mp_x86.c revision 122438
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/i386/i386/mp_machdep.c 122438 2003-11-10 21:24:34Z jhb $");
28
29#include "opt_apic.h"
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32
33#if !defined(lint)
34#if !defined(SMP)
35#error How did you get here?
36#endif
37
38#if defined(I386_CPU) && !defined(COMPILING_LINT)
39#error SMP not supported with I386_CPU
40#endif
41#ifndef DEV_APIC
42#error The apic device is required for SMP, add "device apic" to your config file.
43#endif
44#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
45#error SMP not supported with CPU_DISABLE_CMPXCHG
46#endif
47#endif /* not lint */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bus.h>
52#include <sys/cons.h>	/* cngetc() */
53#ifdef GPROF
54#include <sys/gmon.h>
55#endif
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/lock.h>
59#include <sys/malloc.h>
60#include <sys/memrange.h>
61#include <sys/mutex.h>
62#include <sys/pcpu.h>
63#include <sys/proc.h>
64#include <sys/smp.h>
65#include <sys/sysctl.h>
66
67#include <vm/vm.h>
68#include <vm/vm_param.h>
69#include <vm/pmap.h>
70#include <vm/vm_kern.h>
71#include <vm/vm_extern.h>
72
73#include <machine/apicreg.h>
74#include <machine/clock.h>
75#include <machine/md_var.h>
76#include <machine/pcb.h>
77#include <machine/smp.h>
78#include <machine/smptests.h>	/** COUNT_XINVLTLB_HITS, USE_COMLOCK */
79#include <machine/specialreg.h>
80#include <machine/privatespace.h>
81
82#define WARMBOOT_TARGET		0
83#define WARMBOOT_OFF		(KERNBASE + 0x0467)
84#define WARMBOOT_SEG		(KERNBASE + 0x0469)
85
86#define CMOS_REG		(0x70)
87#define CMOS_DATA		(0x71)
88#define BIOS_RESET		(0x0f)
89#define BIOS_WARM		(0x0a)
90
91/*
92 * this code MUST be enabled here and in mpboot.s.
93 * it follows the very early stages of AP boot by placing values in CMOS ram.
94 * it NORMALLY will never be needed and thus the primitive method for enabling.
95 *
96#define CHECK_POINTS
97 */
98
99#if defined(CHECK_POINTS) && !defined(PC98)
100#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
101#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
102
103#define CHECK_INIT(D);				\
104	CHECK_WRITE(0x34, (D));			\
105	CHECK_WRITE(0x35, (D));			\
106	CHECK_WRITE(0x36, (D));			\
107	CHECK_WRITE(0x37, (D));			\
108	CHECK_WRITE(0x38, (D));			\
109	CHECK_WRITE(0x39, (D));
110
111#define CHECK_PRINT(S);				\
112	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
113	   (S),					\
114	   CHECK_READ(0x34),			\
115	   CHECK_READ(0x35),			\
116	   CHECK_READ(0x36),			\
117	   CHECK_READ(0x37),			\
118	   CHECK_READ(0x38),			\
119	   CHECK_READ(0x39));
120
121#else				/* CHECK_POINTS */
122
123#define CHECK_INIT(D)
124#define CHECK_PRINT(S)
125#define CHECK_WRITE(A, D)
126
127#endif				/* CHECK_POINTS */
128
129/*
130 * Values to send to the POST hardware.
131 */
132#define MP_BOOTADDRESS_POST	0x10
133#define MP_PROBE_POST		0x11
134#define MPTABLE_PASS1_POST	0x12
135
136#define MP_START_POST		0x13
137#define MP_ENABLE_POST		0x14
138#define MPTABLE_PASS2_POST	0x15
139
140#define START_ALL_APS_POST	0x16
141#define INSTALL_AP_TRAMP_POST	0x17
142#define START_AP_POST		0x18
143
144#define MP_ANNOUNCE_POST	0x19
145
146/* lock region used by kernel profiling */
147int	mcount_lock;
148
149#ifdef USE_COMLOCK
150/* locks com (tty) data/hardware accesses: a FASTINTR() */
151struct mtx		com_mtx;
152#endif
153
154/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
155int	current_postcode;
156
157int	mp_naps;		/* # of Applications processors */
158int	boot_cpu_id = -1;	/* designated BSP */
159extern	int nkpt;
160
161/*
162 * CPU topology map datastructures for HTT. (XXX)
163 */
164struct cpu_group mp_groups[MAXCPU];
165struct cpu_top mp_top;
166struct cpu_top *smp_topology;
167
168/* AP uses this during bootstrap.  Do not staticize.  */
169char *bootSTK;
170static int bootAP;
171
172/* Hotwire a 0->4MB V==P mapping */
173extern pt_entry_t *KPTphys;
174
175/* SMP page table page */
176extern pt_entry_t *SMPpt;
177
178struct pcb stoppcbs[MAXCPU];
179
180/* Variables needed for SMP tlb shootdown. */
181vm_offset_t smp_tlb_addr1;
182vm_offset_t smp_tlb_addr2;
183volatile int smp_tlb_wait;
184struct mtx smp_tlb_mtx;
185
186/*
187 * Local data and functions.
188 */
189
190static u_int logical_cpus;
191static u_int logical_cpus_mask;
192
193/* used to hold the AP's until we are ready to release them */
194static struct mtx ap_boot_mtx;
195
196/* Set to 1 once we're ready to let the APs out of the pen. */
197static volatile int aps_ready = 0;
198
199/*
200 * Store data from cpu_add() until later in the boot when we actually setup
201 * the APs.
202 */
203struct cpu_info {
204	int	cpu_present:1;
205	int	cpu_bsp:1;
206} static cpu_info[MAXCPU];
207static int cpu_apic_ids[MAXCPU];
208
209static u_int boot_address;
210
211static void	set_logical_apic_ids(void);
212static int	start_all_aps(void);
213static void	install_ap_tramp(void);
214static int	start_ap(int apic_id);
215static void	release_aps(void *dummy);
216
217static int	hlt_cpus_mask;
218static int	hlt_logical_cpus = 1;
219static struct	sysctl_ctx_list logical_cpu_clist;
220
221/*
222 * Calculate usable address in base memory for AP trampoline code.
223 */
224u_int
225mp_bootaddress(u_int basemem)
226{
227	POSTCODE(MP_BOOTADDRESS_POST);
228
229	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
230	if ((basemem - boot_address) < bootMP_size)
231		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
232
233	return boot_address;
234}
235
236void
237cpu_add(u_int apic_id, char boot_cpu)
238{
239
240	if (apic_id > MAXCPU) {
241		printf("SMP: CPU %d exceeds maximum CPU %d, ignoring\n",
242		    apic_id, MAXCPU);
243		return;
244	}
245	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
246	    apic_id));
247	cpu_info[apic_id].cpu_present = 1;
248	if (boot_cpu) {
249		KASSERT(boot_cpu_id == -1,
250		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
251		    boot_cpu_id));
252		boot_cpu_id = apic_id;
253		cpu_info[apic_id].cpu_bsp = 1;
254	}
255	mp_ncpus++;
256	if (apic_id > mp_maxid)
257		mp_maxid = apic_id;
258	if (bootverbose)
259		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
260		    "AP");
261
262}
263
264int
265cpu_mp_probe(void)
266{
267
268	/*
269	 * Always record BSP in CPU map so that the mbuf init code works
270	 * correctly.
271	 */
272	all_cpus = 1;
273	if (mp_ncpus == 0) {
274		/*
275		 * No CPUs were found, so this must be a UP system.  Setup
276		 * the variables to represent a system with a single CPU
277		 * with an id of 0.
278		 */
279		KASSERT(mp_maxid == 0,
280		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
281		mp_ncpus = 1;
282		return (0);
283	}
284
285	/* At least one CPU was found. */
286	if (mp_ncpus == 1) {
287		/*
288		 * One CPU was found, so this must be a UP system with
289		 * an I/O APIC.
290		 */
291		mp_maxid = 0;
292		return (0);
293	}
294
295	/* At least two CPUs were found. */
296	KASSERT(mp_maxid >= mp_ncpus - 1,
297	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
298	    mp_ncpus));
299	return (1);
300}
301
302/*
303 * Initialize the IPI handlers and start up the AP's.
304 */
305void
306cpu_mp_start(void)
307{
308	int i;
309
310	POSTCODE(MP_START_POST);
311
312	/* Initialize the logical ID to APIC ID table. */
313	for (i = 0; i < MAXCPU; i++)
314		cpu_apic_ids[i] = -1;
315
316	/* Install an inter-CPU IPI for TLB invalidation */
317	setidt(IPI_INVLTLB, IDTVEC(invltlb),
318	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
319	setidt(IPI_INVLPG, IDTVEC(invlpg),
320	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
321	setidt(IPI_INVLRNG, IDTVEC(invlrng),
322	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
323
324	/* Install an inter-CPU IPI for forwarding hardclock() */
325	setidt(IPI_HARDCLOCK, IDTVEC(hardclock),
326	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
327
328	/* Install an inter-CPU IPI for forwarding statclock() */
329	setidt(IPI_STATCLOCK, IDTVEC(statclock),
330	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
331
332	/* Install an inter-CPU IPI for lazy pmap release */
333	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
334	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
335
336	/* Install an inter-CPU IPI for all-CPU rendezvous */
337	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
338	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
339
340	/* Install an inter-CPU IPI for forcing an additional software trap */
341	setidt(IPI_AST, IDTVEC(cpuast),
342	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
343
344	/* Install an inter-CPU IPI for CPU stop/restart */
345	setidt(IPI_STOP, IDTVEC(cpustop),
346	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
347
348#ifdef USE_COMLOCK
349	mtx_init(&com_mtx, "com", NULL, MTX_SPIN);
350#endif
351	mtx_init(&smp_tlb_mtx, "tlb", NULL, MTX_SPIN);
352
353	/* Set boot_cpu_id if needed. */
354	if (boot_cpu_id == -1) {
355		boot_cpu_id = PCPU_GET(apic_id);
356		cpu_info[boot_cpu_id].cpu_bsp = 1;
357	} else
358		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
359		    ("BSP's APIC ID doesn't match boot_cpu_id"));
360	cpu_apic_ids[0] = boot_cpu_id;
361
362	/* Start each Application Processor */
363	start_all_aps();
364
365	/* Setup the initial logical CPUs info. */
366	logical_cpus = logical_cpus_mask = 0;
367	if (cpu_feature & CPUID_HTT)
368		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
369
370	set_logical_apic_ids();
371}
372
373
374/*
375 * Print various information about the SMP system hardware and setup.
376 */
377void
378cpu_mp_announce(void)
379{
380	int i, x;
381
382	POSTCODE(MP_ANNOUNCE_POST);
383
384	/* List CPUs */
385	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
386	for (i = 1, x = 0; x < MAXCPU; x++) {
387		if (cpu_info[x].cpu_present && !cpu_info[x].cpu_bsp) {
388			KASSERT(i < mp_ncpus,
389			    ("mp_ncpus and actual cpus are out of whack"));
390			printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
391		}
392	}
393}
394
395/*
396 * AP CPU's call this to initialize themselves.
397 */
398void
399init_secondary(void)
400{
401	int	gsel_tss;
402	int	x, myid;
403	u_int	cr0;
404
405	/* bootAP is set in start_ap() to our ID. */
406	myid = bootAP;
407	gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
408	gdt_segs[GPROC0_SEL].ssd_base =
409		(int) &SMP_prvspace[myid].pcpu.pc_common_tss;
410	SMP_prvspace[myid].pcpu.pc_prvspace =
411		&SMP_prvspace[myid].pcpu;
412
413	for (x = 0; x < NGDT; x++) {
414		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
415	}
416
417	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
418	r_gdt.rd_base = (int) &gdt[myid * NGDT];
419	lgdt(&r_gdt);			/* does magic intra-segment return */
420
421	lidt(&r_idt);
422
423	lldt(_default_ldt);
424	PCPU_SET(currentldt, _default_ldt);
425
426	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
427	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
428	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
429	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
430	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
431	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
432	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
433	ltr(gsel_tss);
434
435	/*
436	 * Set to a known state:
437	 * Set by mpboot.s: CR0_PG, CR0_PE
438	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
439	 */
440	cr0 = rcr0();
441	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
442	load_cr0(cr0);
443	CHECK_WRITE(0x38, 5);
444
445	/* Disable local APIC just to be sure. */
446	lapic_disable();
447
448	/* signal our startup to the BSP. */
449	mp_naps++;
450	CHECK_WRITE(0x39, 6);
451
452	/* Spin until the BSP releases the AP's. */
453	while (!aps_ready)
454		ia32_pause();
455
456	/* BSP may have changed PTD while we were waiting */
457	invltlb();
458	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
459
460#if defined(I586_CPU) && !defined(NO_F00F_HACK)
461	lidt(&r_idt);
462#endif
463
464	/* set up CPU registers and state */
465	cpu_setregs();
466
467	/* set up FPU state on the AP */
468	npxinit(__INITIAL_NPXCW__);
469
470	/* set up SSE registers */
471	enable_sse();
472
473	/* A quick check from sanity claus */
474	if (PCPU_GET(apic_id) != lapic_id()) {
475		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
476		printf("SMP: actual apic_id = %d\n", lapic_id());
477		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
478		printf("PTD[MPPTDI] = %#jx\n", (uintmax_t)PTD[MPPTDI]);
479		panic("cpuid mismatch! boom!!");
480	}
481
482	mtx_lock_spin(&ap_boot_mtx);
483
484	/* Init local apic for irq's */
485	lapic_setup();
486
487	/* Set memory range attributes for this CPU to match the BSP */
488	mem_range_AP_init();
489
490	smp_cpus++;
491
492	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
493	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
494
495	/* Determine if we are a logical CPU. */
496	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
497		logical_cpus_mask |= PCPU_GET(cpumask);
498
499	/* Build our map of 'other' CPUs. */
500	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
501
502	if (bootverbose)
503		lapic_dump("AP");
504
505	if (smp_cpus == mp_ncpus) {
506		/* enable IPI's, tlb shootdown, freezes etc */
507		atomic_store_rel_int(&smp_started, 1);
508		smp_active = 1;	 /* historic */
509	}
510
511	mtx_unlock_spin(&ap_boot_mtx);
512
513	/* wait until all the AP's are up */
514	while (smp_started == 0)
515		ia32_pause();
516
517	/* ok, now grab sched_lock and enter the scheduler */
518	mtx_lock_spin(&sched_lock);
519
520	binuptime(PCPU_PTR(switchtime));
521	PCPU_SET(switchticks, ticks);
522
523	cpu_throw(NULL, choosethread());	/* doesn't return */
524
525	panic("scheduler returned us to %s", __func__);
526	/* NOTREACHED */
527}
528
529/*******************************************************************
530 * local functions and data
531 */
532
533/*
534 * Set the APIC logical IDs.
535 *
536 * We want to cluster logical CPU's within the same APIC ID cluster.
537 * Since logical CPU's are aligned simply filling in the clusters in
538 * APIC ID order works fine.  Note that this does not try to balance
539 * the number of CPU's in each cluster. (XXX?)
540 */
541static void
542set_logical_apic_ids(void)
543{
544	u_int apic_id, cluster, cluster_id;
545
546	/* Force us to allocate cluster 0 at the start. */
547	cluster = -1;
548	cluster_id = APIC_MAX_INTRACLUSTER_ID;
549	for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
550		if (!cpu_info[apic_id].cpu_present)
551			continue;
552		if (cluster_id == APIC_MAX_INTRACLUSTER_ID) {
553			cluster = ioapic_next_logical_cluster();
554			cluster_id = 0;
555		} else
556			cluster_id++;
557		if (bootverbose)
558			printf("APIC ID: physical %u, logical %u:%u\n",
559			    apic_id, cluster, cluster_id);
560		lapic_set_logical_id(apic_id, cluster, cluster_id);
561	}
562}
563
564/*
565 * start each AP in our list
566 */
567static int
568start_all_aps(void)
569{
570#ifndef PC98
571	u_char mpbiosreason;
572#endif
573	u_long mpbioswarmvec;
574	struct pcpu *pc;
575	char *stack;
576	uintptr_t kptbase;
577	int i, pg, apic_id, cpu;
578
579	POSTCODE(START_ALL_APS_POST);
580
581	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
582
583	/* install the AP 1st level boot code */
584	install_ap_tramp();
585
586	/* save the current value of the warm-start vector */
587	mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
588#ifndef PC98
589	outb(CMOS_REG, BIOS_RESET);
590	mpbiosreason = inb(CMOS_DATA);
591#endif
592
593	/* set up temporary P==V mapping for AP boot */
594	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
595	kptbase = (uintptr_t)(void *)KPTphys;
596	for (i = 0; i < NKPT; i++)
597		PTD[i] = (pd_entry_t)(PG_V | PG_RW |
598		    ((kptbase + i * PAGE_SIZE) & PG_FRAME));
599	invltlb();
600
601	/* start each AP */
602	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
603		if (!cpu_info[apic_id].cpu_present ||
604		    cpu_info[apic_id].cpu_bsp)
605			continue;
606		cpu++;
607
608		/* save APIC ID for this logical ID */
609		cpu_apic_ids[cpu] = apic_id;
610
611		/* first page of AP's private space */
612		pg = cpu * i386_btop(sizeof(struct privatespace));
613
614		/* allocate a new private data page */
615		pc = (struct pcpu *)kmem_alloc(kernel_map, PAGE_SIZE);
616
617		/* wire it into the private page table page */
618		SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(pc));
619
620		/* allocate and set up an idle stack data page */
621		stack = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE); /* XXXKSE */
622		for (i = 0; i < KSTACK_PAGES; i++)
623			SMPpt[pg + 1 + i] = (pt_entry_t)
624			    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
625
626		/* prime data page for it to use */
627		pcpu_init(pc, cpu, sizeof(struct pcpu));
628		pc->pc_apic_id = apic_id;
629
630		/* setup a vector to our boot code */
631		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
632		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
633#ifndef PC98
634		outb(CMOS_REG, BIOS_RESET);
635		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
636#endif
637
638		bootSTK = &SMP_prvspace[cpu].idlekstack[KSTACK_PAGES *
639		    PAGE_SIZE];
640		bootAP = cpu;
641
642		/* attempt to start the Application Processor */
643		CHECK_INIT(99);	/* setup checkpoints */
644		if (!start_ap(apic_id)) {
645			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
646			CHECK_PRINT("trace");	/* show checkpoints */
647			/* better panic as the AP may be running loose */
648			printf("panic y/n? [y] ");
649			if (cngetc() != 'n')
650				panic("bye-bye");
651		}
652		CHECK_PRINT("trace");		/* show checkpoints */
653
654		all_cpus |= (1 << cpu);		/* record AP in CPU map */
655	}
656
657	/* build our map of 'other' CPUs */
658	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
659
660	/* restore the warmstart vector */
661	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
662#ifndef PC98
663	outb(CMOS_REG, BIOS_RESET);
664	outb(CMOS_DATA, mpbiosreason);
665#endif
666
667	/*
668	 * Set up the idle context for the BSP.  Similar to above except
669	 * that some was done by locore, some by pmap.c and some is implicit
670	 * because the BSP is cpu#0 and the page is initially zero and also
671	 * because we can refer to variables by name on the BSP..
672	 */
673
674	/* Allocate and setup BSP idle stack */
675	stack = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
676	for (i = 0; i < KSTACK_PAGES; i++)
677		SMPpt[1 + i] = (pt_entry_t)
678		    (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
679
680	for (i = 0; i < NKPT; i++)
681		PTD[i] = 0;
682	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
683
684	/* number of APs actually started */
685	return mp_naps;
686}
687
688/*
689 * load the 1st level AP boot code into base memory.
690 */
691
692/* targets for relocation */
693extern void bigJump(void);
694extern void bootCodeSeg(void);
695extern void bootDataSeg(void);
696extern void MPentry(void);
697extern u_int MP_GDT;
698extern u_int mp_gdtbase;
699
700static void
701install_ap_tramp(void)
702{
703	int     x;
704	int     size = *(int *) ((u_long) & bootMP_size);
705	u_char *src = (u_char *) ((u_long) bootMP);
706	u_char *dst = (u_char *) boot_address + KERNBASE;
707	u_int   boot_base = (u_int) bootMP;
708	u_int8_t *dst8;
709	u_int16_t *dst16;
710	u_int32_t *dst32;
711
712	POSTCODE(INSTALL_AP_TRAMP_POST);
713
714	pmap_kenter(boot_address + KERNBASE, boot_address);
715	for (x = 0; x < size; ++x)
716		*dst++ = *src++;
717
718	/*
719	 * modify addresses in code we just moved to basemem. unfortunately we
720	 * need fairly detailed info about mpboot.s for this to work.  changes
721	 * to mpboot.s might require changes here.
722	 */
723
724	/* boot code is located in KERNEL space */
725	dst = (u_char *) boot_address + KERNBASE;
726
727	/* modify the lgdt arg */
728	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
729	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
730
731	/* modify the ljmp target for MPentry() */
732	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
733	*dst32 = ((u_int) MPentry - KERNBASE);
734
735	/* modify the target for boot code segment */
736	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
737	dst8 = (u_int8_t *) (dst16 + 1);
738	*dst16 = (u_int) boot_address & 0xffff;
739	*dst8 = ((u_int) boot_address >> 16) & 0xff;
740
741	/* modify the target for boot data segment */
742	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
743	dst8 = (u_int8_t *) (dst16 + 1);
744	*dst16 = (u_int) boot_address & 0xffff;
745	*dst8 = ((u_int) boot_address >> 16) & 0xff;
746}
747
748/*
749 * This function starts the AP (application processor) identified
750 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
751 * to accomplish this.  This is necessary because of the nuances
752 * of the different hardware we might encounter.  It isn't pretty,
753 * but it seems to work.
754 */
755static int
756start_ap(int apic_id)
757{
758	int vector, ms;
759	int cpus;
760
761	POSTCODE(START_AP_POST);
762
763	/* calculate the vector */
764	vector = (boot_address >> 12) & 0xff;
765
766	/* used as a watchpoint to signal AP startup */
767	cpus = mp_naps;
768
769	/*
770	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
771	 * and running the target CPU. OR this INIT IPI might be latched (P5
772	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
773	 * ignored.
774	 */
775
776	/* do an INIT IPI: assert RESET */
777	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
778	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
779
780	/* wait for pending status end */
781	lapic_ipi_wait(-1);
782
783	/* do an INIT IPI: deassert RESET */
784	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
785	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
786
787	/* wait for pending status end */
788	DELAY(10000);		/* wait ~10mS */
789	lapic_ipi_wait(-1);
790
791	/*
792	 * next we do a STARTUP IPI: the previous INIT IPI might still be
793	 * latched, (P5 bug) this 1st STARTUP would then terminate
794	 * immediately, and the previously started INIT IPI would continue. OR
795	 * the previous INIT IPI has already run. and this STARTUP IPI will
796	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
797	 * will run.
798	 */
799
800	/* do a STARTUP IPI */
801	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
802	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
803	    vector, apic_id);
804	lapic_ipi_wait(-1);
805	DELAY(200);		/* wait ~200uS */
806
807	/*
808	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
809	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
810	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
811	 * recognized after hardware RESET or INIT IPI.
812	 */
813
814	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
815	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
816	    vector, apic_id);
817	lapic_ipi_wait(-1);
818	DELAY(200);		/* wait ~200uS */
819
820	/* Wait up to 5 seconds for it to start. */
821	for (ms = 0; ms < 5000; ms++) {
822		if (mp_naps > cpus)
823			return 1;	/* return SUCCESS */
824		DELAY(1000);
825	}
826	return 0;		/* return FAILURE */
827}
828
829#ifdef COUNT_XINVLTLB_HITS
830u_int xhits_gbl[MAXCPU];
831u_int xhits_pg[MAXCPU];
832u_int xhits_rng[MAXCPU];
833SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
834SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
835    sizeof(xhits_gbl), "IU", "");
836SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
837    sizeof(xhits_pg), "IU", "");
838SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
839    sizeof(xhits_rng), "IU", "");
840
841u_int ipi_global;
842u_int ipi_page;
843u_int ipi_range;
844u_int ipi_range_size;
845SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
846SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
847SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
848SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
849    0, "");
850
851u_int ipi_masked_global;
852u_int ipi_masked_page;
853u_int ipi_masked_range;
854u_int ipi_masked_range_size;
855SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
856    &ipi_masked_global, 0, "");
857SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
858    &ipi_masked_page, 0, "");
859SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
860    &ipi_masked_range, 0, "");
861SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
862    &ipi_masked_range_size, 0, "");
863#endif /* COUNT_XINVLTLB_HITS */
864
865/*
866 * Flush the TLB on all other CPU's
867 */
868static void
869smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
870{
871	u_int ncpu;
872
873	ncpu = mp_ncpus - 1;	/* does not shootdown self */
874	if (ncpu < 1)
875		return;		/* no other cpus */
876	mtx_assert(&smp_tlb_mtx, MA_OWNED);
877	smp_tlb_addr1 = addr1;
878	smp_tlb_addr2 = addr2;
879	atomic_store_rel_int(&smp_tlb_wait, 0);
880	ipi_all_but_self(vector);
881	while (smp_tlb_wait < ncpu)
882		ia32_pause();
883}
884
885/*
886 * This is about as magic as it gets.  fortune(1) has got similar code
887 * for reversing bits in a word.  Who thinks up this stuff??
888 *
889 * Yes, it does appear to be consistently faster than:
890 * while (i = ffs(m)) {
891 *	m >>= i;
892 *	bits++;
893 * }
894 * and
895 * while (lsb = (m & -m)) {	// This is magic too
896 * 	m &= ~lsb;		// or: m ^= lsb
897 *	bits++;
898 * }
899 * Both of these latter forms do some very strange things on gcc-3.1 with
900 * -mcpu=pentiumpro and/or -march=pentiumpro and/or -O or -O2.
901 * There is probably an SSE or MMX popcnt instruction.
902 *
903 * I wonder if this should be in libkern?
904 *
905 * XXX Stop the presses!  Another one:
906 * static __inline u_int32_t
907 * popcnt1(u_int32_t v)
908 * {
909 *	v -= ((v >> 1) & 0x55555555);
910 *	v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
911 *	v = (v + (v >> 4)) & 0x0F0F0F0F;
912 *	return (v * 0x01010101) >> 24;
913 * }
914 * The downside is that it has a multiply.  With a pentium3 with
915 * -mcpu=pentiumpro and -march=pentiumpro then gcc-3.1 will use
916 * an imull, and in that case it is faster.  In most other cases
917 * it appears slightly slower.
918 *
919 * Another variant (also from fortune):
920 * #define BITCOUNT(x) (((BX_(x)+(BX_(x)>>4)) & 0x0F0F0F0F) % 255)
921 * #define  BX_(x)     ((x) - (((x)>>1)&0x77777777)            \
922 *                          - (((x)>>2)&0x33333333)            \
923 *                          - (((x)>>3)&0x11111111))
924 */
925static __inline u_int32_t
926popcnt(u_int32_t m)
927{
928
929	m = (m & 0x55555555) + ((m & 0xaaaaaaaa) >> 1);
930	m = (m & 0x33333333) + ((m & 0xcccccccc) >> 2);
931	m = (m & 0x0f0f0f0f) + ((m & 0xf0f0f0f0) >> 4);
932	m = (m & 0x00ff00ff) + ((m & 0xff00ff00) >> 8);
933	m = (m & 0x0000ffff) + ((m & 0xffff0000) >> 16);
934	return m;
935}
936
937static void
938smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
939{
940	int ncpu, othercpus;
941
942	othercpus = mp_ncpus - 1;
943	if (mask == (u_int)-1) {
944		ncpu = othercpus;
945		if (ncpu < 1)
946			return;
947	} else {
948		mask &= ~PCPU_GET(cpumask);
949		if (mask == 0)
950			return;
951		ncpu = popcnt(mask);
952		if (ncpu > othercpus) {
953			/* XXX this should be a panic offence */
954			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
955			    ncpu, othercpus);
956			ncpu = othercpus;
957		}
958		/* XXX should be a panic, implied by mask == 0 above */
959		if (ncpu < 1)
960			return;
961	}
962	mtx_assert(&smp_tlb_mtx, MA_OWNED);
963	smp_tlb_addr1 = addr1;
964	smp_tlb_addr2 = addr2;
965	atomic_store_rel_int(&smp_tlb_wait, 0);
966	if (mask == (u_int)-1)
967		ipi_all_but_self(vector);
968	else
969		ipi_selected(mask, vector);
970	while (smp_tlb_wait < ncpu)
971		ia32_pause();
972}
973
974void
975smp_invltlb(void)
976{
977	if (smp_started) {
978		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
979#ifdef COUNT_XINVLTLB_HITS
980		ipi_global++;
981#endif
982	}
983}
984
985void
986smp_invlpg(vm_offset_t addr)
987{
988	if (smp_started) {
989		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
990#ifdef COUNT_XINVLTLB_HITS
991		ipi_page++;
992#endif
993	}
994}
995
996void
997smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
998{
999	if (smp_started) {
1000		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1001#ifdef COUNT_XINVLTLB_HITS
1002		ipi_range++;
1003		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1004#endif
1005	}
1006}
1007
1008void
1009smp_masked_invltlb(u_int mask)
1010{
1011	if (smp_started) {
1012		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1013#ifdef COUNT_XINVLTLB_HITS
1014		ipi_masked_global++;
1015#endif
1016	}
1017}
1018
1019void
1020smp_masked_invlpg(u_int mask, vm_offset_t addr)
1021{
1022	if (smp_started) {
1023		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1024#ifdef COUNT_XINVLTLB_HITS
1025		ipi_masked_page++;
1026#endif
1027	}
1028}
1029
1030void
1031smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
1032{
1033	if (smp_started) {
1034		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1035#ifdef COUNT_XINVLTLB_HITS
1036		ipi_masked_range++;
1037		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1038#endif
1039	}
1040}
1041
1042
1043/*
1044 * For statclock, we send an IPI to all CPU's to have them call this
1045 * function.
1046 */
1047void
1048forwarded_statclock(struct clockframe frame)
1049{
1050
1051	CTR0(KTR_SMP, "forwarded_statclock");
1052	if (profprocs != 0)
1053		profclock(&frame);
1054	if (pscnt == psdiv)
1055		statclock(&frame);
1056}
1057
1058void
1059forward_statclock(void)
1060{
1061	int map;
1062
1063	CTR0(KTR_SMP, "forward_statclock");
1064
1065	if (!smp_started || cold || panicstr)
1066		return;
1067
1068	map = PCPU_GET(other_cpus) & ~(stopped_cpus|hlt_cpus_mask);
1069	if (map != 0)
1070		ipi_selected(map, IPI_STATCLOCK);
1071}
1072
1073/*
1074 * For each hardclock(), we send an IPI to all other CPU's to have them
1075 * execute this function.  It would be nice to reduce contention on
1076 * sched_lock if we could simply peek at the CPU to determine the user/kernel
1077 * state and call hardclock_process() on the CPU receiving the clock interrupt
1078 * and then just use a simple IPI to handle any ast's if needed.
1079 */
1080void
1081forwarded_hardclock(struct clockframe frame)
1082{
1083
1084	CTR0(KTR_SMP, "forwarded_hardclock");
1085	hardclock_process(&frame);
1086}
1087
1088void
1089forward_hardclock(void)
1090{
1091	u_int map;
1092
1093	CTR0(KTR_SMP, "forward_hardclock");
1094
1095	if (!smp_started || cold || panicstr)
1096		return;
1097
1098	map = PCPU_GET(other_cpus) & ~(stopped_cpus|hlt_cpus_mask);
1099	if (map != 0)
1100		ipi_selected(map, IPI_HARDCLOCK);
1101}
1102
1103/*
1104 * send an IPI to a set of cpus.
1105 */
1106void
1107ipi_selected(u_int32_t cpus, u_int ipi)
1108{
1109	int cpu;
1110
1111	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1112	while ((cpu = ffs(cpus)) != 0) {
1113		cpu--;
1114		KASSERT(cpu_apic_ids[cpu] != -1,
1115		    ("IPI to non-existent CPU %d", cpu));
1116		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1117		cpus &= ~(1 << cpu);
1118	}
1119}
1120
1121/*
1122 * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
1123 */
1124void
1125ipi_all(u_int ipi)
1126{
1127
1128	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1129	lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
1130}
1131
1132/*
1133 * send an IPI to all CPUs EXCEPT myself
1134 */
1135void
1136ipi_all_but_self(u_int ipi)
1137{
1138
1139	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1140	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1141}
1142
1143/*
1144 * send an IPI to myself
1145 */
1146void
1147ipi_self(u_int ipi)
1148{
1149
1150	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1151	lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
1152}
1153
1154/*
1155 * This is called once the rest of the system is up and running and we're
1156 * ready to let the AP's out of the pen.
1157 */
1158static void
1159release_aps(void *dummy __unused)
1160{
1161
1162	if (mp_ncpus == 1)
1163		return;
1164	mtx_lock_spin(&sched_lock);
1165	atomic_store_rel_int(&aps_ready, 1);
1166	while (smp_started == 0)
1167		ia32_pause();
1168	mtx_unlock_spin(&sched_lock);
1169}
1170SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1171
1172static int
1173sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1174{
1175	u_int mask;
1176	int error;
1177
1178	mask = hlt_cpus_mask;
1179	error = sysctl_handle_int(oidp, &mask, 0, req);
1180	if (error || !req->newptr)
1181		return (error);
1182
1183	if (logical_cpus_mask != 0 &&
1184	    (mask & logical_cpus_mask) == logical_cpus_mask)
1185		hlt_logical_cpus = 1;
1186	else
1187		hlt_logical_cpus = 0;
1188
1189	if ((mask & all_cpus) == all_cpus)
1190		mask &= ~(1<<0);
1191	hlt_cpus_mask = mask;
1192	return (error);
1193}
1194SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1195    0, 0, sysctl_hlt_cpus, "IU", "");
1196
1197static int
1198sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1199{
1200	int disable, error;
1201
1202	disable = hlt_logical_cpus;
1203	error = sysctl_handle_int(oidp, &disable, 0, req);
1204	if (error || !req->newptr)
1205		return (error);
1206
1207	if (disable)
1208		hlt_cpus_mask |= logical_cpus_mask;
1209	else
1210		hlt_cpus_mask &= ~logical_cpus_mask;
1211
1212	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1213		hlt_cpus_mask &= ~(1<<0);
1214
1215	hlt_logical_cpus = disable;
1216	return (error);
1217}
1218
1219static void
1220cpu_hlt_setup(void *dummy __unused)
1221{
1222
1223	if (logical_cpus_mask != 0) {
1224		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1225		    &hlt_logical_cpus);
1226		sysctl_ctx_init(&logical_cpu_clist);
1227		SYSCTL_ADD_PROC(&logical_cpu_clist,
1228		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1229		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1230		    sysctl_hlt_logical_cpus, "IU", "");
1231		SYSCTL_ADD_UINT(&logical_cpu_clist,
1232		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1233		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1234		    &logical_cpus_mask, 0, "");
1235
1236		if (hlt_logical_cpus)
1237			hlt_cpus_mask |= logical_cpus_mask;
1238	}
1239}
1240SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1241
1242int
1243mp_grab_cpu_hlt(void)
1244{
1245	u_int mask = PCPU_GET(cpumask);
1246	int retval;
1247
1248	retval = mask & hlt_cpus_mask;
1249	while (mask & hlt_cpus_mask)
1250		__asm __volatile("sti; hlt" : : : "memory");
1251	return (retval);
1252}
1253