI has already run. and this STARTUP IPI will
923	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
924	 * will run.
925	 */
926
927	/* do a STARTUP IPI */
928	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
929	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
930	    vector, apic_id);
931	lapic_ipi_wait(-1);
932	DELAY(200);		/* wait ~200uS */
933
934	/*
935	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
936	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
937	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
938	 * recognized after hardware RESET or INIT IPI.
939	 */
940
941	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
942	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
943	    vector, apic_id);
944	lapic_ipi_wait(-1);
945	DELAY(200);		/* wait ~200uS */
946
947	/* Wait up to 5 seconds for it to start. */
948	for (ms = 0; ms < 5000; ms++) {
949		if (mp_naps > cpus)
950			return 1;	/* return SUCCESS */
951		DELAY(1000);
952	}
953	return 0;		/* return FAILURE */
954}
955
956#ifdef COUNT_XINVLTLB_HITS
957u_int xhits_gbl[MAXCPU];
958u_int xhits_pg[MAXCPU];
959u_int xhits_rng[MAXCPU];
960SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
961SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
962    sizeof(xhits_gbl), "IU", "");
963SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
964    sizeof(xhits_pg), "IU", "");
965SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
966    sizeof(xhits_rng), "IU", "");
967
968u_int ipi_global;
969u_int ipi_page;
970u_int ipi_range;
971u_int ipi_range_size;
972SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
973SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
974SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
975SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
976    0, "");
977
978u_int ipi_masked_global;
979u_int ipi_masked_page;
980u_int ipi_masked_range;
981u_int ipi_masked_range_size;
982SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
983    &ipi_masked_global, 0, "");
984SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
985    &ipi_masked_page, 0, "");
986SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
987    &ipi_masked_range, 0, "");
988SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
989    &ipi_masked_range_size, 0, "");
990#endif /* COUNT_XINVLTLB_HITS */
991
992/*
993 * Flush the TLB on all other CPU's
994 */
995static void
996smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
997{
998	u_int ncpu;
999
1000	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1001	if (ncpu < 1)
1002		return;		/* no other cpus */
1003	if (!(read_eflags() & PSL_I))
1004		panic("%s: interrupts disabled", __func__);
1005	mtx_lock_spin(&smp_ipi_mtx);
1006	smp_tlb_addr1 = addr1;
1007	smp_tlb_addr2 = addr2;
1008	atomic_store_rel_int(&smp_tlb_wait, 0);
1009	ipi_all_but_self(vector);
1010	while (smp_tlb_wait < ncpu)
1011		ia32_pause();
1012	mtx_unlock_spin(&smp_ipi_mtx);
1013}
1014
1015static void
1016smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1017{
1018	int ncpu, othercpus;
1019
1020	othercpus = mp_ncpus - 1;
1021	if (mask == (u_int)-1) {
1022		ncpu = othercpus;
1023		if (ncpu < 1)
1024			return;
1025	} else {
1026		mask &= ~PCPU_GET(cpumask);
1027		if (mask == 0)
1028			return;
1029		ncpu = bitcount32(mask);
1030		if (ncpu > othercpus) {
1031			/* XXX this should be a panic offence */
1032			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
1033			    ncpu, othercpus);
1034			ncpu = othercpus;
1035		}
1036		/* XXX should be a panic, implied by mask == 0 above */
1037		if (ncpu < 1)
1038			return;
1039	}
1040	if (!(read_eflags() & PSL_I))
1041		panic("%s: interrupts disabled", __func__);
1042	mtx_lock_spin(&smp_ipi_mtx);
1043	smp_tlb_addr1 = addr1;
1044	smp_tlb_addr2 = addr2;
1045	atomic_store_rel_int(&smp_tlb_wait, 0);
1046	if (mask == (u_int)-1)
1047		ipi_all_but_self(vector);
1048	else
1049		ipi_selected(mask, vector);
1050	while (smp_tlb_wait < ncpu)
1051		ia32_pause();
1052	mtx_unlock_spin(&smp_ipi_mtx);
1053}
1054
1055void
1056smp_cache_flush(void)
1057{
1058
1059	if (smp_started)
1060		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1061}
1062
1063void
1064smp_invltlb(void)
1065{
1066
1067	if (smp_started) {
1068		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1069#ifdef COUNT_XINVLTLB_HITS
1070		ipi_global++;
1071#endif
1072	}
1073}
1074
1075void
1076smp_invlpg(vm_offset_t addr)
1077{
1078
1079	if (smp_started) {
1080		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1081#ifdef COUNT_XINVLTLB_HITS
1082		ipi_page++;
1083#endif
1084	}
1085}
1086
1087void
1088smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1089{
1090
1091	if (smp_started) {
1092		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1093#ifdef COUNT_XINVLTLB_HITS
1094		ipi_range++;
1095		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1096#endif
1097	}
1098}
1099
1100void
1101smp_masked_invltlb(u_int mask)
1102{
1103
1104	if (smp_started) {
1105		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1106#ifdef COUNT_XINVLTLB_HITS
1107		ipi_masked_global++;
1108#endif
1109	}
1110}
1111
1112void
1113smp_masked_invlpg(u_int mask, vm_offset_t addr)
1114{
1115
1116	if (smp_started) {
1117		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1118#ifdef COUNT_XINVLTLB_HITS
1119		ipi_masked_page++;
1120#endif
1121	}
1122}
1123
1124void
1125smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
1126{
1127
1128	if (smp_started) {
1129		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1130#ifdef COUNT_XINVLTLB_HITS
1131		ipi_masked_range++;
1132		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1133#endif
1134	}
1135}
1136
1137void
1138ipi_bitmap_handler(struct trapframe frame)
1139{
1140	int cpu = PCPU_GET(cpuid);
1141	u_int ipi_bitmap;
1142
1143	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1144
1145	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1146		struct thread *running_thread = curthread;
1147#ifdef COUNT_IPIS
1148		(*ipi_preempt_counts[cpu])++;
1149#endif
1150		thread_lock(running_thread);
1151		if (running_thread->td_critnest > 1)
1152			running_thread->td_owepreempt = 1;
1153		else
1154			mi_switch(SW_INVOL | SW_PREEMPT, NULL);
1155		thread_unlock(running_thread);
1156	}
1157
1158	if (ipi_bitmap & (1 << IPI_AST)) {
1159#ifdef COUNT_IPIS
1160		(*ipi_ast_counts[cpu])++;
1161#endif
1162		/* Nothing to do for AST */
1163	}
1164}
1165
1166/*
1167 * send an IPI to a set of cpus.
1168 */
1169void
1170ipi_selected(u_int32_t cpus, u_int ipi)
1171{
1172	int cpu;
1173	u_int bitmap = 0;
1174	u_int old_pending;
1175	u_int new_pending;
1176
1177	if (IPI_IS_BITMAPED(ipi)) {
1178		bitmap = 1 << ipi;
1179		ipi = IPI_BITMAP_VECTOR;
1180	}
1181
1182#ifdef STOP_NMI
1183	if (ipi == IPI_STOP && stop_cpus_with_nmi) {
1184		ipi_nmi_selected(cpus);
1185		return;
1186	}
1187#endif
1188	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1189	while ((cpu = ffs(cpus)) != 0) {
1190		cpu--;
1191		cpus &= ~(1 << cpu);
1192
1193		KASSERT(cpu_apic_ids[cpu] != -1,
1194		    ("IPI to non-existent CPU %d", cpu));
1195
1196		if (bitmap) {
1197			do {
1198				old_pending = cpu_ipi_pending[cpu];
1199				new_pending = old_pending | bitmap;
1200			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1201
1202			if (old_pending)
1203				continue;
1204		}
1205
1206		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1207	}
1208
1209}
1210
1211/*
1212 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
1213 */
1214void
1215ipi_all(u_int ipi)
1216{
1217
1218	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1219		ipi_selected(all_cpus, ipi);
1220		return;
1221	}
1222	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1223	lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
1224}
1225
1226/*
1227 * send an IPI to all CPUs EXCEPT myself
1228 */
1229void
1230ipi_all_but_self(u_int ipi)
1231{
1232
1233	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1234		ipi_selected(PCPU_GET(other_cpus), ipi);
1235		return;
1236	}
1237	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1238	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1239}
1240
1241/*
1242 * send an IPI to myself
1243 */
1244void
1245ipi_self(u_int ipi)
1246{
1247
1248	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1249		ipi_selected(PCPU_GET(cpumask), ipi);
1250		return;
1251	}
1252	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1253	lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
1254}
1255
1256#ifdef STOP_NMI
1257/*
1258 * send NMI IPI to selected CPUs
1259 */
1260
1261#define	BEFORE_SPIN	1000000
1262
1263void
1264ipi_nmi_selected(u_int32_t cpus)
1265{
1266	int cpu;
1267	register_t icrlo;
1268
1269	icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT
1270		| APIC_TRIGMOD_EDGE;
1271
1272	CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
1273
1274	atomic_set_int(&ipi_nmi_pending, cpus);
1275
1276	while ((cpu = ffs(cpus)) != 0) {
1277		cpu--;
1278		cpus &= ~(1 << cpu);
1279
1280		KASSERT(cpu_apic_ids[cpu] != -1,
1281		    ("IPI NMI to non-existent CPU %d", cpu));
1282
1283		/* Wait for an earlier IPI to finish. */
1284		if (!lapic_ipi_wait(BEFORE_SPIN))
1285			panic("ipi_nmi_selected: previous IPI has not cleared");
1286
1287		lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
1288	}
1289}
1290
1291int
1292ipi_nmi_handler(void)
1293{
1294	int cpumask = PCPU_GET(cpumask);
1295
1296	if (!(ipi_nmi_pending & cpumask))
1297		return 1;
1298
1299	atomic_clear_int(&ipi_nmi_pending, cpumask);
1300	cpustop_handler();
1301	return 0;
1302}
1303
1304#endif /* STOP_NMI */
1305
1306/*
1307 * Handle an IPI_STOP by saving our current context and spinning until we
1308 * are resumed.
1309 */
1310void
1311cpustop_handler(void)
1312{
1313	int cpu = PCPU_GET(cpuid);
1314	int cpumask = PCPU_GET(cpumask);
1315
1316	savectx(&stoppcbs[cpu]);
1317
1318	/* Indicate that we are stopped */
1319	atomic_set_int(&stopped_cpus, cpumask);
1320
1321	/* Wait for restart */
1322	while (!(started_cpus & cpumask))
1323	    ia32_pause();
1324
1325	atomic_clear_int(&started_cpus, cpumask);
1326	atomic_clear_int(&stopped_cpus, cpumask);
1327
1328	if (cpu == 0 && cpustop_restartfunc != NULL) {
1329		cpustop_restartfunc();
1330		cpustop_restartfunc = NULL;
1331	}
1332}
1333
1334/*
1335 * This is called once the rest of the system is up and running and we're
1336 * ready to let the AP's out of the pen.
1337 */
1338static void
1339release_aps(void *dummy __unused)
1340{
1341
1342	if (mp_ncpus == 1)
1343		return;
1344	atomic_store_rel_int(&aps_ready, 1);
1345	while (smp_started == 0)
1346		ia32_pause();
1347}
1348SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1349
1350static int
1351sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1352{
1353	u_int mask;
1354	int error;
1355
1356	mask = hlt_cpus_mask;
1357	error = sysctl_handle_int(oidp, &mask, 0, req);
1358	if (error || !req->newptr)
1359		return (error);
1360
1361	if (logical_cpus_mask != 0 &&
1362	    (mask & logical_cpus_mask) == logical_cpus_mask)
1363		hlt_logical_cpus = 1;
1364	else
1365		hlt_logical_cpus = 0;
1366
1367	if (! hyperthreading_allowed)
1368		mask |= hyperthreading_cpus_mask;
1369
1370	if ((mask & all_cpus) == all_cpus)
1371		mask &= ~(1<<0);
1372	hlt_cpus_mask = mask;
1373	return (error);
1374}
1375SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1376    0, 0, sysctl_hlt_cpus, "IU",
1377    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1378
1379static int
1380sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1381{
1382	int disable, error;
1383
1384	disable = hlt_logical_cpus;
1385	error = sysctl_handle_int(oidp, &disable, 0, req);
1386	if (error || !req->newptr)
1387		return (error);
1388
1389	if (disable)
1390		hlt_cpus_mask |= logical_cpus_mask;
1391	else
1392		hlt_cpus_mask &= ~logical_cpus_mask;
1393
1394	if (! hyperthreading_allowed)
1395		hlt_cpus_mask |= hyperthreading_cpus_mask;
1396
1397	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1398		hlt_cpus_mask &= ~(1<<0);
1399
1400	hlt_logical_cpus = disable;
1401	return (error);
1402}
1403
1404static int
1405sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1406{
1407	int allowed, error;
1408
1409	allowed = hyperthreading_allowed;
1410	error = sysctl_handle_int(oidp, &allowed, 0, req);
1411	if (error || !req->newptr)
1412		return (error);
1413
1414	if (allowed)
1415		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1416	else
1417		hlt_cpus_mask |= hyperthreading_cpus_mask;
1418
1419	if (logical_cpus_mask != 0 &&
1420	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1421		hlt_logical_cpus = 1;
1422	else
1423		hlt_logical_cpus = 0;
1424
1425	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1426		hlt_cpus_mask &= ~(1<<0);
1427
1428	hyperthreading_allowed = allowed;
1429	return (error);
1430}
1431
1432static void
1433cpu_hlt_setup(void *dummy __unused)
1434{
1435
1436	if (logical_cpus_mask != 0) {
1437		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1438		    &hlt_logical_cpus);
1439		sysctl_ctx_init(&logical_cpu_clist);
1440		SYSCTL_ADD_PROC(&logical_cpu_clist,
1441		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1442		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1443		    sysctl_hlt_logical_cpus, "IU", "");
1444		SYSCTL_ADD_UINT(&logical_cpu_clist,
1445		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1446		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1447		    &logical_cpus_mask, 0, "");
1448
1449		if (hlt_logical_cpus)
1450			hlt_cpus_mask |= logical_cpus_mask;
1451
1452		/*
1453		 * If necessary for security purposes, force
1454		 * hyperthreading off, regardless of the value
1455		 * of hlt_logical_cpus.
1456		 */
1457		if (hyperthreading_cpus_mask) {
1458			TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
1459			    &hyperthreading_allowed);
1460			SYSCTL_ADD_PROC(&logical_cpu_clist,
1461			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1462			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1463			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1464			if (! hyperthreading_allowed)
1465				hlt_cpus_mask |= hyperthreading_cpus_mask;
1466		}
1467	}
1468}
1469SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1470
1471int
1472mp_grab_cpu_hlt(void)
1473{
1474	u_int mask = PCPU_GET(cpumask);
1475#ifdef MP_WATCHDOG
1476	u_int cpuid = PCPU_GET(cpuid);
1477#endif
1478	int retval;
1479
1480#ifdef MP_WATCHDOG
1481	ap_watchdog(cpuid);
1482#endif
1483
1484	retval = mask & hlt_cpus_mask;
1485	while (mask & hlt_cpus_mask)
1486		__asm __volatile("sti; hlt" : : : "memory");
1487	return (retval);
1488}
1489
1490#ifdef COUNT_IPIS
1491/*
1492 * Setup interrupt counters for IPI handlers.
1493 */
1494static void
1495mp_ipi_intrcnt(void *dummy)
1496{
1497	char buf[64];
1498	int i;
1499
1500	for (i = 0; i < mp_maxid; i++) {
1501		if (CPU_ABSENT(i))
1502			continue;
1503		snprintf(buf, sizeof(buf), "cpu%d: invltlb", i);
1504		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1505		snprintf(buf, sizeof(buf), "cpu%d: invlrng", i);
1506		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1507		snprintf(buf, sizeof(buf), "cpu%d: invlpg", i);
1508		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1509		snprintf(buf, sizeof(buf), "cpu%d: preempt", i);
1510		intrcnt_add(buf, &ipi_preempt_counts[i]);
1511		snprintf(buf, sizeof(buf), "cpu%d: ast", i);
1512		intrcnt_add(buf, &ipi_ast_counts[i]);
1513		snprintf(buf, sizeof(buf), "cpu%d: rendezvous", i);
1514		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1515		snprintf(buf, sizeof(buf), "cpu%d: lazypmap", i);
1516		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1517	}
1518}
1519SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL)
1520#endif
1521