mp_x86.c revision 155444
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/i386/i386/mp_machdep.c 155444 2006-02-07 21:22:02Z phk $");
28
29#include "opt_apic.h"
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_mp_watchdog.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#if !defined(lint)
37#if !defined(SMP)
38#error How did you get here?
39#endif
40
41#ifndef DEV_APIC
42#error The apic device is required for SMP, add "device apic" to your config file.
43#endif
44#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
45#error SMP not supported with CPU_DISABLE_CMPXCHG
46#endif
47#endif /* not lint */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bus.h>
52#include <sys/cons.h>	/* cngetc() */
53#ifdef GPROF
54#include <sys/gmon.h>
55#endif
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/lock.h>
59#include <sys/malloc.h>
60#include <sys/memrange.h>
61#include <sys/mutex.h>
62#include <sys/pcpu.h>
63#include <sys/proc.h>
64#include <sys/smp.h>
65#include <sys/sysctl.h>
66
67#include <vm/vm.h>
68#include <vm/vm_param.h>
69#include <vm/pmap.h>
70#include <vm/vm_kern.h>
71#include <vm/vm_extern.h>
72
73#include <machine/apicreg.h>
74#include <machine/clock.h>
75#include <machine/md_var.h>
76#include <machine/mp_watchdog.h>
77#include <machine/pcb.h>
78#include <machine/smp.h>
79#include <machine/specialreg.h>
80#include <machine/privatespace.h>
81
82#define WARMBOOT_TARGET		0
83#define WARMBOOT_OFF		(KERNBASE + 0x0467)
84#define WARMBOOT_SEG		(KERNBASE + 0x0469)
85
86#define CMOS_REG		(0x70)
87#define CMOS_DATA		(0x71)
88#define BIOS_RESET		(0x0f)
89#define BIOS_WARM		(0x0a)
90
91/*
92 * this code MUST be enabled here and in mpboot.s.
93 * it follows the very early stages of AP boot by placing values in CMOS ram.
94 * it NORMALLY will never be needed and thus the primitive method for enabling.
95 *
96#define CHECK_POINTS
97 */
98
99#if defined(CHECK_POINTS) && !defined(PC98)
100#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
101#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
102
103#define CHECK_INIT(D);				\
104	CHECK_WRITE(0x34, (D));			\
105	CHECK_WRITE(0x35, (D));			\
106	CHECK_WRITE(0x36, (D));			\
107	CHECK_WRITE(0x37, (D));			\
108	CHECK_WRITE(0x38, (D));			\
109	CHECK_WRITE(0x39, (D));
110
111#define CHECK_PRINT(S);				\
112	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
113	   (S),					\
114	   CHECK_READ(0x34),			\
115	   CHECK_READ(0x35),			\
116	   CHECK_READ(0x36),			\
117	   CHECK_READ(0x37),			\
118	   CHECK_READ(0x38),			\
119	   CHECK_READ(0x39));
120
121#else				/* CHECK_POINTS */
122
123#define CHECK_INIT(D)
124#define CHECK_PRINT(S)
125#define CHECK_WRITE(A, D)
126
127#endif				/* CHECK_POINTS */
128
129/* lock region used by kernel profiling */
130int	mcount_lock;
131
132int	mp_naps;		/* # of Applications processors */
133int	boot_cpu_id = -1;	/* designated BSP */
134extern	int nkpt;
135
136/*
137 * CPU topology map datastructures for HTT.
138 */
139static struct cpu_group mp_groups[MAXCPU];
140static struct cpu_top mp_top;
141
142/* AP uses this during bootstrap.  Do not staticize.  */
143char *bootSTK;
144static int bootAP;
145
146/* Hotwire a 0->4MB V==P mapping */
147extern pt_entry_t *KPTphys;
148
149/* SMP page table page */
150extern pt_entry_t *SMPpt;
151
152struct pcb stoppcbs[MAXCPU];
153
154/* Variables needed for SMP tlb shootdown. */
155vm_offset_t smp_tlb_addr1;
156vm_offset_t smp_tlb_addr2;
157volatile int smp_tlb_wait;
158
159#ifdef STOP_NMI
160volatile cpumask_t ipi_nmi_pending;
161
162static void	ipi_nmi_selected(u_int32_t cpus);
163#endif
164
165#ifdef COUNT_IPIS
166/* Interrupt counts. */
167#ifdef IPI_PREEMPTION
168static u_long *ipi_preempt_counts[MAXCPU];
169#endif
170static u_long *ipi_ast_counts[MAXCPU];
171u_long *ipi_invltlb_counts[MAXCPU];
172u_long *ipi_invlrng_counts[MAXCPU];
173u_long *ipi_invlpg_counts[MAXCPU];
174u_long *ipi_rendezvous_counts[MAXCPU];
175u_long *ipi_lazypmap_counts[MAXCPU];
176#endif
177
178/*
179 * Local data and functions.
180 */
181
182#ifdef STOP_NMI
183/*
184 * Provide an alternate method of stopping other CPUs. If another CPU has
185 * disabled interrupts the conventional STOP IPI will be blocked. This
186 * NMI-based stop should get through in that case.
187 */
188static int stop_cpus_with_nmi = 1;
189SYSCTL_INT(_debug, OID_AUTO, stop_cpus_with_nmi, CTLTYPE_INT | CTLFLAG_RW,
190    &stop_cpus_with_nmi, 0, "");
191TUNABLE_INT("debug.stop_cpus_with_nmi", &stop_cpus_with_nmi);
192#else
193#define	stop_cpus_with_nmi	0
194#endif
195
196static u_int logical_cpus;
197
198/* used to hold the AP's until we are ready to release them */
199static struct mtx ap_boot_mtx;
200
201/* Set to 1 once we're ready to let the APs out of the pen. */
202static volatile int aps_ready = 0;
203
204/*
205 * Store data from cpu_add() until later in the boot when we actually setup
206 * the APs.
207 */
208struct cpu_info {
209	int	cpu_present:1;
210	int	cpu_bsp:1;
211	int	cpu_disabled:1;
212} static cpu_info[MAXCPU];
213static int cpu_apic_ids[MAXCPU];
214
215/* Holds pending bitmap based IPIs per CPU */
216static volatile u_int cpu_ipi_pending[MAXCPU];
217
218static u_int boot_address;
219
220static void	set_logical_apic_ids(void);
221static int	start_all_aps(void);
222static void	install_ap_tramp(void);
223static int	start_ap(int apic_id);
224static void	release_aps(void *dummy);
225
226static int	hlt_logical_cpus;
227static u_int	hyperthreading_cpus;
228static cpumask_t	hyperthreading_cpus_mask;
229static int	hyperthreading_allowed = 1;
230static struct	sysctl_ctx_list logical_cpu_clist;
231
232static void
233mem_range_AP_init(void)
234{
235	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
236		mem_range_softc.mr_op->initAP(&mem_range_softc);
237}
238
239void
240mp_topology(void)
241{
242	struct cpu_group *group;
243	int logical_cpus;
244	int apic_id;
245	int groups;
246	int cpu;
247
248	/* Build the smp_topology map. */
249	/* Nothing to do if there is no HTT support. */
250	if ((cpu_feature & CPUID_HTT) == 0)
251		return;
252	logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
253	if (logical_cpus <= 1)
254		return;
255	group = &mp_groups[0];
256	groups = 1;
257	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
258		if (!cpu_info[apic_id].cpu_present)
259			continue;
260		/*
261		 * If the current group has members and we're not a logical
262		 * cpu, create a new group.
263		 */
264		if (group->cg_count != 0 && (apic_id % logical_cpus) == 0) {
265			group++;
266			groups++;
267		}
268		group->cg_count++;
269		group->cg_mask |= 1 << cpu;
270		cpu++;
271	}
272
273	mp_top.ct_count = groups;
274	mp_top.ct_group = mp_groups;
275	smp_topology = &mp_top;
276}
277
278
279/*
280 * Calculate usable address in base memory for AP trampoline code.
281 */
282u_int
283mp_bootaddress(u_int basemem)
284{
285
286	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
287	if ((basemem - boot_address) < bootMP_size)
288		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
289
290	return boot_address;
291}
292
293void
294cpu_add(u_int apic_id, char boot_cpu)
295{
296
297	if (apic_id >= MAXCPU) {
298		printf("SMP: CPU %d exceeds maximum CPU %d, ignoring\n",
299		    apic_id, MAXCPU - 1);
300		return;
301	}
302	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
303	    apic_id));
304	cpu_info[apic_id].cpu_present = 1;
305	if (boot_cpu) {
306		KASSERT(boot_cpu_id == -1,
307		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
308		    boot_cpu_id));
309		boot_cpu_id = apic_id;
310		cpu_info[apic_id].cpu_bsp = 1;
311	}
312	mp_ncpus++;
313	if (bootverbose)
314		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
315		    "AP");
316
317}
318
319void
320cpu_mp_setmaxid(void)
321{
322
323	mp_maxid = MAXCPU - 1;
324}
325
326int
327cpu_mp_probe(void)
328{
329
330	/*
331	 * Always record BSP in CPU map so that the mbuf init code works
332	 * correctly.
333	 */
334	all_cpus = 1;
335	if (mp_ncpus == 0) {
336		/*
337		 * No CPUs were found, so this must be a UP system.  Setup
338		 * the variables to represent a system with a single CPU
339		 * with an id of 0.
340		 */
341		mp_ncpus = 1;
342		return (0);
343	}
344
345	/* At least one CPU was found. */
346	if (mp_ncpus == 1) {
347		/*
348		 * One CPU was found, so this must be a UP system with
349		 * an I/O APIC.
350		 */
351		return (0);
352	}
353
354	/* At least two CPUs were found. */
355	return (1);
356}
357
358/*
359 * Initialize the IPI handlers and start up the AP's.
360 */
361void
362cpu_mp_start(void)
363{
364	int i;
365	u_int threads_per_cache, p[4];
366
367	/* Initialize the logical ID to APIC ID table. */
368	for (i = 0; i < MAXCPU; i++) {
369		cpu_apic_ids[i] = -1;
370		cpu_ipi_pending[i] = 0;
371	}
372
373	/* Install an inter-CPU IPI for TLB invalidation */
374	setidt(IPI_INVLTLB, IDTVEC(invltlb),
375	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
376	setidt(IPI_INVLPG, IDTVEC(invlpg),
377	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
378	setidt(IPI_INVLRNG, IDTVEC(invlrng),
379	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
380
381	/* Install an inter-CPU IPI for lazy pmap release */
382	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
383	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
384
385	/* Install an inter-CPU IPI for all-CPU rendezvous */
386	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
387	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
388
389	/* Install generic inter-CPU IPI handler */
390	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
391	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
392
393	/* Install an inter-CPU IPI for CPU stop/restart */
394	setidt(IPI_STOP, IDTVEC(cpustop),
395	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
396
397
398	/* Set boot_cpu_id if needed. */
399	if (boot_cpu_id == -1) {
400		boot_cpu_id = PCPU_GET(apic_id);
401		cpu_info[boot_cpu_id].cpu_bsp = 1;
402	} else
403		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
404		    ("BSP's APIC ID doesn't match boot_cpu_id"));
405	cpu_apic_ids[0] = boot_cpu_id;
406
407	/* Start each Application Processor */
408	start_all_aps();
409
410	/* Setup the initial logical CPUs info. */
411	logical_cpus = logical_cpus_mask = 0;
412	if (cpu_feature & CPUID_HTT)
413		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
414
415	/*
416	 * Work out if hyperthreading is *really* enabled.  This
417	 * is made really ugly by the fact that processors lie: Dual
418	 * core processors claim to be hyperthreaded even when they're
419	 * not, presumably because they want to be treated the same
420	 * way as HTT with respect to per-cpu software licensing.
421	 * At the time of writing (May 12, 2005) the only hyperthreaded
422	 * cpus are from Intel, and Intel's dual-core processors can be
423	 * identified via the "deterministic cache parameters" cpuid
424	 * calls.
425	 */
426	/*
427	 * First determine if this is an Intel processor which claims
428	 * to have hyperthreading support.
429	 */
430	if ((cpu_feature & CPUID_HTT) &&
431	    (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
432		/*
433		 * If the "deterministic cache parameters" cpuid calls
434		 * are available, use them.
435		 */
436		if (cpu_high >= 4) {
437			/* Ask the processor about up to 32 caches. */
438			for (i = 0; i < 32; i++) {
439				cpuid_count(4, i, p);
440				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
441				if (hyperthreading_cpus < threads_per_cache)
442					hyperthreading_cpus = threads_per_cache;
443				if ((p[0] & 0x1f) == 0)
444					break;
445			}
446		}
447
448		/*
449		 * If the deterministic cache parameters are not
450		 * available, or if no caches were reported to exist,
451		 * just accept what the HTT flag indicated.
452		 */
453		if (hyperthreading_cpus == 0)
454			hyperthreading_cpus = logical_cpus;
455	}
456
457	set_logical_apic_ids();
458}
459
460
461/*
462 * Print various information about the SMP system hardware and setup.
463 */
464void
465cpu_mp_announce(void)
466{
467	int i, x;
468
469	/* List CPUs */
470	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
471	for (i = 1, x = 0; x < MAXCPU; x++) {
472		if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
473			continue;
474		if (cpu_info[x].cpu_disabled)
475			printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
476		else {
477			KASSERT(i < mp_ncpus,
478			    ("mp_ncpus and actual cpus are out of whack"));
479			printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
480		}
481	}
482}
483
484/*
485 * AP CPU's call this to initialize themselves.
486 */
487void
488init_secondary(void)
489{
490	vm_offset_t addr;
491	int	gsel_tss;
492	int	x, myid;
493	u_int	cr0;
494
495	/* bootAP is set in start_ap() to our ID. */
496	myid = bootAP;
497	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
498	gdt_segs[GPROC0_SEL].ssd_base =
499		(int) &SMP_prvspace[myid].pcpu.pc_common_tss;
500	SMP_prvspace[myid].pcpu.pc_prvspace =
501		&SMP_prvspace[myid].pcpu;
502
503	for (x = 0; x < NGDT; x++) {
504		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
505	}
506
507	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
508	r_gdt.rd_base = (int) &gdt[myid * NGDT];
509	lgdt(&r_gdt);			/* does magic intra-segment return */
510
511	lidt(&r_idt);
512
513	lldt(_default_ldt);
514	PCPU_SET(currentldt, _default_ldt);
515
516	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
517	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
518	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
519	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
520	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
521	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
522	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
523	ltr(gsel_tss);
524
525	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
526
527	/*
528	 * Set to a known state:
529	 * Set by mpboot.s: CR0_PG, CR0_PE
530	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
531	 */
532	cr0 = rcr0();
533	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
534	load_cr0(cr0);
535	CHECK_WRITE(0x38, 5);
536
537	/* Disable local APIC just to be sure. */
538	lapic_disable();
539
540	/* signal our startup to the BSP. */
541	mp_naps++;
542	CHECK_WRITE(0x39, 6);
543
544	/* Spin until the BSP releases the AP's. */
545	while (!aps_ready)
546		ia32_pause();
547
548	/* BSP may have changed PTD while we were waiting */
549	invltlb();
550	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
551		invlpg(addr);
552
553#if defined(I586_CPU) && !defined(NO_F00F_HACK)
554	lidt(&r_idt);
555#endif
556
557	/* set up CPU registers and state */
558	cpu_setregs();
559
560	/* set up FPU state on the AP */
561	npxinit(__INITIAL_NPXCW__);
562
563	/* set up SSE registers */
564	enable_sse();
565
566	/* A quick check from sanity claus */
567	if (PCPU_GET(apic_id) != lapic_id()) {
568		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
569		printf("SMP: actual apic_id = %d\n", lapic_id());
570		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
571		printf("PTD[MPPTDI] = %#jx\n", (uintmax_t)PTD[MPPTDI]);
572		panic("cpuid mismatch! boom!!");
573	}
574
575	/* Initialize curthread. */
576	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
577	PCPU_SET(curthread, PCPU_GET(idlethread));
578
579	mtx_lock_spin(&ap_boot_mtx);
580
581	/* Init local apic for irq's */
582	lapic_setup();
583
584	/* Set memory range attributes for this CPU to match the BSP */
585	mem_range_AP_init();
586
587	smp_cpus++;
588
589	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
590	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
591
592	/* Determine if we are a logical CPU. */
593	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
594		logical_cpus_mask |= PCPU_GET(cpumask);
595
596	/* Determine if we are a hyperthread. */
597	if (hyperthreading_cpus > 1 &&
598	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
599		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
600
601	/* Build our map of 'other' CPUs. */
602	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
603
604	if (bootverbose)
605		lapic_dump("AP");
606
607	if (smp_cpus == mp_ncpus) {
608		/* enable IPI's, tlb shootdown, freezes etc */
609		atomic_store_rel_int(&smp_started, 1);
610		smp_active = 1;	 /* historic */
611	}
612
613	mtx_unlock_spin(&ap_boot_mtx);
614
615	/* wait until all the AP's are up */
616	while (smp_started == 0)
617		ia32_pause();
618
619	/* ok, now grab sched_lock and enter the scheduler */
620	mtx_lock_spin(&sched_lock);
621
622	/*
623	 * Correct spinlock nesting.  The idle thread context that we are
624	 * borrowing was created so that it would start out with a single
625	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
626	 * explicitly acquired locks in this function, the nesting count
627	 * is now 2 rather than 1.  Since we are nested, calling
628	 * spinlock_exit() will simply adjust the counts without allowing
629	 * spin lock using code to interrupt us.
630	 */
631	spinlock_exit();
632	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
633
634	PCPU_SET(switchtime, cpu_ticks());
635	PCPU_SET(switchticks, ticks);
636
637	cpu_throw(NULL, choosethread());	/* doesn't return */
638
639	panic("scheduler returned us to %s", __func__);
640	/* NOTREACHED */
641}
642
643/*******************************************************************
644 * local functions and data
645 */
646
647/*
648 * Set the APIC logical IDs.
649 *
650 * We want to cluster logical CPU's within the same APIC ID cluster.
651 * Since logical CPU's are aligned simply filling in the clusters in
652 * APIC ID order works fine.  Note that this does not try to balance
653 * the number of CPU's in each cluster. (XXX?)
654 */
655static void
656set_logical_apic_ids(void)
657{
658	u_int apic_id, cluster, cluster_id;
659
660	/* Force us to allocate cluster 0 at the start. */
661	cluster = -1;
662	cluster_id = APIC_MAX_INTRACLUSTER_ID;
663	for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
664		if (!cpu_info[apic_id].cpu_present)
665			continue;
666		if (cluster_id == APIC_MAX_INTRACLUSTER_ID) {
667			cluster = ioapic_next_logical_cluster();
668			cluster_id = 0;
669		} else
670			cluster_id++;
671		if (bootverbose)
672			printf("APIC ID: physical %u, logical %u:%u\n",
673			    apic_id, cluster, cluster_id);
674		lapic_set_logical_id(apic_id, cluster, cluster_id);
675	}
676}
677
678/*
679 * start each AP in our list
680 */
681static int
682start_all_aps(void)
683{
684#ifndef PC98
685	u_char mpbiosreason;
686#endif
687	struct pcpu *pc;
688	char *stack;
689	uintptr_t kptbase;
690	u_int32_t mpbioswarmvec;
691	int apic_id, cpu, i, pg;
692
693	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
694
695	/* install the AP 1st level boot code */
696	install_ap_tramp();
697
698	/* save the current value of the warm-start vector */
699	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
700#ifndef PC98
701	outb(CMOS_REG, BIOS_RESET);
702	mpbiosreason = inb(CMOS_DATA);
703#endif
704
705	/* set up temporary P==V mapping for AP boot */
706	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
707	kptbase = (uintptr_t)(void *)KPTphys;
708	for (i = 0; i < NKPT; i++)
709		PTD[i] = (pd_entry_t)(PG_V | PG_RW |
710		    ((kptbase + i * PAGE_SIZE) & PG_FRAME));
711	invltlb();
712
713	/* start each AP */
714	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
715
716		/* Ignore non-existent CPUs and the BSP. */
717		if (!cpu_info[apic_id].cpu_present ||
718		    cpu_info[apic_id].cpu_bsp)
719			continue;
720
721		/* Don't use this CPU if it has been disabled by a tunable. */
722		if (resource_disabled("lapic", apic_id)) {
723			cpu_info[apic_id].cpu_disabled = 1;
724			mp_ncpus--;
725			continue;
726		}
727
728		cpu++;
729
730		/* save APIC ID for this logical ID */
731		cpu_apic_ids[cpu] = apic_id;
732
733		/* first page of AP's private space */
734		pg = cpu * i386_btop(sizeof(struct privatespace));
735
736		/* allocate a new private data page */
737		pc = (struct pcpu *)kmem_alloc(kernel_map, PAGE_SIZE);
738
739		/* wire it into the private page table page */
740		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(pc));
741
742		/* allocate and set up an idle stack data page */
743		stack = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE); /* XXXKSE */
744		for (i = 0; i < KSTACK_PAGES; i++)
745			SMPpt[pg + 1 + i] = (pt_entry_t)
746			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
747
748		/* prime data page for it to use */
749		pcpu_init(pc, cpu, sizeof(struct pcpu));
750		pc->pc_apic_id = apic_id;
751
752		/* setup a vector to our boot code */
753		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
754		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
755#ifndef PC98
756		outb(CMOS_REG, BIOS_RESET);
757		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
758#endif
759
760		bootSTK = &SMP_prvspace[cpu].idlekstack[KSTACK_PAGES *
761		    PAGE_SIZE];
762		bootAP = cpu;
763
764		/* attempt to start the Application Processor */
765		CHECK_INIT(99);	/* setup checkpoints */
766		if (!start_ap(apic_id)) {
767			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
768			CHECK_PRINT("trace");	/* show checkpoints */
769			/* better panic as the AP may be running loose */
770			printf("panic y/n? [y] ");
771			if (cngetc() != 'n')
772				panic("bye-bye");
773		}
774		CHECK_PRINT("trace");		/* show checkpoints */
775
776		all_cpus |= (1 << cpu);		/* record AP in CPU map */
777	}
778
779	/* build our map of 'other' CPUs */
780	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
781
782	/* restore the warmstart vector */
783	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
784
785#ifndef PC98
786	outb(CMOS_REG, BIOS_RESET);
787	outb(CMOS_DATA, mpbiosreason);
788#endif
789
790	/*
791	 * Set up the idle context for the BSP.  Similar to above except
792	 * that some was done by locore, some by pmap.c and some is implicit
793	 * because the BSP is cpu#0 and the page is initially zero and also
794	 * because we can refer to variables by name on the BSP..
795	 */
796
797	/* Allocate and setup BSP idle stack */
798	stack = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
799	for (i = 0; i < KSTACK_PAGES; i++)
800		SMPpt[1 + i] = (pt_entry_t)
801		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
802
803	for (i = 0; i < NKPT; i++)
804		PTD[i] = 0;
805	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
806
807	/* number of APs actually started */
808	return mp_naps;
809}
810
811/*
812 * load the 1st level AP boot code into base memory.
813 */
814
815/* targets for relocation */
816extern void bigJump(void);
817extern void bootCodeSeg(void);
818extern void bootDataSeg(void);
819extern void MPentry(void);
820extern u_int MP_GDT;
821extern u_int mp_gdtbase;
822
823static void
824install_ap_tramp(void)
825{
826	int     x;
827	int     size = *(int *) ((u_long) & bootMP_size);
828	vm_offset_t va = boot_address + KERNBASE;
829	u_char *src = (u_char *) ((u_long) bootMP);
830	u_char *dst = (u_char *) va;
831	u_int   boot_base = (u_int) bootMP;
832	u_int8_t *dst8;
833	u_int16_t *dst16;
834	u_int32_t *dst32;
835
836	KASSERT (size <= PAGE_SIZE,
837	    ("'size' do not fit into PAGE_SIZE, as expected."));
838	pmap_kenter(va, boot_address);
839	pmap_invalidate_page (kernel_pmap, va);
840	for (x = 0; x < size; ++x)
841		*dst++ = *src++;
842
843	/*
844	 * modify addresses in code we just moved to basemem. unfortunately we
845	 * need fairly detailed info about mpboot.s for this to work.  changes
846	 * to mpboot.s might require changes here.
847	 */
848
849	/* boot code is located in KERNEL space */
850	dst = (u_char *) va;
851
852	/* modify the lgdt arg */
853	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
854	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
855
856	/* modify the ljmp target for MPentry() */
857	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
858	*dst32 = ((u_int) MPentry - KERNBASE);
859
860	/* modify the target for boot code segment */
861	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
862	dst8 = (u_int8_t *) (dst16 + 1);
863	*dst16 = (u_int) boot_address & 0xffff;
864	*dst8 = ((u_int) boot_address >> 16) & 0xff;
865
866	/* modify the target for boot data segment */
867	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
868	dst8 = (u_int8_t *) (dst16 + 1);
869	*dst16 = (u_int) boot_address & 0xffff;
870	*dst8 = ((u_int) boot_address >> 16) & 0xff;
871}
872
873/*
874 * This function starts the AP (application processor) identified
875 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
876 * to accomplish this.  This is necessary because of the nuances
877 * of the different hardware we might encounter.  It isn't pretty,
878 * but it seems to work.
879 */
880static int
881start_ap(int apic_id)
882{
883	int vector, ms;
884	int cpus;
885
886	/* calculate the vector */
887	vector = (boot_address >> 12) & 0xff;
888
889	/* used as a watchpoint to signal AP startup */
890	cpus = mp_naps;
891
892	/*
893	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
894	 * and running the target CPU. OR this INIT IPI might be latched (P5
895	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
896	 * ignored.
897	 */
898
899	/* do an INIT IPI: assert RESET */
900	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
901	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
902
903	/* wait for pending status end */
904	lapic_ipi_wait(-1);
905
906	/* do an INIT IPI: deassert RESET */
907	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
908	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
909
910	/* wait for pending status end */
911	DELAY(10000);		/* wait ~10mS */
912	lapic_ipi_wait(-1);
913
914	/*
915	 * next we do a STARTUP IPI: the previous INIT IPI might still be
916	 * latched, (P5 bug) this 1st STARTUP would then terminate
917	 * immediately, and the previously started INIT IPI would continue. OR
918	 * the previous INIT IPI has already run. and this STARTUP IPI will
919	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
920	 * will run.
921	 */
922
923	/* do a STARTUP IPI */
924	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
925	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
926	    vector, apic_id);
927	lapic_ipi_wait(-1);
928	DELAY(200);		/* wait ~200uS */
929
930	/*
931	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
932	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
933	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
934	 * recognized after hardware RESET or INIT IPI.
935	 */
936
937	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
938	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
939	    vector, apic_id);
940	lapic_ipi_wait(-1);
941	DELAY(200);		/* wait ~200uS */
942
943	/* Wait up to 5 seconds for it to start. */
944	for (ms = 0; ms < 5000; ms++) {
945		if (mp_naps > cpus)
946			return 1;	/* return SUCCESS */
947		DELAY(1000);
948	}
949	return 0;		/* return FAILURE */
950}
951
952#ifdef COUNT_XINVLTLB_HITS
953u_int xhits_gbl[MAXCPU];
954u_int xhits_pg[MAXCPU];
955u_int xhits_rng[MAXCPU];
956SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
957SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
958    sizeof(xhits_gbl), "IU", "");
959SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
960    sizeof(xhits_pg), "IU", "");
961SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
962    sizeof(xhits_rng), "IU", "");
963
964u_int ipi_global;
965u_int ipi_page;
966u_int ipi_range;
967u_int ipi_range_size;
968SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
969SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
970SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
971SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
972    0, "");
973
974u_int ipi_masked_global;
975u_int ipi_masked_page;
976u_int ipi_masked_range;
977u_int ipi_masked_range_size;
978SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
979    &ipi_masked_global, 0, "");
980SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
981    &ipi_masked_page, 0, "");
982SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
983    &ipi_masked_range, 0, "");
984SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
985    &ipi_masked_range_size, 0, "");
986#endif /* COUNT_XINVLTLB_HITS */
987
988/*
989 * Flush the TLB on all other CPU's
990 */
991static void
992smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
993{
994	u_int ncpu;
995
996	ncpu = mp_ncpus - 1;	/* does not shootdown self */
997	if (ncpu < 1)
998		return;		/* no other cpus */
999	mtx_assert(&smp_ipi_mtx, MA_OWNED);
1000	smp_tlb_addr1 = addr1;
1001	smp_tlb_addr2 = addr2;
1002	atomic_store_rel_int(&smp_tlb_wait, 0);
1003	ipi_all_but_self(vector);
1004	while (smp_tlb_wait < ncpu)
1005		ia32_pause();
1006}
1007
1008static void
1009smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1010{
1011	int ncpu, othercpus;
1012
1013	othercpus = mp_ncpus - 1;
1014	if (mask == (u_int)-1) {
1015		ncpu = othercpus;
1016		if (ncpu < 1)
1017			return;
1018	} else {
1019		mask &= ~PCPU_GET(cpumask);
1020		if (mask == 0)
1021			return;
1022		ncpu = bitcount32(mask);
1023		if (ncpu > othercpus) {
1024			/* XXX this should be a panic offence */
1025			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
1026			    ncpu, othercpus);
1027			ncpu = othercpus;
1028		}
1029		/* XXX should be a panic, implied by mask == 0 above */
1030		if (ncpu < 1)
1031			return;
1032	}
1033	mtx_assert(&smp_ipi_mtx, MA_OWNED);
1034	smp_tlb_addr1 = addr1;
1035	smp_tlb_addr2 = addr2;
1036	atomic_store_rel_int(&smp_tlb_wait, 0);
1037	if (mask == (u_int)-1)
1038		ipi_all_but_self(vector);
1039	else
1040		ipi_selected(mask, vector);
1041	while (smp_tlb_wait < ncpu)
1042		ia32_pause();
1043}
1044
1045void
1046smp_invltlb(void)
1047{
1048
1049	if (smp_started) {
1050		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1051#ifdef COUNT_XINVLTLB_HITS
1052		ipi_global++;
1053#endif
1054	}
1055}
1056
1057void
1058smp_invlpg(vm_offset_t addr)
1059{
1060
1061	if (smp_started) {
1062		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1063#ifdef COUNT_XINVLTLB_HITS
1064		ipi_page++;
1065#endif
1066	}
1067}
1068
1069void
1070smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1071{
1072
1073	if (smp_started) {
1074		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1075#ifdef COUNT_XINVLTLB_HITS
1076		ipi_range++;
1077		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1078#endif
1079	}
1080}
1081
1082void
1083smp_masked_invltlb(u_int mask)
1084{
1085
1086	if (smp_started) {
1087		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1088#ifdef COUNT_XINVLTLB_HITS
1089		ipi_masked_global++;
1090#endif
1091	}
1092}
1093
1094void
1095smp_masked_invlpg(u_int mask, vm_offset_t addr)
1096{
1097
1098	if (smp_started) {
1099		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1100#ifdef COUNT_XINVLTLB_HITS
1101		ipi_masked_page++;
1102#endif
1103	}
1104}
1105
1106void
1107smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
1108{
1109
1110	if (smp_started) {
1111		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1112#ifdef COUNT_XINVLTLB_HITS
1113		ipi_masked_range++;
1114		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1115#endif
1116	}
1117}
1118
1119void
1120ipi_bitmap_handler(struct trapframe frame)
1121{
1122	int cpu = PCPU_GET(cpuid);
1123	u_int ipi_bitmap;
1124
1125	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1126
1127#ifdef IPI_PREEMPTION
1128	if (ipi_bitmap & IPI_PREEMPT) {
1129#ifdef COUNT_IPIS
1130		*ipi_preempt_counts[cpu]++;
1131#endif
1132		mtx_lock_spin(&sched_lock);
1133		/* Don't preempt the idle thread */
1134		if (curthread->td_priority <  PRI_MIN_IDLE) {
1135			struct thread *running_thread = curthread;
1136			if (running_thread->td_critnest > 1)
1137				running_thread->td_owepreempt = 1;
1138			else
1139				mi_switch(SW_INVOL | SW_PREEMPT, NULL);
1140		}
1141		mtx_unlock_spin(&sched_lock);
1142	}
1143#endif
1144
1145	if (ipi_bitmap & IPI_AST) {
1146#ifdef COUNT_IPIS
1147		*ipi_ast_counts[cpu]++;
1148#endif
1149		/* Nothing to do for AST */
1150	}
1151}
1152
1153/*
1154 * send an IPI to a set of cpus.
1155 */
1156void
1157ipi_selected(u_int32_t cpus, u_int ipi)
1158{
1159	int cpu;
1160	u_int bitmap = 0;
1161	u_int old_pending;
1162	u_int new_pending;
1163
1164	if (IPI_IS_BITMAPED(ipi)) {
1165		bitmap = 1 << ipi;
1166		ipi = IPI_BITMAP_VECTOR;
1167	}
1168
1169#ifdef STOP_NMI
1170	if (ipi == IPI_STOP && stop_cpus_with_nmi) {
1171		ipi_nmi_selected(cpus);
1172		return;
1173	}
1174#endif
1175	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1176	while ((cpu = ffs(cpus)) != 0) {
1177		cpu--;
1178		cpus &= ~(1 << cpu);
1179
1180		KASSERT(cpu_apic_ids[cpu] != -1,
1181		    ("IPI to non-existent CPU %d", cpu));
1182
1183		if (bitmap) {
1184			do {
1185				old_pending = cpu_ipi_pending[cpu];
1186				new_pending = old_pending | bitmap;
1187			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1188
1189			if (old_pending)
1190				continue;
1191		}
1192
1193		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1194	}
1195
1196}
1197
1198/*
1199 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
1200 */
1201void
1202ipi_all(u_int ipi)
1203{
1204
1205	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1206		ipi_selected(all_cpus, ipi);
1207		return;
1208	}
1209	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1210	lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
1211}
1212
1213/*
1214 * send an IPI to all CPUs EXCEPT myself
1215 */
1216void
1217ipi_all_but_self(u_int ipi)
1218{
1219
1220	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1221		ipi_selected(PCPU_GET(other_cpus), ipi);
1222		return;
1223	}
1224	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1225	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1226}
1227
1228/*
1229 * send an IPI to myself
1230 */
1231void
1232ipi_self(u_int ipi)
1233{
1234
1235	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1236		ipi_selected(PCPU_GET(cpumask), ipi);
1237		return;
1238	}
1239	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1240	lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
1241}
1242
1243#ifdef STOP_NMI
1244/*
1245 * send NMI IPI to selected CPUs
1246 */
1247
1248#define	BEFORE_SPIN	1000000
1249
1250void
1251ipi_nmi_selected(u_int32_t cpus)
1252{
1253	int cpu;
1254	register_t icrlo;
1255
1256	icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT
1257		| APIC_TRIGMOD_EDGE;
1258
1259	CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
1260
1261	atomic_set_int(&ipi_nmi_pending, cpus);
1262
1263	while ((cpu = ffs(cpus)) != 0) {
1264		cpu--;
1265		cpus &= ~(1 << cpu);
1266
1267		KASSERT(cpu_apic_ids[cpu] != -1,
1268		    ("IPI NMI to non-existent CPU %d", cpu));
1269
1270		/* Wait for an earlier IPI to finish. */
1271		if (!lapic_ipi_wait(BEFORE_SPIN))
1272			panic("ipi_nmi_selected: previous IPI has not cleared");
1273
1274		lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
1275	}
1276}
1277
1278int
1279ipi_nmi_handler(void)
1280{
1281	int cpumask = PCPU_GET(cpumask);
1282
1283	if (!(ipi_nmi_pending & cpumask))
1284		return 1;
1285
1286	atomic_clear_int(&ipi_nmi_pending, cpumask);
1287	cpustop_handler();
1288	return 0;
1289}
1290
1291#endif /* STOP_NMI */
1292
1293/*
1294 * Handle an IPI_STOP by saving our current context and spinning until we
1295 * are resumed.
1296 */
1297void
1298cpustop_handler(void)
1299{
1300	int cpu = PCPU_GET(cpuid);
1301	int cpumask = PCPU_GET(cpumask);
1302
1303	savectx(&stoppcbs[cpu]);
1304
1305	/* Indicate that we are stopped */
1306	atomic_set_int(&stopped_cpus, cpumask);
1307
1308	/* Wait for restart */
1309	while (!(started_cpus & cpumask))
1310	    ia32_pause();
1311
1312	atomic_clear_int(&started_cpus, cpumask);
1313	atomic_clear_int(&stopped_cpus, cpumask);
1314
1315	if (cpu == 0 && cpustop_restartfunc != NULL) {
1316		cpustop_restartfunc();
1317		cpustop_restartfunc = NULL;
1318	}
1319}
1320
1321/*
1322 * This is called once the rest of the system is up and running and we're
1323 * ready to let the AP's out of the pen.
1324 */
1325static void
1326release_aps(void *dummy __unused)
1327{
1328
1329	if (mp_ncpus == 1)
1330		return;
1331	mtx_lock_spin(&sched_lock);
1332	atomic_store_rel_int(&aps_ready, 1);
1333	while (smp_started == 0)
1334		ia32_pause();
1335	mtx_unlock_spin(&sched_lock);
1336}
1337SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1338
1339static int
1340sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1341{
1342	u_int mask;
1343	int error;
1344
1345	mask = hlt_cpus_mask;
1346	error = sysctl_handle_int(oidp, &mask, 0, req);
1347	if (error || !req->newptr)
1348		return (error);
1349
1350	if (logical_cpus_mask != 0 &&
1351	    (mask & logical_cpus_mask) == logical_cpus_mask)
1352		hlt_logical_cpus = 1;
1353	else
1354		hlt_logical_cpus = 0;
1355
1356	if (! hyperthreading_allowed)
1357		mask |= hyperthreading_cpus_mask;
1358
1359	if ((mask & all_cpus) == all_cpus)
1360		mask &= ~(1<<0);
1361	hlt_cpus_mask = mask;
1362	return (error);
1363}
1364SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1365    0, 0, sysctl_hlt_cpus, "IU",
1366    "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1367
1368static int
1369sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1370{
1371	int disable, error;
1372
1373	disable = hlt_logical_cpus;
1374	error = sysctl_handle_int(oidp, &disable, 0, req);
1375	if (error || !req->newptr)
1376		return (error);
1377
1378	if (disable)
1379		hlt_cpus_mask |= logical_cpus_mask;
1380	else
1381		hlt_cpus_mask &= ~logical_cpus_mask;
1382
1383	if (! hyperthreading_allowed)
1384		hlt_cpus_mask |= hyperthreading_cpus_mask;
1385
1386	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1387		hlt_cpus_mask &= ~(1<<0);
1388
1389	hlt_logical_cpus = disable;
1390	return (error);
1391}
1392
1393static int
1394sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1395{
1396	int allowed, error;
1397
1398	allowed = hyperthreading_allowed;
1399	error = sysctl_handle_int(oidp, &allowed, 0, req);
1400	if (error || !req->newptr)
1401		return (error);
1402
1403	if (allowed)
1404		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1405	else
1406		hlt_cpus_mask |= hyperthreading_cpus_mask;
1407
1408	if (logical_cpus_mask != 0 &&
1409	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1410		hlt_logical_cpus = 1;
1411	else
1412		hlt_logical_cpus = 0;
1413
1414	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1415		hlt_cpus_mask &= ~(1<<0);
1416
1417	hyperthreading_allowed = allowed;
1418	return (error);
1419}
1420
1421static void
1422cpu_hlt_setup(void *dummy __unused)
1423{
1424
1425	if (logical_cpus_mask != 0) {
1426		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1427		    &hlt_logical_cpus);
1428		sysctl_ctx_init(&logical_cpu_clist);
1429		SYSCTL_ADD_PROC(&logical_cpu_clist,
1430		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1431		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1432		    sysctl_hlt_logical_cpus, "IU", "");
1433		SYSCTL_ADD_UINT(&logical_cpu_clist,
1434		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1435		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1436		    &logical_cpus_mask, 0, "");
1437
1438		if (hlt_logical_cpus)
1439			hlt_cpus_mask |= logical_cpus_mask;
1440
1441		/*
1442		 * If necessary for security purposes, force
1443		 * hyperthreading off, regardless of the value
1444		 * of hlt_logical_cpus.
1445		 */
1446		if (hyperthreading_cpus_mask) {
1447			TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
1448			    &hyperthreading_allowed);
1449			SYSCTL_ADD_PROC(&logical_cpu_clist,
1450			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1451			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1452			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1453			if (! hyperthreading_allowed)
1454				hlt_cpus_mask |= hyperthreading_cpus_mask;
1455		}
1456	}
1457}
1458SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1459
1460int
1461mp_grab_cpu_hlt(void)
1462{
1463	u_int mask = PCPU_GET(cpumask);
1464#ifdef MP_WATCHDOG
1465	u_int cpuid = PCPU_GET(cpuid);
1466#endif
1467	int retval;
1468
1469#ifdef MP_WATCHDOG
1470	ap_watchdog(cpuid);
1471#endif
1472
1473	retval = mask & hlt_cpus_mask;
1474	while (mask & hlt_cpus_mask)
1475		__asm __volatile("sti; hlt" : : : "memory");
1476	return (retval);
1477}
1478
1479#ifdef COUNT_IPIS
1480/*
1481 * Setup interrupt counters for IPI handlers.
1482 */
1483static void
1484mp_ipi_intrcnt(void *dummy)
1485{
1486	char buf[64];
1487	int i;
1488
1489	for (i = 0; i < mp_maxid; i++) {
1490		if (CPU_ABSENT(i))
1491			continue;
1492		snprintf(buf, sizeof(buf), "cpu%d: invltlb", i);
1493		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1494		snprintf(buf, sizeof(buf), "cpu%d: invlrng", i);
1495		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1496		snprintf(buf, sizeof(buf), "cpu%d: invlpg", i);
1497		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1498#ifdef IPI_PREEMPTION
1499		snprintf(buf, sizeof(buf), "cpu%d: preempt", i);
1500		intrcnt_add(buf, &ipi_preempt_counts[i]);
1501#endif
1502		snprintf(buf, sizeof(buf), "cpu%d: ast", i);
1503		intrcnt_add(buf, &ipi_ast_counts[i]);
1504		snprintf(buf, sizeof(buf), "cpu%d: rendezvous", i);
1505		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1506		snprintf(buf, sizeof(buf), "cpu%d: lazypmap", i);
1507		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1508	}
1509}
1510SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL)
1511#endif
1512