cpu_machdep.c revision 314210
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/11/sys/x86/x86/cpu_machdep.c 314210 2017-02-24 16:02:01Z kib $");
43
44#include "opt_atpic.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_isa.h"
50#include "opt_kdb.h"
51#include "opt_kstack_pages.h"
52#include "opt_maxmem.h"
53#include "opt_mp_watchdog.h"
54#include "opt_perfmon.h"
55#include "opt_platform.h"
56#ifdef __i386__
57#include "opt_apic.h"
58#include "opt_xbox.h"
59#endif
60
61#include <sys/param.h>
62#include <sys/proc.h>
63#include <sys/systm.h>
64#include <sys/bus.h>
65#include <sys/cpu.h>
66#include <sys/kdb.h>
67#include <sys/kernel.h>
68#include <sys/ktr.h>
69#include <sys/lock.h>
70#include <sys/malloc.h>
71#include <sys/mutex.h>
72#include <sys/pcpu.h>
73#include <sys/rwlock.h>
74#include <sys/sched.h>
75#ifdef SMP
76#include <sys/smp.h>
77#endif
78#include <sys/sysctl.h>
79
80#include <machine/clock.h>
81#include <machine/cpu.h>
82#include <machine/cputypes.h>
83#include <machine/specialreg.h>
84#include <machine/md_var.h>
85#include <machine/mp_watchdog.h>
86#ifdef PERFMON
87#include <machine/perfmon.h>
88#endif
89#include <machine/tss.h>
90#ifdef SMP
91#include <machine/smp.h>
92#endif
93#include <x86/acpica_machdep.h>
94
95#include <vm/vm.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_page.h>
99#include <vm/vm_map.h>
100#include <vm/vm_object.h>
101#include <vm/vm_pager.h>
102#include <vm/vm_param.h>
103
104#define	STATE_RUNNING	0x0
105#define	STATE_MWAIT	0x1
106#define	STATE_SLEEPING	0x2
107
108/*
109 * Machine dependent boot() routine
110 *
111 * I haven't seen anything to put here yet
112 * Possibly some stuff might be grafted back here from boot()
113 */
114void
115cpu_boot(int howto)
116{
117}
118
119/*
120 * Flush the D-cache for non-DMA I/O so that the I-cache can
121 * be made coherent later.
122 */
123void
124cpu_flush_dcache(void *ptr, size_t len)
125{
126	/* Not applicable */
127}
128
129void
130acpi_cpu_c1(void)
131{
132
133	__asm __volatile("sti; hlt");
134}
135
136void
137acpi_cpu_idle_mwait(uint32_t mwait_hint)
138{
139	int *state;
140
141	/*
142	 * XXXKIB.  Software coordination mode should be supported,
143	 * but all Intel CPUs provide hardware coordination.
144	 */
145
146	state = (int *)PCPU_PTR(monitorbuf);
147	KASSERT(*state == STATE_SLEEPING,
148		("cpu_mwait_cx: wrong monitorbuf state"));
149	*state = STATE_MWAIT;
150	cpu_monitor(state, 0, 0);
151	if (*state == STATE_MWAIT)
152		cpu_mwait(MWAIT_INTRBREAK, mwait_hint);
153
154	/*
155	 * We should exit on any event that interrupts mwait, because
156	 * that event might be a wanted interrupt.
157	 */
158	*state = STATE_RUNNING;
159}
160
161/* Get current clock frequency for the given cpu id. */
162int
163cpu_est_clockrate(int cpu_id, uint64_t *rate)
164{
165	uint64_t tsc1, tsc2;
166	uint64_t acnt, mcnt, perf;
167	register_t reg;
168
169	if (pcpu_find(cpu_id) == NULL || rate == NULL)
170		return (EINVAL);
171#ifdef __i386__
172	if ((cpu_feature & CPUID_TSC) == 0)
173		return (EOPNOTSUPP);
174#endif
175
176	/*
177	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
178	 * DELAY(9) based logic fails.
179	 */
180	if (tsc_is_invariant && !tsc_perf_stat)
181		return (EOPNOTSUPP);
182
183#ifdef SMP
184	if (smp_cpus > 1) {
185		/* Schedule ourselves on the indicated cpu. */
186		thread_lock(curthread);
187		sched_bind(curthread, cpu_id);
188		thread_unlock(curthread);
189	}
190#endif
191
192	/* Calibrate by measuring a short delay. */
193	reg = intr_disable();
194	if (tsc_is_invariant) {
195		wrmsr(MSR_MPERF, 0);
196		wrmsr(MSR_APERF, 0);
197		tsc1 = rdtsc();
198		DELAY(1000);
199		mcnt = rdmsr(MSR_MPERF);
200		acnt = rdmsr(MSR_APERF);
201		tsc2 = rdtsc();
202		intr_restore(reg);
203		perf = 1000 * acnt / mcnt;
204		*rate = (tsc2 - tsc1) * perf;
205	} else {
206		tsc1 = rdtsc();
207		DELAY(1000);
208		tsc2 = rdtsc();
209		intr_restore(reg);
210		*rate = (tsc2 - tsc1) * 1000;
211	}
212
213#ifdef SMP
214	if (smp_cpus > 1) {
215		thread_lock(curthread);
216		sched_unbind(curthread);
217		thread_unlock(curthread);
218	}
219#endif
220
221	return (0);
222}
223
224/*
225 * Shutdown the CPU as much as possible
226 */
227void
228cpu_halt(void)
229{
230	for (;;)
231		halt();
232}
233
234bool
235cpu_mwait_usable(void)
236{
237
238	return ((cpu_feature2 & CPUID2_MON) != 0 && ((cpu_mon_mwait_flags &
239	    (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)) ==
240	    (CPUID5_MON_MWAIT_EXT | CPUID5_MWAIT_INTRBREAK)));
241}
242
243void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
244static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
245static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
246SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait,
247    0, "Use MONITOR/MWAIT for short idle");
248
249#ifndef PC98
250static void
251cpu_idle_acpi(sbintime_t sbt)
252{
253	int *state;
254
255	state = (int *)PCPU_PTR(monitorbuf);
256	*state = STATE_SLEEPING;
257
258	/* See comments in cpu_idle_hlt(). */
259	disable_intr();
260	if (sched_runnable())
261		enable_intr();
262	else if (cpu_idle_hook)
263		cpu_idle_hook(sbt);
264	else
265		acpi_cpu_c1();
266	*state = STATE_RUNNING;
267}
268#endif /* !PC98 */
269
270static void
271cpu_idle_hlt(sbintime_t sbt)
272{
273	int *state;
274
275	state = (int *)PCPU_PTR(monitorbuf);
276	*state = STATE_SLEEPING;
277
278	/*
279	 * Since we may be in a critical section from cpu_idle(), if
280	 * an interrupt fires during that critical section we may have
281	 * a pending preemption.  If the CPU halts, then that thread
282	 * may not execute until a later interrupt awakens the CPU.
283	 * To handle this race, check for a runnable thread after
284	 * disabling interrupts and immediately return if one is
285	 * found.  Also, we must absolutely guarentee that hlt is
286	 * the next instruction after sti.  This ensures that any
287	 * interrupt that fires after the call to disable_intr() will
288	 * immediately awaken the CPU from hlt.  Finally, please note
289	 * that on x86 this works fine because of interrupts enabled only
290	 * after the instruction following sti takes place, while IF is set
291	 * to 1 immediately, allowing hlt instruction to acknowledge the
292	 * interrupt.
293	 */
294	disable_intr();
295	if (sched_runnable())
296		enable_intr();
297	else
298		acpi_cpu_c1();
299	*state = STATE_RUNNING;
300}
301
302static void
303cpu_idle_mwait(sbintime_t sbt)
304{
305	int *state;
306
307	state = (int *)PCPU_PTR(monitorbuf);
308	*state = STATE_MWAIT;
309
310	/* See comments in cpu_idle_hlt(). */
311	disable_intr();
312	if (sched_runnable()) {
313		enable_intr();
314		*state = STATE_RUNNING;
315		return;
316	}
317	cpu_monitor(state, 0, 0);
318	if (*state == STATE_MWAIT)
319		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
320	else
321		enable_intr();
322	*state = STATE_RUNNING;
323}
324
325static void
326cpu_idle_spin(sbintime_t sbt)
327{
328	int *state;
329	int i;
330
331	state = (int *)PCPU_PTR(monitorbuf);
332	*state = STATE_RUNNING;
333
334	/*
335	 * The sched_runnable() call is racy but as long as there is
336	 * a loop missing it one time will have just a little impact if any
337	 * (and it is much better than missing the check at all).
338	 */
339	for (i = 0; i < 1000; i++) {
340		if (sched_runnable())
341			return;
342		cpu_spinwait();
343	}
344}
345
346/*
347 * C1E renders the local APIC timer dead, so we disable it by
348 * reading the Interrupt Pending Message register and clearing
349 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
350 *
351 * Reference:
352 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
353 *   #32559 revision 3.00+
354 */
355#define	MSR_AMDK8_IPM		0xc0010055
356#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
357#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
358#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
359
360void
361cpu_probe_amdc1e(void)
362{
363
364	/*
365	 * Detect the presence of C1E capability mostly on latest
366	 * dual-cores (or future) k8 family.
367	 */
368	if (cpu_vendor_id == CPU_VENDOR_AMD &&
369	    (cpu_id & 0x00000f00) == 0x00000f00 &&
370	    (cpu_id & 0x0fff0000) >=  0x00040000) {
371		cpu_ident_amdc1e = 1;
372	}
373}
374
375#if defined(__i386__) && defined(PC98)
376void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
377#else
378void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
379#endif
380
381void
382cpu_idle(int busy)
383{
384	uint64_t msr;
385	sbintime_t sbt = -1;
386
387	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
388	    busy, curcpu);
389#ifdef MP_WATCHDOG
390	ap_watchdog(PCPU_GET(cpuid));
391#endif
392
393	/* If we are busy - try to use fast methods. */
394	if (busy) {
395		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
396			cpu_idle_mwait(busy);
397			goto out;
398		}
399	}
400
401	/* If we have time - switch timers into idle mode. */
402	if (!busy) {
403		critical_enter();
404		sbt = cpu_idleclock();
405	}
406
407	/* Apply AMD APIC timer C1E workaround. */
408	if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
409		msr = rdmsr(MSR_AMDK8_IPM);
410		if (msr & AMDK8_CMPHALT)
411			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
412	}
413
414	/* Call main idle method. */
415	cpu_idle_fn(sbt);
416
417	/* Switch timers back into active mode. */
418	if (!busy) {
419		cpu_activeclock();
420		critical_exit();
421	}
422out:
423	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
424	    busy, curcpu);
425}
426
427int
428cpu_idle_wakeup(int cpu)
429{
430	struct pcpu *pcpu;
431	int *state;
432
433	pcpu = pcpu_find(cpu);
434	state = (int *)pcpu->pc_monitorbuf;
435	/*
436	 * This doesn't need to be atomic since missing the race will
437	 * simply result in unnecessary IPIs.
438	 */
439	if (*state == STATE_SLEEPING)
440		return (0);
441	if (*state == STATE_MWAIT)
442		*state = STATE_RUNNING;
443	return (1);
444}
445
446/*
447 * Ordered by speed/power consumption.
448 */
449struct {
450	void	*id_fn;
451	char	*id_name;
452} idle_tbl[] = {
453	{ cpu_idle_spin, "spin" },
454	{ cpu_idle_mwait, "mwait" },
455	{ cpu_idle_hlt, "hlt" },
456#if !defined(__i386__) || !defined(PC98)
457	{ cpu_idle_acpi, "acpi" },
458#endif
459	{ NULL, NULL }
460};
461
462static int
463idle_sysctl_available(SYSCTL_HANDLER_ARGS)
464{
465	char *avail, *p;
466	int error;
467	int i;
468
469	avail = malloc(256, M_TEMP, M_WAITOK);
470	p = avail;
471	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
472		if (strstr(idle_tbl[i].id_name, "mwait") &&
473		    (cpu_feature2 & CPUID2_MON) == 0)
474			continue;
475#if !defined(__i386__) || !defined(PC98)
476		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
477		    cpu_idle_hook == NULL)
478			continue;
479#endif
480		p += sprintf(p, "%s%s", p != avail ? ", " : "",
481		    idle_tbl[i].id_name);
482	}
483	error = sysctl_handle_string(oidp, avail, 0, req);
484	free(avail, M_TEMP);
485	return (error);
486}
487
488SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
489    0, 0, idle_sysctl_available, "A", "list of available idle functions");
490
491static int
492idle_sysctl(SYSCTL_HANDLER_ARGS)
493{
494	char buf[16];
495	int error;
496	char *p;
497	int i;
498
499	p = "unknown";
500	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
501		if (idle_tbl[i].id_fn == cpu_idle_fn) {
502			p = idle_tbl[i].id_name;
503			break;
504		}
505	}
506	strncpy(buf, p, sizeof(buf));
507	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
508	if (error != 0 || req->newptr == NULL)
509		return (error);
510	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
511		if (strstr(idle_tbl[i].id_name, "mwait") &&
512		    (cpu_feature2 & CPUID2_MON) == 0)
513			continue;
514#if !defined(__i386__) || !defined(PC98)
515		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
516		    cpu_idle_hook == NULL)
517			continue;
518#endif
519		if (strcmp(idle_tbl[i].id_name, buf))
520			continue;
521		cpu_idle_fn = idle_tbl[i].id_fn;
522		return (0);
523	}
524	return (EINVAL);
525}
526
527SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
528    idle_sysctl, "A", "currently selected idle function");
529
530static int panic_on_nmi = 1;
531SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RWTUN,
532    &panic_on_nmi, 0,
533    "Panic on NMI");
534int nmi_is_broadcast = 1;
535SYSCTL_INT(_machdep, OID_AUTO, nmi_is_broadcast, CTLFLAG_RWTUN,
536    &nmi_is_broadcast, 0,
537    "Chipset NMI is broadcast");
538#ifdef KDB
539int kdb_on_nmi = 1;
540SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RWTUN,
541    &kdb_on_nmi, 0,
542    "Go to KDB on NMI");
543#endif
544
545#ifdef DEV_ISA
546void
547nmi_call_kdb(u_int cpu, u_int type, struct trapframe *frame)
548{
549
550	/* machine/parity/power fail/"kitchen sink" faults */
551	if (isa_nmi(frame->tf_err) == 0) {
552#ifdef KDB
553		/*
554		 * NMI can be hooked up to a pushbutton for debugging.
555		 */
556		if (kdb_on_nmi) {
557			printf("NMI/cpu%d ... going to debugger\n", cpu);
558			kdb_trap(type, 0, frame);
559		}
560#endif /* KDB */
561	} else if (panic_on_nmi) {
562		panic("NMI indicates hardware failure");
563	}
564}
565#endif
566
567void
568nmi_handle_intr(u_int type, struct trapframe *frame)
569{
570
571#ifdef DEV_ISA
572#ifdef SMP
573	if (nmi_is_broadcast) {
574		nmi_call_kdb_smp(type, frame);
575		return;
576	}
577#endif
578	nmi_call_kdb(PCPU_GET(cpuid), type, frame);
579#endif
580}
581