intel_utils.c revision 327785
1/*-
2 * Copyright (c) 2013 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6 * under sponsorship from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/x86/iommu/intel_utils.c 327785 2018-01-10 20:39:26Z markj $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/kernel.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/memdesc.h>
39#include <sys/mutex.h>
40#include <sys/proc.h>
41#include <sys/queue.h>
42#include <sys/rman.h>
43#include <sys/rwlock.h>
44#include <sys/sched.h>
45#include <sys/sf_buf.h>
46#include <sys/sysctl.h>
47#include <sys/systm.h>
48#include <sys/taskqueue.h>
49#include <sys/time.h>
50#include <sys/tree.h>
51#include <sys/vmem.h>
52#include <dev/pci/pcivar.h>
53#include <vm/vm.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_kern.h>
56#include <vm/vm_object.h>
57#include <vm/vm_page.h>
58#include <vm/vm_map.h>
59#include <vm/vm_pageout.h>
60#include <machine/bus.h>
61#include <machine/cpu.h>
62#include <machine/intr_machdep.h>
63#include <x86/include/apicvar.h>
64#include <x86/include/busdma_impl.h>
65#include <x86/iommu/intel_reg.h>
66#include <x86/iommu/busdma_dmar.h>
67#include <x86/iommu/intel_dmar.h>
68
69u_int
70dmar_nd2mask(u_int nd)
71{
72	static const u_int masks[] = {
73		0x000f,	/* nd == 0 */
74		0x002f,	/* nd == 1 */
75		0x00ff,	/* nd == 2 */
76		0x02ff,	/* nd == 3 */
77		0x0fff,	/* nd == 4 */
78		0x2fff,	/* nd == 5 */
79		0xffff,	/* nd == 6 */
80		0x0000,	/* nd == 7 reserved */
81	};
82
83	KASSERT(nd <= 6, ("number of domains %d", nd));
84	return (masks[nd]);
85}
86
87static const struct sagaw_bits_tag {
88	int agaw;
89	int cap;
90	int awlvl;
91	int pglvl;
92} sagaw_bits[] = {
93	{.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
94	    .pglvl = 2},
95	{.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
96	    .pglvl = 3},
97	{.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
98	    .pglvl = 4},
99	{.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
100	    .pglvl = 5},
101	{.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
102	    .pglvl = 6}
103};
104
105bool
106dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
107{
108	int i;
109
110	for (i = 0; i < nitems(sagaw_bits); i++) {
111		if (sagaw_bits[i].pglvl != pglvl)
112			continue;
113		if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
114			return (true);
115	}
116	return (false);
117}
118
119int
120domain_set_agaw(struct dmar_domain *domain, int mgaw)
121{
122	int sagaw, i;
123
124	domain->mgaw = mgaw;
125	sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
126	for (i = 0; i < nitems(sagaw_bits); i++) {
127		if (sagaw_bits[i].agaw >= mgaw) {
128			domain->agaw = sagaw_bits[i].agaw;
129			domain->pglvl = sagaw_bits[i].pglvl;
130			domain->awlvl = sagaw_bits[i].awlvl;
131			return (0);
132		}
133	}
134	device_printf(domain->dmar->dev,
135	    "context request mgaw %d: no agaw found, sagaw %x\n",
136	    mgaw, sagaw);
137	return (EINVAL);
138}
139
140/*
141 * Find a best fit mgaw for the given maxaddr:
142 *   - if allow_less is false, must find sagaw which maps all requested
143 *     addresses (used by identity mappings);
144 *   - if allow_less is true, and no supported sagaw can map all requested
145 *     address space, accept the biggest sagaw, whatever is it.
146 */
147int
148dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
149{
150	int i;
151
152	for (i = 0; i < nitems(sagaw_bits); i++) {
153		if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
154		    (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
155			break;
156	}
157	if (allow_less && i == nitems(sagaw_bits)) {
158		do {
159			i--;
160		} while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
161		    == 0);
162	}
163	if (i < nitems(sagaw_bits))
164		return (sagaw_bits[i].agaw);
165	KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
166	    (uintmax_t) maxaddr, allow_less));
167	return (-1);
168}
169
170/*
171 * Calculate the total amount of page table pages needed to map the
172 * whole bus address space on the context with the selected agaw.
173 */
174vm_pindex_t
175pglvl_max_pages(int pglvl)
176{
177	vm_pindex_t res;
178	int i;
179
180	for (res = 0, i = pglvl; i > 0; i--) {
181		res *= DMAR_NPTEPG;
182		res++;
183	}
184	return (res);
185}
186
187/*
188 * Return true if the page table level lvl supports the superpage for
189 * the context ctx.
190 */
191int
192domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
193{
194	int alvl, cap_sps;
195	static const int sagaw_sp[] = {
196		DMAR_CAP_SPS_2M,
197		DMAR_CAP_SPS_1G,
198		DMAR_CAP_SPS_512G,
199		DMAR_CAP_SPS_1T
200	};
201
202	alvl = domain->pglvl - lvl - 1;
203	cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
204	return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
205}
206
207dmar_gaddr_t
208pglvl_page_size(int total_pglvl, int lvl)
209{
210	int rlvl;
211	static const dmar_gaddr_t pg_sz[] = {
212		(dmar_gaddr_t)DMAR_PAGE_SIZE,
213		(dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
214		(dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
215		(dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
216		(dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
217		(dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
218	};
219
220	KASSERT(lvl >= 0 && lvl < total_pglvl,
221	    ("total %d lvl %d", total_pglvl, lvl));
222	rlvl = total_pglvl - lvl - 1;
223	KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
224	return (pg_sz[rlvl]);
225}
226
227dmar_gaddr_t
228domain_page_size(struct dmar_domain *domain, int lvl)
229{
230
231	return (pglvl_page_size(domain->pglvl, lvl));
232}
233
234int
235calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
236    dmar_gaddr_t *isizep)
237{
238	dmar_gaddr_t isize;
239	int am;
240
241	for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
242		isize = 1ULL << (am + DMAR_PAGE_SHIFT);
243		if ((base & (isize - 1)) == 0 && size >= isize)
244			break;
245		if (am == 0)
246			break;
247	}
248	*isizep = isize;
249	return (am);
250}
251
252dmar_haddr_t dmar_high;
253int haw;
254int dmar_tbl_pagecnt;
255
256vm_page_t
257dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
258{
259	vm_page_t m;
260	int zeroed, aflags;
261
262	zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
263	aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP |
264	    ((flags & DMAR_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL :
265	    VM_ALLOC_NOWAIT);
266	for (;;) {
267		if ((flags & DMAR_PGF_OBJL) == 0)
268			VM_OBJECT_WLOCK(obj);
269		m = vm_page_lookup(obj, idx);
270		if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
271			if ((flags & DMAR_PGF_OBJL) == 0)
272				VM_OBJECT_WUNLOCK(obj);
273			break;
274		}
275		m = vm_page_alloc_contig(obj, idx, aflags, 1, 0,
276		    dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
277		if ((flags & DMAR_PGF_OBJL) == 0)
278			VM_OBJECT_WUNLOCK(obj);
279		if (m != NULL) {
280			if (zeroed && (m->flags & PG_ZERO) == 0)
281				pmap_zero_page(m);
282			atomic_add_int(&dmar_tbl_pagecnt, 1);
283			break;
284		}
285		if ((flags & DMAR_PGF_WAITOK) == 0)
286			break;
287	}
288	return (m);
289}
290
291void
292dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
293{
294	vm_page_t m;
295
296	if ((flags & DMAR_PGF_OBJL) == 0)
297		VM_OBJECT_WLOCK(obj);
298	m = vm_page_lookup(obj, idx);
299	if (m != NULL) {
300		vm_page_free(m);
301		atomic_subtract_int(&dmar_tbl_pagecnt, 1);
302	}
303	if ((flags & DMAR_PGF_OBJL) == 0)
304		VM_OBJECT_WUNLOCK(obj);
305}
306
307void *
308dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
309    struct sf_buf **sf)
310{
311	vm_page_t m;
312	bool allocated;
313
314	if ((flags & DMAR_PGF_OBJL) == 0)
315		VM_OBJECT_WLOCK(obj);
316	m = vm_page_lookup(obj, idx);
317	if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
318		m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
319		allocated = true;
320	} else
321		allocated = false;
322	if (m == NULL) {
323		if ((flags & DMAR_PGF_OBJL) == 0)
324			VM_OBJECT_WUNLOCK(obj);
325		return (NULL);
326	}
327	/* Sleepable allocations cannot fail. */
328	if ((flags & DMAR_PGF_WAITOK) != 0)
329		VM_OBJECT_WUNLOCK(obj);
330	sched_pin();
331	*sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
332	    == 0 ? SFB_NOWAIT : 0));
333	if (*sf == NULL) {
334		sched_unpin();
335		if (allocated) {
336			VM_OBJECT_ASSERT_WLOCKED(obj);
337			dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
338		}
339		if ((flags & DMAR_PGF_OBJL) == 0)
340			VM_OBJECT_WUNLOCK(obj);
341		return (NULL);
342	}
343	if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
344	    (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
345		VM_OBJECT_WLOCK(obj);
346	else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
347		VM_OBJECT_WUNLOCK(obj);
348	return ((void *)sf_buf_kva(*sf));
349}
350
351void
352dmar_unmap_pgtbl(struct sf_buf *sf)
353{
354
355	sf_buf_free(sf);
356	sched_unpin();
357}
358
359static void
360dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
361{
362
363	if (DMAR_IS_COHERENT(unit))
364		return;
365	/*
366	 * If DMAR does not snoop paging structures accesses, flush
367	 * CPU cache to memory.
368	 */
369	pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz,
370	    TRUE);
371}
372
373void
374dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
375{
376
377	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
378}
379
380void
381dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
382{
383
384	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
385}
386
387void
388dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
389{
390
391	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
392}
393
394/*
395 * Load the root entry pointer into the hardware, busily waiting for
396 * the completion.
397 */
398int
399dmar_load_root_entry_ptr(struct dmar_unit *unit)
400{
401	vm_page_t root_entry;
402	int error;
403
404	/*
405	 * Access to the GCMD register must be serialized while the
406	 * command is submitted.
407	 */
408	DMAR_ASSERT_LOCKED(unit);
409
410	VM_OBJECT_RLOCK(unit->ctx_obj);
411	root_entry = vm_page_lookup(unit->ctx_obj, 0);
412	VM_OBJECT_RUNLOCK(unit->ctx_obj);
413	dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
414	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
415	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
416	    != 0));
417	return (error);
418}
419
420/*
421 * Globally invalidate the context entries cache, busily waiting for
422 * the completion.
423 */
424int
425dmar_inv_ctx_glob(struct dmar_unit *unit)
426{
427	int error;
428
429	/*
430	 * Access to the CCMD register must be serialized while the
431	 * command is submitted.
432	 */
433	DMAR_ASSERT_LOCKED(unit);
434	KASSERT(!unit->qi_enabled, ("QI enabled"));
435
436	/*
437	 * The DMAR_CCMD_ICC bit in the upper dword should be written
438	 * after the low dword write is completed.  Amd64
439	 * dmar_write8() does not have this issue, i386 dmar_write8()
440	 * writes the upper dword last.
441	 */
442	dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
443	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
444	    == 0));
445	return (error);
446}
447
448/*
449 * Globally invalidate the IOTLB, busily waiting for the completion.
450 */
451int
452dmar_inv_iotlb_glob(struct dmar_unit *unit)
453{
454	int error, reg;
455
456	DMAR_ASSERT_LOCKED(unit);
457	KASSERT(!unit->qi_enabled, ("QI enabled"));
458
459	reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
460	/* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
461	dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
462	    DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
463	DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
464	    DMAR_IOTLB_IVT32) == 0));
465	return (error);
466}
467
468/*
469 * Flush the chipset write buffers.  See 11.1 "Write Buffer Flushing"
470 * in the architecture specification.
471 */
472int
473dmar_flush_write_bufs(struct dmar_unit *unit)
474{
475	int error;
476
477	DMAR_ASSERT_LOCKED(unit);
478
479	/*
480	 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
481	 */
482	KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
483	    ("dmar%d: no RWBF", unit->unit));
484
485	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
486	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
487	    != 0));
488	return (error);
489}
490
491int
492dmar_enable_translation(struct dmar_unit *unit)
493{
494	int error;
495
496	DMAR_ASSERT_LOCKED(unit);
497	unit->hw_gcmd |= DMAR_GCMD_TE;
498	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
499	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
500	    != 0));
501	return (error);
502}
503
504int
505dmar_disable_translation(struct dmar_unit *unit)
506{
507	int error;
508
509	DMAR_ASSERT_LOCKED(unit);
510	unit->hw_gcmd &= ~DMAR_GCMD_TE;
511	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
512	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
513	    == 0));
514	return (error);
515}
516
517int
518dmar_load_irt_ptr(struct dmar_unit *unit)
519{
520	uint64_t irta, s;
521	int error;
522
523	DMAR_ASSERT_LOCKED(unit);
524	irta = unit->irt_phys;
525	if (DMAR_X2APIC(unit))
526		irta |= DMAR_IRTA_EIME;
527	s = fls(unit->irte_cnt) - 2;
528	KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
529	    powerof2(unit->irte_cnt),
530	    ("IRTA_REG_S overflow %x", unit->irte_cnt));
531	irta |= s;
532	dmar_write8(unit, DMAR_IRTA_REG, irta);
533	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
534	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
535	    != 0));
536	return (error);
537}
538
539int
540dmar_enable_ir(struct dmar_unit *unit)
541{
542	int error;
543
544	DMAR_ASSERT_LOCKED(unit);
545	unit->hw_gcmd |= DMAR_GCMD_IRE;
546	unit->hw_gcmd &= ~DMAR_GCMD_CFI;
547	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
548	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
549	    != 0));
550	return (error);
551}
552
553int
554dmar_disable_ir(struct dmar_unit *unit)
555{
556	int error;
557
558	DMAR_ASSERT_LOCKED(unit);
559	unit->hw_gcmd &= ~DMAR_GCMD_IRE;
560	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
561	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
562	    == 0));
563	return (error);
564}
565
566#define BARRIER_F				\
567	u_int f_done, f_inproc, f_wakeup;	\
568						\
569	f_done = 1 << (barrier_id * 3);		\
570	f_inproc = 1 << (barrier_id * 3 + 1);	\
571	f_wakeup = 1 << (barrier_id * 3 + 2)
572
573bool
574dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
575{
576	BARRIER_F;
577
578	DMAR_LOCK(dmar);
579	if ((dmar->barrier_flags & f_done) != 0) {
580		DMAR_UNLOCK(dmar);
581		return (false);
582	}
583
584	if ((dmar->barrier_flags & f_inproc) != 0) {
585		while ((dmar->barrier_flags & f_inproc) != 0) {
586			dmar->barrier_flags |= f_wakeup;
587			msleep(&dmar->barrier_flags, &dmar->lock, 0,
588			    "dmarb", 0);
589		}
590		KASSERT((dmar->barrier_flags & f_done) != 0,
591		    ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
592		DMAR_UNLOCK(dmar);
593		return (false);
594	}
595
596	dmar->barrier_flags |= f_inproc;
597	DMAR_UNLOCK(dmar);
598	return (true);
599}
600
601void
602dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
603{
604	BARRIER_F;
605
606	DMAR_ASSERT_LOCKED(dmar);
607	KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
608	    ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
609	dmar->barrier_flags |= f_done;
610	if ((dmar->barrier_flags & f_wakeup) != 0)
611		wakeup(&dmar->barrier_flags);
612	dmar->barrier_flags &= ~(f_inproc | f_wakeup);
613	DMAR_UNLOCK(dmar);
614}
615
616int dmar_match_verbose;
617int dmar_batch_coalesce = 100;
618struct timespec dmar_hw_timeout = {
619	.tv_sec = 0,
620	.tv_nsec = 1000000
621};
622
623static const uint64_t d = 1000000000;
624
625void
626dmar_update_timeout(uint64_t newval)
627{
628
629	/* XXXKIB not atomic */
630	dmar_hw_timeout.tv_sec = newval / d;
631	dmar_hw_timeout.tv_nsec = newval % d;
632}
633
634uint64_t
635dmar_get_timeout(void)
636{
637
638	return ((uint64_t)dmar_hw_timeout.tv_sec * d +
639	    dmar_hw_timeout.tv_nsec);
640}
641
642static int
643dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
644{
645	uint64_t val;
646	int error;
647
648	val = dmar_get_timeout();
649	error = sysctl_handle_long(oidp, &val, 0, req);
650	if (error != 0 || req->newptr == NULL)
651		return (error);
652	dmar_update_timeout(val);
653	return (error);
654}
655
656static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
657SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
658    &dmar_tbl_pagecnt, 0,
659    "Count of pages used for DMAR pagetables");
660SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
661    &dmar_match_verbose, 0,
662    "Verbose matching of the PCI devices to DMAR paths");
663SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
664    &dmar_batch_coalesce, 0,
665    "Number of qi batches between interrupt");
666SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout,
667    CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
668    dmar_timeout_sysctl, "QU",
669    "Timeout for command wait, in nanoseconds");
670#ifdef INVARIANTS
671int dmar_check_free;
672SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
673    &dmar_check_free, 0,
674    "Check the GPA RBtree for free_down and free_after validity");
675#endif
676
677