intel_dmar.h revision 280260
1/*-
2 * Copyright (c) 2013-2015 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6 * under sponsorship from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/x86/iommu/intel_dmar.h 280260 2015-03-19 13:57:47Z kib $
30 */
31
32#ifndef __X86_IOMMU_INTEL_DMAR_H
33#define	__X86_IOMMU_INTEL_DMAR_H
34
35/* Host or physical memory address, after translation. */
36typedef uint64_t dmar_haddr_t;
37/* Guest or bus address, before translation. */
38typedef uint64_t dmar_gaddr_t;
39
40struct dmar_qi_genseq {
41	u_int gen;
42	uint32_t seq;
43};
44
45struct dmar_map_entry {
46	dmar_gaddr_t start;
47	dmar_gaddr_t end;
48	dmar_gaddr_t free_after;	/* Free space after the entry */
49	dmar_gaddr_t free_down;		/* Max free space below the
50					   current R/B tree node */
51	u_int flags;
52	TAILQ_ENTRY(dmar_map_entry) dmamap_link; /* Link for dmamap entries */
53	RB_ENTRY(dmar_map_entry) rb_entry;	 /* Links for ctx entries */
54	TAILQ_ENTRY(dmar_map_entry) unroll_link; /* Link for unroll after
55						    dmamap_load failure */
56	struct dmar_ctx *ctx;
57	struct dmar_qi_genseq gseq;
58};
59
60RB_HEAD(dmar_gas_entries_tree, dmar_map_entry);
61RB_PROTOTYPE(dmar_gas_entries_tree, dmar_map_entry, rb_entry,
62    dmar_gas_cmp_entries);
63
64#define	DMAR_MAP_ENTRY_PLACE	0x0001	/* Fake entry */
65#define	DMAR_MAP_ENTRY_RMRR	0x0002	/* Permanent, not linked by
66					   dmamap_link */
67#define	DMAR_MAP_ENTRY_MAP	0x0004	/* Busdma created, linked by
68					   dmamap_link */
69#define	DMAR_MAP_ENTRY_UNMAPPED	0x0010	/* No backing pages */
70#define	DMAR_MAP_ENTRY_QI_NF	0x0020	/* qi task, do not free entry */
71#define	DMAR_MAP_ENTRY_READ	0x1000	/* Read permitted */
72#define	DMAR_MAP_ENTRY_WRITE	0x2000	/* Write permitted */
73#define	DMAR_MAP_ENTRY_SNOOP	0x4000	/* Snoop */
74#define	DMAR_MAP_ENTRY_TM	0x8000	/* Transient */
75
76struct dmar_ctx {
77	uint16_t rid;	/* pci RID */
78	int domain;	/* DID */
79	int mgaw;	/* Real max address width */
80	int agaw;	/* Adjusted guest address width */
81	int pglvl;	/* The pagelevel */
82	int awlvl;	/* The pagelevel as the bitmask, to set in
83			   context entry */
84	dmar_gaddr_t end;/* Highest address + 1 in the guest AS */
85	u_int refs;	/* References to the context, from tags */
86	struct dmar_unit *dmar;
87	struct bus_dma_tag_dmar ctx_tag; /* Root tag */
88	struct mtx lock;
89	LIST_ENTRY(dmar_ctx) link;	/* Member in the dmar list */
90	vm_object_t pgtbl_obj;		/* Page table pages */
91	u_int flags;			/* Protected by dmar lock */
92	uint64_t last_fault_rec[2];	/* Last fault reported */
93	u_int entries_cnt;
94	u_long loads;
95	u_long unloads;
96	struct dmar_gas_entries_tree rb_root;
97	struct dmar_map_entries_tailq unload_entries; /* Entries to unload */
98	struct dmar_map_entry *first_place, *last_place;
99	struct task unload_task;
100};
101
102/* struct dmar_ctx flags */
103#define	DMAR_CTX_FAULTED	0x0001	/* Fault was reported,
104					   last_fault_rec is valid */
105#define	DMAR_CTX_IDMAP		0x0002	/* Context uses identity page table */
106#define	DMAR_CTX_RMRR		0x0004	/* Context contains RMRR entry,
107					   cannot be turned off */
108#define	DMAR_CTX_DISABLED	0x0008	/* Device is disabled, the
109					   ephemeral reference is kept
110					   to prevent context destruction */
111
112#define	DMAR_CTX_PGLOCK(ctx)	VM_OBJECT_WLOCK((ctx)->pgtbl_obj)
113#define	DMAR_CTX_PGTRYLOCK(ctx)	VM_OBJECT_TRYWLOCK((ctx)->pgtbl_obj)
114#define	DMAR_CTX_PGUNLOCK(ctx)	VM_OBJECT_WUNLOCK((ctx)->pgtbl_obj)
115#define	DMAR_CTX_ASSERT_PGLOCKED(ctx) \
116	VM_OBJECT_ASSERT_WLOCKED((ctx)->pgtbl_obj)
117
118#define	DMAR_CTX_LOCK(ctx)	mtx_lock(&(ctx)->lock)
119#define	DMAR_CTX_UNLOCK(ctx)	mtx_unlock(&(ctx)->lock)
120#define	DMAR_CTX_ASSERT_LOCKED(ctx) mtx_assert(&(ctx)->lock, MA_OWNED)
121
122struct dmar_msi_data {
123	int irq;
124	int irq_rid;
125	struct resource *irq_res;
126	void *intr_handle;
127	int (*handler)(void *);
128	int msi_data_reg;
129	int msi_addr_reg;
130	int msi_uaddr_reg;
131	void (*enable_intr)(struct dmar_unit *);
132	void (*disable_intr)(struct dmar_unit *);
133	const char *name;
134};
135
136#define	DMAR_INTR_FAULT		0
137#define	DMAR_INTR_QI		1
138#define	DMAR_INTR_TOTAL		2
139
140struct dmar_unit {
141	device_t dev;
142	int unit;
143	uint16_t segment;
144	uint64_t base;
145
146	/* Resources */
147	int reg_rid;
148	struct resource *regs;
149
150	struct dmar_msi_data intrs[DMAR_INTR_TOTAL];
151
152	/* Hardware registers cache */
153	uint32_t hw_ver;
154	uint64_t hw_cap;
155	uint64_t hw_ecap;
156	uint32_t hw_gcmd;
157
158	/* Data for being a dmar */
159	struct mtx lock;
160	LIST_HEAD(, dmar_ctx) contexts;
161	struct unrhdr *domids;
162	vm_object_t ctx_obj;
163	u_int barrier_flags;
164
165	/* Fault handler data */
166	struct mtx fault_lock;
167	uint64_t *fault_log;
168	int fault_log_head;
169	int fault_log_tail;
170	int fault_log_size;
171	struct task fault_task;
172	struct taskqueue *fault_taskqueue;
173
174	/* QI */
175	int qi_enabled;
176	vm_offset_t inv_queue;
177	vm_size_t inv_queue_size;
178	uint32_t inv_queue_avail;
179	uint32_t inv_queue_tail;
180	volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait
181					       descr completion */
182	uint64_t inv_waitd_seq_hw_phys;
183	uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */
184	u_int inv_waitd_gen;	/* seq number generation AKA seq overflows */
185	u_int inv_seq_waiters;	/* count of waiters for seq */
186	u_int inv_queue_full;	/* informational counter */
187
188	/* IR */
189	int ir_enabled;
190	vm_paddr_t irt_phys;
191	dmar_irte_t *irt;
192	u_int irte_cnt;
193	vmem_t *irtids;
194
195	/* Delayed freeing of map entries queue processing */
196	struct dmar_map_entries_tailq tlb_flush_entries;
197	struct task qi_task;
198	struct taskqueue *qi_taskqueue;
199
200	/* Busdma delayed map load */
201	struct task dmamap_load_task;
202	TAILQ_HEAD(, bus_dmamap_dmar) delayed_maps;
203	struct taskqueue *delayed_taskqueue;
204
205	int dma_enabled;
206};
207
208#define	DMAR_LOCK(dmar)		mtx_lock(&(dmar)->lock)
209#define	DMAR_UNLOCK(dmar)	mtx_unlock(&(dmar)->lock)
210#define	DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->lock, MA_OWNED)
211
212#define	DMAR_FAULT_LOCK(dmar)	mtx_lock_spin(&(dmar)->fault_lock)
213#define	DMAR_FAULT_UNLOCK(dmar)	mtx_unlock_spin(&(dmar)->fault_lock)
214#define	DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED)
215
216#define	DMAR_IS_COHERENT(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_C) != 0)
217#define	DMAR_HAS_QI(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_QI) != 0)
218#define	DMAR_X2APIC(dmar) \
219	(x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0)
220
221/* Barrier ids */
222#define	DMAR_BARRIER_RMRR	0
223#define	DMAR_BARRIER_USEQ	1
224
225struct dmar_unit *dmar_find(device_t dev);
226struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid);
227struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid);
228
229u_int dmar_nd2mask(u_int nd);
230bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl);
231int ctx_set_agaw(struct dmar_ctx *ctx, int mgaw);
232int dmar_maxaddr2mgaw(struct dmar_unit* unit, dmar_gaddr_t maxaddr,
233    bool allow_less);
234vm_pindex_t pglvl_max_pages(int pglvl);
235int ctx_is_sp_lvl(struct dmar_ctx *ctx, int lvl);
236dmar_gaddr_t pglvl_page_size(int total_pglvl, int lvl);
237dmar_gaddr_t ctx_page_size(struct dmar_ctx *ctx, int lvl);
238int calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
239    dmar_gaddr_t *isizep);
240struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags);
241void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags);
242void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
243    struct sf_buf **sf);
244void dmar_unmap_pgtbl(struct sf_buf *sf);
245int dmar_load_root_entry_ptr(struct dmar_unit *unit);
246int dmar_inv_ctx_glob(struct dmar_unit *unit);
247int dmar_inv_iotlb_glob(struct dmar_unit *unit);
248int dmar_flush_write_bufs(struct dmar_unit *unit);
249void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst);
250void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst);
251void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst);
252int dmar_enable_translation(struct dmar_unit *unit);
253int dmar_disable_translation(struct dmar_unit *unit);
254int dmar_load_irt_ptr(struct dmar_unit *unit);
255int dmar_enable_ir(struct dmar_unit *unit);
256int dmar_disable_ir(struct dmar_unit *unit);
257bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id);
258void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id);
259
260int dmar_fault_intr(void *arg);
261void dmar_enable_fault_intr(struct dmar_unit *unit);
262void dmar_disable_fault_intr(struct dmar_unit *unit);
263int dmar_init_fault_log(struct dmar_unit *unit);
264void dmar_fini_fault_log(struct dmar_unit *unit);
265
266int dmar_qi_intr(void *arg);
267void dmar_enable_qi_intr(struct dmar_unit *unit);
268void dmar_disable_qi_intr(struct dmar_unit *unit);
269int dmar_init_qi(struct dmar_unit *unit);
270void dmar_fini_qi(struct dmar_unit *unit);
271void dmar_qi_invalidate_locked(struct dmar_ctx *ctx, dmar_gaddr_t start,
272    dmar_gaddr_t size, struct dmar_qi_genseq *pseq);
273void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit);
274void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit);
275void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit);
276void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt);
277
278vm_object_t ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr);
279void put_idmap_pgtbl(vm_object_t obj);
280int ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
281    vm_page_t *ma, uint64_t pflags, int flags);
282int ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
283    int flags);
284void ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base,
285    dmar_gaddr_t size);
286int ctx_alloc_pgtbl(struct dmar_ctx *ctx);
287void ctx_free_pgtbl(struct dmar_ctx *ctx);
288
289struct dmar_ctx *dmar_instantiate_ctx(struct dmar_unit *dmar, device_t dev,
290    bool rmrr);
291struct dmar_ctx *dmar_get_ctx(struct dmar_unit *dmar, device_t dev,
292    uint16_t rid, bool id_mapped, bool rmrr_init);
293void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx);
294void dmar_free_ctx(struct dmar_ctx *ctx);
295struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid);
296void dmar_ctx_unload_entry(struct dmar_map_entry *entry, bool free);
297void dmar_ctx_unload(struct dmar_ctx *ctx,
298    struct dmar_map_entries_tailq *entries, bool cansleep);
299void dmar_ctx_free_entry(struct dmar_map_entry *entry, bool free);
300
301int dmar_init_busdma(struct dmar_unit *unit);
302void dmar_fini_busdma(struct dmar_unit *unit);
303device_t dmar_get_requester(device_t dev, uint16_t *rid);
304
305void dmar_gas_init_ctx(struct dmar_ctx *ctx);
306void dmar_gas_fini_ctx(struct dmar_ctx *ctx);
307struct dmar_map_entry *dmar_gas_alloc_entry(struct dmar_ctx *ctx, u_int flags);
308void dmar_gas_free_entry(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
309void dmar_gas_free_space(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
310int dmar_gas_map(struct dmar_ctx *ctx, const struct bus_dma_tag_common *common,
311    dmar_gaddr_t size, u_int eflags, u_int flags, vm_page_t *ma,
312    struct dmar_map_entry **res);
313void dmar_gas_free_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
314int dmar_gas_map_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry,
315    u_int eflags, u_int flags, vm_page_t *ma);
316int dmar_gas_reserve_region(struct dmar_ctx *ctx, dmar_gaddr_t start,
317    dmar_gaddr_t end);
318
319void dmar_ctx_parse_rmrr(struct dmar_ctx *ctx, device_t dev,
320    struct dmar_map_entries_tailq *rmrr_entries);
321int dmar_instantiate_rmrr_ctxs(struct dmar_unit *dmar);
322
323void dmar_quirks_post_ident(struct dmar_unit *dmar);
324void dmar_quirks_pre_use(struct dmar_unit *dmar);
325
326int dmar_init_irt(struct dmar_unit *unit);
327void dmar_fini_irt(struct dmar_unit *unit);
328
329#define	DMAR_GM_CANWAIT	0x0001
330#define	DMAR_GM_CANSPLIT 0x0002
331
332#define	DMAR_PGF_WAITOK	0x0001
333#define	DMAR_PGF_ZERO	0x0002
334#define	DMAR_PGF_ALLOC	0x0004
335#define	DMAR_PGF_NOALLOC 0x0008
336#define	DMAR_PGF_OBJL	0x0010
337
338extern dmar_haddr_t dmar_high;
339extern int haw;
340extern int dmar_tbl_pagecnt;
341extern int dmar_match_verbose;
342extern int dmar_check_free;
343
344static inline uint32_t
345dmar_read4(const struct dmar_unit *unit, int reg)
346{
347
348	return (bus_read_4(unit->regs, reg));
349}
350
351static inline uint64_t
352dmar_read8(const struct dmar_unit *unit, int reg)
353{
354#ifdef __i386__
355	uint32_t high, low;
356
357	low = bus_read_4(unit->regs, reg);
358	high = bus_read_4(unit->regs, reg + 4);
359	return (low | ((uint64_t)high << 32));
360#else
361	return (bus_read_8(unit->regs, reg));
362#endif
363}
364
365static inline void
366dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val)
367{
368
369	KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) ==
370	    (unit->hw_gcmd & DMAR_GCMD_TE),
371	    ("dmar%d clearing TE 0x%08x 0x%08x", unit->unit,
372	    unit->hw_gcmd, val));
373	bus_write_4(unit->regs, reg, val);
374}
375
376static inline void
377dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val)
378{
379
380	KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write"));
381#ifdef __i386__
382	uint32_t high, low;
383
384	low = val;
385	high = val >> 32;
386	bus_write_4(unit->regs, reg, low);
387	bus_write_4(unit->regs, reg + 4, high);
388#else
389	bus_write_8(unit->regs, reg, val);
390#endif
391}
392
393/*
394 * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes
395 * are issued in the correct order.  For store, the lower word,
396 * containing the P or R and W bits, is set only after the high word
397 * is written.  For clear, the P bit is cleared first, then the high
398 * word is cleared.
399 *
400 * dmar_pte_update updates the pte.  For amd64, the update is atomic.
401 * For i386, it first disables the entry by clearing the word
402 * containing the P bit, and then defer to dmar_pte_store.  The locked
403 * cmpxchg8b is probably available on any machine having DMAR support,
404 * but interrupt translation table may be mapped uncached.
405 */
406static inline void
407dmar_pte_store1(volatile uint64_t *dst, uint64_t val)
408{
409#ifdef __i386__
410	volatile uint32_t *p;
411	uint32_t hi, lo;
412
413	hi = val >> 32;
414	lo = val;
415	p = (volatile uint32_t *)dst;
416	*(p + 1) = hi;
417	*p = lo;
418#else
419	*dst = val;
420#endif
421}
422
423static inline void
424dmar_pte_store(volatile uint64_t *dst, uint64_t val)
425{
426
427	KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx",
428	    dst, (uintmax_t)*dst, (uintmax_t)val));
429	dmar_pte_store1(dst, val);
430}
431
432static inline void
433dmar_pte_update(volatile uint64_t *dst, uint64_t val)
434{
435
436#ifdef __i386__
437	volatile uint32_t *p;
438
439	p = (volatile uint32_t *)dst;
440	*p = 0;
441#endif
442	dmar_pte_store1(dst, val);
443}
444
445static inline void
446dmar_pte_clear(volatile uint64_t *dst)
447{
448#ifdef __i386__
449	volatile uint32_t *p;
450
451	p = (volatile uint32_t *)dst;
452	*p = 0;
453	*(p + 1) = 0;
454#else
455	*dst = 0;
456#endif
457}
458
459static inline bool
460dmar_test_boundary(dmar_gaddr_t start, dmar_gaddr_t size,
461    dmar_gaddr_t boundary)
462{
463
464	if (boundary == 0)
465		return (true);
466	return (start + size <= ((start + boundary) & ~(boundary - 1)));
467}
468
469#ifdef INVARIANTS
470#define	TD_PREP_PINNED_ASSERT						\
471	int old_td_pinned;						\
472	old_td_pinned = curthread->td_pinned
473#define	TD_PINNED_ASSERT						\
474	KASSERT(curthread->td_pinned == old_td_pinned,			\
475	    ("pin count leak: %d %d %s:%d", curthread->td_pinned,	\
476	    old_td_pinned, __FILE__, __LINE__))
477#else
478#define	TD_PREP_PINNED_ASSERT
479#define	TD_PINNED_ASSERT
480#endif
481
482#endif
483